CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 122 results for author: <span class="mathjax">Hussain, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hussain, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hussain%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hussain, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05913">arXiv:2408.05913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.05913">pdf</a>, <a href="https://arxiv.org/format/2408.05913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s43246-024-00567-4">10.1038/s43246-024-00567-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doping Dependence of Spin-Momentum Locking in Bismuth-Based High-Temperature Cuprate Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+H">Hailan Luo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Currier%2C+K">Kayla Currier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chiu-Yun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gotlieb%2C+K">Kenneth Gotlieb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mori%2C+R">Ryo Mori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexei Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">Alessandra Lanzara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05913v1-abstract-short" style="display: inline;"> Non-zero spin orbit coupling has been reported in several unconventional superconductors due to the absence of inversion symmetry breaking. This contrasts with cuprate superconductors, where such interaction has been neglected for a long time. The recent report of a non-trivial spin orbit coupling in overdoped Bi2212 cuprate superconductor, has re-opened an old debate on both the source and role o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05913v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05913v1-abstract-full" style="display: none;"> Non-zero spin orbit coupling has been reported in several unconventional superconductors due to the absence of inversion symmetry breaking. This contrasts with cuprate superconductors, where such interaction has been neglected for a long time. The recent report of a non-trivial spin orbit coupling in overdoped Bi2212 cuprate superconductor, has re-opened an old debate on both the source and role of such interaction and its evolution throughout the superconducting dome. Using high-resolution spin- and angle-resolved photoemission spectroscopy, we reveal a momentum-dependent spin texture throughout the hole-doped side of the superconducting phase diagram for single- and double-layer bismuth-based cuprates. The universality of the reported effect among different dopings and the disappearance of spin polarization upon lead substitution, suggest a common source. We argue that local structural fluctuations of the CuO planes and the resulting charge imbalance may cause local inversion symmetry breaking and spin polarization, which might be crucial for understanding cuprates physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05913v1-abstract-full').style.display = 'none'; document.getElementById('2408.05913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Mater 5, 140 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06999">arXiv:2308.06999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.06999">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ni cluster embedded (111)NiO layers grown on (0001)GaN films using pulsed laser deposition technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arora%2C+S">Simran Arora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yadav%2C+S">Shivesh Yadav</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaur%2C+A">Amandeep Kaur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahu%2C+B+P">Bhabani Prasad Sahu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zainab Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhar%2C+S">Subhabrata Dhar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06999v1-abstract-short" style="display: inline;"> (111) NiO epitaxial layers embedded with crystallographically oriented Ni-clusters are grown on c-GaN/Sapphire templates using pulsed laser deposition technique. Structural and magnetic properties of the films are examined by a variety of techniques including high resolution x-ray diffraction, precession-electron diffraction and superconducting quantum interference device magnetometry. The study r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06999v1-abstract-full').style.display = 'inline'; document.getElementById('2308.06999v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06999v1-abstract-full" style="display: none;"> (111) NiO epitaxial layers embedded with crystallographically oriented Ni-clusters are grown on c-GaN/Sapphire templates using pulsed laser deposition technique. Structural and magnetic properties of the films are examined by a variety of techniques including high resolution x-ray diffraction, precession-electron diffraction and superconducting quantum interference device magnetometry. The study reveals that the inclusion, orientation, shape, size, density and magnetic properties of these clusters depend strongly on the growth temperature (TG). Though, most of the Ni-clusters are found to be crystallographically aligned with the NiO matrix with Ni(111) parallel to NiO(111), clusters with other orientations also exist, especially in samples grown at lower temperatures. Average size and density of the clusters increase with TG . Proportion of the Ni(111) parallel to NiO(111) oriented clusters also improves as TG is increased. All cluster embedded films show ferromagnetic behaviour even at room temperature. Easy-axis is found to be oriented in the layer plane in samples grown at relatively lower temperatures. However, it turns perpendicular to the layer plane for samples grown at sufficiently high temperatures. This reversal of easy-axis has been attributed to the size dependent competition between the shape, magnetoelastic and the surface anisotropies of the clusters. This composite material thus has great potential to serve as spin-injector and spinstorage medium in GaN based spintronics of the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06999v1-abstract-full').style.display = 'none'; document.getElementById('2308.06999v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15392">arXiv:2103.15392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15392">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Synthesis of Three-Dimensionally Interconnected Hexagonal Boron Nitride Networked Cu-Ni Composite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Hye-Won Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Sookyung Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+B">Byang-Sang Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15392v1-abstract-short" style="display: inline;"> A three-dimensionally interconnected hexagonal boron nitride (3Di-hBN) networked Cu-Ni (3Di-hBN-Cu-Ni) composite was successfully synthesized in situ using a simple two-step process which involved the compaction of mixed Cu-Ni powders (70 wt.% Cu and 30 wt.% Ni) into a disc followed by metal-organic chemical vapor deposition (MOCVD) process at 1000掳C. During MOCVD, the Cu-Ni alloy grains acted as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15392v1-abstract-full').style.display = 'inline'; document.getElementById('2103.15392v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15392v1-abstract-full" style="display: none;"> A three-dimensionally interconnected hexagonal boron nitride (3Di-hBN) networked Cu-Ni (3Di-hBN-Cu-Ni) composite was successfully synthesized in situ using a simple two-step process which involved the compaction of mixed Cu-Ni powders (70 wt.% Cu and 30 wt.% Ni) into a disc followed by metal-organic chemical vapor deposition (MOCVD) process at 1000掳C. During MOCVD, the Cu-Ni alloy grains acted as a template for the growth of hexagonal boron nitride (hBN) while decaborane and ammonia were used as precursors for boron and nitrogen, respectively. Boron and nitrogen atoms diffused into the Cu-Ni solution during the MOCVD process, precipitated out and grew along the Cu-Ni interfaces upon cooling. It was demonstrated that pores were generated during the sintering process and then filled by bulk hBN during the MOCVD process (indicated by energy dispersive spectroscopy) as the pores also served as catalytic sites for the nucleation and growth of hBN. Optical microscopy examination indicated that there was a minimum amount of bulk hBN at certain compaction pressure (280 MPa) and sintering time (30 min). Scanning electron microscopy and transmission electron microscopy revealed that the interconnected network of hBN layers surrounding the Cu-Ni grains was developed in the 3Di-hBN-Cu-Ni composite. This 3Di-hBN network is expected to enhance the resistance of the 3Di-hBN-Cu-Ni composite against mechanical, thermal and chemical attacks. Moreover, foam-like 3Di-hBN was extracted from 3Di-hBN-Cu-Ni composite which could be further applied in the fields of biomedicine and energy storage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15392v1-abstract-full').style.display = 'none'; document.getElementById('2103.15392v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01327">arXiv:2001.01327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01327">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.116401">10.1103/PhysRevLett.125.116401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disparate exciton-phonon couplings for zone center and boundary phonons in solid-state graphite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">Xuefei Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sallis%2C+S">Shawn Sallis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yu-Cheng Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiao%2C+R">Ruimin Qiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yi-Sheng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+L+C">Li Cheng Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tremsin%2C+A">Anton Tremsin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J">Jinghua Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01327v1-abstract-short" style="display: inline;"> The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic X-ray scattering (RIXS) spectroscopy. With ~ 70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in RIXS spectra. Using resonance dependence and the closed form for RIXS cross-section without considering the intermediate state mixin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01327v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01327v1-abstract-full" style="display: none;"> The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic X-ray scattering (RIXS) spectroscopy. With ~ 70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in RIXS spectra. Using resonance dependence and the closed form for RIXS cross-section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.4, corresponding to the coupling strength of 0.42 eV +/- 40 meV and 0.21 eV +/- 30 meV, for zone center and boundary phonons respectively. The reduced g value for zone-boundary phonon may be related to its double resonance nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01327v1-abstract-full').style.display = 'none'; document.getElementById('2001.01327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text is 20 pages with 4 figures Supplementary information is 10 pages with 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 116401 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.10234">arXiv:1912.10234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.10234">pdf</a>, <a href="https://arxiv.org/format/1912.10234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.201103">10.1103/PhysRevB.101.201103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Preserving orbital order in a layered manganite by ultrafast hybridized band excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+L">L. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mack%2C+S">S. Mack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G">G. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">G. Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krupin%2C+O">O. Krupin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M">M. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">S-W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Y-D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+J+A">J. A. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lieu%2C+S">S. Lieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zohar%2C+S">S. Zohar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ford%2C+C">C. Ford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kozina%2C+M">M. Kozina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">W. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minitti%2C+M+P">M. P. Minitti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujioka%2C+J">J. Fujioka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R">R. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W">W-S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Littlewood%2C+P">P. Littlewood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turner%2C+J+J">J. J. Turner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.10234v1-abstract-short" style="display: inline;"> In the mixed-valence manganites, a near-infrared laser typically melts the orbital and spin order simultaneously, corresponding to the photoinduced $d^{1}d^{0}$ $\xrightarrow{}$ $d^{0}d^{1}$ excitations in the Mott-Hubbard bands of manganese. Here, we use ultrafast methods -- both femtosecond resonant x-ray diffraction and optical reflectivity -- to demonstrate that the orbital response in the lay&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10234v1-abstract-full').style.display = 'inline'; document.getElementById('1912.10234v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.10234v1-abstract-full" style="display: none;"> In the mixed-valence manganites, a near-infrared laser typically melts the orbital and spin order simultaneously, corresponding to the photoinduced $d^{1}d^{0}$ $\xrightarrow{}$ $d^{0}d^{1}$ excitations in the Mott-Hubbard bands of manganese. Here, we use ultrafast methods -- both femtosecond resonant x-ray diffraction and optical reflectivity -- to demonstrate that the orbital response in the layered manganite Nd$_{1-x}$Sr$_{1+x}$MnO$_{4}$ ($\it{x}$ = 2/3) does not follow this scheme. At the photoexcitation saturation fluence, the orbital order is only diminished by a few percent in the transient state. Instead of the typical $d^{1}d^{0}$ $\xrightarrow{}$ $d^{0}d^{1}$ transition, a near-infrared pump in this compound promotes a fundamentally distinct mechanism of charge transfer, the $d^{0}$ $ \xrightarrow{}$ $d^{1}L$, where $\it{L}$ denotes a hole in the oxygen band. This novel finding may pave a new avenue for selectively manipulating specific types of order in complex materials of this class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10234v1-abstract-full').style.display = 'none'; document.getElementById('1912.10234v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 201103 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02678">arXiv:1909.02678</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02678">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0585-z">10.1038/s41563-019-0585-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of the parent compound of superconducting infinite-layer nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hepting%2C+M">M. Hepting</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C+J">C. J. Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+H">H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Paris%2C+E">E. Paris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+Y">Y. Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+X">X. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Osada%2C+M">M. Osada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Been%2C+E">E. Been</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hikita%2C+Y">Y. Hikita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K+J">K. J. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+A">A. Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">M. Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+M">M. Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+H+Y">H. Y. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D+J">D. J. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+T">T. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaanen%2C+J">J. Zaanen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02678v1-abstract-short" style="display: inline;"> The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02678v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02678v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02678v1-abstract-full" style="display: none;"> The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprates - transition metal oxide layers separated by a rare-earth spacer layer - formal valence counting suggests that these materials have monovalent Ni1+ cations with the same 3d electron count as Cu2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly-interacting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2-y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics, well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo- or Anderson-lattice-like &#34;oxide-intermetallic&#34; replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02678v1-abstract-full').style.display = 'none'; document.getElementById('1909.02678v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 19, 381 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09867">arXiv:1904.09867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.09867">pdf</a>, <a href="https://arxiv.org/ps/1904.09867">ps</a>, <a href="https://arxiv.org/format/1904.09867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ac0022">10.1088/1361-648X/ac0022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional domain wall magnetoresistance of patterned Ni/Nb bilayer structures below superconducting transition temperature of Nb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhatia%2C+E">Ekta Bhatia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zainab Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+V+R">V. Raghavendra Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barber%2C+Z+H">Zoe H. Barber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senapati%2C+K">Kartik Senapati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09867v3-abstract-short" style="display: inline;"> Scattering of spin-up and spin-down electrons while passing through a ferromagnetic domain wall leads to an additional resistance for transport current, usually observed prominently in constricted magnetic structures. In this report, we use the resistance of the domain wall as a probe to find indirect signatures of the theoretically predicted spin-singlet supercurrent to spin-triplet supercurrent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09867v3-abstract-full').style.display = 'inline'; document.getElementById('1904.09867v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09867v3-abstract-full" style="display: none;"> Scattering of spin-up and spin-down electrons while passing through a ferromagnetic domain wall leads to an additional resistance for transport current, usually observed prominently in constricted magnetic structures. In this report, we use the resistance of the domain wall as a probe to find indirect signatures of the theoretically predicted spin-singlet supercurrent to spin-triplet supercurrent conversion effect of ferromagnetic domain walls. Here we examine the domain wall induced resistance in Ni stripe in a bilayer Ni/Nb geometry in the normal state and in the superconducting state of Nb. By making a 6um wide gap in the top Nb layer we routed the transport current through the Ni layer in the normal state and in the superconducting state of Nb. In the normal state of Nb, in-field transport measurements showed a clear domain wall magneto-resistance (DWMR) peak near the coercive field, where the domain wall density is expected to be maximum. Interestingly, however, below the superconducting transition temperature of Nb, the DWMR peak of the Ni layer showed a sharp drop in the field range where the number of domain walls becomes maximum. This observation may be a possible signature of magnetic domain wall induced spin-triplet correlations in the Ni layer due to the direct injection of spin-singlet Cooper pairs from Nb into the magnetic domain walls. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09867v3-abstract-full').style.display = 'none'; document.getElementById('1904.09867v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 33, 295803, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.08106">arXiv:1903.08106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.08106">pdf</a>, <a href="https://arxiv.org/format/1903.08106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physb.2021.412877">10.1016/j.physb.2021.412877 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of magnetization reversal in Neel and Bloch regime of Ni and Py stripes using Kerr microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bhatia%2C+E">Ekta Bhatia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zaineb Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+V+R">V. Raghavendra Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senapati%2C+K">Kartik Senapati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.08106v3-abstract-short" style="display: inline;"> We present a systematic study of the magnetization reversal of nickel and permalloy micro-stripes with Neel and Bloch domain walls using Kerr microscopy. Magnetic field driven domain propagation was observed from higher width to lower width stripes for magnetic fields applied along the length of micro-stripes. Stripe like domains were observed with nucleation starting in lower width region followe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08106v3-abstract-full').style.display = 'inline'; document.getElementById('1903.08106v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.08106v3-abstract-full" style="display: none;"> We present a systematic study of the magnetization reversal of nickel and permalloy micro-stripes with Neel and Bloch domain walls using Kerr microscopy. Magnetic field driven domain propagation was observed from higher width to lower width stripes for magnetic fields applied along the length of micro-stripes. Stripe like domains were observed with nucleation starting in lower width region followed by their propagation to higher width regions for magnetic fields applied along the width of micro-stripes. The comparison of magnetization reversal in Bloch and N茅el domain wall regime showed higher domain wall density in Bloch regime for both nickel and permalloy stripes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08106v3-abstract-full').style.display = 'none'; document.getElementById('1903.08106v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica B: Condensed Matter, 609, 412877, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04139">arXiv:1901.04139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.04139">pdf</a>, <a href="https://arxiv.org/ps/1901.04139">ps</a>, <a href="https://arxiv.org/format/1901.04139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.214109">10.1103/PhysRevB.99.214109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finding pathways for stoichiometric Co4N thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pandey%2C+N">Nidhi Pandey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+M">Mukul Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+R">Rachana Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zaineb Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+V+R">V. R. Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phase%2C+D+M">D. M. Phase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stahn%2C+J">Jochen Stahn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04139v1-abstract-short" style="display: inline;"> In this work, we studied the pathways for formation of stoichiometric \tcn~thin films. Polycrystalline and epitaxial \tcn~films were prepared using reactive direct current magnetron (dcMS) sputtering technique. A systematic variation in the substrate temperature (\Ts) during the dcMS process reveals that the lattice parameter (LP) decreases as \Ts~increases. We found that nearly stoichiometric \tc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04139v1-abstract-full').style.display = 'inline'; document.getElementById('1901.04139v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04139v1-abstract-full" style="display: none;"> In this work, we studied the pathways for formation of stoichiometric \tcn~thin films. Polycrystalline and epitaxial \tcn~films were prepared using reactive direct current magnetron (dcMS) sputtering technique. A systematic variation in the substrate temperature (\Ts) during the dcMS process reveals that the lattice parameter (LP) decreases as \Ts~increases. We found that nearly stoichiometric \tcn~films can be obtained when \Ts~= 300\,K. However, they emerge from the transient state of Co target ($蠁$3\,inch). By reducing the target size to $蠁$1\,inch, now the \tcn~phase formation takes place from the metallic state of Co target. In this case, LP of \tcn~film comes out to be $\sim$99\p~of the value expected for \tcn. This is the largest value of LP found so far for \tcn. The pathways achieved for formation of polycrystalline \tcn~were adopted to grow an epitaxial \tcn~film, which shows four fold magnetic anisotropy in magneto-optic Kerr effect measurements. Detailed characterization using secondary ion mass spectroscopy indicates that N diffuses out when \Ts~is raised even to 400\,K. Measurement of electronic structure using x-ray photoelectron spectroscopy and x-ray absorption spectroscopy further confirms it. Magnetization measurements using bulk magnetization and polarized neutron reflectivity show that the saturation magnetization of stoichiometric \tcn~film is even larger than pure Co. Since all our measurements indicated that N could be diffusing out, when \tcn~films are grown at high \Ts, we did actual N self-diffusion measurements in a CoN sample and found that N self-diffusion was indeed substantially higher. The outcome of this work clearly shows that the \tcn~films grown prior to this work were always N deficient and the pathways for formation of a stoichiometric \tcn~have been achieved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04139v1-abstract-full').style.display = 'none'; document.getElementById('1901.04139v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 18 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 214109 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.05964">arXiv:1811.05964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.05964">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.joule.2018.11.014">10.1016/j.joule.2018.11.014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High Reversibility of Lattice Oxygen Redox in Na-ion and Li-ion Batteries Quantified by Direct Bulk Probes of both Anionic and Cationic Redox Reactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+K">Kehua Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jinpeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+Z">Zengqing Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qinghao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sallis%2C+S">Shawn Sallis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+J">Jing Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ai%2C+G">Guo Ai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+C">Chihang Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z">Zaiyuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gent%2C+W+E">William E. Gent</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chueh%2C+W+C">William C. Chueh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-de Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+R">Rong Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+S">Shishen Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piper%2C+L+F+J">Louis F. J. Piper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Gao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.05964v1-abstract-short" style="display: inline;"> The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of both cations and anions in Na2/3Mg1/3Mn2/3O2. The bulk-Mn redox emerges from initial discharge and is quantified by inverse-partial fluorescence yield (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05964v1-abstract-full').style.display = 'inline'; document.getElementById('1811.05964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.05964v1-abstract-full" style="display: none;"> The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of both cations and anions in Na2/3Mg1/3Mn2/3O2. The bulk-Mn redox emerges from initial discharge and is quantified by inverse-partial fluorescence yield (iPFY) from Mn-L mRIXS. Bulk and surface Mn activities likely lead to the voltage fade. O-K super-partial fluorescence yield (sPFY) analysis of mRIXS shows 79% lattice oxygen-redox reversibility during initial cycle, with 87% capacity sustained after 100 cycles. In Li1.17Ni0.21Co0.08Mn0.54O2, lattice-oxygen redox is 76% initial-cycle reversible but with only 44% capacity retention after 500 cycles. These results unambiguously show the high reversibility of lattice-oxygen redox in both Li-ion and Na-ion systems. The contrast between Na2/3Mg1/3Mn2/3O2 and Li1.17Ni0.21Co0.08Mn0.54O2 systems suggests the importance of distinguishing lattice-oxygen redox from other oxygen activities for clarifying its intrinsic properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.05964v1-abstract-full').style.display = 'none'; document.getElementById('1811.05964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 8 Figures. Plus 14 pages of Supplementary Materials with 12 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Joule 3, 518 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.00715">arXiv:1811.00715</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.00715">pdf</a>, <a href="https://arxiv.org/format/1811.00715">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5079677">10.1063/1.5079677 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Buss%2C+J+H">Jan Heye Buss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">He Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yiming Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maklar%2C+J">Julian Maklar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joucken%2C+F">Frederic Joucken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeng%2C+L">Lingkun Zeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stoll%2C+S">Sebastian Stoll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pepper%2C+J">John Pepper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">Alessandra Lanzara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+R+A">Robert A. Kaindl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.00715v2-abstract-short" style="display: inline;"> Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00715v2-abstract-full').style.display = 'inline'; document.getElementById('1811.00715v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.00715v2-abstract-full" style="display: none;"> Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and UHV endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2e10 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe$_2$, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe$_2$. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.00715v2-abstract-full').style.display = 'none'; document.getElementById('1811.00715v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, updated accepted version with journal ref</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rev. Sci. Instrum. 90, 023105 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.08292">arXiv:1809.08292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.08292">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpclett.8b02757">10.1021/acs.jpclett.8b02757 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic Signature of Oxidized Oxygen States in Peroxides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhuo%2C+Z">Zengqing Zhuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pemmaraju%2C+C+D">Chaitanya Das Pemmaraju</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinson%2C+J">John Vinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+I">Ilkyu Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sallies%2C+S">Shawn Sallies</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Q">Qinghao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+J">Jinpeng Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+K">Kehua Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-de Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pan%2C+F">Feng Pan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.08292v2-abstract-short" style="display: inline;"> Recent debates on the oxygen redox behaviors in battery electrodes have triggered a pressing demand for the reliable detection and understanding of non-divalent oxygen states beyond conventional absorption spectroscopy. Here, enabled by high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) coupled with first-principles calculations, we report distinct mRIXS features of the oxygen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08292v2-abstract-full').style.display = 'inline'; document.getElementById('1809.08292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.08292v2-abstract-full" style="display: none;"> Recent debates on the oxygen redox behaviors in battery electrodes have triggered a pressing demand for the reliable detection and understanding of non-divalent oxygen states beyond conventional absorption spectroscopy. Here, enabled by high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) coupled with first-principles calculations, we report distinct mRIXS features of the oxygen states in Li2O, Li2CO3, and especially, Li2O2, which are successfully reproduced and interpreted theoretically. mRIXS signals are dominated by valence-band decays in Li2O and Li2CO3. However, the oxidized oxygen in Li2O2 leads to partially unoccupied O-2p states that yield a specific intra-band excitonic feature in mRIXS. Such a feature displays a specific emission energy in mRIXS, which disentangles the oxidized oxygen states from the dominating transition-metal/oxygen hybridization features in absorption spectroscopy, thus providing critical hints for both detecting and understanding the oxygen redox reactions in transition-metal oxide based battery materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08292v2-abstract-full').style.display = 'none'; document.getElementById('1809.08292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 figures, plus 11 pages of Supplementary Information with 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Journal of Physical Chemistry Letters 9, 6378-6384 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06929">arXiv:1809.06929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.06929">pdf</a>, <a href="https://arxiv.org/format/1809.06929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.127001">10.1103/PhysRevLett.121.127001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectral Evidence for Emergent Order in Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Y. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frandsen%2C+B+A">B. A. Frandsen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">R. Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Q. Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+L">L. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">M. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hardy%2C+F">F. Hardy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schweiss%2C+P">P. Schweiss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Adelmann%2C+P">P. Adelmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+-">S. -K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tacon%2C+M+L">M. Le Tacon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohmer%2C+A+E">A. E. Bohmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D+-">D. -H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meingast%2C+C">C. Meingast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">R. J. Birgeneau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06929v1-abstract-short" style="display: inline;"> We report an angle-resolved photoemission spectroscopy study of the iron-based superconductor family, Ba$_{1-x}$Na$_x$Fe$_2$As$_2$. This system harbors the recently discovered double-Q magnetic order appearing in a reentrant C$_4$ phase deep within the underdoped regime of the phase diagram that is otherwise dominated by the coupled nematic phase and collinear antiferromagnetic order. From a detai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06929v1-abstract-full').style.display = 'inline'; document.getElementById('1809.06929v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06929v1-abstract-full" style="display: none;"> We report an angle-resolved photoemission spectroscopy study of the iron-based superconductor family, Ba$_{1-x}$Na$_x$Fe$_2$As$_2$. This system harbors the recently discovered double-Q magnetic order appearing in a reentrant C$_4$ phase deep within the underdoped regime of the phase diagram that is otherwise dominated by the coupled nematic phase and collinear antiferromagnetic order. From a detailed temperature-dependence study, we identify the electronic response to the nematic phase in an orbital-dependent band shift that strictly follows the rotational symmetry of the lattice and disappears when the system restores C$_4$ symmetry in the low temperature phase. In addition, we report the observation of a distinct electronic reconstruction that cannot be explained by the known electronic orders in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06929v1-abstract-full').style.display = 'none'; document.getElementById('1809.06929v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 127001 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.05670">arXiv:1707.05670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.05670">pdf</a>, <a href="https://arxiv.org/format/1707.05670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.elspec.2016.12.004">10.1016/j.elspec.2016.12.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge transfer excitations in VUV and soft X-ray resonant scattering spectroscopies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Augustin%2C+E">Edwin Augustin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+H">Haowei He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+L">Lin Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wray%2C+L+A">L. Andrew Wray</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.05670v1-abstract-short" style="display: inline;"> The utility of resonant scattering spectroscopies for identifying electronic symmetries and density distributions changes dramatically as a function of photon energy. In the hard X-ray regime, strong core hole monopole potentials tend to produce X-ray absorption features with well defined electron number on the scattering site. By contrast, in the vacuum ultraviolet (VUV), resonant scattering from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05670v1-abstract-full').style.display = 'inline'; document.getElementById('1707.05670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.05670v1-abstract-full" style="display: none;"> The utility of resonant scattering spectroscopies for identifying electronic symmetries and density distributions changes dramatically as a function of photon energy. In the hard X-ray regime, strong core hole monopole potentials tend to produce X-ray absorption features with well defined electron number on the scattering site. By contrast, in the vacuum ultraviolet (VUV), resonant scattering from Mott insulators tends to reveal spectra that are characteristic of only the nominal valence, and are insensitive to deviations from nominal valence brought on by metal-ligand hybridization. Here, atomic multiplet simulations are used to investigate the interplay of monopolar and mulitpolar Coulomb interactions in the VUV and soft X-ray regimes, to identify how charge transfer thresholds and other signatures of mixed valence can manifest in this low photon energy regime. The study focuses on the Mott insulator NiO as a well characterized model system, and extrapolates interactions into non-physical regimes to identify principles that shape the spectral features. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.05670v1-abstract-full').style.display = 'none'; document.getElementById('1707.05670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07488">arXiv:1703.07488</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.07488">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.146402">10.1103/PhysRevLett.118.146402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elemental topological Dirac semimetal: 伪-Sn on InSb(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+C">Cai-Zhi Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+Y">Yang-Hao Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yige Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+P">Peng Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaoxiong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dejoie%2C+C">Catherine Dejoie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+M">Man-Hong Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hlevyack%2C+J+A">Joseph Andrew Hlevyack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kee%2C+H">Hae-Young Kee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamura%2C+N">Nobumichi Tamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chou%2C+M">Mei-Yin Chou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiang%2C+T">Tai-Chang Chiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07488v1-abstract-short" style="display: inline;"> Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in ep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07488v1-abstract-full').style.display = 'inline'; document.getElementById('1703.07488v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07488v1-abstract-full" style="display: none;"> Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in epitaxially-grown 伪-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator (TI) phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07488v1-abstract-full').style.display = 'none'; document.getElementById('1703.07488v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 146402 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03151">arXiv:1703.03151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.03151">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys4174">10.1038/nphys4174 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Realization of Quantum Spin Hall State in Monolayer 1T&#39;-WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Shujie Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">Chaofan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+D">Dillon Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedramrazi%2C+Z">Zahra Pedramrazi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+H">Hsin-Zon Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+C">Chunjing Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claassen%2C+M">Martin Claassen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kahn%2C+S">Salman Kahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Robert G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Chancuk Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Choongyu Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xie%2C+X">Xiaoming Xie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03151v1-abstract-short" style="display: inline;"> A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling. By investigating electronic structure of epitaxially grown monolayer 1T&#39;-WTe2 using ang&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03151v1-abstract-full').style.display = 'inline'; document.getElementById('1703.03151v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03151v1-abstract-full" style="display: none;"> A quantum spin Hall (QSH) insulator is a novel two-dimensional quantum state of matter that features quantized Hall conductance in the absence of magnetic field, resulting from topologically protected dissipationless edge states that bridge the energy gap opened by band inversion and strong spin-orbit coupling. By investigating electronic structure of epitaxially grown monolayer 1T&#39;-WTe2 using angle-resolved photoemission (ARPES) and first principle calculations, we observe clear signatures of the topological band inversion and the band gap opening, which are the hallmarks of a QSH state. Scanning tunneling microscopy measurements further confirm the correct crystal structure and the existence of a bulk band gap, and provide evidence for a modified electronic structure near the edge that is consistent with the expectations for a QSH insulator. Our results establish monolayer 1T&#39;-WTe2 as a new class of QSH insulator with large band gap in a robust two-dimensional materials family of transition metal dichalcogenides (TMDCs). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03151v1-abstract-full').style.display = 'none'; document.getElementById('1703.03151v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures; includes Supplemental Material (11 pages, 7 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.01019">arXiv:1612.01019</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1612.01019">pdf</a>, <a href="https://arxiv.org/format/1612.01019">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.035131">10.1103/PhysRevB.91.035131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental signatures of phase interference and sub-femtosecond time dynamics on the incident energy axis of resonant inelastic X-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wray%2C+L+A">L. Andrew Wray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+Y">Yuqi Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathy%2C+C">Charles Mathy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.01019v1-abstract-short" style="display: inline;"> Core hole resonance is used in X-ray spectroscopy to incisively probe the local electronic states of many-body systems. Here, resonant inelastic X-ray scattering (RIXS) is studied as a function of incident photon energy on Mott insulators SrCuO2 and NiO to examine how resonance states decay into different excitation symmetries at the transition metal M-, L- and K-edges. Quantum interference patter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01019v1-abstract-full').style.display = 'inline'; document.getElementById('1612.01019v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.01019v1-abstract-full" style="display: none;"> Core hole resonance is used in X-ray spectroscopy to incisively probe the local electronic states of many-body systems. Here, resonant inelastic X-ray scattering (RIXS) is studied as a function of incident photon energy on Mott insulators SrCuO2 and NiO to examine how resonance states decay into different excitation symmetries at the transition metal M-, L- and K-edges. Quantum interference patterns characteristic of the two major RIXS mechanisms are identified within the data, and used to distinguish the attosecond scale scattering dynamics by which fundamental excitations of a many-body system are created. A function is proposed to experimentally evaluate whether a particular excitation has constructive or destructive interference in the RIXS cross-section, and corroborates other evidence that an anomalous excitation is present at the leading edge of the Mott gap in quasi-one dimensional SrCuO2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.01019v1-abstract-full').style.display = 'none'; document.getElementById('1612.01019v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 91, 035131 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.07759">arXiv:1610.07759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.07759">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.elspec.2016.10.003">10.1016/j.elspec.2016.10.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ARPES study of the epitaxially grown topological crystalline insulator SnTe(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Bo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yeongkwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Choongyu Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.07759v1-abstract-short" style="display: inline;"> SnTe is a prototypical topological crystalline insulator, in which the gapless surface state is protected by a crystal symmetry. The hallmark of the topological properties in SnTe is the Dirac cones projected to the surfaces with mirror symmetry, stemming from the band inversion near the L points of its bulk Brillouin zone, which can be measured by angle-resolved photoemission. We have obtained th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07759v1-abstract-full').style.display = 'inline'; document.getElementById('1610.07759v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.07759v1-abstract-full" style="display: none;"> SnTe is a prototypical topological crystalline insulator, in which the gapless surface state is protected by a crystal symmetry. The hallmark of the topological properties in SnTe is the Dirac cones projected to the surfaces with mirror symmetry, stemming from the band inversion near the L points of its bulk Brillouin zone, which can be measured by angle-resolved photoemission. We have obtained the (111) surface of SnTe film by molecular beam epitaxy on BaF2(111) substrate. Photon-energy-dependence of in situ angle-resolved photoemission, covering multiple Brillouin zones in the direction perpendicular tothe (111) surface, demonstrate the projected Dirac cones at the Gamma_bar and M_bar points of the surface Brillouinzone. In addition, we observe a Dirac-cone-like band structure at the Gamma point of the bulk Brillouin zone,whose Dirac energy is largely different from those at the Gamma_bar and M_bar points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.07759v1-abstract-full').style.display = 'none'; document.getElementById('1610.07759v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Electron Spectroscopy and Related Phenomena (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.01842">arXiv:1609.01842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.01842">pdf</a>, <a href="https://arxiv.org/format/1609.01842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13143">10.1038/ncomms13143 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-Polarized Surface Resonances Accompanying Topological Surface State Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sobota%2C+J+A">Jonathan A. Sobota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gotlieb%2C+K">Kenneth Gotlieb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">Alexander F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotundu%2C+C+R">Costel R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">Alessandra Lanzara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.01842v1-abstract-short" style="display: inline;"> Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi$_2$Se$_3$. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01842v1-abstract-full').style.display = 'inline'; document.getElementById('1609.01842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.01842v1-abstract-full" style="display: none;"> Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi$_2$Se$_3$. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin- orbital texture with opposite orientation. Its momentum- dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.01842v1-abstract-full').style.display = 'none'; document.getElementById('1609.01842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 7, 13143 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.08904">arXiv:1608.08904</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.08904">pdf</a>, <a href="https://arxiv.org/format/1608.08904">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13917">10.1038/ncomms13917 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast evolution and transient phases of the prototype out-of-equilibrium Mott-Hubbard material V2O3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lantz%2C+G">G. Lantz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mansart%2C+B">B Mansart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grieger%2C+D">D. Grieger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschetto%2C+D">D. Boschetto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nilforoushan%2C+N">N. Nilforoushan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Papalazarou%2C+E">E. Papalazarou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moisan%2C+N">N. Moisan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perfetti%2C+L">L. Perfetti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacques%2C+V+L+R">V. L. R. Jacques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bolloc%27h%2C+D+L">D. Le Bolloc&#39;h</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laulh%C3%A9%2C+C">C. Laulh茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravy%2C+S">S. Ravy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rueff%2C+J+-">J. -P. Rueff</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glover%2C+T+E">T. E. Glover</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hertlein%2C+M+P">M. P. Hertlein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">M. Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizio%2C+M">M. Fabrizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marsi%2C+M">M. Marsi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.08904v1-abstract-short" style="display: inline;"> The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new sta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08904v1-abstract-full').style.display = 'inline'; document.getElementById('1608.08904v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.08904v1-abstract-full" style="display: none;"> The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behavior, including non-thermal phases and photoinduced phase transitions. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states of matter inaccessible by quasi-adiabatic pathways. Here we present a study of the ultrafast non-equilibrium evolution of the prototype Mott-Hubbard material V2O3, which presents a transient non-thermal phase developing immediately after photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a marked hardening of the A1g coherent phonon. This configuration is in stark contrast with the thermally accessible ones - the A1g phonon frequency actually softens when heating the material. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are of particular relevance for the optical manipulation of strongly correlated systems, whose electronic and structural properties are often strongly intertwinned. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.08904v1-abstract-full').style.display = 'none'; document.getElementById('1608.08904v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 8: 13917 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.08164">arXiv:1603.08164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.08164">pdf</a>, <a href="https://arxiv.org/format/1603.08164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2017.01.052">10.1016/j.jmmm.2017.01.052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resolution Kerr microscopy study of exchange bias phenomena in FePt/Fe exchange spring magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zaineb Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+D">Dileep Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reddy%2C+V+R">V. Raghavendra Reddy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+A">Ajay Gupta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.08164v1-abstract-short" style="display: inline;"> Magnetization and magnetic microstructure of top soft magnetic layer (Fe), which is exchange spring coupled to bottom hard magnetic layer ($L1_0$ FePt) is studied using high resolution Kerr microscopy. When the sample (FePt/Fe) is at remanent condition of hard magnetic layer, considerable shifting of Fe layer hysteresis loop from centre i.e., exchange bias phenomena is observed. It is observed tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.08164v1-abstract-full').style.display = 'inline'; document.getElementById('1603.08164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.08164v1-abstract-full" style="display: none;"> Magnetization and magnetic microstructure of top soft magnetic layer (Fe), which is exchange spring coupled to bottom hard magnetic layer ($L1_0$ FePt) is studied using high resolution Kerr microscopy. When the sample (FePt/Fe) is at remanent condition of hard magnetic layer, considerable shifting of Fe layer hysteresis loop from centre i.e., exchange bias phenomena is observed. It is observed that one can tune the magnitude of exchange bias shift by reaching the remanent state from different saturating fields ($H_{SAT}$) and also by varying the angle between measuring field and $H_{SAT}$. The M-H loops and domain images of top soft Fe layer demonstrates unambiguously that soft magnetic layer at remanent state in such exchange coupled system is having unidirectional anisotropy. An analogy is drawn and the observations are explained in terms of the mostly accepted models of exchange bias phenomena exhibited by bilayers consisting of ferromagnetic(FM) and anti-ferromagnetic (AFM) layers, when the AFM layer is field cooled across $N\acute{e}el$ transition temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.08164v1-abstract-full').style.display = 'none'; document.getElementById('1603.08164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Magnetism and Magnetic Materials 430 (2017) 78 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06308">arXiv:1603.06308</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.06308">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.6b00059">10.1021/acs.nanolett.6b00059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jin%2C+C">Chenhao Jin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradley%2C+A+J">Aaron J. Bradley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martin-Recio%2C+A">Ana Martin-Recio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jonghwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+S">Shujie Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yeongkwan Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Bo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Choongyu Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06308v1-abstract-short" style="display: inline;"> High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy (MBE). The combination of angle-resolved photoemission (ARPES), scanning tunneling microscopy/spectroscopy (STM/STS), and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bila&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06308v1-abstract-full').style.display = 'inline'; document.getElementById('1603.06308v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06308v1-abstract-full" style="display: none;"> High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy (MBE). The combination of angle-resolved photoemission (ARPES), scanning tunneling microscopy/spectroscopy (STM/STS), and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional 3D semiconductors, yet small as compared to other 2D transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06308v1-abstract-full').style.display = 'none'; document.getElementById('1603.06308v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.05558">arXiv:1603.05558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.05558">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3730">10.1038/nphys3730 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of charge density wave order in 1D mirror twin boundaries of single-layer MoSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barja%2C+S">Sara Barja</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wickenburg%2C+S">Sebastian Wickenburg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhen-Fei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+E">Ed Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salmeron%2C+M+B">Miquel B. Salmeron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ogletree%2C+D+F">D. Frank Ogletree</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neaton%2C+J+B">Jeffrey B. Neaton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weber-Bargioni%2C+A">Alexander Weber-Bargioni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.05558v1-abstract-short" style="display: inline;"> Properties of two-dimensional transition metal dichalcogenides are highly sensitive to the presence of defects in the crystal structure. A detailed understanding of defect structure may lead to control of material properties through defect engineering. Here we provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries in single-layer MoSe2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05558v1-abstract-full').style.display = 'inline'; document.getElementById('1603.05558v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.05558v1-abstract-full" style="display: none;"> Properties of two-dimensional transition metal dichalcogenides are highly sensitive to the presence of defects in the crystal structure. A detailed understanding of defect structure may lead to control of material properties through defect engineering. Here we provide direct evidence for the existence of isolated, one-dimensional charge density waves at mirror twin boundaries in single-layer MoSe2. Our low-temperature scanning tunneling microscopy/spectroscopy measurements reveal a substantial bandgap of 60 - 140 meV opening at the Fermi level in the otherwise one dimensional metallic structure. We find an energy-dependent periodic modulation in the density of states along the mirror twin boundary, with a wavelength of approximately three lattice constants. The modulations in the density of states above and below the Fermi level are spatially out of phase, consistent with charge density wave order. In addition to the electronic characterization, we determine the atomic structure and bonding configuration of the one-dimensional mirror twin boundary by means of high-resolution non-contact atomic force microscopy. Density functional theory calculations reproduce both the gap opening and the modulations of the density of states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.05558v1-abstract-full').style.display = 'none'; document.getElementById('1603.05558v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Phys 12, 751-756 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.05633">arXiv:1602.05633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.05633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms12924">10.1038/ncomms12924 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Unusual Topological Surface States in Half-Heusler Compounds LnPtBi (Ln=Lu, Y) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shu-Chun Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+J">Juan Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haifeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.05633v2-abstract-short" style="display: inline;"> Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.05633v2-abstract-full').style.display = 'inline'; document.getElementById('1602.05633v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.05633v2-abstract-full" style="display: none;"> Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy (ARPES) and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observed the unusual topological surface states on these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.05633v2-abstract-full').style.display = 'none'; document.getElementById('1602.05633v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00521">arXiv:1507.00521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1507.00521">pdf</a>, <a href="https://arxiv.org/ps/1507.00521">ps</a>, <a href="https://arxiv.org/format/1507.00521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a Weyl Semimetal in non-Centrosymmetric Compound TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+L">Lexian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+H">Han Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+H">Haifeng Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+T">Teng Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Bo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rahn%2C+M">Marein Rahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">Dharmalingam Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00521v2-abstract-short" style="display: inline;"> Three-dimensional (3D) topological Weyl semimetals (TWSs) represent a novel state of quantum matter with unusual electronic structures that resemble both a &#34;3D graphene&#34; and a topological insulator by possessing pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming the unique &#34;Fermi-arc&#34; type&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00521v2-abstract-full').style.display = 'inline'; document.getElementById('1507.00521v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00521v2-abstract-full" style="display: none;"> Three-dimensional (3D) topological Weyl semimetals (TWSs) represent a novel state of quantum matter with unusual electronic structures that resemble both a &#34;3D graphene&#34; and a topological insulator by possessing pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming the unique &#34;Fermi-arc&#34; type Fermi-surface (FS). Each Weyl point is chiral and contains half of the degrees of freedom of a Dirac point, and can be viewed as a magnetic monopole in the momentum space. Here, by performing angle-resolved photoemission spectroscopy on non-centrosymmetric compound TaAs, we observed its complete band structures including the unique &#34;Fermi-arc&#34; FS and linear bulk band dispersion across the Weyl points, in excellent agreement with the theoretical calculations. This discovery not only confirms TaAs as the first 3D TWS, but also provides an ideal platform for realizing exotic physical phenomena (e.g. negative magnetoresistance, chiral magnetic effects and quantum anomalous Hall effect) which may also lead to novel future applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00521v2-abstract-full').style.display = 'none'; document.getElementById('1507.00521v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures; accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.08460">arXiv:1506.08460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.08460">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys3527">10.1038/nphys3527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of collective ground states in single-layer NbSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradley%2C+A+J">Aaron J. Bradley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onishi%2C+S">Seita Onishi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+W">Wei Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ojeda-Aristizabal%2C+C">Claudia Ojeda-Aristizabal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+H">Hyejin Ryu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+M+T">Mark T. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsai%2C+H">Hsin-Zon Tsai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riss%2C+A">Alexander Riss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dunghai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zettl%2C+A">Alex Zettl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.08460v2-abstract-short" style="display: inline;"> Layered transition metal dichalcogenides (TMDs) are ideal systems for exploring the effects of dimensionality on correlated electronic phases such as charge density wave (CDW) order and superconductivity. In bulk NbSe2 a CDW sets in at TCDW = 33 K and superconductivity sets in at Tc = 7.2 K. Below Tc these electronic states coexist but their microscopic formation mechanisms remain controversial. H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08460v2-abstract-full').style.display = 'inline'; document.getElementById('1506.08460v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.08460v2-abstract-full" style="display: none;"> Layered transition metal dichalcogenides (TMDs) are ideal systems for exploring the effects of dimensionality on correlated electronic phases such as charge density wave (CDW) order and superconductivity. In bulk NbSe2 a CDW sets in at TCDW = 33 K and superconductivity sets in at Tc = 7.2 K. Below Tc these electronic states coexist but their microscopic formation mechanisms remain controversial. Here we present an electronic characterization study of a single 2D layer of NbSe2 by means of low temperature scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and electrical transport measurements. We demonstrate that 3x3 CDW order in NbSe2 remains intact in 2D. Superconductivity also still remains in the 2D limit, but its onset temperature is depressed to 1.9 K. Our STS measurements at 5 K reveal a CDW gap of 螖 = 4 meV at the Fermi energy, which is accessible via STS due to the removal of bands crossing the Fermi level for a single layer. Our observations are consistent with the simplified (compared to bulk) electronic structure of single-layer NbSe2, thus providing new insight into CDW formation and superconductivity in this model strongly-correlated system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.08460v2-abstract-full').style.display = 'none'; document.getElementById('1506.08460v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2015), DOI:10.1038/nphys3527</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03888">arXiv:1506.03888</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.03888">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms8777">10.1038/ncomms8777 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of universal strong orbital-dependent correlation effects in iron chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jianxin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">James Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R">Rob Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+F">Felix Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wei Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riggs%2C+S">Scott Riggs</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Bing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+C">Ching-Wu Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I">Ian Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03888v2-abstract-short" style="display: inline;"> Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide (FeCh) superconductors, the only iron-based family in proximity to an insulating pha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03888v2-abstract-full').style.display = 'inline'; document.getElementById('1506.03888v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03888v2-abstract-full" style="display: none;"> Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide (FeCh) superconductors, the only iron-based family in proximity to an insulating phase. Here, we use angle-resolved photoemission spectroscopy (ARPES) to measure three representative FeCh superconductors, FeTe0.56Se0.44, K0.76Fe1.72Se2, and monolayer FeSe film grown on SrTiO3. We show that, these FeChs are all in a strongly correlated regime at low temperatures, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi-surface topologies. Furthermore, raising temperature brings all three compounds from a metallic superconducting state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that FeChs display universal orbital-selective strong correlation behaviors that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase (OSMP), hence placing strong constraints for theoretical understanding of iron-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03888v2-abstract-full').style.display = 'none'; document.getElementById('1506.03888v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Comm. 6, 7777 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.03796">arXiv:1506.03796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.03796">pdf</a>, <a href="https://arxiv.org/format/1506.03796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.236401">10.1103/PhysRevLett.114.236401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic determination of the atomic f-electron symmetry underlying hidden order in URu$_2$Si$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wray%2C+L+A">L. Andrew Wray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+H">Haowei He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butch%2C+N+P">Nicholas P. Butch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maple%2C+M+B">M. Brian Maple</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.03796v1-abstract-short" style="display: inline;"> The low temperature hidden order state of URu$_2$Si$_2$ has long been a subject of intense speculation, and is thought to represent an as yet undetermined many-body quantum state not realized by other known materials. Here, X-ray absorption spectroscopy (XAS) and high resolution resonant inelastic X-ray scattering (RIXS) are used to observe electronic excitation spectra of URu$_2$Si$_2$, as a mean&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03796v1-abstract-full').style.display = 'inline'; document.getElementById('1506.03796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.03796v1-abstract-full" style="display: none;"> The low temperature hidden order state of URu$_2$Si$_2$ has long been a subject of intense speculation, and is thought to represent an as yet undetermined many-body quantum state not realized by other known materials. Here, X-ray absorption spectroscopy (XAS) and high resolution resonant inelastic X-ray scattering (RIXS) are used to observe electronic excitation spectra of URu$_2$Si$_2$, as a means to identify the degrees of freedom available to constitute the hidden order wavefunction. Excitations are shown to have symmetries that derive from a correlated $5f^2$ atomic multiplet basis that is modified by itinerancy. The features, amplitude and temperature dependence of linear dichroism are in agreement with ground states that closely resemble the doublet $螕_5$ crystal field state of uranium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.03796v1-abstract-full').style.display = 'none'; document.getElementById('1506.03796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 114, 236401 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.06636">arXiv:1505.06636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.06636">pdf</a>, <a href="https://arxiv.org/format/1505.06636">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.115.256403">10.1103/PhysRevLett.115.256403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bandwidth and Electron Correlation-Tuned Superconductivity in Rb$_{0.8}$Fe$_{2}$(Se$_{1-z}$S$_z$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">Meng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+-">S. -K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourret-Courchesne%2C+E">E. Bourret-Courchesne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">A. Lanzara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.06636v2-abstract-short" style="display: inline;"> We present a systematic angle-resolved photoemission spectroscopy study of the substitution-dependence of the electronic structure of Rb$_{0.8}$Fe$_{2}$(Se$_{1-z}$S$_z$)$_2$ (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the non-superconducting Rb$_{0.8}$Fe$_{2}$(Se$_{1-z}$S$_z$)$_2$ to superconducting Rb$_{0.8}$Fe$_{2}$Se$_2$, we observe litt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06636v2-abstract-full').style.display = 'inline'; document.getElementById('1505.06636v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.06636v2-abstract-full" style="display: none;"> We present a systematic angle-resolved photoemission spectroscopy study of the substitution-dependence of the electronic structure of Rb$_{0.8}$Fe$_{2}$(Se$_{1-z}$S$_z$)$_2$ (z = 0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the non-superconducting Rb$_{0.8}$Fe$_{2}$(Se$_{1-z}$S$_z$)$_2$ to superconducting Rb$_{0.8}$Fe$_{2}$Se$_2$, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2 as well as an increase of the orbital-dependent renormalization in the $d_{xy}$ orbital. Hence for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high $T_C$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06636v2-abstract-full').style.display = 'none'; document.getElementById('1505.06636v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 115, 256403 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.03074">arXiv:1505.03074</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1505.03074">pdf</a>, <a href="https://arxiv.org/format/1505.03074">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.235138">10.1103/PhysRevB.92.235138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Observation of Incoherent-Coherent Crossover and Orbital Dependent Band Renormalization in Iron Chalcogenide Superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+R">Rong Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+J">Jianxin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ruihua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R">Rob Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sungkwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.03074v1-abstract-short" style="display: inline;"> The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe$_{1+y}$Se$_x$Te$_{1-x}$ (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03074v1-abstract-full').style.display = 'inline'; document.getElementById('1505.03074v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.03074v1-abstract-full" style="display: none;"> The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe$_{1+y}$Se$_x$Te$_{1-x}$ (0$&lt;$x$&lt;$0.59), a model system with the simplest structure. Our measurement reveals an incoherent to coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from the weakly localized to more itinerant state. Furthermore, we found that the effective mass of bands dominated by the d$_{xy}$ orbital character significantly decreases with increasing selenium ratio, as compared to the d$_{xz}$/d$_{yz}$ orbital-dominated bands. The orbital dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe$_{1+y}$Se$_x$Te$_{1-x}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.03074v1-abstract-full').style.display = 'none'; document.getElementById('1505.03074v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 235138 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.05588">arXiv:1503.05588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.05588">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.5b00160">10.1021/acs.nanolett.5b00160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the Role of Interlayer Coupling and Coulomb Interactions on Electronic Structure in Few-Layer MoSe2 Nanostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bradley%2C+A+J">Aaron J. Bradley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=da+Jornada%2C+F+H">Felipe H. da Jornada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+D+Y">Diana Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruan%2C+W">Wei Ruan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wickenburg%2C+S">Sebastian Wickenburg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riss%2C+A">Alexander Riss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">Jiong Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.05588v1-abstract-short" style="display: inline;"> Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05588v1-abstract-full').style.display = 'inline'; document.getElementById('1503.05588v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.05588v1-abstract-full" style="display: none;"> Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures, and helps to clarify how their electronic properties might be tuned in future 2D nanodevices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05588v1-abstract-full').style.display = 'none'; document.getElementById('1503.05588v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 15, 2594 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.05353">arXiv:1503.05353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.05353">pdf</a>, <a href="https://arxiv.org/format/1503.05353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4916278">10.1063/1.4916278 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Site-specific probing of charge transfer dynamics in organic photovoltaics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Arion%2C+T">Tiberiu Arion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nepp%2C+S">Stefan Nepp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+F">Friedrich Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shavorskiy%2C+A">Andrey Shavorskiy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bluhm%2C+H">Hendrik Bluhm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gessner%2C+O">Oliver Gessner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eberhardt%2C+W">Wolfgang Eberhardt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.05353v1-abstract-short" style="display: inline;"> We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPV) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C$_{60}$ deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05353v1-abstract-full').style.display = 'inline'; document.getElementById('1503.05353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.05353v1-abstract-full" style="display: none;"> We report the site-specific probing of charge-transfer dynamics in a prototype system for organic photovoltaics (OPV) by picosecond time-resolved X-ray photoelectron spectroscopy. A layered system consisting of approximately two monolayers of C$_{60}$ deposited on top of a thin film of Copper-Phthalocyanine (CuPC) is excited by an optical pump pulse and the induced electronic dynamics are probed with 590 eV X-ray pulses. Charge transfer from the electron donor (CuPC) to the acceptor (C$_{60}$) and subsequent charge carrier dynamics are monitored by recording the time-dependent C 1$s$ core level photoemission spectrum of the system. The arrival of electrons in the C$_{60}$ layer is readily observed as a completely reversible, transient shift of the C$_{60}$ associated C 1$s$ core level, while the C 1$s$ level of the CuPC remains unchanged. The capability to probe charge transfer and recombination dynamics in OPV assemblies directly in the time domain and from the perspective of well-defined domains is expected to open additional pathways to better understand and optimize the performance of this emerging technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.05353v1-abstract-full').style.display = 'none'; document.getElementById('1503.05353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 106, 121602 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.01556">arXiv:1503.01556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.01556">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.115153">10.1103/PhysRevB.94.115153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinctive momentum dependence of the band reconstruction in the nematic state of FeSe thin film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+-">Z. -K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+J">J. J. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">R. G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Masamichi%2C+N">N. Masamichi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+-">S. -K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.01556v1-abstract-short" style="display: inline;"> Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-Tc, however, still remains controversial. Here, we studied the electronic structure of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01556v1-abstract-full').style.display = 'inline'; document.getElementById('1503.01556v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.01556v1-abstract-full" style="display: none;"> Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of nematicity that is likely tied to the pairing mechanism of high-Tc, however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin of the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the dxz and dyz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of dxz and dyz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01556v1-abstract-full').style.display = 'none'; document.getElementById('1503.01556v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 115153 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.00332">arXiv:1501.00332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1501.00332">pdf</a>, <a href="https://arxiv.org/format/1501.00332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.92.155139">10.1103/PhysRevB.92.155139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mott-Kondo Insulator Behavior in the Iron Oxychalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Freelon%2C+B">B. Freelon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y+H">Yu Hao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jeng-Lung Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Craco%2C+L">L. Craco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Laad%2C+M+S">M. S. Laad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leoni%2C+S">S. Leoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiaqi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tao%2C+L">Li Tao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+H">Hangdong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Flauca%2C+R">R. Flauca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamani%2C+Z">Z. Yamani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+M">Minghu Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Chinglin Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+J+-">J. -H. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.00332v1-abstract-short" style="display: inline;"> We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeO$\emph{Ch}$) series La$_{2}$O$_{2}$Fe$_{2}$O\emph{M}$_{2}$ (\emph{M}=S, Se), which is the latest among the Fe-based materials with the potential \ to show unconventional high-T$_{c}$ superconductivity (HTSC). A combination of incoherent Hubbard features in X-ray absorption (XAS) and resonant inelastic X-ray scatter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00332v1-abstract-full').style.display = 'inline'; document.getElementById('1501.00332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.00332v1-abstract-full" style="display: none;"> We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeO$\emph{Ch}$) series La$_{2}$O$_{2}$Fe$_{2}$O\emph{M}$_{2}$ (\emph{M}=S, Se), which is the latest among the Fe-based materials with the potential \ to show unconventional high-T$_{c}$ superconductivity (HTSC). A combination of incoherent Hubbard features in X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectra, as well as resitivity data, reveal that the parent FeO$\emph{Ch}$ are correlation-driven insulators. To uncover microscopics underlying these findings, we perform local density approximation-plus-dynamical mean field theory (LDA+DMFT) calculations that unravel a Mott-Kondo insulating state. Based upon good agreement between theory and a range of data, we propose that FeO$\emph{Ch}$ may constitute a new, ideal testing ground to explore HTSC arising from a strange metal proximate to a novel selective-Mott quantum criticality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.00332v1-abstract-full').style.display = 'none'; document.getElementById('1501.00332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> revtex4 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 92, 155139 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.6842">arXiv:1412.6842</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.6842">pdf</a>, <a href="https://arxiv.org/format/1412.6842">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms8377">10.1038/ncomms8377 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct characterization of photo-induced lattice dynamics in BaFe2As2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gerber%2C+S">S. Gerber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K+W">K. W. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+D">D. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plonka%2C+N">N. Plonka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dakovski%2C+G+L">G. L. Dakovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leuenberger%2C+D">D. Leuenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirchmann%2C+P+S">P. S. Kirchmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">R. G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">M. Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">J. M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+Y">Y. Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+-">J. -S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mehta%2C+A">A. Mehta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+T">T. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kao%2C+C+-">C. -C. Kao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+-">W. -S. Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.6842v1-abstract-short" style="display: inline;"> Ultrafast light pulses can modify the electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins, and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved x-ray scattering to measure the lattice dynamics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6842v1-abstract-full').style.display = 'inline'; document.getElementById('1412.6842v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.6842v1-abstract-full" style="display: none;"> Ultrafast light pulses can modify the electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins, and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved x-ray scattering to measure the lattice dynamics of photo-excited BaFe2As2. Upon optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photo-induced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can generally be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands near the Fermi level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.6842v1-abstract-full').style.display = 'none'; document.getElementById('1412.6842v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 6, 7377 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.5199">arXiv:1405.5199</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.5199">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4116">10.1038/nmat4116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nowadnick%2C+E+A">Elizabeth A. Nowadnick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Rui-Hua. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vishik%2C+I+M">Inna M. Vishik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">Brian Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+Y">Yu He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+K">Kiyohisa Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Robert G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Yoshiyuki Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikado%2C+M">Motoyuki Ishikado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasagawa%2C+T">Takao Sasagawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+K">Kazuhiro Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishida%2C+S">Shigeyuki Ishida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uchida%2C+S">Shinichi Uchida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">Hiroshi Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.5199v1-abstract-short" style="display: inline;"> In the high-temperature ($T_{c}$) cuprate superconductors, increasing evidence suggests that the pseudogap, existing below the pseudogap temperature $T$*, has a distinct broken electronic symmetry from that of superconductivity. Particularly, recent scattering experiments on the underdoped cuprates have suggested that a charge ordering competes with superconductivity. However, no direct link of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.5199v1-abstract-full').style.display = 'inline'; document.getElementById('1405.5199v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.5199v1-abstract-full" style="display: none;"> In the high-temperature ($T_{c}$) cuprate superconductors, increasing evidence suggests that the pseudogap, existing below the pseudogap temperature $T$*, has a distinct broken electronic symmetry from that of superconductivity. Particularly, recent scattering experiments on the underdoped cuprates have suggested that a charge ordering competes with superconductivity. However, no direct link of this physics and the important low-energy excitations has been identified. Here we report an antagonistic singularity at $T_{c}$ in the spectral weight of Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+未}$ as a compelling evidence for phase competition, which persists up to a high hole concentration $p$ ~ 0.22. Comparison with a theoretical calculation confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. The observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two intertwined phases and the complex phase diagram near the pseudogap critical point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.5199v1-abstract-full').style.display = 'none'; document.getElementById('1405.5199v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages with 4 figures and supplementary information with 18 pages with 1 table and 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials 14, 37 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.6486">arXiv:1404.6486</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.6486">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms4711">10.1038/ncomms4711 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic competition between spin density wave order and superconductivity in underdoped $Ba_{1-x}K_xFe_2As_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+-">Z. -K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+X">X. Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J+-">J. -H. Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kemper%2C+A+F">A. F. Kemper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plonka%2C+N">N. Plonka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+-">S. -K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fisher%2C+I+R">I. R. Fisher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+H+H">H. H. Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.6486v1-abstract-short" style="display: inline;"> An intriguing aspect of unconventional superconductivity is that it always appears in the vicinity of other competing phases, whose suppression brings the full emergence of superconductivity. In the iron-pnictides, these competing phases are marked by a tetragonal-to-orthorhombic structural transition and a collinear spin-density-wave (SDW) transition. There has been macroscopic evidence for compe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6486v1-abstract-full').style.display = 'inline'; document.getElementById('1404.6486v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.6486v1-abstract-full" style="display: none;"> An intriguing aspect of unconventional superconductivity is that it always appears in the vicinity of other competing phases, whose suppression brings the full emergence of superconductivity. In the iron-pnictides, these competing phases are marked by a tetragonal-to-orthorhombic structural transition and a collinear spin-density-wave (SDW) transition. There has been macroscopic evidence for competition between these phases and superconductivity as the magnitude of both the orthorhombicity and magnetic moment are suppressed in the superconducting state. Here, using angle-resolved photoemission spectroscopy on detwinned underdoped $Ba_{1-x}K_xFe_2As_2$, we observe a coexistence of both the SDW gap and superconducting gap in the same electronic structure. Furthermore, our data reveal that following the onset of superconductivity, the SDW gap decreases in magnitude and shifts in a direction consistent with a reduction of the orbital anisotropy. This observation provides direct spectroscopic evidence for the dynamic competition between superconductivity and both SDW and electronic nematic orders in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.6486v1-abstract-full').style.display = 'none'; document.getElementById('1404.6486v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Comm. 5, 3711 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.2331">arXiv:1404.2331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1404.2331">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat4061">10.1038/nmat4061 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ugeda%2C+M+M">Miguel M. Ugeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bradley%2C+A+J">Aaron J. Bradley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+S">Su-Fei Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=da+Jornada%2C+F+H">Felipe H. da Jornada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+D+Y">Diana Y. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crommie%2C+M+F">Michael F. Crommie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.2331v2-abstract-short" style="display: inline;"> Two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit novel electrical and optical properties and are emerging as a new platform for exploring 2D semiconductor physics. Reduced screening in 2D results in dramatically enhanced electron-electron interactions, which have been predicted to generate giant bandgap renormalization and excitonic effects. Currently, however, there is little&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2331v2-abstract-full').style.display = 'inline'; document.getElementById('1404.2331v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.2331v2-abstract-full" style="display: none;"> Two-dimensional (2D) transition metal dichalcogenides (TMDs) exhibit novel electrical and optical properties and are emerging as a new platform for exploring 2D semiconductor physics. Reduced screening in 2D results in dramatically enhanced electron-electron interactions, which have been predicted to generate giant bandgap renormalization and excitonic effects. Currently, however, there is little direct experimental confirmation of such many-body effects in these materials. Here we present an experimental observation of extraordinarily large exciton binding energy in a 2D semiconducting TMD. We accomplished this by determining the single-particle electronic bandgap of single-layer MoSe2 via scanning tunneling spectroscopy (STS), as well as the two-particle exciton transition energy via photoluminescence spectroscopy (PL). These quantities yield an exciton binding energy of 0.55 eV for monolayer MoSe2, a value that is orders of magnitude larger than what is seen in conventional 3D semiconductors. This finding is corroborated by our ab initio GW and Bethe Salpeter equation calculations, which include electron correlation effects. The renormalized bandgap and large exciton binding observed here will have a profound impact on electronic and optoelectronic device technologies based on single-layer semiconducting TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2331v2-abstract-full').style.display = 'none'; document.getElementById('1404.2331v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature Materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.7650">arXiv:1403.7650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.7650">pdf</a>, <a href="https://arxiv.org/ps/1403.7650">ps</a>, <a href="https://arxiv.org/format/1403.7650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.165101">10.1103/PhysRevB.89.165101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure and excitations in oxygen deficient CeO$_{2-未}$ from DFT calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jarlborg%2C+T">T. Jarlborg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barbiellini%2C+B">B. Barbiellini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lane%2C+C">C. Lane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y+J">Yung Jui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Markiewicz%2C+R+S">R. S. Markiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhi Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">A. Bansil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.7650v1-abstract-short" style="display: inline;"> The electronic structures of supercells of CeO$_{2-未}$ have been calculated within the Density Functional Theory (DFT). The equilibrium properties such as lattice constants, bulk moduli and magnetic moments are well reproduced by the generalized gradient approximation (GGA). Electronic excitations are simulated by robust total energy calculations for constrained states with atomic core- or valence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.7650v1-abstract-full').style.display = 'inline'; document.getElementById('1403.7650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.7650v1-abstract-full" style="display: none;"> The electronic structures of supercells of CeO$_{2-未}$ have been calculated within the Density Functional Theory (DFT). The equilibrium properties such as lattice constants, bulk moduli and magnetic moments are well reproduced by the generalized gradient approximation (GGA). Electronic excitations are simulated by robust total energy calculations for constrained states with atomic core- or valence-holes. Pristine ceria CeO$_2$ is found to be a non-magnetic insulator with magnetism setting in as soon as oxygens are removed from the structure. In the ground state of defective ceria, the Ce-$f$ majority band resides near the Fermi level, but appears at about 2 eV below the Fermi level in photoemission spectroscopy experiments due to final state effects. We also tested our computational method by calculating threshold energies in Ce-M$_5$ and O-K x-ray absorption spectroscopy and comparing theoretical predictions with the corresponding measurements. Our result that $f$ electrons reside near the Fermi level in the ground state of oxygen deficient ceria is crucial for understanding catalytic properties of CeO$_2$ and related materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.7650v1-abstract-full').style.display = 'none'; document.getElementById('1403.7650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, accepted in Phys. Rev. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 165101 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.0061">arXiv:1403.0061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1403.0061">pdf</a>, <a href="https://arxiv.org/ps/1403.0061">ps</a>, <a href="https://arxiv.org/format/1403.0061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.220511">10.1103/PhysRevB.89.220511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of bulk charge modulations in optimally-doped Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_{2}$O$_{8+未}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M. Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+-">W. -S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dellea%2C+G">G. Dellea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amorese%2C+A">A. Amorese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzoli%2C+C">C. Mazzoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">K. Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Y. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braicovich%2C+L">L. Braicovich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.0061v2-abstract-short" style="display: inline;"> Bulk charge density modulations, recently observed in high critical-temperature ($T_\mathrm{c}$) cuprate superconductors, coexist with the so-called pseudogap and compete with superconductivity. However, its direct observation has been limited to a narrow doping region in the underdoped regime. Using energy-resolved resonant x-ray scattering we have found evidence for such bulk charge modulations,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0061v2-abstract-full').style.display = 'inline'; document.getElementById('1403.0061v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.0061v2-abstract-full" style="display: none;"> Bulk charge density modulations, recently observed in high critical-temperature ($T_\mathrm{c}$) cuprate superconductors, coexist with the so-called pseudogap and compete with superconductivity. However, its direct observation has been limited to a narrow doping region in the underdoped regime. Using energy-resolved resonant x-ray scattering we have found evidence for such bulk charge modulations, or soft collective charge modes (soft CCMs), in optimally doped Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_{2}$O$_{8+未}$ (Pb-Bi2212) around the summit of the superconducting dome with momentum transfer $q_{\parallel}\sim0.28$ reciprocal lattice units (r.l.u.) along the Cu-O bond direction. The signal is stronger at $T\simeq T_\mathrm{c}$ than at lower temperatures, thereby confirming a competition between soft CCMs and superconductivity. These results demonstrate that soft CCMs are not constrained to the underdoped regime, suggesting that soft CCMs appear across a large part of the phase diagram of cuprates and are intimately entangled with high-$T_\mathrm{c}$ superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.0061v2-abstract-full').style.display = 'none'; document.getElementById('1403.0061v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 220511(R)(2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.7897">arXiv:1401.7897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.7897">pdf</a>, <a href="https://arxiv.org/ps/1401.7897">ps</a>, <a href="https://arxiv.org/format/1401.7897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.89.195138">10.1103/PhysRevB.89.195138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of BaNi$_2$P$_2$ observed by angle-resolved photoemission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ideta%2C+S">S. Ideta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+T">T. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakajima%2C+M">M. Nakajima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malaeb%2C+W">W. Malaeb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kito%2C+H">H. Kito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iyo%2C+A">A. Iyo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomioka%2C+Y">Y. Tomioka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ito%2C+T">T. Ito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kihou%2C+K">K. Kihou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C+H">C. H. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotani%2C+Y">Y. Kotani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ono%2C+K">K. Ono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+K">S. K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harima%2C+H">H. Harima</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uchida%2C+S">S. Uchida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujimori%2C+A">A. Fujimori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.7897v2-abstract-short" style="display: inline;"> We have performed an angle-resolved photoemission spectroscopy (ARPES) study of BaNi$_2$P$_2$ which shows a superconducting transition at $T_c$ $\sim$ 2.5 K. We observed hole and electron Fermi surfaces (FSs) around the Brillouin zone center and corner, respectively, and the shapes of the hole FSs dramatically changed with photon energy, indicating strong three-dimensionality. The observed FSs are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.7897v2-abstract-full').style.display = 'inline'; document.getElementById('1401.7897v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.7897v2-abstract-full" style="display: none;"> We have performed an angle-resolved photoemission spectroscopy (ARPES) study of BaNi$_2$P$_2$ which shows a superconducting transition at $T_c$ $\sim$ 2.5 K. We observed hole and electron Fermi surfaces (FSs) around the Brillouin zone center and corner, respectively, and the shapes of the hole FSs dramatically changed with photon energy, indicating strong three-dimensionality. The observed FSs are consistent with band-structure calculation and de Haas-van Alphen measurements. The mass enhancement factors estimated in the normal state were $m^*$/$m_b$ $\leq$ 2, indicating weak electron correlation compared to typical iron-pnictide superconductors. An electron-like Fermi surface around the Z point was observed in contrast with BaNi$_2$As$_2$ and may be related to the higher $T_c$ of BaNi$_2$P$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.7897v2-abstract-full').style.display = 'none'; document.getElementById('1401.7897v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 89, 195138 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.3386">arXiv:1401.3386</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.3386">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nnano.2013.277">10.1038/nnano.2013.277 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">Bo Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Hao Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+F">Felix Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">James Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R">Rob Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeng%2C+H">Horng-Tay Jeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.3386v1-abstract-short" style="display: inline;"> Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3386v1-abstract-full').style.display = 'inline'; document.getElementById('1401.3386v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.3386v1-abstract-full" style="display: none;"> Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect to direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.3386v1-abstract-full').style.display = 'none'; document.getElementById('1401.3386v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. Nature Nanotechnology (2013)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1401.2578">arXiv:1401.2578</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1401.2578">pdf</a>, <a href="https://arxiv.org/format/1401.2578">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.035105">10.1103/PhysRevB.88.035105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the spectral line shapes for orbital excitations in the Mott insulator CoO using high-resolution resonant inelastic x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wray%2C+L+A">L. Andrew Wray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+J">J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Z+Q">Z. Q. Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+J">Jinsheng Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Z">Zhijun Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gu%2C+G">Genda Gu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S">Shih-Wen Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arenholz%2C+E">Elke Arenholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y">Yi-De Chuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1401.2578v1-abstract-short" style="display: inline;"> We establish the spectral line shape of orbital excitations created by resonant inelastic X-ray scattering for the model Mott insulator CoO. Improved experimental energy resolution reveals that the line shapes are strikingly different from expectations in a first principles-based atomic multiplet model. Extended theoretical simulations are performed to identify the underlying physical origins, whi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2578v1-abstract-full').style.display = 'inline'; document.getElementById('1401.2578v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1401.2578v1-abstract-full" style="display: none;"> We establish the spectral line shape of orbital excitations created by resonant inelastic X-ray scattering for the model Mott insulator CoO. Improved experimental energy resolution reveals that the line shapes are strikingly different from expectations in a first principles-based atomic multiplet model. Extended theoretical simulations are performed to identify the underlying physical origins, which include a pronounced thermal tail reminiscent of anti-Stokes scattering on the energy gain side of excitations, and an essential contribution from interatomic many-body dynamics on the energy loss side of excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1401.2578v1-abstract-full').style.display = 'none'; document.getElementById('1401.2578v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + 2 pages of supplemental material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 035105 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.0391">arXiv:1310.0391</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1310.0391">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.1245085">10.1126/science.1245085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a Three-dimensional Topological Dirac Semimetal, Na3Bi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z+K">Z. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+B">B. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z+J">Z. J. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H+M">H. M. Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prabhakaran%2C+D">D. Prabhakaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S+-">S. -K. Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+X">Z. X. Shen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fang%2C+Z">Z. Fang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+X">X. Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y+L">Y. L. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.0391v1-abstract-short" style="display: inline;"> Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as &#39;3D graphene&#39;. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0391v1-abstract-full').style.display = 'inline'; document.getElementById('1310.0391v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.0391v1-abstract-full" style="display: none;"> Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as &#39;3D graphene&#39;. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological insulators, Weyl semi-metals, Axion insulators and topological superconductors. By investigating the electronic structure of Na3Bi with angle resolved photoemission spectroscopy, we discovered 3D Dirac fermions with linear dispersions along all momentum directions for the first time. Furthermore, we demonstrated that the 3D Dirac fermions in Na3Bi were protected by the bulk crystal symmetry. Our results establish that Na3Bi is the first model system of 3D TDSs, which can also serve as an ideal platform for the systematic study of quantum phase transitions between rich novel topological quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.0391v1-abstract-full').style.display = 'none'; document.getElementById('1310.0391v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures in main text; 6 figures in supporting materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.1374">arXiv:1309.1374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1309.1374">pdf</a>, <a href="https://arxiv.org/ps/1309.1374">ps</a>, <a href="https://arxiv.org/format/1309.1374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.88.125109">10.1103/PhysRevB.88.125109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic Structure of the Metallic Antiferromagnet PdCrO$_2$ Measured by Angle-Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sobota%2C+J+A">Jonathan A. Sobota</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoo Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takatsu%2C+H">Hiroshi Takatsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oguchi%2C+T">Tamio Oguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shishidou%2C+T">Tatsuya Shishidou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maeno%2C+Y">Yoshiteru Maeno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Min%2C+B+I">Byung Il Min</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.1374v1-abstract-short" style="display: inline;"> PdCrO$_2$ is material which has attracted interest due to the coexistence of metallic conductivity associated with itinerant Pd 4d electrons and antiferromagnetic order arising from localized Cr spins. A central issue is determining to what extent the magnetic order couples to the conduction electrons. Here we perform angle-resolved photoemission spectroscopy (ARPES) to experimentally characterize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.1374v1-abstract-full').style.display = 'inline'; document.getElementById('1309.1374v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.1374v1-abstract-full" style="display: none;"> PdCrO$_2$ is material which has attracted interest due to the coexistence of metallic conductivity associated with itinerant Pd 4d electrons and antiferromagnetic order arising from localized Cr spins. A central issue is determining to what extent the magnetic order couples to the conduction electrons. Here we perform angle-resolved photoemission spectroscopy (ARPES) to experimentally characterize the electronic structure. We find that the Fermi surface has contributions from both bulk and surface states, which can be experimentally distinguished and theoretically verified by slab band structure calculations. The bulk Fermi surface shows no signature of electronic reconstruction in the antiferromagnetic state. This observation suggests that there is negligible interaction between the localized Cr spin structure and the itinerant Pd electrons measured by ARPES. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.1374v1-abstract-full').style.display = 'none'; document.getElementById('1309.1374v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 88, 125109 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.0185">arXiv:1308.0185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.0185">pdf</a>, <a href="https://arxiv.org/format/1308.0185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep02299">10.1038/srep02299 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic superlattice revealed by resonant scattering from random impurities in Sr3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+A">M. A. Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zegkinoglou%2C+I">I. Zegkinoglou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohnenbuck%2C+B">B. Bohnenbuck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+A+G+C">A. G. Cruz Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+-">H. -H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">C. Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathieu%2C+R">R. Mathieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Satow%2C+S">S. Satow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Y. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.0185v1-abstract-short" style="display: inline;"> Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0185v1-abstract-full').style.display = 'inline'; document.getElementById('1308.0185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.0185v1-abstract-full" style="display: none;"> Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show -- with simulations and REXS on Mn-substituted Sr$_3$Ru$_2$O$_7$ -- that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that -- in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and M枚ssbauer spectroscopy -- randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0185v1-abstract-full').style.display = 'none'; document.getElementById('1308.0185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 3, 2299 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.5094">arXiv:1302.5094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.5094">pdf</a>, <a href="https://arxiv.org/format/1302.5094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2572">10.1038/nphys2572 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoelectron spin-flipping and texture manipulation in a topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+C">Cheol-Hwan Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gotlieb%2C+K">Kenneth Gotlieb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+C">Choongyu Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+D">Dung-Hai Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">Jonathan D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rotundu%2C+C+R">Costel R. Rotundu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Birgeneau%2C+R+J">Robert J. Birgeneau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lanzara%2C+A">Alessandra Lanzara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.5094v1-abstract-short" style="display: inline;"> Recently discovered materials called three-dimensional topological insulators constitute examples of symmetry protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is the protected metallic electronic states confined to the material&#39;s surfaces. Electrons in these surface states are spin pol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5094v1-abstract-full').style.display = 'inline'; document.getElementById('1302.5094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.5094v1-abstract-full" style="display: none;"> Recently discovered materials called three-dimensional topological insulators constitute examples of symmetry protected topological states in the absence of applied magnetic fields and cryogenic temperatures. A hallmark characteristic of these non-magnetic bulk insulators is the protected metallic electronic states confined to the material&#39;s surfaces. Electrons in these surface states are spin polarized with their spins governed by their direction of travel (linear momentum), resulting in a helical spin texture in momentum space. Spin- and angle-resolved photoemission spectroscopy (spin-ARPES) has been the only tool capable of directly observing this central feature with simultaneous energy, momentum, and spin sensitivity. By using an innovative photoelectron spectrometer with a high-flux laser-based light source, we discovered another surprising property of these surface electrons which behave like Dirac fermions. We found that the spin polarization of the resulting photoelectrons can be fully manipulated in all three dimensions through selection of the light polarization. These surprising effects are due to the spin-dependent interaction of the helical Dirac fermions with light, which originates from the strong spin-orbit coupling in the material. Our results illustrate unusual scenarios in which the spin polarization of photoelectrons is completely different from the spin state of electrons in the originating initial states. The results also provide the basis for a novel source of highly spin-polarized electrons with tunable polarization in three dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.5094v1-abstract-full').style.display = 'none'; document.getElementById('1302.5094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 9 Figures. To appear in Nature Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 9, 293 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.4522">arXiv:1302.4522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.4522">pdf</a>, <a href="https://arxiv.org/ps/1302.4522">ps</a>, <a href="https://arxiv.org/format/1302.4522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.127404">10.1103/PhysRevLett.110.127404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Real-time manifestation of strongly coupled spin and charge order parameters in stripe-ordered nickelates via time-resolved resonant x-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+D">Y. D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kung%2C+Y+F">Y. F. Kung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sorini%2C+A+P">A. P. Sorini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moritz%2C+B">B. Moritz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">R. G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Patthey%2C+L">L. Patthey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trigo%2C+M">M. Trigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirchmann%2C+P+S">P. S. Kirchmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">M. Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krupin%2C+O">O. Krupin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langner%2C+M">M. Langner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+Y">Y. Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S+Y">S. Y. Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reis%2C+D+A">D. A. Reis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huse%2C+N">N. Huse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robinson%2C+J+S">J. S. Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+R+A">R. A. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoenlein%2C+R+W">R. W. Schoenlein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+S+L">S. L. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forst%2C+M">M. Forst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doering%2C+D">D. Doering</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denes%2C+P">P. Denes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W+F">W. F. Schlotter</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.4522v1-abstract-short" style="display: inline;"> We investigate the order parameter dynamics of the stripe-ordered nickelate, La$_{1.75}$Sr$_{0.25}$NiO$_4$, using time-resolved resonant X-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters&#39; amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer re-orientation time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4522v1-abstract-full').style.display = 'inline'; document.getElementById('1302.4522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.4522v1-abstract-full" style="display: none;"> We investigate the order parameter dynamics of the stripe-ordered nickelate, La$_{1.75}$Sr$_{0.25}$NiO$_4$, using time-resolved resonant X-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters&#39; amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer re-orientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the non-equilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.4522v1-abstract-full').style.display = 'none'; document.getElementById('1302.4522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures. Accepted by Physical Review Letter</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 127404 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.4946">arXiv:1212.4946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1212.4946">pdf</a>, <a href="https://arxiv.org/ps/1212.4946">ps</a>, <a href="https://arxiv.org/format/1212.4946">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.037003">10.1103/PhysRevLett.110.037003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of Coherent Polarons in the Strongly Coupled Antiferromagnetically Ordered Iron-Chalcogenide Fe1.02Te using Angle-Resolved Photoemission Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhongkai Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R">Ruihua He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">Robert G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mo%2C+S">Sung-Kwan Mo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nowadnick%2C+E+A">Elizabeth A. Nowadnick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jin Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Tijiang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">Thomas P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Zahid Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z">Zhi-Xun Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.4946v1-abstract-short" style="display: inline;"> The nature of metallicity and the level of electronic correlations in the antiferromagnetically ordered parent compounds are two important open issues for the iron-based superconductivity. We perform a temperature-dependent angle-resolved photoemission spectroscopy study of Fe1.02Te, the parent compound for iron chalcogenide superconductors. Deep in the antiferromagnetic state, the spectra exhibit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4946v1-abstract-full').style.display = 'inline'; document.getElementById('1212.4946v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.4946v1-abstract-full" style="display: none;"> The nature of metallicity and the level of electronic correlations in the antiferromagnetically ordered parent compounds are two important open issues for the iron-based superconductivity. We perform a temperature-dependent angle-resolved photoemission spectroscopy study of Fe1.02Te, the parent compound for iron chalcogenide superconductors. Deep in the antiferromagnetic state, the spectra exhibit a &#34;peak-dip-hump&#34; line shape associated with two clearly separate branches of dispersion, characteristics of polarons seen in manganites and lightly-doped cuprates. As temperature increases towards the Neel temperature (T_N), we observe a decreasing renormalization of the peak dispersion and a counterintuitive sharpening of the hump linewidth, suggestive of an intimate connection between the weakening electron-phonon (e-ph) coupling and antiferromagnetism. Our finding points to the highly-correlated nature of Fe1.02Te ground state featured by strong interactions among the charge, spin and lattice and a good metallicity plausibly contributed by the coherent polaron motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.4946v1-abstract-full').style.display = 'none'; document.getElementById('1212.4946v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Accepted by prl</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 037003 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.6514">arXiv:1209.6514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.6514">pdf</a>, <a href="https://arxiv.org/ps/1209.6514">ps</a>, <a href="https://arxiv.org/format/1209.6514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1073/pnas.1209471109">10.1073/pnas.1209471109 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase competition in trisected superconducting dome </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vishik%2C+I+M">I. M. Vishik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hashimoto%2C+M">M Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+R+-">R. -H. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">W. S. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+F">F. Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+D+H">D. H. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+R+G">R. G. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+C">C. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meevasana%2C+W">W. Meevasana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sasagawa%2C+T">T. Sasagawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uchida%2C+S">S. Uchida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujita%2C+K">K. Fujita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishida%2C+S">S. Ishida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ishikado%2C+M">M. Ishikado</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Y. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisaki%2C+H">H. Eisaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Devereaux%2C+T+P">T. P. Devereaux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shen%2C+Z+-">Z. -X. Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.6514v1-abstract-short" style="display: inline;"> A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials such as the cuprate high temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates where emergent phases, particularly superconductivity and the pse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.6514v1-abstract-full').style.display = 'inline'; document.getElementById('1209.6514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.6514v1-abstract-full" style="display: none;"> A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials such as the cuprate high temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping-and-temperature dependence ARPES study of spectral gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+未}$ (Bi-2212), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p$=$0.19 for the pseudogap phase and p$=$0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T$_c$ and exists p$&gt;$0.19 at higher temperatures. Our data imply a revised phase diagram which reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.6514v1-abstract-full').style.display = 'none'; document.getElementById('1209.6514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in PNAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PNAS 109 (45) 18332-18337 (2012) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hussain%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10