CINXE.COM

Search results for: implementation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: implementation</title> <meta name="description" content="Search results for: implementation"> <meta name="keywords" content="implementation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="implementation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="implementation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4669</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: implementation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Saving Lives from a Laptop: How to Produce a Live Virtual Media Briefing That Will Inform, Educate, and Protect Communities in Crisis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cory%20B.%20Portner">Cory B. Portner</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20A.%20Grauert"> Julie A. Grauert</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20M.%20Stromme"> Lisa M. Stromme</a>, <a href="https://publications.waset.org/abstracts/search?q=Shelby%20D.%20Anderson"> Shelby D. Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Franji%20H.%20Mayes"> Franji H. Mayes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: WASHINGTON state in the Pacific Northwest of the United States is internationally known for its technology industry, fisheries, agriculture, and vistas. On January 21, 2020, Washington state also became known as the first state with a confirmed COVID-19 case in the United States, thrusting the state into the international spotlight as the world came to grips with the global threat of this disease presented. Tourism is Washington state’s fourth-largest industry. Tourism to the state generates over 1.8 billion dollars (USD) in local and state tax revenue and employs over 180,000 people. Communicating with residents, stakeholders, and visitors on the status of disease activity, prevention measures, and response updates was vital to stopping the pandemic and increasing compliance and awareness. Significance: In order to communicate vital public health updates, guidance implementation, and safety measures to the public, the Washington State Department of Health established routine live virtual media briefings to reach audiences via social media, internet television, and broadcast television. Through close partnership with regional broadcast news stations and the state public affairs news network, the Washington State Department of Health hosted 95 media briefings from January 2020 through September 2022 and continues to regularly host live virtual media briefings to accommodate the needs of the public and media. Methods: Our methods quickly evolved from hosting briefings in the cement closet of a military base to being able to produce and stream the briefings live from any home-office location. The content was tailored to the hot topic of the day and to the reporter's questions and needs. Virtual media briefings hosted through inexpensive or free platforms online are extremely cost-effective: the only mandatory components are WiFi, a laptop, and a monitor. There is no longer a need for a fancy studio or expensive production software to achieve the goal of communicating credible, reliable information promptly. With minimal investment and a small learning curve, facilitators and panelists are able to host highly produced and engaging media availabilities from their living rooms. Results: The briefings quickly developed a reputation as the best source for local and national journalists to get the latest and most factually accurate information about the pandemic. In the height of the COVID-19 response, 135 unique media outlets logged on to participate in the briefing. The briefings typically featured 4-5 panelists, with as many as 9 experts in attendance to provide information and respond to media questions. Preparation was always a priority: Public Affairs staff for the Washington State Department of Health produced over 170 presenter remarks, including guidance on talking points for 63 expert guest panelists. Implication For Practice: Information is today’s most valuable currency. The ability to disseminate correct information urgently and on a wide scale is the most effective tool in crisis communication. Due to our role as the first state with a confirmed COVID-19 case, we were forced to develop the most accurate and effective way to get life-saving information to the public. The cost-effective, web-based methods we developed can be applied in any crisis to educate and protect communities under threat, ultimately saving lives from a laptop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20communications" title="crisis communications">crisis communications</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20relations" title=" public relations"> public relations</a>, <a href="https://publications.waset.org/abstracts/search?q=media%20management" title=" media management"> media management</a>, <a href="https://publications.waset.org/abstracts/search?q=news%20media" title=" news media"> news media</a> </p> <a href="https://publications.waset.org/abstracts/142992/saving-lives-from-a-laptop-how-to-produce-a-live-virtual-media-briefing-that-will-inform-educate-and-protect-communities-in-crisis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Stakeholder Engagement to Address Urban Health Systems Gaps for Migrants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chandra">A. Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Arthur"> M. Arthur</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mize"> L. Mize</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pomeroy-Stevens"> A. Pomeroy-Stevens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Lower and middle-income countries (LMICs) in Asia face rapid urbanization resulting in both economic opportunities (the urban advantage) and emerging health challenges. Urban health risks are magnified in informal settlements and include infectious disease outbreaks, inadequate access to health services, and poor air quality. Over the coming years, urban spaces in Asia will face accelerating public health risks related to migration, climate change, and environmental health. These challenges are complex and require multi-sectoral and multi-stakeholder solutions. The Building Health Cities (BHC) program is funded by the United States Agency for International Development (USAID) to work with smart city initiatives in the Asia region. BHC approaches urban health challenges by addressing policies, planning, and services through a health equity lens, with a particular focus on informal settlements and migrant communities. The program works to develop data-driven decision-making, build inclusivity through stakeholder engagement, and facilitate the uptake of appropriate technology. Methodology: The BHC program has partnered with the smart city initiatives of Indore in India, Makassar in Indonesia, and Da Nang in Vietnam. Implementing partners support municipalities to improve health delivery and equity using two key approaches: political economy analysis and participatory systems mapping. Political economy analyses evaluate barriers to collective action, including corruption, security, accountability, and incentives. Systems mapping evaluates community health challenges using a cross-sectoral approach, analyzing the impact of economic, environmental, transport, security, health system, and built environment factors. The mapping exercise draws on the experience and expertise of a diverse cohort of stakeholders, including government officials, municipal service providers, and civil society organizations. Results: Systems mapping and political economy analyses identified significant barriers for health care in migrant populations. In Makassar, migrants are unable to obtain the necessary card that entitles them to subsidized health services. This finding is being used to engage with municipal governments to mitigate the barriers that limit migrant enrollment in the public social health insurance scheme. In Indore, the project identified poor drainage of storm and wastewater in migrant settlements as a cause of poor health. Unsafe and inadequate infrastructure placed residents of these settlements at risk for both waterborne diseases and injuries. The program also evaluated the capacity of urban primary health centers serving migrant communities, identifying challenges related to their hours of service and shortages of health workers. In Da Nang, the systems mapping process has only recently begun, with the formal partnership launched in December 2019. Conclusion: This paper explores lessons learned from BHC’s systems mapping, political economy analyses, and stakeholder engagement approaches. The paper shares progress related to the health of migrants in informal settlements. Case studies feature barriers identified and mitigating steps, including governance actions, taken by local stakeholders in partner cities. The paper includes an update on ongoing progress from Indore and Makassar and experience from the first six months of program implementation from Da Nang. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=informal%20settlements" title="informal settlements">informal settlements</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder%20engagement%20mapping" title=" stakeholder engagement mapping"> stakeholder engagement mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20health" title=" urban health"> urban health</a> </p> <a href="https://publications.waset.org/abstracts/120208/stakeholder-engagement-to-address-urban-health-systems-gaps-for-migrants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Analyzing Spatio-Structural Impediments in the Urban Trafficscape of Kolkata, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teesta%20Dey">Teesta Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrated Transport development with proper traffic management leads to sustainable growth of any urban sphere. Appropriate mass transport planning is essential for the populous cities in third world countries like India. The exponential growth of motor vehicles with unplanned road network is now the common feature of major urban centres in India. Kolkata, the third largest mega city in India, is not an exception of it. The imbalance between demand and supply of unplanned transport services in this city is manifested in the high economic and environmental costs borne by the associated society. With the passage of time, the growth and extent of passenger demand for rapid urban transport has outstripped proper infrastructural planning and causes severe transport problems in the overall urban realm. Hence Kolkata stands out in the world as one of the most crisis-ridden metropolises. The urban transport crisis of this city involves severe traffic congestion, the disparity in mass transport services on changing peripheral land uses, route overlapping, lowering of travel speed and faulty implementation of governmental plans as mostly induced by rapid growth of private vehicles on limited road space with huge carbon footprint. Therefore the paper will critically analyze the extant road network pattern for improving regional connectivity and accessibility, assess the degree of congestion, identify the deviation from demand and supply balance and finally evaluate the emerging alternate transport options as promoted by the government. For this purpose, linear, nodal and spatial transport network have been assessed based on certain selected indices viz. Road Degree, Traffic Volume, Shimbel Index, Direct Bus Connectivity, Average Travel and Waiting Tine Indices, Route Variety, Service Frequency, Bus Intensity, Concentration Analysis, Delay Rate, Quality of Traffic Transmission, Lane Length Duration Index and Modal Mix. Total 20 Traffic Intersection Points (TIPs) have been selected for the measurement of nodal accessibility. Critical Congestion Zones (CCZs) are delineated based on one km buffer zones of each TIP for congestion pattern analysis. A total of 480 bus routes are assessed for identifying the deficiency in network planning. Apart from bus services, the combined effects of other mass and para transit modes, containing metro rail, auto, cab and ferry services, are also analyzed. Based on systematic random sampling method, a total of 1500 daily urban passengers’ perceptions were studied for checking the ground realities. The outcome of this research identifies the spatial disparity among the 15 boroughs of the city with severe route overlapping and congestion problem. North and Central Kolkata-based mass transport services exceed the transport strength of south and peripheral Kolkata. Faulty infrastructural condition, service inadequacy, economic loss and workers’ inefficiency are the most dominant reasons behind the defective mass transport network plan. Hence there is an urgent need to revive the extant road based mass transport system of this city by implementing a holistic management approach by upgrading traffic infrastructure, designing new roads, better cooperation among different mass transport agencies, better coordination of transport and changing land use policies, large increase in funding and finally general passengers’ awareness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title="carbon footprint">carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20congestion%20zones" title=" critical congestion zones"> critical congestion zones</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20bus%20connectivity" title=" direct bus connectivity"> direct bus connectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20transport%20development" title=" integrated transport development"> integrated transport development</a> </p> <a href="https://publications.waset.org/abstracts/67390/analyzing-spatio-structural-impediments-in-the-urban-trafficscape-of-kolkata-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Transforming Emergency Care: Revolutionizing Obstetrics and Gynecology Operations for Enhanced Excellence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lolwa%20Alansari">Lolwa Alansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Mrabet"> Hanen Mrabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Kholoud%20Khaled"> Kholoud Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Azhaghdani"> Abdelhamid Azhaghdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sufia%20Athar"> Sufia Athar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aska%20Kaima"> Aska Kaima</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaineb%20Mhamdia"> Zaineb Mhamdia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubaria%20Altaf"> Zubaria Altaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Almunzer%20Zakaria"> Almunzer Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20Alshadafat"> Tamara Alshadafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The Obstetrics and Gynecology Emergency Department at Alwakra Hospital has faced significant challenges, which have been further worsened by the impact of the COVID-19 pandemic. These challenges involve issues such as overcrowding, extended wait times, and a notable surge in demand for emergency care services. Moreover, prolonged waiting times have emerged as a primary factor contributing to situations where patients leave without receiving attention, known as left without being seen (LWBS), and unexpectedly abscond. Addressing the issue of insufficient patient mobility in the obstetrics and gynecology emergency department has brought about substantial improvements in patient care, healthcare administration, and overall departmental efficiency. These changes have not only alleviated overcrowding but have also elevated the quality of emergency care, resulting in higher patient satisfaction, better outcomes, and operational rewards. Methodology: The COVID-19 pandemic has served as a catalyst for substantial transformations in the obstetrics and gynecology emergency, aligning seamlessly with the strategic direction of Hamad Medical Corporation (HMC). The fundamental aim of this initiative is to revolutionize the operational efficiency of the OB-GYN ED. To accomplish this mission, a range of transformations has been initiated, focusing on essential areas such as digitizing systems, optimizing resource allocation, enhancing budget efficiency, and reducing overall costs. The project utilized the Plan-Do-Study-Act (PDSA) model, involving a diverse team collecting baseline data and introducing throughput improvements. Post-implementation data and feedback were analysed, leading to the integration of effective interventions into standard procedures. These interventions included optimized space utilization, real-time communication, bedside registration, technology integration, pre-triage screening, enhanced communication and patient education, consultant presence, and a culture of continuous improvement. These strategies significantly reduced waiting times, enhancing both patient care and operational efficiency. Results: Results demonstrated a substantial reduction in overall average waiting time, dropping from 35 to approximately 14 minutes by August 2023. The wait times for priority 1 cases have been reduced from 22 to 0 minutes, and for priority 2 cases, the wait times have been reduced from 32 to approximately 13.6 minutes. The proportion of patients spending less than 8 hours in the OB ED observation beds rose from 74% in January 2022 to over 98% in 2023. Notably, there was a remarkable decrease in LWBS and absconded patient rates from 2020 to 2023. Conclusion: The project initiated a profound change in the department's operational environment. Efficiency became deeply embedded in the unit's culture, promoting teamwork among staff that went beyond the project's original focus and had a positive influence on operations in other departments. This effectiveness not only made processes more efficient but also resulted in significant cost reductions for the hospital. These cost savings were achieved by reducing wait times, which in turn led to fewer prolonged patient stays and reduced the need for additional treatments. These continuous improvement initiatives have now become an integral part of the Obstetrics and Gynecology Division's standard operating procedures, ensuring that the positive changes brought about by the project persist and evolve over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overcrowding" title="overcrowding">overcrowding</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20time" title=" waiting time"> waiting time</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20centered%20care" title=" person centered care"> person centered care</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20initiatives" title=" quality initiatives"> quality initiatives</a> </p> <a href="https://publications.waset.org/abstracts/178975/transforming-emergency-care-revolutionizing-obstetrics-and-gynecology-operations-for-enhanced-excellence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlotta%20D%E2%80%99Alessandro">Carlotta D’Alessandro</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Ioppolo"> Giuseppe Ioppolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Szopik-Depczy%C5%84ska"> Katarzyna Szopik-Depczyńska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> — The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Fosso%20Imperatore" title=" Fosso Imperatore"> Fosso Imperatore</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20park" title=" industrial park"> industrial park</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20symbiosis" title=" industrial symbiosis"> industrial symbiosis</a> </p> <a href="https://publications.waset.org/abstracts/191172/from-linear-to-circular-model-an-artificial-intelligence-powered-approach-in-fosso-imperatore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Structural Characteristics of HPDSP Concrete on Beam Column Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hari%20%20Krishan%20Sharma">Hari Krishan Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Sharma"> Sanjay Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar%20Swar"> Sushil Kumar Swar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inadequate transverse reinforcement is considered as the main reason for the beam column joint shear failure observed during recent earthquakes. DSP matrix consists of cement and high content of micro-silica with low water to cement ratio while the aggregates are graded quartz sand. The use of reinforcing fibres leads not only to the increase of tensile/bending strength and specific fracture energy, but also to reduction of brittleness and, consequently, to production of non-explosive ruptures. Besides, fibre-reinforced materials are more homogeneous and less sensitive to small defects and flaws. Recent works on the freeze-thaw durability (also in the presence of de-icing salts) of fibre-reinforced DSP confirm the excellent behaviour in the expected long term service life.DSP materials, including fibre-reinforced DSP and CRC (Compact Reinforced Composites) are obtained by using high quantities of super plasticizers and high volumes of micro-silica. Steel fibres with high tensile yield strength of smaller diameter and short length in different fibre volume percentage and aspect ratio tilized to improve the performance by reducing the brittleness of matrix material. In the case of High Performance Densified Small Particle Concrete (HPDSPC), concrete is dense at the micro-structure level, tensile strain would be much higher than that of the conventional SFRC, SIFCON & SIMCON. Beam-column sub-assemblages used as moment resisting constructed using HPDSPC in the joint region with varying quantities of steel fibres, fibre aspect ratio and fibre orientation in the critical section. These HPDSPC in the joint region sub-assemblages tested under cyclic/earthquake loading. Besides loading measurements, frame displacements, diagonal joint strain and rebar strain adjacent to the joint will also be measured to investigate stress-strain behaviour, load deformation characteristics, joint shear strength, failure mechanism, ductility associated parameters, stiffness and energy dissipated parameters of the beam column sub-assemblages also evaluated. Finally a design procedure for the optimum design of HPDSPC corresponding to moment, shear forces and axial forces for the reinforced concrete beam-column joint sub-assemblage proposed. The fact that the implementation of material brittleness measure in the design of RC structures can improve structural reliability by providing uniform safety margins over a wide range of structural sizes and material compositions well recognized in the structural design and research. This lead to the development of high performance concrete for the optimized combination of various structural ratios in concrete for the optimized combination of various structural properties. The structural applications of HPDSPC, because of extremely high strength, will reduce dead load significantly as compared to normal weight concrete thereby offering substantial cost saving and by providing improved seismic response, longer spans, and thinner sections, less reinforcing steel and lower foundation cost. These cost effective parameters will make this material more versatile for use in various structural applications like beam-column joints in industries, airports, parking areas, docks, harbours, and also containers for hazardous material, safety boxes and mould & tools for polymer composites and metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20densified%20small%20particle%20concrete%20%28HPDSPC%29" title="high performance densified small particle concrete (HPDSPC)">high performance densified small particle concrete (HPDSPC)</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibre%20reinforced%20concrete%20%28SFRC%29" title=" steel fibre reinforced concrete (SFRC)"> steel fibre reinforced concrete (SFRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=slurry%20infiltrated%20concrete%20%28SIFCON%29" title=" slurry infiltrated concrete (SIFCON)"> slurry infiltrated concrete (SIFCON)</a>, <a href="https://publications.waset.org/abstracts/search?q=Slurry%20infiltrated%20mat%20concrete%20%28SIMCON%29" title=" Slurry infiltrated mat concrete (SIMCON)"> Slurry infiltrated mat concrete (SIMCON)</a> </p> <a href="https://publications.waset.org/abstracts/35242/structural-characteristics-of-hpdsp-concrete-on-beam-column-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsiu%20Lin">Yu-Hsiu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Chun%20Lin"> Wen-Chun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Chang%20Cheng"> Yen-Chang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ju%20Yeh"> Chia-Ju Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chuan%20Chen"> Yu-Chuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tai-You%20Li"> Tai-You Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand-side%20management" title="demand-side management">demand-side management</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20intelligence" title=" edge intelligence"> edge intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management%20system" title=" energy management system"> energy management system</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20classification" title=" fault detection and classification"> fault detection and classification</a> </p> <a href="https://publications.waset.org/abstracts/85791/developing-a-cloud-intelligence-based-energy-management-architecture-facilitated-with-embedded-edge-analytics-for-energy-conservation-in-demand-side-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Teacher Collaboration Impact on Bilingual Students’ Oral Communication Skills in Inclusive Contexts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Gonz%C3%A1lez">Diana González</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Gr%C3%A0cia"> Marta Gràcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Luisa%20Adam-Alcocer"> Ana Luisa Adam-Alcocer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Incorporating digital tools into educational practices represents a valuable approach for enriching the quality of teachers' educational practices in oral competence and fostering improvements in student learning outcomes. This study aims to promote a collaborative and culturally sensitive approach to professional development between teachers and a speech therapist to enhance their self-awareness and reflection on high-quality educational practices that integrate school components to strengthen children’s oral communication and pragmatic skills. The study involved five bilingual teachers fluent in both English and Spanish, with three specializing in special education and two in general education. It focused on Spanish-English bilingual students, aged 3-6, who were experiencing speech delays or disorders in a New York City public school, with the collaboration of a speech therapist. Using EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context - Decision Support System), teachers conducted self-assessments of their teaching practices, reflect and make-decisions throughout six classes from March to June, focusing on students' communicative competence across various activities. Concurrently, the speech therapist observed and evaluated six classes per teacher using EVALOE-DSS during the same period. Additionally, professional development meetings were held monthly between the speech therapist and teachers, centering on discussing classroom interactions, instructional strategies, and the progress of both teachers and students in their classes. Findings highlight the digital tool EVALOE-DSS's value in analyzing communication patterns and trends among bilingual children in inclusive settings. It helps in identifying improvement areas through teacher and speech therapist collaboration. After self-reflection meetings, teachers demonstrated increased awareness of student needs in oral language and pragmatic skills. They also exhibited enhanced utilization of strategies outlined in EVALOE-DSS, such as actively guiding and orienting students during oral language activities, promoting student-initiated communicative interactions, teaching students how to seek and provide information, and managing turn-taking to ensure inclusive participation. Teachers participating in the professional development program have shown positive progress in assessing their classes across all dimensions of the training tool, including instructional design, teacher conversation management, pupil conversation management, communicative functions, teacher strategies, and pupil communication functions. This includes aspects related to both teacher actions and child actions, particularly in child language development. This progress underscores the effectiveness of individual reflection (conducted weekly or biweekly using EVALOE-DSS) as well as collaborative reflection among teachers and the speech therapist during meetings. The EVALOE-SSD has proven effective in supporting teachers' self-reflection, decision-making, and classroom changes, leading to improved development of students' oral language and pragmatic skills. It has facilitated culturally sensitive evaluations of communication among bilingual children, cultivating collaboration between teachers and speech therapist to identify areas of growth. Participants in the professional development program demonstrated substantial progress across all dimensions assessed by EVALOE-DSS. This included improved management of pupil communication functions, implementation of effective teaching strategies, and better classroom dynamics. Regular reflection sessions using EVALOE-SSD supported continuous improvement in instructional practices, highlighting its role in fostering reflective teaching and enriching student learning experiences. Overall, EVALOE-DSS has proven invaluable for enhancing teaching effectiveness and promoting meaningful student interactions in diverse educational settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingual%20students" title="bilingual students">bilingual students</a>, <a href="https://publications.waset.org/abstracts/search?q=collaboration" title=" collaboration"> collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=culturally%20sensitive" title=" culturally sensitive"> culturally sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20communication%20skills" title=" oral communication skills"> oral communication skills</a>, <a href="https://publications.waset.org/abstracts/search?q=self-reflection" title=" self-reflection"> self-reflection</a> </p> <a href="https://publications.waset.org/abstracts/188246/teacher-collaboration-impact-on-bilingual-students-oral-communication-skills-in-inclusive-contexts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volker%20Wannack">Volker Wannack</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20change" title=" structural change"> structural change</a> </p> <a href="https://publications.waset.org/abstracts/161368/blockchain-based-hydrogen-market-bbh2-a-paradigm-shifting-innovative-solution-for-climate-friendly-and-sustainable-structural-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianqiao%20Zhang">Tianqiao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Tian"> Ye Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanliang%20Yin"> Yanliang Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yichao%20Tian"> Yichao Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzhai%20Tian"> Suzhai Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Weige%20Sun"> Weige Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuhui%20Gong"> Shuhui Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Limei%20Tang"> Limei Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruoliang%20Tang"> Ruoliang Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomic%20interventions" title="ergonomic interventions">ergonomic interventions</a>, <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders%20%28MSDs%29" title=" musculoskeletal disorders (MSDs)"> musculoskeletal disorders (MSDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=omaha%20system" title=" omaha system"> omaha system</a>, <a href="https://publications.waset.org/abstracts/search?q=nurses" title=" nurses"> nurses</a>, <a href="https://publications.waset.org/abstracts/search?q=Covid-19" title=" Covid-19"> Covid-19</a> </p> <a href="https://publications.waset.org/abstracts/155201/development-of-an-omaha-system-based-remote-intervention-program-for-work-related-musculoskeletal-disorders-wmsds-among-front-line-nurses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Fratini">Riccardo Fratini</a>, <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Santini"> Riccardo Santini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacopo%20Serafini"> Jacopo Serafini</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Gennaretti"> Massimo Gennaretti</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Panzieri"> Stefano Panzieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title="wind turbines">wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title=" aeroelasticity"> aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=repetitive%20control" title=" repetitive control"> repetitive control</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20systems" title=" periodic systems"> periodic systems</a> </p> <a href="https://publications.waset.org/abstracts/55810/a-spatial-repetitive-controller-applied-to-an-aeroelastic-model-for-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design and Construction of a Solar Dehydration System as a Technological Strategy for Food Sustainability in Difficult-to-Access Territories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erika%20T.%20Fajardo-Ariza">Erika T. Fajardo-Ariza</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Castillo-Sanabria"> Luis A. Castillo-Sanabria</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Nieto-Veloza"> Andrea Nieto-Veloza</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20Zuluaga-Dom%C3%ADnguez"> Carlos M. Zuluaga-Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing emphasis on sustainable food production and preservation has driven the development of innovative solutions to minimize postharvest losses and improve market access for small-scale farmers. This project focuses on designing, constructing, and selecting materials for solar dryers in certain regions of Colombia where inadequate infrastructure limits access to major commercial hubs. Postharvest losses pose a significant challenge, impacting food security and farmer income. Addressing these losses is crucial for enhancing the value of agricultural products and supporting local economies. A comprehensive survey of local farmers revealed substantial challenges, including limited market access, inefficient transportation, and significant postharvest losses. For crops such as coffee, bananas, and citrus fruits, losses range from 0% to 50%, driven by factors like labor shortages, adverse climatic conditions, and transportation difficulties. To address these issues, the project prioritized selecting effective materials for the solar dryer. Various materials, recovered acrylic, original acrylic, glass, and polystyrene, were tested for their performance. The tests showed that recovered acrylic and glass were most effective in increasing the temperature difference between the interior and the external environment. The solar dryer was designed using Fusion 360® software (Autodesk, USA) and adhered to architectural guidelines from Architectural Graphic Standards. It features up to sixteen aluminum trays, each with a maximum load capacity of 3.5 kg, arranged in two levels to optimize drying efficiency. The constructed dryer was then tested with two locally available plant materials: green plantains (Musa paradisiaca L.) and snack bananas (Musa AA Simonds). To monitor performance, Thermo hygrometers and an Arduino system recorded internal and external temperature and humidity at one-minute intervals. Despite challenges such as adverse weather conditions and delays in local government funding, the active involvement of local producers was a significant advantage, fostering ownership and understanding of the project. The solar dryer operated under conditions of 31°C dry bulb temperature (Tbs), 55% relative humidity, and 21°C wet bulb temperature (Tbh). The drying curves showed a consistent drying period with critical moisture content observed between 200 and 300 minutes, followed by a sharp decrease in moisture loss, reaching an equilibrium point after 3,400 minutes. Although the solar dryer requires more time and is highly dependent on atmospheric conditions, it can approach the efficiency of an electric dryer when properly optimized. The successful design and construction of solar dryer systems in difficult-to-access areas represent a significant advancement in agricultural sustainability and postharvest loss reduction. By choosing effective materials such as recovered acrylic and implementing a carefully planned design, the project provides a valuable tool for local farmers. The initiative not only improves the quality and marketability of agricultural products but also offers broader environmental benefits, such as reduced reliance on fossil fuels and decreased waste. Additionally, it supports economic growth by enhancing the value of crops and potentially increasing farmer income. The successful implementation and testing of the dryer, combined with the engagement of local stakeholders, highlight its potential for replication and positive impact in similar contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying%20technology" title="drying technology">drying technology</a>, <a href="https://publications.waset.org/abstracts/search?q=postharvest%20loss%20reduction" title=" postharvest loss reduction"> postharvest loss reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20dryers" title=" solar dryers"> solar dryers</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/190066/design-and-construction-of-a-solar-dehydration-system-as-a-technological-strategy-for-food-sustainability-in-difficult-to-access-territories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Open Science Philosophy, Research and Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.Ardil">C.Ardil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Open%20Science" title="Open Science">Open Science</a>, <a href="https://publications.waset.org/abstracts/search?q=Open%20Science%20Philosophy" title=" Open Science Philosophy"> Open Science Philosophy</a>, <a href="https://publications.waset.org/abstracts/search?q=Open%20Science%20Research" title=" Open Science Research"> Open Science Research</a>, <a href="https://publications.waset.org/abstracts/search?q=Open%20Science%20Data" title=" Open Science Data"> Open Science Data</a> </p> <a href="https://publications.waset.org/abstracts/105314/open-science-philosophy-research-and-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ar%C4%B1ba%C5%9F">Murat Arıbaş</a>, <a href="https://publications.waset.org/abstracts/search?q=U%C4%9Fur%20%C3%96zcan"> Uğur Özcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Academic%20projects" title="Academic projects">Academic projects</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahp%20method" title=" Ahp method"> Ahp method</a>, <a href="https://publications.waset.org/abstracts/search?q=Research%20projects%20evaluation" title=" Research projects evaluation"> Research projects evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Topsis%20method." title=" Topsis method."> Topsis method.</a> </p> <a href="https://publications.waset.org/abstracts/19421/evaluation-of-academic-research-projects-using-the-ahp-and-topsis-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20J.%20Foran">David J. Foran</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhan%20Do"> Nhan Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Ajjarapu"> Samuel Ajjarapu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjin%20Chen"> Wenjin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahsin%20Kurc"> Tahsin Kurc</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20H.%20Saltz"> Joel H. Saltz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20data%20warehouse" title="clinical data warehouse">clinical data warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20support" title=" decision support"> decision support</a>, <a href="https://publications.waset.org/abstracts/search?q=data-mining" title=" data-mining"> data-mining</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20databases" title=" intelligent databases"> intelligent databases</a>, <a href="https://publications.waset.org/abstracts/search?q=machine-learning." title=" machine-learning."> machine-learning.</a> </p> <a href="https://publications.waset.org/abstracts/156279/an-intelligent-search-and-retrieval-system-for-mining-clinical-data-repositories-based-on-computational-imaging-markers-and-genomic-expression-signatures-for-investigative-research-and-decision-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Municipal Solid Waste Management in Ethiopia: Systematic Review of Physical and Chemical Compositions and Generation Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegay%20Kahsay%20Gebrekidan">Tsegay Kahsay Gebrekidan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebremariam%20Gebrezgabher%20Gebremedhin"> Gebremariam Gebrezgabher Gebremedhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraha%20Kahsay%20Weldemariam"> Abraha Kahsay Weldemariam</a>, <a href="https://publications.waset.org/abstracts/search?q=Meaza%20Kidane%20Teferi"> Meaza Kidane Teferi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal solid waste management (MSWM) in Ethiopia is a complex issue with institutional, social, political, environmental, and economic dimensions, impacting sustainable development. Effective MSWM planning necessitates understanding the generation rate and composition of waste. This systematic review synthesizes qualitative and quantitative data from various sources to aggregate current knowledge, identify gaps, and provide a comprehensive understanding of municipal solid waste management in Ethiopia. The findings reveal that the generation rate of municipal solid waste in Ethiopia is 0.38 kg/ca/day, with the waste composition being predominantly food waste, followed by ash, dust, and sand, and yard waste. Over 85% of this MSW is either reusable or recyclable, with a significant portion being organic matter (73.13% biodegradable) and 11.78% recyclable materials. Physicochemical analyses reveal that Ethiopian MSW is suitable for composting and biogas production, offering opportunities to reduce environmental pollution, and GHGs, support urban agriculture, and create job opportunities. However; challenges persist, including a lack of political will, weak municipal planning, limited community awareness, and inadequate waste management infrastructure, and only 31.8% of MSW is collected legally, leading to inefficient and harmful disposal practices. To improve MSWM, Ethiopia should focus on public awareness; increased funding, infrastructure investment, private sector partnerships, and implementing the 4 R principles (reduce, reuse, and recycle). An integrated approach involving government, industry, and civil society is essential. Further research on the physicochemical properties and strategic uses of MSW is needed to enhance management practices. Implications: The comprehensive study of municipal solid waste management (MSWM) in Ethiopia reveals the intricate interplay of institutional, social, political, environmental, and economic factors that influence the nation’s sustainable development. The findings underscore the urgent need for tailored, integrated waste management strategies that are informed by a thorough understanding of MSW generation rates, composition, and current management practices. Ethiopia’s lower per capita MSW generation compared to developed countries and the predominantly organic composition of its waste present significant opportunities for sustainable waste management practices such as composting and recycling. These practices can not only minimize the environmental impact but also support urban greening, agriculture, and renewable energy production. The high organic content, suitable physicochemical properties of MSW for composting, and potential for biogas and briquette production highlight pathways for creating employment, reducing waste, and enhancing soil fertility. Despite these opportunities, Ethiopia faces substantial challenges due to inadequate political will, weak municipal planning, limited community awareness, insufficient waste management infrastructure, and poor policy implementation. The high rate of illegal waste disposal further exacerbates environmental and health issues, emphasizing the need for a more effective and integrated MSWM approach. To address these challenges and harness the potential of MSW, Ethiopia must prioritize increasing public awareness; investing in infrastructure, fostering private sector partnerships, and implementing the principles of reduce, reuse, and recycle (3 R). Developing strategies that involve all stakeholders and turning waste into valuable resources is crucial. Government, industry, and civil society must collaborate to implement integrated MSWM systems that focus on waste reduction at the source, alternative material use, and advanced recycling technologies. Further research at both federal and regional levels is essential to optimize the physicochemical analysis and strategic use of MSW. Prompt action is required to transform waste management into a pillar of sustainable urban development, ultimately improving environmental quality and human health in Ethiopia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20environment" title=" healthy environment"> healthy environment</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20solid%20waste%20management" title=" integrated solid waste management"> integrated solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal" title=" municipal"> municipal</a> </p> <a href="https://publications.waset.org/abstracts/193834/municipal-solid-waste-management-in-ethiopia-systematic-review-of-physical-and-chemical-compositions-and-generation-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Enhancing Disaster Resilience: Advanced Natural Hazard Assessment and Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariza%20Kaskara">Mariza Kaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=Stella%20Girtsou"> Stella Girtsou</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Prodromou"> Maria Prodromou</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexia%20Tsouni"> Alexia Tsouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Christodoulos%20Mettas"> Christodoulos Mettas</a>, <a href="https://publications.waset.org/abstracts/search?q=Stavroula%20Alatza"> Stavroula Alatza</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyriaki%20Fotiou"> Kyriaki Fotiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marios%20Tzouvaras"> Marios Tzouvaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Charalampos%20Kontoes"> Charalampos Kontoes</a>, <a href="https://publications.waset.org/abstracts/search?q=Diofantos%20Hadjimitsis"> Diofantos Hadjimitsis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural hazard assessment and monitoring are crucial in managing the risks associated with fires, floods, and geohazards, particularly in regions prone to these natural disasters, such as Greece and Cyprus. Recent advancements in technology, developed by the BEYOND Center of Excellence of the National Observatory of Athens, have been successfully applied in Greece and are now set to be transferred to Cyprus. The implementation of these advanced technologies in Greece has significantly improved the country's ability to respond to these natural hazards. For wildfire risk assessment, a scalar wildfire occurrence risk index is created based on the predictions of machine learning models. Predicting fire danger is crucial for the sustainable management of forest fires as it provides essential information for designing effective prevention measures and facilitating response planning for potential fire incidents. A reliable forecast of fire danger is a key component of integrated forest fire management and is heavily influenced by various factors that affect fire ignition and spread. The fire risk model is validated by the sensitivity and specificity metric. For flood risk assessment, a multi-faceted approach is employed, including the application of remote sensing techniques, the collection and processing of data from the most recent population and building census, technical studies and field visits, as well as hydrological and hydraulic simulations. All input data are used to create precise flood hazard maps according to various flooding scenarios, detailed flood vulnerability and flood exposure maps, which will finally produce the flood risk map. Critical points are identified, and mitigation measures are proposed for the worst-case scenario, namely, refuge areas are defined, and escape routes are designed. Flood risk maps can assist in raising awareness and save lives. Validation is carried out through historical flood events using remote sensing data and records from the civil protection authorities. For geohazards monitoring (e.g., landslides, subsidence), Synthetic Aperture Radar (SAR) and optical satellite imagery are combined with geomorphological and meteorological data and other landslide/ground deformation contributing factors. To monitor critical infrastructures, including dams, advanced InSAR methodologies are used for identifying surface movements through time. Monitoring these hazards provides valuable information for understanding processes and could lead to early warning systems to protect people and infrastructure. Validation is carried out through both geotechnical expert evaluations and visual inspections. The success of these systems in Greece has paved the way for their transfer to Cyprus to enhance Cyprus's capabilities in natural hazard assessment and monitoring. This transfer is being made through capacity building activities, fostering continuous collaboration between Greek and Cypriot experts. Apart from the knowledge transfer, small demonstration actions are implemented to showcase the effectiveness of these technologies in real-world scenarios. In conclusion, the transfer of advanced natural hazard assessment technologies from Greece to Cyprus represents a significant step forward in enhancing the region's resilience to disasters. EXCELSIOR project funds knowledge exchange, demonstration actions and capacity-building activities and is committed to empower Cyprus with the tools and expertise to effectively manage and mitigate the risks associated with these natural hazards. Acknowledgement:Authors acknowledge the 'EXCELSIOR': ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment H2020 Widespread Teaming project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth%20observation" title="earth observation">earth observation</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20hazards" title=" natural hazards"> natural hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/186482/enhancing-disaster-resilience-advanced-natural-hazard-assessment-and-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kadir">Ali Kadir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Mishra"> S. R. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shamshuddin"> M. Shamshuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Anwar%20Beg"> O. Anwar Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-nanofluids" title="bio-nanofluids">bio-nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk%20bioreactors" title=" rotating disk bioreactors"> rotating disk bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Karman%20swirling%20flow" title=" Von Karman swirling flow"> Von Karman swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solutions" title=" numerical solutions"> numerical solutions</a> </p> <a href="https://publications.waset.org/abstracts/97804/numerical-simulation-of-von-karman-swirling-bioconvection-nanofluid-flow-from-a-deformable-rotating-disk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Raj%20Regmi">Krishna Raj Regmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20adaptation" title="climate change adaptation">climate change adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20risk%20management" title=" disaster risk management"> disaster risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-water%20management%20practices" title=" soil-water management practices"> soil-water management practices</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture "> sustainable agriculture </a> </p> <a href="https://publications.waset.org/abstracts/23197/sustainable-agricultural-and-soil-water-management-practices-in-relation-to-climate-change-and-disaster-a-himalayan-country-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=155" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=147">147</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=148">148</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=150">150</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=151">151</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=152">152</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=153">153</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=154">154</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=implementation&amp;page=155">155</a></li> <li class="page-item active"><span class="page-link">156</span></li> <li class="page-item disabled"><span class="page-link">&rsaquo;</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10