CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 601 results for author: <span class="mathjax">Chan, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chan, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chan%2C+Y&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chan, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04322">arXiv:2502.04322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.04322">pdf</a>, <a href="https://arxiv.org/format/2502.04322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+S">Yik Siu Chan</a>, <a href="/search/?searchtype=author&amp;query=Ri%2C+N">Narutatsu Ri</a>, <a href="/search/?searchtype=author&amp;query=Xiao%2C+Y">Yuxin Xiao</a>, <a href="/search/?searchtype=author&amp;query=Ghassemi%2C+M">Marzyeh Ghassemi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04322v1-abstract-short" style="display: inline;"> Despite extensive safety alignment efforts, large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior. While existing studies predominantly focus on attack methods that require technical expertise, two critical questions remain underexplored: (1) Are jailbroken responses truly useful in enabling average users to carry out harmful actions? (2) Do safety vulner&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04322v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04322v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04322v1-abstract-full" style="display: none;"> Despite extensive safety alignment efforts, large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior. While existing studies predominantly focus on attack methods that require technical expertise, two critical questions remain underexplored: (1) Are jailbroken responses truly useful in enabling average users to carry out harmful actions? (2) Do safety vulnerabilities exist in more common, simple human-LLM interactions? In this paper, we demonstrate that LLM responses most effectively facilitate harmful actions when they are both actionable and informative--two attributes easily elicited in multi-step, multilingual interactions. Using this insight, we propose HarmScore, a jailbreak metric that measures how effectively an LLM response enables harmful actions, and Speak Easy, a simple multi-step, multilingual attack framework. Notably, by incorporating Speak Easy into direct request and jailbreak baselines, we see an average absolute increase of 0.319 in Attack Success Rate and 0.426 in HarmScore in both open-source and proprietary LLMs across four safety benchmarks. Our work reveals a critical yet often overlooked vulnerability: Malicious users can easily exploit common interaction patterns for harmful intentions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04322v1-abstract-full').style.display = 'none'; document.getElementById('2502.04322v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02123">arXiv:2502.02123</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.02123">pdf</a>, <a href="https://arxiv.org/ps/2502.02123">ps</a>, <a href="https://arxiv.org/format/2502.02123">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> High-pressure modulation of breathing kagome lattice: Cascade of Lifshitz transitions and evolution of the electronic structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gon%C3%A7alves-Faria%2C+M+V">Marcos V. Gon莽alves-Faria</a>, <a href="/search/?searchtype=author&amp;query=Wenzel%2C+M">Maxim Wenzel</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+T">Yuk Tai Chan</a>, <a href="/search/?searchtype=author&amp;query=Iakutkina%2C+O">Olga Iakutkina</a>, <a href="/search/?searchtype=author&amp;query=Capitani%2C+F">Francesco Capitani</a>, <a href="/search/?searchtype=author&amp;query=Comboni%2C+D">Davide Comboni</a>, <a href="/search/?searchtype=author&amp;query=Hanfland%2C+M">Michael Hanfland</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/?searchtype=author&amp;query=Dressel%2C+M">Martin Dressel</a>, <a href="/search/?searchtype=author&amp;query=Tsirlin%2C+A+A">Alexander A. Tsirlin</a>, <a href="/search/?searchtype=author&amp;query=Pashkin%2C+A">Alexej Pashkin</a>, <a href="/search/?searchtype=author&amp;query=Winnerl%2C+S">Stephan Winnerl</a>, <a href="/search/?searchtype=author&amp;query=Helm%2C+M">Manfred Helm</a>, <a href="/search/?searchtype=author&amp;query=Uykur%2C+E">Ece Uykur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02123v1-abstract-short" style="display: inline;"> The interplay between electronic correlations, density wave orders, and magnetism gives rise to several fascinating phenomena. In recent years, kagome metals have emerged as an excellent platform for investigating these unique properties, which stem from their itinerant carriers arranged in a kagome lattice. Here, we show that electronic structure of the prototypical kagome metal, Fe$_3$Sn$_2$, ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02123v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02123v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02123v1-abstract-full" style="display: none;"> The interplay between electronic correlations, density wave orders, and magnetism gives rise to several fascinating phenomena. In recent years, kagome metals have emerged as an excellent platform for investigating these unique properties, which stem from their itinerant carriers arranged in a kagome lattice. Here, we show that electronic structure of the prototypical kagome metal, Fe$_3$Sn$_2$, can be tailored by manipulating the breathing distortion of its kagome lattice with external pressure. The breathing distortion is suppressed around 15 GPa and reversed at higher pressures. These changes lead to a series of Lifshitz transitions that we detect using broadband and transient optical spectroscopy. Remarkably, the strength of the electronic correlations and the tendency to carrier localization are enhanced as the kagome network becomes more regular, suggesting that breathing distortion can be a unique control parameter for the microscopic regime of the kagome metals and their electron dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02123v1-abstract-full').style.display = 'none'; document.getElementById('2502.02123v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text (4 figures) + Supplementary Materials (4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.01838">arXiv:2502.01838</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.01838">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adfm.202418259">10.1002/adfm.202418259 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Universal Superconductivity in FeTe and All-Iron-Based Ferromagnetic Superconductor Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yi%2C+H+T">Hee Taek Yi</a>, <a href="/search/?searchtype=author&amp;query=Yao%2C+X">Xiong Yao</a>, <a href="/search/?searchtype=author&amp;query=Jain%2C+D">Deepti Jain</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Ying-Ting Chan</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+A">An-Hsi Chen</a>, <a href="/search/?searchtype=author&amp;query=Brahlek%2C+M">Matthew Brahlek</a>, <a href="/search/?searchtype=author&amp;query=Kisslinger%2C+K">Kim Kisslinger</a>, <a href="/search/?searchtype=author&amp;query=Du%2C+K">Kai Du</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+M">Myung-Geun Han</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+Y">Yimei Zhu</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+W">Weida Wu</a>, <a href="/search/?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/?searchtype=author&amp;query=Oh%2C+S">Seongshik Oh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.01838v1-abstract-short" style="display: inline;"> Ferromagnetism (FM) and superconductivity (SC) are two of the most famous macroscopic quantum phenomena. However, nature normally does not allow SC and FM to coexist without significant degradation. Here, we introduce the first fully iron-based SC/FM heterostructures, composed of Fe(Te,Se) and Fe3GeTe2, and show that in this platform strong FM and high-temperature SC robustly coexist. We subsequen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01838v1-abstract-full').style.display = 'inline'; document.getElementById('2502.01838v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.01838v1-abstract-full" style="display: none;"> Ferromagnetism (FM) and superconductivity (SC) are two of the most famous macroscopic quantum phenomena. However, nature normally does not allow SC and FM to coexist without significant degradation. Here, we introduce the first fully iron-based SC/FM heterostructures, composed of Fe(Te,Se) and Fe3GeTe2, and show that in this platform strong FM and high-temperature SC robustly coexist. We subsequently discover that chemical proximity effect from neighboring layers can universally drive the otherwise non-superconducting FeTe films into a SC state. This suggests that the ground state of FeTe is so close to the SC state that it could be driven in and out of the SC state with various other perturbations. Altogether, this shows that Fe-Te-based heterostructures provide a unique opportunity to manipulate magnetism, superconductivity and topological physics, paving the way toward new superconducting technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.01838v1-abstract-full').style.display = 'none'; document.getElementById('2502.01838v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Funct. Mater. 2025, 2418259 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15767">arXiv:2501.15767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.15767">pdf</a>, <a href="https://arxiv.org/format/2501.15767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Formal Verification of Markov Processes with Learned Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Maaz%2C+M">Muhammad Maaz</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+T+C+Y">Timothy C. Y. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15767v1-abstract-short" style="display: inline;"> We introduce the problem of formally verifying properties of Markov processes where the parameters are the output of machine learning models. Our formulation is general and solves a wide range of problems, including verifying properties of probabilistic programs that use machine learning, and subgroup analysis in healthcare modeling. We show that for a broad class of machine learning models, inclu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15767v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15767v1-abstract-full" style="display: none;"> We introduce the problem of formally verifying properties of Markov processes where the parameters are the output of machine learning models. Our formulation is general and solves a wide range of problems, including verifying properties of probabilistic programs that use machine learning, and subgroup analysis in healthcare modeling. We show that for a broad class of machine learning models, including linear models, tree-based models, and neural networks, verifying properties of Markov chains like reachability, hitting time, and total reward can be formulated as a bilinear program. We develop a decomposition and bound propagation scheme for solving the bilinear program and show through computational experiments that our method solves the problem to global optimality up to 100x faster than state-of-the-art solvers. We also release $\texttt{markovml}$, an open-source tool for building Markov processes, integrating pretrained machine learning models, and verifying their properties, available at https://github.com/mmaaz-git/markovml. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15767v1-abstract-full').style.display = 'none'; document.getElementById('2501.15767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages (main manuscript), 3 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68Q60 (primary) 90C30; 60J20; 60J22 (secondary) <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.4.1; G.1.6; I.2.3 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10711">arXiv:2501.10711</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.10711">pdf</a>, <a href="https://arxiv.org/format/2501.10711">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cao%2C+J">Jialun Cao</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yuk-Kit Chan</a>, <a href="/search/?searchtype=author&amp;query=Ling%2C+Z">Zixuan Ling</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+W">Wenxuan Wang</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shuqing Li</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+M">Mingwei Liu</a>, <a href="/search/?searchtype=author&amp;query=Qiao%2C+R">Ruixi Qiao</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+Y">Yuting Han</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+C">Chaozheng Wang</a>, <a href="/search/?searchtype=author&amp;query=Yu%2C+B">Boxi Yu</a>, <a href="/search/?searchtype=author&amp;query=He%2C+P">Pinjia He</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+S">Shuai Wang</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+Z">Zibin Zheng</a>, <a href="/search/?searchtype=author&amp;query=Lyu%2C+M+R">Michael R. Lyu</a>, <a href="/search/?searchtype=author&amp;query=Cheung%2C+S">Shing-Chi Cheung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10711v2-abstract-short" style="display: inline;"> Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10711v2-abstract-full').style.display = 'inline'; document.getElementById('2501.10711v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10711v2-abstract-full" style="display: none;"> Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10711v2-abstract-full').style.display = 'none'; document.getElementById('2501.10711v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">42 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.08919">arXiv:2501.08919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.08919">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Revealing Local Structures through Machine-Learning- Fused Multimodal Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jia%2C+H">Haili Jia</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+Y">Yiming Chen</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+G">Gi-Hyeok Lee</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+J">Jacob Smith</a>, <a href="/search/?searchtype=author&amp;query=Chi%2C+M">Miaofang Chi</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+W">Wanli Yang</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+M+K+Y">Maria K. Y. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.08919v1-abstract-short" style="display: inline;"> Atomistic structures of materials offer valuable insights into their functionality. Determining these structures remains a fundamental challenge in materials science, especially for systems with defects. While both experimental and computational methods exist, each has limitations in resolving nanoscale structures. Core-level spectroscopies, such as x-ray absorption (XAS) or electron energy-loss s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08919v1-abstract-full').style.display = 'inline'; document.getElementById('2501.08919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.08919v1-abstract-full" style="display: none;"> Atomistic structures of materials offer valuable insights into their functionality. Determining these structures remains a fundamental challenge in materials science, especially for systems with defects. While both experimental and computational methods exist, each has limitations in resolving nanoscale structures. Core-level spectroscopies, such as x-ray absorption (XAS) or electron energy-loss spectroscopies (EELS), have been used to determine the local bonding environment and structure of materials. Recently, machine learning (ML) methods have been applied to extract structural and bonding information from XAS/EELS, but most of these frameworks rely on a single data stream, which is often insufficient. In this work, we address this challenge by integrating multimodal ab initio simulations, experimental data acquisition, and ML techniques for structure characterization. Our goal is to determine local structures and properties using EELS and XAS data from multiple elements and edges. To showcase our approach, we use various lithium nickel manganese cobalt (NMC) oxide compounds which are used for lithium ion batteries, including those with oxygen vacancies and antisite defects, as the sample material system. We successfully inferred local element content, ranging from lithium to transition metals, with quantitative agreement with experimental data. Beyond improving prediction accuracy, we find that ML model based on multimodal spectroscopic data is able to determine whether local defects such as oxygen vacancy and antisites are present, a task which is impossible for single mode spectra or other experimental techniques. Furthermore, our framework is able to provide physical interpretability, bridging spectroscopy with the local atomic and electronic structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.08919v1-abstract-full').style.display = 'none'; document.getElementById('2501.08919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02060">arXiv:2501.02060</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.02060">pdf</a>, <a href="https://arxiv.org/format/2501.02060">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The MAJORANA DEMONSTRATOR experiment&#39;s construction, commissioning, and performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/?searchtype=author&amp;query=Aguayo%2C+E">E. Aguayo</a>, <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Bertrand%2C+F+E">F. E. Bertrand</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Boswell%2C+M">M. Boswell</a>, <a href="/search/?searchtype=author&amp;query=Bradley%2C+A+W">A. W. Bradley</a>, <a href="/search/?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/?searchtype=author&amp;query=Burritt%2C+T+H">T. H. Burritt</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Buuck%2C+M">M. Buuck</a>, <a href="/search/?searchtype=author&amp;query=Byram%2C+D">D. Byram</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+A+S">A. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+T+S">T. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+-">Y. -D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+M+L">M. L. Clark</a>, <a href="/search/?searchtype=author&amp;query=Combs%2C+D+C">D. C. Combs</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02060v1-abstract-short" style="display: inline;"> Background: The MAJORANA DEMONSTRATOR , a modular array of isotopically enriched high-purity germanium (HPGe) detectors, was constructed to demonstrate backgrounds low enough to justify building a tonne-scale experiment to search for the neutrinoless double-beta decay ($尾尾(0谓)$) of $^{76}\mathrm{Ge}$. Purpose: This paper presents a description of the instrument, its commissioning, and operations.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02060v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02060v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02060v1-abstract-full" style="display: none;"> Background: The MAJORANA DEMONSTRATOR , a modular array of isotopically enriched high-purity germanium (HPGe) detectors, was constructed to demonstrate backgrounds low enough to justify building a tonne-scale experiment to search for the neutrinoless double-beta decay ($尾尾(0谓)$) of $^{76}\mathrm{Ge}$. Purpose: This paper presents a description of the instrument, its commissioning, and operations. It covers the electroforming, underground infrastructure, enrichment, detector fabrication, low-background and construction techniques, electronics, data acquisition, databases, and data processing of the MAJORANA DEMONSTRATOR. Method: The MAJORANA DEMONSTRATOR operated inside an ultra-low radioactivity passive shield at the 4850-foot~level of the Sanford Underground Research Facility (SURF) from 2015-2021. Results and Conclusions: The MAJORANA DEMONSTRATOR achieved the best energy resolution and second-best background level of any $尾尾(0谓)$ search. This enabled it to achieve an ultimate half-life limit on $尾尾(0谓)$ in $^{76}\mathrm{Ge}$ of $8.3\times 10^{25}$~yr (90\% C.L.) and perform a rich set of searches for other physics beyond the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02060v1-abstract-full').style.display = 'none'; document.getElementById('2501.02060v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">72 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01429">arXiv:2501.01429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2501.01429">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Item Association Factorization Mixed Markov Chains for Sequential Recommendation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Du%2C+D">DongYu Du</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yue Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01429v1-abstract-short" style="display: inline;"> Sequential recommendation refers to recommending the next item of interest for a specific user based on his/her historical behavior sequence up to a certain time. While previous research has extensively examined Markov chain-based sequential recommendation models, the majority of these studies has focused on the user&#39;s historical behavior sequence but has paid little attention to the overall corre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01429v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01429v1-abstract-full" style="display: none;"> Sequential recommendation refers to recommending the next item of interest for a specific user based on his/her historical behavior sequence up to a certain time. While previous research has extensively examined Markov chain-based sequential recommendation models, the majority of these studies has focused on the user&#39;s historical behavior sequence but has paid little attention to the overall correlation between items. This study introduces a sequential recommendation algorithm known as Item Association Factorization Mixed Markov Chains, which incorporates association information between items using an item association graph, integrating it with user behavior sequence information. Our experimental findings from the four public datasets demonstrate that the newly introduced algorithm significantly enhances the recommendation ranking results without substantially increasing the parameter count. Additionally, research on tuning the prior balancing parameters underscores the significance of incorporating item association information across different datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01429v1-abstract-full').style.display = 'none'; document.getElementById('2501.01429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.19522">arXiv:2412.19522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.19522">pdf</a>, <a href="https://arxiv.org/format/2412.19522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Exploiting Domain-Specific Parallel Data on Multilingual Language Models for Low-resource Language Translation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ranathungaa%2C+S">Surangika Ranathungaa</a>, <a href="/search/?searchtype=author&amp;query=Nayak%2C+S">Shravan Nayak</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+S+C">Shih-Ting Cindy Huang</a>, <a href="/search/?searchtype=author&amp;query=Mao%2C+Y">Yanke Mao</a>, <a href="/search/?searchtype=author&amp;query=Su%2C+T">Tong Su</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+R">Yun-Hsiang Ray Chan</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+S">Songchen Yuan</a>, <a href="/search/?searchtype=author&amp;query=Rinaldi%2C+A">Anthony Rinaldi</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+A+E">Annie En-Shiun Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.19522v1-abstract-short" style="display: inline;"> Neural Machine Translation (NMT) systems built on multilingual sequence-to-sequence Language Models (msLMs) fail to deliver expected results when the amount of parallel data for a language, as well as the language&#39;s representation in the model are limited. This restricts the capabilities of domain-specific NMT systems for low-resource languages (LRLs). As a solution, parallel data from auxiliary d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19522v1-abstract-full').style.display = 'inline'; document.getElementById('2412.19522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.19522v1-abstract-full" style="display: none;"> Neural Machine Translation (NMT) systems built on multilingual sequence-to-sequence Language Models (msLMs) fail to deliver expected results when the amount of parallel data for a language, as well as the language&#39;s representation in the model are limited. This restricts the capabilities of domain-specific NMT systems for low-resource languages (LRLs). As a solution, parallel data from auxiliary domains can be used either to fine-tune or to further pre-train the msLM. We present an evaluation of the effectiveness of these two techniques in the context of domain-specific LRL-NMT. We also explore the impact of domain divergence on NMT model performance. We recommend several strategies for utilizing auxiliary parallel data in building domain-specific NMT models for LRLs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.19522v1-abstract-full').style.display = 'none'; document.getElementById('2412.19522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16439">arXiv:2412.16439</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16439">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Excitonic effects on infrared vibrational and Raman spectroscopy from first principles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yang-Hao Chan</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Z">Zhenglu Li</a>, <a href="/search/?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16439v1-abstract-short" style="display: inline;"> We develop a first-principles approach to compute infrared (IR) vibrational absorption and Raman scattering spectra with excitonic effects included. Our method is based on a perturbative expansion of electron-phonon and electron-light couplings in the time-dependent adiabatic GW (TD-aGW) theory. We show that excitonic effects in the IR absorption spectrum can be included by replacing the free elec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16439v1-abstract-full').style.display = 'inline'; document.getElementById('2412.16439v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16439v1-abstract-full" style="display: none;"> We develop a first-principles approach to compute infrared (IR) vibrational absorption and Raman scattering spectra with excitonic effects included. Our method is based on a perturbative expansion of electron-phonon and electron-light couplings in the time-dependent adiabatic GW (TD-aGW) theory. We show that excitonic effects in the IR absorption spectrum can be included by replacing the free electron-hole propagators in the perturbative expression for independent particles with their interacting counterparts, which are readily available from standard GW-Bethe-Salpeter equation calculations. For Raman spectrum, our derived expression agrees with the single and double resonance terms from a diagrammatic approach. We show significant excitonic enhancement in both the IR and resonance Raman scattering intensity for monolayer MoS2, WS2, and WSe2. Moreover, the exciton-phonon coupling strength and exciton energy landscape can be accessed by analyzing resonance Raman spectrum of these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16439v1-abstract-full').style.display = 'none'; document.getElementById('2412.16439v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.16047">arXiv:2412.16047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.16047">pdf</a>, <a href="https://arxiv.org/ps/2412.16047">ps</a>, <a href="https://arxiv.org/format/2412.16047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Rare multi-nucleon decays with the full data sets of the Majorana Demonstrator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+-">Y. -D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Chapman%2C+J+R">J. R. Chapman</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fuad%2C+N">N. Fuad</a>, <a href="/search/?searchtype=author&amp;query=Giovanetti%2C+G+K">G. K. Giovanetti</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Gruszko%2C+J">J. Gruszko</a>, <a href="/search/?searchtype=author&amp;query=Guinn%2C+I+S">I. S. Guinn</a>, <a href="/search/?searchtype=author&amp;query=Guiseppe%2C+V+E">V. E. Guiseppe</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+R">R. Henning</a>, <a href="/search/?searchtype=author&amp;query=Hoppe%2C+E+W">E. W. Hoppe</a>, <a href="/search/?searchtype=author&amp;query=Kouzes%2C+R+T">R. T. Kouzes</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+A">A. Li</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.16047v2-abstract-short" style="display: inline;"> The Majorana Demonstrator was an ultra-low-background experiment designed for neutrinoless double-beta decay ($0谓尾尾$) investigation in $^{76}$Ge. Located at the Sanford Underground Research Facility in Lead, South Dakota, the Demonstrator utilized modular high-purity Ge detector arrays within shielded vacuum cryostats, operating deep underground. The arrays, with a capacity of up to 40.4 kg (27.2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16047v2-abstract-full').style.display = 'inline'; document.getElementById('2412.16047v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.16047v2-abstract-full" style="display: none;"> The Majorana Demonstrator was an ultra-low-background experiment designed for neutrinoless double-beta decay ($0谓尾尾$) investigation in $^{76}$Ge. Located at the Sanford Underground Research Facility in Lead, South Dakota, the Demonstrator utilized modular high-purity Ge detector arrays within shielded vacuum cryostats, operating deep underground. The arrays, with a capacity of up to 40.4 kg (27.2 kg enriched to $\sim 88\%$ in $^{76}$Ge), have accumulated the full data set, totaling 64.5 kg yr of enriched active exposure and 27.4 kg yr of exposure for natural detectors. Our updated search improves previously explored three-nucleon decay modes in Ge isotopes, setting new half-life limits of $1.27\times10^{26}$ years (90\% confidence level) for $^{76}$Ge($ppp$) $\rightarrow$ $^{73}$Cu e$^+蟺^+蟺^+$ and $^{76}$Ge($ppn$) $\rightarrow$ $^{73}$Zn e$^+蟺^+$. The half-life limit for the invisible tri-proton decay mode of $^{76}$Ge is found to be $1.4\times10^{25}$ yr. Furthermore, we have updated limits for corresponding multi-nucleon decays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.16047v2-abstract-full').style.display = 'none'; document.getElementById('2412.16047v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-24-33090 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.09354">arXiv:2412.09354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.09354">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Meissner Effect and Nonreciprocal Charge Transport in Superconducting 1T-CrTe2/FeTe Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yan%2C+Z">Zi-Jie Yan</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Ying-Ting Chan</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+W">Wei Yuan</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+A+G">Annie G. Wang</a>, <a href="/search/?searchtype=author&amp;query=Yi%2C+H">Hemian Yi</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+L">Lingjie Zhou</a>, <a href="/search/?searchtype=author&amp;query=Rong%2C+H">Hongtao Rong</a>, <a href="/search/?searchtype=author&amp;query=Zhuo%2C+D">Deyi Zhuo</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/?searchtype=author&amp;query=Singleton%2C+J">John Singleton</a>, <a href="/search/?searchtype=author&amp;query=Winter%2C+L+E">Laurel E. Winter</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+W">Weida Wu</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+C">Cui-Zu Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.09354v1-abstract-short" style="display: inline;"> Interface-induced superconductivity has recently been achieved by stacking a magnetic topological insulator layer on an antiferromagnetic FeTe layer. However, the mechanism driving this emergent superconductivity remains unclear. Here, we employ molecular beam epitaxy to grow a 1T-CrTe2 layer, a two-dimensional ferromagnet with Curie temperature up to room temperature, on a FeTe layer. These 1T-Cr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09354v1-abstract-full').style.display = 'inline'; document.getElementById('2412.09354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.09354v1-abstract-full" style="display: none;"> Interface-induced superconductivity has recently been achieved by stacking a magnetic topological insulator layer on an antiferromagnetic FeTe layer. However, the mechanism driving this emergent superconductivity remains unclear. Here, we employ molecular beam epitaxy to grow a 1T-CrTe2 layer, a two-dimensional ferromagnet with Curie temperature up to room temperature, on a FeTe layer. These 1T-CrTe2/FeTe heterostructures show superconductivity with a critical temperature of ~12 K. Through magnetic force microscopy measurements, we observe the Meissner effect on the surface of the 1T-CrTe2 layer. Our electrical transport measurements reveal that the 1T-CrTe2/FeTe heterostructures exhibit nonreciprocal charge transport behavior, characterized by a large magneto-chiral anisotropy coefficient. The enhanced nonreciprocal charge transport in 1T-CrTe2/FeTe heterostructures provides a promising platform for exploring the magnetically controllable superconducting diode effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.09354v1-abstract-full').style.display = 'none'; document.getElementById('2412.09354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04001">arXiv:2412.04001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.04001">pdf</a>, <a href="https://arxiv.org/format/2412.04001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Exciton thermalization dynamics in monolayer MoS2: a first-principles Boltzmann equation study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yang-hao Chan</a>, <a href="/search/?searchtype=author&amp;query=Haber%2C+J+B">Jonah B. Haber</a>, <a href="/search/?searchtype=author&amp;query=Naik%2C+M+H">Mit H. Naik</a>, <a href="/search/?searchtype=author&amp;query=Louie%2C+S+G">Steven G. Louie</a>, <a href="/search/?searchtype=author&amp;query=Neaton%2C+J+B">Jeffrey B. Neaton</a>, <a href="/search/?searchtype=author&amp;query=da+Jornada%2C+F+H">Felipe H. da Jornada</a>, <a href="/search/?searchtype=author&amp;query=Qiu%2C+D+Y">Diana Y. Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04001v1-abstract-short" style="display: inline;"> Understanding exciton thermalization is critical for optimizing optoelectronic and photocatalytic processes in many materials. However, it is hard to access the dynamics of such processes experimentally, especially on systems such as monolayer transition metal dichalcogenides, where various low-energy excitations pathways can compete for exciton thermalization. Here, we study exciton dynamics due&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04001v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04001v1-abstract-full" style="display: none;"> Understanding exciton thermalization is critical for optimizing optoelectronic and photocatalytic processes in many materials. However, it is hard to access the dynamics of such processes experimentally, especially on systems such as monolayer transition metal dichalcogenides, where various low-energy excitations pathways can compete for exciton thermalization. Here, we study exciton dynamics due to exciton-phonon scattering in monolayer MoS2 from a first-principles, interacting Green&#39;s function approach, to obtain the relaxation and thermalization of low-energy excitons following different initial excitations at different temperatures. We find that the thermalization occurs on a picosecond timescale at 300 K but can increase by an order of magnitude at 100 K. The long total thermalization time, owing to the nature of its excitonic band structure, is dominated by slow spin-flip scattering processes in monolayer MoS2. In contrast, thermalization of excitons in individual spin-aligned and spin-anti-aligned channels can be achieved within a few hundred fs when exciting higher-energy excitons. We further simulate the intensity spectrum of time-resolved angle-resolved photoemission spectroscopy (TR-ARPES) experiments and anticipate that such calculations may serve as a map to correlate spectroscopic signatures with microscopic exciton dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04001v1-abstract-full').style.display = 'none'; document.getElementById('2412.04001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03782">arXiv:2412.03782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.03782">pdf</a>, <a href="https://arxiv.org/format/2412.03782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> The broader spectrum of in-context learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lampinen%2C+A+K">Andrew Kyle Lampinen</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+S+C+Y">Stephanie C. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Singh%2C+A+K">Aaditya K. Singh</a>, <a href="/search/?searchtype=author&amp;query=Shanahan%2C+M">Murray Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03782v2-abstract-short" style="display: inline;"> The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03782v2-abstract-full').style.display = 'inline'; document.getElementById('2412.03782v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03782v2-abstract-full" style="display: none;"> The ability of language models to learn a task from a few examples in context has generated substantial interest. Here, we provide a perspective that situates this type of supervised few-shot learning within a much broader spectrum of meta-learned in-context learning. Indeed, we suggest that any distribution of sequences in which context non-trivially decreases loss on subsequent predictions can be interpreted as eliciting a kind of in-context learning. We suggest that this perspective helps to unify the broad set of in-context abilities that language models exhibit $\unicode{x2014}$ such as adapting to tasks from instructions or role play, or extrapolating time series. This perspective also sheds light on potential roots of in-context learning in lower-level processing of linguistic dependencies (e.g. coreference or parallel structures). Finally, taking this perspective highlights the importance of generalization, which we suggest can be studied along several dimensions: not only the ability to learn something novel, but also flexibility in learning from different presentations, and in applying what is learned. We discuss broader connections to past literature in meta-learning and goal-conditioned agents, and other perspectives on learning and adaptation. We close by suggesting that research on in-context learning should consider this broader spectrum of in-context capabilities and types of generalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03782v2-abstract-full').style.display = 'none'; document.getElementById('2412.03782v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.00840">arXiv:2412.00840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.00840">pdf</a>, <a href="https://arxiv.org/format/2412.00840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DVasMesh: Deep Structured Mesh Reconstruction from Vascular Images for Dynamics Modeling of Vessels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jia%2C+D">Dengqiang Jia</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+X">Xinnian Yang</a>, <a href="/search/?searchtype=author&amp;query=Xiong%2C+X">Xiaosong Xiong</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+S">Shijie Huang</a>, <a href="/search/?searchtype=author&amp;query=Hou%2C+F">Feiyu Hou</a>, <a href="/search/?searchtype=author&amp;query=Qin%2C+L">Li Qin</a>, <a href="/search/?searchtype=author&amp;query=Sun%2C+K">Kaicong Sun</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+K+W+Y">Kannie Wai Yan Chan</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+D">Dinggang Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.00840v1-abstract-short" style="display: inline;"> Vessel dynamics simulation is vital in studying the relationship between geometry and vascular disease progression. Reliable dynamics simulation relies on high-quality vascular meshes. Most of the existing mesh generation methods highly depend on manual annotation, which is time-consuming and laborious, usually facing challenges such as branch merging and vessel disconnection. This will hinder ves&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00840v1-abstract-full').style.display = 'inline'; document.getElementById('2412.00840v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.00840v1-abstract-full" style="display: none;"> Vessel dynamics simulation is vital in studying the relationship between geometry and vascular disease progression. Reliable dynamics simulation relies on high-quality vascular meshes. Most of the existing mesh generation methods highly depend on manual annotation, which is time-consuming and laborious, usually facing challenges such as branch merging and vessel disconnection. This will hinder vessel dynamics simulation, especially for the population study. To address this issue, we propose a deep learning-based method, dubbed as DVasMesh to directly generate structured hexahedral vascular meshes from vascular images. Our contributions are threefold. First, we propose to formally formulate each vertex of the vascular graph by a four-element vector, including coordinates of the centerline point and the radius. Second, a vectorized graph template is employed to guide DVasMesh to estimate the vascular graph. Specifically, we introduce a sampling operator, which samples the extracted features of the vascular image (by a segmentation network) according to the vertices in the template graph. Third, we employ a graph convolution network (GCN) and take the sampled features as nodes to estimate the deformation between vertices of the template graph and target graph, and the deformed graph template is used to build the mesh. Taking advantage of end-to-end learning and discarding direct dependency on annotated labels, our DVasMesh demonstrates outstanding performance in generating structured vascular meshes on cardiac and cerebral vascular images. It shows great potential for clinical applications by reducing mesh generation time from 2 hours (manual) to 30 seconds (automatic). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.00840v1-abstract-full').style.display = 'none'; document.getElementById('2412.00840v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, MICCAI2024 Workshop, GRAIL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17288">arXiv:2411.17288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17288">pdf</a>, <a href="https://arxiv.org/format/2411.17288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> A Hybrid Scheme for Fuzzy Dark Matter Simulations Combining the Schr枚dinger and Hamilton-Jacobi-Madelung Equations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kunkel%2C+A">Alexander Kunkel</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+H+Y+J">Hei Yin Jowett Chan</a>, <a href="/search/?searchtype=author&amp;query=Schive%2C+H">Hsi-Yu Schive</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+H">Hsinhao Huang</a>, <a href="/search/?searchtype=author&amp;query=Liao%2C+P">Pin-Yu Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17288v1-abstract-short" style="display: inline;"> This paper introduces a hybrid numerical scheme for the fuzzy dark matter model: It combines a wave-based approach to solve the Schr枚dinger equation using Fourier continuations with Gram polynomials and a fluid-based approach to solve the Hamilton-Jacobi-Madelung equations. This hybrid scheme facilitates zoom-in simulations for cosmological volumes beyond the capabilities of wave-based solvers alo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17288v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17288v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17288v1-abstract-full" style="display: none;"> This paper introduces a hybrid numerical scheme for the fuzzy dark matter model: It combines a wave-based approach to solve the Schr枚dinger equation using Fourier continuations with Gram polynomials and a fluid-based approach to solve the Hamilton-Jacobi-Madelung equations. This hybrid scheme facilitates zoom-in simulations for cosmological volumes beyond the capabilities of wave-based solvers alone and accurately simulates the full nonlinear dynamics of fuzzy dark matter. We detail the implementation of a Hamilton-Jacobi-Madelung solver, the methodology for phase matching at fluid-wave boundaries, the development of a local pseudospectral wave solver based on Fourier continuations, new grid refinement criteria for both fluid and wave solvers, an interpolation algorithm based on Fourier continuations, and the integration of these building blocks into the adaptive mesh refinement code GAMER. The superiority of the scheme is demonstrated through various performance and accuracy tests, tracking the linear power spectrum evolution in a 10 Mpc/h box, and a hybrid cosmological simulation in a 5.6 Mpc/h box. The corresponding code is published as part of the GAMER project on https://github.com/gamer-project/gamer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17288v1-abstract-full').style.display = 'none'; document.getElementById('2411.17288v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 18 figures, submitted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12946">arXiv:2411.12946</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12946">pdf</a>, <a href="https://arxiv.org/format/2411.12946">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Flexible Large Language Models Guardrail Development Methodology Applied to Off-Topic Prompt Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chua%2C+G">Gabriel Chua</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+S+Y">Shing Yee Chan</a>, <a href="/search/?searchtype=author&amp;query=Khoo%2C+S">Shaun Khoo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12946v1-abstract-short" style="display: inline;"> Large Language Models are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12946v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12946v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12946v1-abstract-full" style="display: none;"> Large Language Models are prone to off-topic misuse, where users may prompt these models to perform tasks beyond their intended scope. Current guardrails, which often rely on curated examples or custom classifiers, suffer from high false-positive rates, limited adaptability, and the impracticality of requiring real-world data that is not available in pre-production. In this paper, we introduce a flexible, data-free guardrail development methodology that addresses these challenges. By thoroughly defining the problem space qualitatively and passing this to an LLM to generate diverse prompts, we construct a synthetic dataset to benchmark and train off-topic guardrails that outperform heuristic approaches. Additionally, by framing the task as classifying whether the user prompt is relevant with respect to the system prompt, our guardrails effectively generalize to other misuse categories, including jailbreak and harmful prompts. Lastly, we further contribute to the field by open-sourcing both the synthetic dataset and the off-topic guardrail models, providing valuable resources for developing guardrails in pre-production environments and supporting future research and development in LLM safety. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12946v1-abstract-full').style.display = 'none'; document.getElementById('2411.12946v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68T50 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06099">arXiv:2411.06099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.06099">pdf</a>, <a href="https://arxiv.org/format/2411.06099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> </div> </div> <p class="title is-5 mathjax"> CoPrompter: User-Centric Evaluation of LLM Instruction Alignment for Improved Prompt Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Joshi%2C+I">Ishika Joshi</a>, <a href="/search/?searchtype=author&amp;query=Shahid%2C+S">Simra Shahid</a>, <a href="/search/?searchtype=author&amp;query=Venneti%2C+S">Shreeya Venneti</a>, <a href="/search/?searchtype=author&amp;query=Vasu%2C+M">Manushree Vasu</a>, <a href="/search/?searchtype=author&amp;query=Zheng%2C+Y">Yantao Zheng</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+Y">Yunyao Li</a>, <a href="/search/?searchtype=author&amp;query=Krishnamurthy%2C+B">Balaji Krishnamurthy</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+G+Y">Gromit Yeuk-Yin Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06099v1-abstract-short" style="display: inline;"> Ensuring large language models&#39; (LLMs) responses align with prompt instructions is crucial for application development. Based on our formative study with industry professionals, the alignment requires heavy human involvement and tedious trial-and-error especially when there are many instructions in the prompt. To address these challenges, we introduce CoPrompter, a framework that identifies misali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06099v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06099v1-abstract-full" style="display: none;"> Ensuring large language models&#39; (LLMs) responses align with prompt instructions is crucial for application development. Based on our formative study with industry professionals, the alignment requires heavy human involvement and tedious trial-and-error especially when there are many instructions in the prompt. To address these challenges, we introduce CoPrompter, a framework that identifies misalignment based on assessing multiple LLM responses with criteria. It proposes a method to generate evaluation criteria questions derived directly from prompt requirements and an interface to turn these questions into a user-editable checklist. Our user study with industry prompt engineers shows that CoPrompter improves the ability to identify and refine instruction alignment with prompt requirements over traditional methods, helps them understand where and how frequently models fail to follow user&#39;s prompt requirements, and helps in clarifying their own requirements, giving them greater control over the response evaluation process. We also present the design lessons to underscore our system&#39;s potential to streamline the prompt engineering process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06099v1-abstract-full').style.display = 'none'; document.getElementById('2411.06099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00248">arXiv:2411.00248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.00248">pdf</a>, <a href="https://arxiv.org/format/2411.00248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> A Demonstration of Adaptive Collaboration of Large Language Models for Medical Decision-Making </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kim%2C+Y">Yubin Kim</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+C">Chanwoo Park</a>, <a href="/search/?searchtype=author&amp;query=Jeong%2C+H">Hyewon Jeong</a>, <a href="/search/?searchtype=author&amp;query=Grau-Vilchez%2C+C">Cristina Grau-Vilchez</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+S">Yik Siu Chan</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+X">Xuhai Xu</a>, <a href="/search/?searchtype=author&amp;query=McDuff%2C+D">Daniel McDuff</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+H">Hyeonhoon Lee</a>, <a href="/search/?searchtype=author&amp;query=Breazeal%2C+C">Cynthia Breazeal</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+H+W">Hae Won Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00248v2-abstract-short" style="display: inline;"> Medical Decision-Making (MDM) is a multi-faceted process that requires clinicians to assess complex multi-modal patient data patient, often collaboratively. Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data. However, single-agent are often ill-suited for nuanced medical contexts requiring adaptable, collaborative prob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00248v2-abstract-full').style.display = 'inline'; document.getElementById('2411.00248v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00248v2-abstract-full" style="display: none;"> Medical Decision-Making (MDM) is a multi-faceted process that requires clinicians to assess complex multi-modal patient data patient, often collaboratively. Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data. However, single-agent are often ill-suited for nuanced medical contexts requiring adaptable, collaborative problem-solving. Our MDAgents addresses this need by dynamically assigning collaboration structures to LLMs based on task complexity, mimicking real-world clinical collaboration and decision-making. This framework improves diagnostic accuracy and supports adaptive responses in complex, real-world medical scenarios, making it a valuable tool for clinicians in various healthcare settings, and at the same time, being more efficient in terms of computing cost than static multi-agent decision making methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00248v2-abstract-full').style.display = 'none'; document.getElementById('2411.00248v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under Review for ML4H 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23872">arXiv:2410.23872</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23872">pdf</a>, <a href="https://arxiv.org/format/2410.23872">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pressure-dependent magnetotransport measurement in Kagome metal Yb$_{0.5}$Co_3Ge$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cheng%2C+Z">Zhiyuan Cheng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Yaojia Wang</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+H">Heng Wu</a>, <a href="/search/?searchtype=author&amp;query=Ali%2C+M+N">Mazhar N. Ali</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+J+Y">Julia Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharyya%2C+S">Semonti Bhattacharyya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23872v1-abstract-short" style="display: inline;"> Kagome materials are known to be an ideal platform that hosts a plethora of interesting phases such as topological states, electronic correlation, and magnetism, owing to their unique band structure and geometry. We report magnetotransport measurement in Kagome metal Yb$_{0.5}$Co_3Ge$_3$ as a function of pressure. Below $\sim25^\circ$ K the temperature dependence of resistance shows an upturn that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23872v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23872v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23872v1-abstract-full" style="display: none;"> Kagome materials are known to be an ideal platform that hosts a plethora of interesting phases such as topological states, electronic correlation, and magnetism, owing to their unique band structure and geometry. We report magnetotransport measurement in Kagome metal Yb$_{0.5}$Co_3Ge$_3$ as a function of pressure. Below $\sim25^\circ$ K the temperature dependence of resistance shows an upturn that is accompanied by a strong negative magnetoresistance, which could be attributed to Kondo effect. Upon pressurization above 1 GPa the resistance shows a reduction as a function of temperature below $4^\circ$ K, along with a further enhanced negative magnetoresistance. This might indicate an onset of a pressure-induced Kondo coherence effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23872v1-abstract-full').style.display = 'none'; document.getElementById('2410.23872v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16668">arXiv:2410.16668</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16668">pdf</a>, <a href="https://arxiv.org/format/2410.16668">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Satori: Towards Proactive AR Assistant with Belief-Desire-Intention User Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+C">Chenyi Li</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+G">Guande Wu</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+G+Y">Gromit Yeuk-Yin Chan</a>, <a href="/search/?searchtype=author&amp;query=Turakhia%2C+D+G">Dishita G Turakhia</a>, <a href="/search/?searchtype=author&amp;query=Quispe%2C+S+C">Sonia Castelo Quispe</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+D">Dong Li</a>, <a href="/search/?searchtype=author&amp;query=Welch%2C+L">Leslie Welch</a>, <a href="/search/?searchtype=author&amp;query=Silva%2C+C">Claudio Silva</a>, <a href="/search/?searchtype=author&amp;query=Qian%2C+J">Jing Qian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16668v2-abstract-short" style="display: inline;"> Augmented Reality assistance are increasingly popular for supporting users with tasks like assembly and cooking. However, current practice typically provide reactive responses initialized from user requests, lacking consideration of rich contextual and user-specific information. To address this limitation, we propose a novel AR assistance system, Satori, that models both user states and environmen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16668v2-abstract-full').style.display = 'inline'; document.getElementById('2410.16668v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16668v2-abstract-full" style="display: none;"> Augmented Reality assistance are increasingly popular for supporting users with tasks like assembly and cooking. However, current practice typically provide reactive responses initialized from user requests, lacking consideration of rich contextual and user-specific information. To address this limitation, we propose a novel AR assistance system, Satori, that models both user states and environmental contexts to deliver proactive guidance. Our system combines the Belief-Desire-Intention (BDI) model with a state-of-the-art multi-modal large language model (LLM) to infer contextually appropriate guidance. The design is informed by two formative studies involving twelve experts. A sixteen within-subject study find that Satori achieves performance comparable to an designer-created Wizard-of-Oz (WoZ) system without relying on manual configurations or heuristics, thereby enhancing generalizability, reusability and opening up new possibilities for AR assistance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16668v2-abstract-full').style.display = 'none'; document.getElementById('2410.16668v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13169">arXiv:2410.13169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13169">pdf</a>, <a href="https://arxiv.org/format/2410.13169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Deterministic Creation of Identical Monochromatic Quantum Emitters in Hexagonal Boron Nitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hua%2C+M">Muchuan Hua</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W">Wei-Ying Chen</a>, <a href="/search/?searchtype=author&amp;query=Hou%2C+H">Hanyu Hou</a>, <a href="/search/?searchtype=author&amp;query=Kolluru%2C+V+S+C">Venkata Surya Chaitanya Kolluru</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+M+K+Y">Maria K. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+H">HaiHua Liu</a>, <a href="/search/?searchtype=author&amp;query=Gage%2C+T+E">Thomas E. Gage</a>, <a href="/search/?searchtype=author&amp;query=Zuo%2C+J">Jian-Min Zuo</a>, <a href="/search/?searchtype=author&amp;query=Diroll%2C+B+T">Benjamin T. Diroll</a>, <a href="/search/?searchtype=author&amp;query=Wen%2C+J">Jianguo Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13169v1-abstract-short" style="display: inline;"> Deterministic creation of quantum emitters with high single-photon-purity and excellent indistinguishability is essential for practical applications in quantum information science. Many successful attempts have been carried out in hexagonal boron nitride showing its capability of hosting room temperature quantum emitters. However, most of the existing methods produce emitters with heterogeneous op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13169v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13169v1-abstract-full" style="display: none;"> Deterministic creation of quantum emitters with high single-photon-purity and excellent indistinguishability is essential for practical applications in quantum information science. Many successful attempts have been carried out in hexagonal boron nitride showing its capability of hosting room temperature quantum emitters. However, most of the existing methods produce emitters with heterogeneous optical properties and unclear creation mechanisms. Here, the authors report a deterministic creation of identical room temperature quantum emitters using masked-carbon-ion implantation on freestanding hBN flakes. Quantum emitters fabricated by our approach showed thermally limited monochromaticity with an emission center wavelength distribution of 590.7 +- 2.7 nm, a narrow full width half maximum of 7.1 +- 1.7 nm, excellent brightness (1MHz emission rate), and extraordinary stability. Our method provides a reliable platform for characterization and fabrication research on hBN based quantum emitters, helping to reveal the origins of the single-photon-emission behavior in hBN and favoring practical applications, especially the industrial-scale production of quantum technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13169v1-abstract-full').style.display = 'none'; document.getElementById('2410.13169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 5 figures, research article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05471">arXiv:2410.05471</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05471">pdf</a>, <a href="https://arxiv.org/format/2410.05471">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Software">cs.MS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Geometry">math.AG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Exact sensitivity analysis of Markov reward processes via algebraic geometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+T+C+Y">Timothy C. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Maaz%2C+M">Muhammad Maaz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05471v1-abstract-short" style="display: inline;"> We introduce a new approach for deterministic sensitivity analysis of Markov reward processes, commonly used in cost-effectiveness analyses, via reformulation into a polynomial system. Our approach leverages cylindrical algebraic decomposition (CAD), a technique arising from algebraic geometry that provides an exact description of all solutions to a polynomial system. While it is typically intract&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05471v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05471v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05471v1-abstract-full" style="display: none;"> We introduce a new approach for deterministic sensitivity analysis of Markov reward processes, commonly used in cost-effectiveness analyses, via reformulation into a polynomial system. Our approach leverages cylindrical algebraic decomposition (CAD), a technique arising from algebraic geometry that provides an exact description of all solutions to a polynomial system. While it is typically intractable to build a CAD for systems with more than a few variables, we show that a special class of polynomial systems, which includes the polynomials arising from Markov reward processes, can be analyzed much more tractably. We establish several theoretical results about such systems and develop a specialized algorithm to construct their CAD, which allows us to perform exact, multi-way sensitivity analysis for common health economic analyses. We develop an open-source software package that implements our algorithm. Finally, we apply it to two case studies, one with synthetic data and one that re-analyzes a previous cost-effectiveness analysis from the literature, demonstrating advantages of our approach over standard techniques. Our software and code are available at: \url{https://github.com/mmaaz-git/markovag}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05471v1-abstract-full').style.display = 'none'; document.getElementById('2410.05471v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03995">arXiv:2410.03995</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03995">pdf</a>, <a href="https://arxiv.org/format/2410.03995">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Final Results of the MAJORANA DEMONSTRATOR&#39;s Search for Double-Beta Decay of $^{76}$Ge to Excited States of $^{76}$Se </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+-">Y. -D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Chapman%2C+J+R">J. R. Chapman</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fuad%2C+N">N. Fuad</a>, <a href="/search/?searchtype=author&amp;query=Giovanetti%2C+G+K">G. K. Giovanetti</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Gruszko%2C+J">J. Gruszko</a>, <a href="/search/?searchtype=author&amp;query=Guinn%2C+I+S">I. S. Guinn</a>, <a href="/search/?searchtype=author&amp;query=Guiseppe%2C+V+E">V. E. Guiseppe</a>, <a href="/search/?searchtype=author&amp;query=Haufe%2C+C+R">C. R. Haufe</a>, <a href="/search/?searchtype=author&amp;query=Henning%2C+R">R. Henning</a>, <a href="/search/?searchtype=author&amp;query=Aguilar%2C+D+H">D. Hervas Aguilar</a>, <a href="/search/?searchtype=author&amp;query=Hoppe%2C+E+W">E. W. Hoppe</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03995v2-abstract-short" style="display: inline;"> $^{76}$Ge can $尾尾$ decay into three possible excited states of $^{76}$Se, with the emission of two or, if the neutrino is Majorana, zero neutrinos. None of these six transitions have yet been observed. The MAJORANA DEMONSTRATOR was designed to study $尾尾$ decay of $^{76}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03995v2-abstract-full').style.display = 'inline'; document.getElementById('2410.03995v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03995v2-abstract-full" style="display: none;"> $^{76}$Ge can $尾尾$ decay into three possible excited states of $^{76}$Se, with the emission of two or, if the neutrino is Majorana, zero neutrinos. None of these six transitions have yet been observed. The MAJORANA DEMONSTRATOR was designed to study $尾尾$ decay of $^{76}$Ge using a low background array of high purity germanium detectors. With 98.2 kg-y of isotopic exposure, the DEMONSTRATOR sets the strongest half-life limits to date for all six transition modes. For $2谓尾尾$ to the $0^+_1$ state of $^{76}$Se, this search has begun to probe for the first time half-life values predicted using modern many-body nuclear theory techniques, setting a limit of $T_{1/2}&gt;1.5\times10^{24}$ y (90% CL). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03995v2-abstract-full').style.display = 'none'; document.getElementById('2410.03995v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02535">arXiv:2410.02535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02535">pdf</a>, <a href="https://arxiv.org/format/2410.02535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> The Origin of Enhanced Conductivity and Structure Change in Defective Li4Ti5O12 or Blue-LTO : a study combined theoretical and experimental perspectives </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yute Chan</a>, <a href="/search/?searchtype=author&amp;query=Grosu%2C+C">Cristina Grosu</a>, <a href="/search/?searchtype=author&amp;query=Kick%2C+M">Matthias Kick</a>, <a href="/search/?searchtype=author&amp;query=Jakes%2C+P">Peter Jakes</a>, <a href="/search/?searchtype=author&amp;query=Seidlmayer%2C+S">Stefan Seidlmayer</a>, <a href="/search/?searchtype=author&amp;query=Gigl%2C+T">Thomas Gigl</a>, <a href="/search/?searchtype=author&amp;query=Egger%2C+W">Werner Egger</a>, <a href="/search/?searchtype=author&amp;query=Eichel%2C+R">Ruediger-A. Eichel</a>, <a href="/search/?searchtype=author&amp;query=Granwehr%2C+J">Josef Granwehr</a>, <a href="/search/?searchtype=author&amp;query=Hugenschmidt%2C+C">Christoph Hugenschmidt</a>, <a href="/search/?searchtype=author&amp;query=Scheurer%2C+C">Christoph Scheurer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02535v1-abstract-short" style="display: inline;"> The spinel Li4Ti5O12 (LTO) has emerged as a promising anode material for the next generation of all-solid-state Li-ion batteries (ASSB), primarily due to its characteristic &#34;zero strain&#34; charge/discharge behavior and exceptional cycling stability, which significantly prolongs battery lifespan. Pristine LTO, however, is hindered by poor ionic and electronic conductivity. By employing tailored sinte&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02535v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02535v1-abstract-full" style="display: none;"> The spinel Li4Ti5O12 (LTO) has emerged as a promising anode material for the next generation of all-solid-state Li-ion batteries (ASSB), primarily due to its characteristic &#34;zero strain&#34; charge/discharge behavior and exceptional cycling stability, which significantly prolongs battery lifespan. Pristine LTO, however, is hindered by poor ionic and electronic conductivity. By employing tailored sintering protocols that create oxygen vacancies, a high-performing, blue LTO material is achieved. It has been proposed that the increased electronic conductivity could stem from vacancy-induced polarons. Yet, detailed insights into polaron stability, distribution, and dynamics within both the LTO bulk and surface have remained elusive due to limited information on structural changes. Utilizing Positron Annihilation Lifetime Spectroscopy (PALS) and Coincidence Doppler Broadening Spectroscopy (CDBS), in conjunction with Two Component Density Functional Theory (TCDFT) with the on-site Hubbard U correction, enables us to probe the depth profile of defect species introduced by sintering in a reductive environment. Our research provides direct evidence of oxygen vacancy formation within the subsurface region, an inference drawn from the observation of \ch{Ti^{3+}}. Our investigation into Li16d vacancy formation within the bulk region uncovers the interactions between mobile species, namely Li-ions and polarons. Furthermore, we delve into the polaron stability on the LTO surface, offering an explanation for the superior performance of the (100) facet exposed LTO nanoparticle, as compared to its (111) exposed counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02535v1-abstract-full').style.display = 'none'; document.getElementById('2410.02535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19759">arXiv:2409.19759</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19759">pdf</a>, <a href="https://arxiv.org/format/2409.19759">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Balancing Cost and Effectiveness of Synthetic Data Generation Strategies for LLMs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yung-Chieh Chan</a>, <a href="/search/?searchtype=author&amp;query=Pu%2C+G">George Pu</a>, <a href="/search/?searchtype=author&amp;query=Shanker%2C+A">Apaar Shanker</a>, <a href="/search/?searchtype=author&amp;query=Suresh%2C+P">Parth Suresh</a>, <a href="/search/?searchtype=author&amp;query=Jenks%2C+P">Penn Jenks</a>, <a href="/search/?searchtype=author&amp;query=Heyer%2C+J">John Heyer</a>, <a href="/search/?searchtype=author&amp;query=Denton%2C+S">Sam Denton</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19759v3-abstract-short" style="display: inline;"> As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid da&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19759v3-abstract-full').style.display = 'inline'; document.getElementById('2409.19759v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19759v3-abstract-full" style="display: none;"> As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid data, but the effectiveness of these approaches remain unclear, especially in resource-constrained scenarios and tasks that are not easily verified. To investigate this, we group various synthetic data generation strategies into three representative categories -- Answer Augmentation, Question Rephrase and New Question -- and study the performance of student LLMs trained under various constraints, namely seed instruction set size and query budget. We demonstrate that these strategies are not equally effective across settings. Notably, the optimal data generation strategy depends strongly on the ratio between the available teacher query budget and the size of the seed instruction set. When this ratio is low, generating new answers to existing questions proves most effective, but as this ratio increases, generating new questions becomes optimal. Across all tasks, we find that choice of augmentation method and other design choices matter substantially more in low to mid data regimes than in high data regimes. We provide a practical framework for selecting the appropriate augmentation method across settings, taking into account additional factors such as the scalability of each method, the importance of verifying synthetic data, and the use of different LLMs for synthetic data generation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19759v3-abstract-full').style.display = 'none'; document.getElementById('2409.19759v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS &#39;24 Workshop on Fine-Tuning in Modern Machine Learning: Principles and Scalability</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15109">arXiv:2409.15109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15109">pdf</a>, <a href="https://arxiv.org/format/2409.15109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> End-User-Centric Collaborative MIMO: Performance Analysis and Proof of Concept </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wen%2C+C">Chao-Kai Wen</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yen-Cheng Chan</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+T">Tzu-Hao Huang</a>, <a href="/search/?searchtype=author&amp;query=Zeng%2C+H">Hao-Jun Zeng</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+F">Fu-Kang Wang</a>, <a href="/search/?searchtype=author&amp;query=Tsai%2C+L">Lung-Sheng Tsai</a>, <a href="/search/?searchtype=author&amp;query=Liao%2C+P">Pei-Kai Liao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15109v2-abstract-short" style="display: inline;"> The trend toward using increasingly large arrays of antenna elements continues. However, fitting more antennas into the limited space available on user equipment (UE) within the currently popular Frequency Range 1 spectrum presents a significant challenge. This limitation constrains the capacity-scaling gains for end users, even when networks support a higher number of antennas. To address this is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15109v2-abstract-full').style.display = 'inline'; document.getElementById('2409.15109v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15109v2-abstract-full" style="display: none;"> The trend toward using increasingly large arrays of antenna elements continues. However, fitting more antennas into the limited space available on user equipment (UE) within the currently popular Frequency Range 1 spectrum presents a significant challenge. This limitation constrains the capacity-scaling gains for end users, even when networks support a higher number of antennas. To address this issue, we explore a user-centric collaborative MIMO approach, termed UE-CoMIMO, which leverages several fixed or portable devices within a personal area to form a virtually expanded antenna array. This paper develops a comprehensive mathematical framework to analyze the performance of UE-CoMIMO. Our analytical results demonstrate that UE-CoMIMO can significantly enhance the system&#39;s effective channel response within the current communication system without requiring extensive modifications. Further performance improvements can be achieved by optimizing the phase shifters on the expanded antenna arrays at the collaborative devices. These findings are corroborated by ray-tracing simulations. Beyond the simulations, we implemented these collaborative devices and successfully conducted over-the-air validation in a real 5G environment, showcasing the practical potential of UE-CoMIMO. Several practical perspectives are discussed, highlighting the feasibility and benefits of this approach in real-world scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15109v2-abstract-full').style.display = 'none'; document.getElementById('2409.15109v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, this work has been submitted to IEEE for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08068">arXiv:2409.08068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08068">pdf</a>, <a href="https://arxiv.org/format/2409.08068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> AutoPET Challenge: Tumour Synthesis for Data Augmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+L+Y+L">Lap Yan Lennon Chan</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+C">Chenxin Li</a>, <a href="/search/?searchtype=author&amp;query=Yuan%2C+Y">Yixuan Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08068v1-abstract-short" style="display: inline;"> Accurate lesion segmentation in whole-body PET/CT scans is crucial for cancer diagnosis and treatment planning, but limited datasets often hinder the performance of automated segmentation models. In this paper, we explore the potential of leveraging the deep prior from a generative model to serve as a data augmenter for automated lesion segmentation in PET/CT scans. We adapt the DiffTumor method,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08068v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08068v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08068v1-abstract-full" style="display: none;"> Accurate lesion segmentation in whole-body PET/CT scans is crucial for cancer diagnosis and treatment planning, but limited datasets often hinder the performance of automated segmentation models. In this paper, we explore the potential of leveraging the deep prior from a generative model to serve as a data augmenter for automated lesion segmentation in PET/CT scans. We adapt the DiffTumor method, originally designed for CT images, to generate synthetic PET-CT images with lesions. Our approach trains the generative model on the AutoPET dataset and uses it to expand the training data. We then compare the performance of segmentation models trained on the original and augmented datasets. Our findings show that the model trained on the augmented dataset achieves a higher Dice score, demonstrating the potential of our data augmentation approach. In a nutshell, this work presents a promising direction for improving lesion segmentation in whole-body PET/CT scans with limited datasets, potentially enhancing the accuracy and reliability of cancer diagnostics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08068v1-abstract-full').style.display = 'none'; document.getElementById('2409.08068v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.05424">arXiv:2409.05424</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.05424">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Origin of nonlinear photocurrents in chiral multifold semimetal CoSi unveiled by terahertz emission spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yao-Jui Chan</a>, <a href="/search/?searchtype=author&amp;query=Faizanuddin%2C+S+M">Syed Mohammed Faizanuddin</a>, <a href="/search/?searchtype=author&amp;query=Kalaivanan%2C+R">Raju Kalaivanan</a>, <a href="/search/?searchtype=author&amp;query=Raman%2C+S">Sankar Raman</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H">Hsin Lin</a>, <a href="/search/?searchtype=author&amp;query=Kar%2C+U">Uddipta Kar</a>, <a href="/search/?searchtype=author&amp;query=Singh%2C+A+K">Akhilesh Kr. Singh</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+W">Wei-Li Lee</a>, <a href="/search/?searchtype=author&amp;query=Vankayala%2C+R+K">Ranganayakulu K. Vankayala</a>, <a href="/search/?searchtype=author&amp;query=Ou%2C+M">Min-Nan Ou</a>, <a href="/search/?searchtype=author&amp;query=Wen%2C+Y">Yu-Chieh Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.05424v2-abstract-short" style="display: inline;"> Spectroscopic identification of distinct nonlinear photocurrents unveils quantum geometric properties of electron wavefunctions and the momentum-space topological structures. This is especially interesting, but still puzzling, for chiral topological semimetals with possibilities of hosting giant quantized circular photogalvanic effect. Here we report a comprehensive terahertz (THz) emission spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05424v2-abstract-full').style.display = 'inline'; document.getElementById('2409.05424v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.05424v2-abstract-full" style="display: none;"> Spectroscopic identification of distinct nonlinear photocurrents unveils quantum geometric properties of electron wavefunctions and the momentum-space topological structures. This is especially interesting, but still puzzling, for chiral topological semimetals with possibilities of hosting giant quantized circular photogalvanic effect. Here we report a comprehensive terahertz (THz) emission spectroscopic analysis of nonlinear photoconductivity of chiral multifold CoSi at 0.26 ~ 1 eV. We find a large linear shift conductivity (17 渭A/V2), and confirm a giant injection conductivity (167 渭A/V2) as a consequence of strongly interfered non-quantized contributions from the vicinity of multifold nodes with opposite chiralities. The bulk injection current excited by the pump field with a complex wavevector is shown to carry both longitudinal and transverse components. Symmetry analyses further unveil weak nonlocal photon drag effect in addition to the photogalvanic effect. This work not only highlights chiral transition metal monosilicides for mid-infrared photovoltaic applications via various nonlinear optical channels, but also consolidates the THz spectroscopy for quantitative photovoltaic research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.05424v2-abstract-full').style.display = 'none'; document.getElementById('2409.05424v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15957">arXiv:2408.15957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15957">pdf</a>, <a href="https://arxiv.org/format/2408.15957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin Excitation Continuum in the Exactly Solvable Triangular-Lattice Spin Liquid CeMgAl11O19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gao%2C+B">Bin Gao</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+T">Tong Chen</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+C">Chunxiao Liu</a>, <a href="/search/?searchtype=author&amp;query=Klemm%2C+M+L">Mason L. Klemm</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/?searchtype=author&amp;query=Ma%2C+Z">Zhen Ma</a>, <a href="/search/?searchtype=author&amp;query=Xu%2C+X">Xianghan Xu</a>, <a href="/search/?searchtype=author&amp;query=Won%2C+C">Choongjae Won</a>, <a href="/search/?searchtype=author&amp;query=McCandless%2C+G+T">Gregory T. McCandless</a>, <a href="/search/?searchtype=author&amp;query=Murai%2C+N">Naoki Murai</a>, <a href="/search/?searchtype=author&amp;query=Ohira-Kawamura%2C+S">Seiko Ohira-Kawamura</a>, <a href="/search/?searchtype=author&amp;query=Moxim%2C+S+J">Stephen J. Moxim</a>, <a href="/search/?searchtype=author&amp;query=Ryan%2C+J+T">Jason T. Ryan</a>, <a href="/search/?searchtype=author&amp;query=Huang%2C+X">Xiaozhou Huang</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+J+Y">Julia Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Cheong%2C+S">Sang-Wook Cheong</a>, <a href="/search/?searchtype=author&amp;query=Tchernyshyov%2C+O">Oleg Tchernyshyov</a>, <a href="/search/?searchtype=author&amp;query=Balents%2C+L">Leon Balents</a>, <a href="/search/?searchtype=author&amp;query=Dai%2C+P">Pengcheng Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15957v1-abstract-short" style="display: inline;"> In magnetically ordered insulators, elementary quasiparticles manifest as spin waves - collective motions of localized magnetic moments propagating through the lattice - observed via inelastic neutron scattering. In effective spin-1/2 systems where geometric frustrations suppress static magnetic order, spin excitation continua can emerge, either from degenerate classical spin ground states or from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15957v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15957v1-abstract-full" style="display: none;"> In magnetically ordered insulators, elementary quasiparticles manifest as spin waves - collective motions of localized magnetic moments propagating through the lattice - observed via inelastic neutron scattering. In effective spin-1/2 systems where geometric frustrations suppress static magnetic order, spin excitation continua can emerge, either from degenerate classical spin ground states or from entangled quantum spins characterized by emergent gauge fields and deconfined fractionalized excitations. Comparing the spin Hamiltonian with theoretical models can unveil the microscopic origins of these zero-field spin excitation continua. Here, we use neutron scattering to study spin excitations of the two-dimensional (2D) triangular-lattice effective spin-1/2 antiferromagnet CeMgAl11O19. Analyzing the spin waves in the field-polarized ferromagnetic state, we find that the spin Hamiltonian is close to an exactly solvable 2D triangular-lattice XXZ model, where degenerate 120$^\circ$ ordered ground states - umbrella states - develop in the zero temperature limit. We then find that the observed zero-field spin excitation continuum matches the calculated ensemble of spin waves from the umbrella state manifold, and thus conclude that CeMgAl11O19 is the first example of an exactly solvable spin liquid on a triangular lattice where the spin excitation continuum arises from the ground state degeneracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15957v1-abstract-full').style.display = 'none'; document.getElementById('2408.15957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06786">arXiv:2408.06786</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06786">pdf</a>, <a href="https://arxiv.org/format/2408.06786">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> An assay-based background projection for the MAJORANA DEMONSTRATOR using Monte Carlo Uncertainty Propagation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Bhimani%2C+K+H">K. H. Bhimani</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bos%2C+B">B. Bos</a>, <a href="/search/?searchtype=author&amp;query=Busch%2C+M">M. Busch</a>, <a href="/search/?searchtype=author&amp;query=Caldwell%2C+T+S">T. S. Caldwell</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+-">Y. -D. Chan</a>, <a href="/search/?searchtype=author&amp;query=Christofferson%2C+C+D">C. D. Christofferson</a>, <a href="/search/?searchtype=author&amp;query=Chu%2C+P+-">P. -H. Chu</a>, <a href="/search/?searchtype=author&amp;query=Clark%2C+M+L">M. L. Clark</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yu. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Ejiri%2C+H">H. Ejiri</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fuad%2C+N">N. Fuad</a>, <a href="/search/?searchtype=author&amp;query=Giovanetti%2C+G+K">G. K. Giovanetti</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Gruszko%2C+J">J. Gruszko</a>, <a href="/search/?searchtype=author&amp;query=Guinn%2C+I+S">I. S. Guinn</a>, <a href="/search/?searchtype=author&amp;query=Guiseppe%2C+V+E">V. E. Guiseppe</a>, <a href="/search/?searchtype=author&amp;query=Haufe%2C+C+R">C. R. Haufe</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06786v1-abstract-short" style="display: inline;"> The background index is an important quantity which is used in projecting and calculating the half-life sensitivity of neutrinoless double-beta decay ($0谓尾尾$) experiments. A novel analysis framework is presented to calculate the background index using the specific activities, masses and simulated efficiencies of an experiment&#39;s components as distributions. This Bayesian framework includes a unifie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06786v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06786v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06786v1-abstract-full" style="display: none;"> The background index is an important quantity which is used in projecting and calculating the half-life sensitivity of neutrinoless double-beta decay ($0谓尾尾$) experiments. A novel analysis framework is presented to calculate the background index using the specific activities, masses and simulated efficiencies of an experiment&#39;s components as distributions. This Bayesian framework includes a unified approach to combine specific activities from assay. Monte Carlo uncertainty propagation is used to build a background index distribution from the specific activity, mass and efficiency distributions. This analysis method is applied to the MAJORANA DEMONSTRATOR, which deployed arrays of high-purity Ge detectors enriched in $^{76}$Ge to search for $0谓尾尾$. The framework projects a mean background index of $\left[8.95 \pm 0.36\right] \times 10^{-4}$cts/(keV kg yr) from $^{232}$Th and $^{238}$U in the DEMONSTRATOR&#39;s components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06786v1-abstract-full').style.display = 'none'; document.getElementById('2408.06786v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06634">arXiv:2408.06634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06634">pdf</a>, <a href="https://arxiv.org/format/2408.06634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Finance">q-fin.CP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Finance">q-fin.ST</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/DOCS63458.2024.10704454">10.1109/DOCS63458.2024.10704454 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ni%2C+H">Haowei Ni</a>, <a href="/search/?searchtype=author&amp;query=Meng%2C+S">Shuchen Meng</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+X">Xupeng Chen</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+Z">Ziqing Zhao</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+A">Andi Chen</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+P">Panfeng Li</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+S">Shiyao Zhang</a>, <a href="/search/?searchtype=author&amp;query=Yin%2C+Q">Qifu Yin</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+Y">Yuanqing Wang</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yuxi Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06634v2-abstract-short" style="display: inline;"> Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06634v2-abstract-full').style.display = 'inline'; document.getElementById('2408.06634v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06634v2-abstract-full" style="display: none;"> Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates &#39;base factors&#39;, such as financial metric growth and earnings transcripts, with &#39;external factors&#39;, including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a &#39;Hold&#39; option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06634v2-abstract-full').style.display = 'none'; document.getElementById('2408.06634v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by 2024 6th International Conference on Data-driven Optimization of Complex Systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the 2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS), 2024, pp. 909-915 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21402">arXiv:2407.21402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.21402">pdf</a>, <a href="https://arxiv.org/format/2407.21402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DD-rPPGNet: De-interfering and Descriptive Feature Learning for Unsupervised rPPG Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Huang%2C+P">Pei-Kai Huang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+T">Tzu-Hsien Chen</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Ya-Ting Chan</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">Kuan-Wen Chen</a>, <a href="/search/?searchtype=author&amp;query=Hsu%2C+C">Chiou-Ting Hsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21402v1-abstract-short" style="display: inline;"> Remote Photoplethysmography (rPPG) aims to measure physiological signals and Heart Rate (HR) from facial videos. Recent unsupervised rPPG estimation methods have shown promising potential in estimating rPPG signals from facial regions without relying on ground truth rPPG signals. However, these methods seem oblivious to interference existing in rPPG signals and still result in unsatisfactory perfo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21402v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21402v1-abstract-full" style="display: none;"> Remote Photoplethysmography (rPPG) aims to measure physiological signals and Heart Rate (HR) from facial videos. Recent unsupervised rPPG estimation methods have shown promising potential in estimating rPPG signals from facial regions without relying on ground truth rPPG signals. However, these methods seem oblivious to interference existing in rPPG signals and still result in unsatisfactory performance. In this paper, we propose a novel De-interfered and Descriptive rPPG Estimation Network (DD-rPPGNet) to eliminate the interference within rPPG features for learning genuine rPPG signals. First, we investigate the characteristics of local spatial-temporal similarities of interference and design a novel unsupervised model to estimate the interference. Next, we propose an unsupervised de-interfered method to learn genuine rPPG signals with two stages. In the first stage, we estimate the initial rPPG signals by contrastive learning from both the training data and their augmented counterparts. In the second stage, we use the estimated interference features to derive de-interfered rPPG features and encourage the rPPG signals to be distinct from the interference. In addition, we propose an effective descriptive rPPG feature learning by developing a strong 3D Learnable Descriptive Convolution (3DLDC) to capture the subtle chrominance changes for enhancing rPPG estimation. Extensive experiments conducted on five rPPG benchmark datasets demonstrate that the proposed DD-rPPGNet outperforms previous unsupervised rPPG estimation methods and achieves competitive performances with state-of-the-art supervised rPPG methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21402v1-abstract-full').style.display = 'none'; document.getElementById('2407.21402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18915">arXiv:2407.18915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.18915">pdf</a>, <a href="https://arxiv.org/format/2407.18915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Learning-Based WiFi Fingerprint Inpainting via Generative Adversarial Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yu Chan</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+P">Pin-Yu Lin</a>, <a href="/search/?searchtype=author&amp;query=Tseng%2C+Y">Yu-Yun Tseng</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+J">Jen-Jee Chen</a>, <a href="/search/?searchtype=author&amp;query=Tseng%2C+Y">Yu-Chee Tseng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18915v1-abstract-short" style="display: inline;"> WiFi-based indoor positioning has been extensively studied. A fundamental issue in such solutions is the collection of WiFi fingerprints. However, due to real-world constraints, collecting complete fingerprints at all intended locations is sometimes prohibited. This work considers the WiFi fingerprint inpainting problem. This problem differs from typical image/video inpainting problems in several&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18915v1-abstract-full').style.display = 'inline'; document.getElementById('2407.18915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18915v1-abstract-full" style="display: none;"> WiFi-based indoor positioning has been extensively studied. A fundamental issue in such solutions is the collection of WiFi fingerprints. However, due to real-world constraints, collecting complete fingerprints at all intended locations is sometimes prohibited. This work considers the WiFi fingerprint inpainting problem. This problem differs from typical image/video inpainting problems in several aspects. Unlike RGB images, WiFi field maps come in any shape, and signal data may follow certain distributions. Therefore, it is difficult to forcefully fit them into a fixed-dimensional matrix, as done with processing images in RGB format. As soon as a map is changed, it also becomes difficult to adapt it to the same model due to scale issues. Furthermore, such models are significantly constrained in situations requiring outward inpainting. Fortunately, the spatial relationships of WiFi signals and the rich information provided among channels offer ample opportunities for this generative model to accomplish inpainting. Therefore, we designed this model to not only retain the characteristic of regression models in generating fingerprints of arbitrary shapes but also to accommodate the observational outcomes from densely deployed APs. This work makes two major contributions. Firstly, we delineate the distinctions between this problem and image inpainting, highlighting potential avenues for research. Secondly, we introduce novel generative inpainting models aimed at capturing both inter-AP and intra-AP correlations while preserving latent information. Additionally, we incorporate a specially designed adversarial discriminator to enhance the quality of inpainting outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18915v1-abstract-full').style.display = 'none'; document.getElementById('2407.18915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ICCCN2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13322">arXiv:2407.13322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13322">pdf</a>, <a href="https://arxiv.org/format/2407.13322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Huang%2C+P">Pei-Kai Huang</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+T">Tzu-Hsien Chen</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Ya-Ting Chan</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+K">Kuan-Wen Chen</a>, <a href="/search/?searchtype=author&amp;query=Hsu%2C+C">Chiou-Ting Hsu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13322v3-abstract-short" style="display: inline;"> Many remote photoplethysmography (rPPG) estimation models have achieved promising performance in the training domain but often fail to accurately estimate physiological signals or heart rates (HR) in the target domains. Domain generalization (DG) or domain adaptation (DA) techniques are therefore adopted during the offline training stage to adapt the model to either unobserved or observed target d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13322v3-abstract-full').style.display = 'inline'; document.getElementById('2407.13322v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13322v3-abstract-full" style="display: none;"> Many remote photoplethysmography (rPPG) estimation models have achieved promising performance in the training domain but often fail to accurately estimate physiological signals or heart rates (HR) in the target domains. Domain generalization (DG) or domain adaptation (DA) techniques are therefore adopted during the offline training stage to adapt the model to either unobserved or observed target domains by utilizing all available source domain data. However, in rPPG estimation problems, the adapted model usually encounters challenges in estimating target data with significant domain variation. In contrast, Test-Time Adaptation (TTA) enables the model to adaptively estimate rPPG signals in various unseen domains by online adapting to unlabeled target data without referring to any source data. In this paper, we first establish a new TTA-rPPG benchmark that encompasses various domain information and HR distributions to simulate the challenges encountered in real-world rPPG estimation. Next, we propose a novel synthetic signal-guided rPPG estimation framework to address the forgetting issue during the TTA stage and to enhance the adaptation capability of the pre-trained rPPG model. To this end, we develop a synthetic signal-guided feature learning method by synthesizing pseudo rPPG signals as pseudo ground truths to guide a conditional generator in generating latent rPPG features. In addition, we design an effective spectral-based entropy minimization technique to encourage the rPPG model to learn new target domain information. Both the generated rPPG features and synthesized rPPG signals prevent the rPPG model from overfitting to target data and forgetting previously acquired knowledge, while also broadly covering various heart rate (HR) distributions. Our extensive experiments on the TTA-rPPG benchmark show that the proposed method achieves superior performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13322v3-abstract-full').style.display = 'none'; document.getElementById('2407.13322v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10777">arXiv:2407.10777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.10777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Exploring the Factors of &#34;AI Guilt&#34; Among Students -- Are You Guilty of Using AI in Your Homework? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+C+K+Y">Cecilia Ka Yuk Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10777v1-abstract-short" style="display: inline;"> This study explores the phenomenon of &#34;AI guilt&#34; among secondary school students, a form of moral discomfort arising from the use of AI tools in academic tasks traditionally performed by humans. Through qualitative methodologies, the research examines the factors contributing to AI guilt, its social and psychological impacts, and its implications for educational practices. The findings revealed th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10777v1-abstract-full').style.display = 'inline'; document.getElementById('2407.10777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10777v1-abstract-full" style="display: none;"> This study explores the phenomenon of &#34;AI guilt&#34; among secondary school students, a form of moral discomfort arising from the use of AI tools in academic tasks traditionally performed by humans. Through qualitative methodologies, the research examines the factors contributing to AI guilt, its social and psychological impacts, and its implications for educational practices. The findings revealed three main dimensions for AI guilt - perceived laziness and authenticity, fear of judgment, and identity and self-efficacy concerns. The findings suggest a need to redefine academic integrity and shift our mindset to reconsider what we should value in education. The study also emphasizes the importance of ethical guidelines and educational support and provides implications to help students navigate the complexities of AI in education, reducing feelings of guilt while enhancing learning outcomes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10777v1-abstract-full').style.display = 'none'; document.getElementById('2407.10777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08912">arXiv:2407.08912</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08912">pdf</a>, <a href="https://arxiv.org/format/2407.08912">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Design and characterization of a 60-cm reflective half-wave plate for the CLASS 90 GHz band telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shi%2C+R">Rui Shi</a>, <a href="/search/?searchtype=author&amp;query=Brewer%2C+M+K">Michael K. Brewer</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+C+Y+Y">Carol Yan Yan Chan</a>, <a href="/search/?searchtype=author&amp;query=Chuss%2C+D+T">David T. Chuss</a>, <a href="/search/?searchtype=author&amp;query=Couto%2C+J+D">Jullianna Denes Couto</a>, <a href="/search/?searchtype=author&amp;query=Eimer%2C+J+R">Joseph R. Eimer</a>, <a href="/search/?searchtype=author&amp;query=Karakla%2C+J">John Karakla</a>, <a href="/search/?searchtype=author&amp;query=Shukawa%2C+K">Koji Shukawa</a>, <a href="/search/?searchtype=author&amp;query=Valle%2C+D+A+N">Deniz A. N. Valle</a>, <a href="/search/?searchtype=author&amp;query=Appel%2C+J+W">John W. Appel</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+C+L">Charles L. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Dahal%2C+S">Sumit Dahal</a>, <a href="/search/?searchtype=author&amp;query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/?searchtype=author&amp;query=Petroff%2C+M+A">Matthew A. Petroff</a>, <a href="/search/?searchtype=author&amp;query=Rostem%2C+K">Karwan Rostem</a>, <a href="/search/?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08912v1-abstract-short" style="display: inline;"> Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08912v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08912v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08912v1-abstract-full" style="display: none;"> Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter $50~\mathrm{渭m}$, $175~\mathrm{渭m}$ pitch) positioned $0.88~\mathrm{mm}$ from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($f_\mathrm{res}$) profile is consistent with the target, $139~\mathrm{Hz}&lt;f_\mathrm{res}&lt;154~\mathrm{Hz}$ in the optically active region (diameter smaller than $150~\mathrm{mm}$), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $&lt;15&#39;&#39;$, corresponding to an increase in beam width due to beam smearing of $&lt;0.6&#39;&#39;$, negligible compared to the beam&#39;s full-width half-maximum of $36&#39;$. The median and 16/84th percentile of the wire--mirror separation residual was $0.048^{+0.013}_{-0.014}~\mathrm{mm}$ in the optically active region, achieving a modulation efficiency $蔚=96.2_{+0.5}^{-0.4}\%$ with an estimated bandpass of 34 GHz. The angular velocity of the RHWP was maintained to an accuracy of within $0.005\%$ at the nominal rotation frequency ($2.5~\mathrm{Hz}$). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08912v1-abstract-full').style.display = 'none'; document.getElementById('2407.08912v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, 1 table, to appear in Proc. SPIE Astronomical Telescopes and Instrumentation 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06614">arXiv:2407.06614</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06614">pdf</a>, <a href="https://arxiv.org/format/2407.06614">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Implicit Regression in Subspace for High-Sensitivity CEST Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chen%2C+C">Chu Chen</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/?searchtype=author&amp;query=Park%2C+S+W">Se Weon Park</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jizhou Li</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+K+W+Y">Kannie W. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+R+H+F">Raymond H. F. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06614v1-abstract-short" style="display: inline;"> Chemical Exchange Saturation Transfer (CEST) MRI demonstrates its capability in significantly enhancing the detection of proteins and metabolites with low concentrations through exchangeable protons. The clinical application of CEST, however, is constrained by its low contrast and low signal-to-noise ratio (SNR) in the acquired data. Denoising, as one of the post-processing stages for CEST data, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06614v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06614v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06614v1-abstract-full" style="display: none;"> Chemical Exchange Saturation Transfer (CEST) MRI demonstrates its capability in significantly enhancing the detection of proteins and metabolites with low concentrations through exchangeable protons. The clinical application of CEST, however, is constrained by its low contrast and low signal-to-noise ratio (SNR) in the acquired data. Denoising, as one of the post-processing stages for CEST data, can effectively improve the accuracy of CEST quantification. In this work, by modeling spatial variant z-spectrums into low-dimensional subspace, we introduce Implicit Regression in Subspace (IRIS), which is an unsupervised denoising algorithm utilizing the excellent property of implicit neural representation for continuous mapping. Experiments conducted on both synthetic and in-vivo data demonstrate that our proposed method surpasses other CEST denoising methods regarding both qualitative and quantitative performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06614v1-abstract-full').style.display = 'none'; document.getElementById('2407.06614v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03416">arXiv:2407.03416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03416">pdf</a>, <a href="https://arxiv.org/format/2407.03416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Global aspects of $3$-form gauge theory: implications for axion-Yang-Mills systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anber%2C+M+M">Mohamed M. Anber</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+S+Y+L">Samson Y. L. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03416v2-abstract-short" style="display: inline;"> We investigate the proposition that axion-Yang-Mills systems are characterized by a $3$-form gauge theory in the deep infrared regime. This hypothesis is rigorously examined by initially developing a systematic framework for analyzing $3$-form gauge theory coupled to an axion, specifically focusing on its global properties. The theory consists of a BF term deformed by marginal and irrelevant opera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03416v2-abstract-full').style.display = 'inline'; document.getElementById('2407.03416v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03416v2-abstract-full" style="display: none;"> We investigate the proposition that axion-Yang-Mills systems are characterized by a $3$-form gauge theory in the deep infrared regime. This hypothesis is rigorously examined by initially developing a systematic framework for analyzing $3$-form gauge theory coupled to an axion, specifically focusing on its global properties. The theory consists of a BF term deformed by marginal and irrelevant operators and describes a network of vacua separated by domain walls converging at the junction of an axion string. It encompasses $0$- and $3$-form spontaneously broken global symmetries. Utilizing this framework, in conjunction with effective field theory techniques and &#39;t Hooft anomaly-matching conditions, we argue that the $3$-form gauge theory faithfully captures the infrared physics of the axion-Yang-Mills system. The ultraviolet theory is an $SU(N)$ Yang-Mills theory endowed with a massless Dirac fermion coupled to a complex scalar and is characterized by chiral and genuine $\mathbb{Z}_m^{(1)}$ $1$-form center symmetries, with a mixed anomaly between them. It features two scales: the vev of the complex scalar, $v$, and the strong-coupling scale, $螞$, with $螞\ll v$. Below $v$, the fermion decouples and a $U(1)^{(2)}$ $2$-form winding symmetry emerge, while the $1$-form symmetry is enhanced to $\mathbb Z_N^{(1)}$. As we flow below $螞$, matching the mixed anomaly necessitates introducing a dynamical $3$-form gauge field of $U(1)^{(2)}$, which appears as the incarnation of a long-range tail of the color field. The infrared theory possesses spontaneously broken chiral and emergent $3$-form global symmetries. It passes several checks, among which: it displays the expected restructuring in the hadronic sector upon transition between the vacua, and it is consistent under the gauging of the genuine $\mathbb Z_m^{(1)}\subset \mathbb Z_N^{(1)}$ symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03416v2-abstract-full').style.display = 'none'; document.getElementById('2407.03416v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 1 figure; corrections made regarding the fate of the (-1)-form symmetry, a minor modification is made regarding the gauging of the 3-form symmetry; matches the published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03069">arXiv:2407.03069</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03069">pdf</a>, <a href="https://arxiv.org/format/2407.03069">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Frequency-selective terahertz wave amplification by a time-boundary-engineered Huygens metasurface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Deng%2C+F">Fu Deng</a>, <a href="/search/?searchtype=author&amp;query=Zhu%2C+F">Fengjie Zhu</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+X">Xiaoyue Zhou</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yi Chan</a>, <a href="/search/?searchtype=author&amp;query=Wu%2C+J">Jingbo Wu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+C">Caihong Zhang</a>, <a href="/search/?searchtype=author&amp;query=Jin%2C+B">Biaobing Jin</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+J">Jensen Li</a>, <a href="/search/?searchtype=author&amp;query=Fan%2C+K">Kebin Fan</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J">Jingdi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03069v1-abstract-short" style="display: inline;"> Ultrafast manipulation of optical resonance can establish the time-boundary effect in time-variant media leading to a new degree of freedom for coherent control of electromagnetic waves. Here, we demonstrate that a free-standing all dielectric Huygens metasurface of degenerate electric and magnetic resonances can prompt the broadband near-unity transmission in its static state, whereas it enables&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03069v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03069v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03069v1-abstract-full" style="display: none;"> Ultrafast manipulation of optical resonance can establish the time-boundary effect in time-variant media leading to a new degree of freedom for coherent control of electromagnetic waves. Here, we demonstrate that a free-standing all dielectric Huygens metasurface of degenerate electric and magnetic resonances can prompt the broadband near-unity transmission in its static state, whereas it enables wave amplification in the presence of time boundary. The time boundary is realized by femtosecond laser excitations that transiently inject free carriers into the constituent meta-atoms for dynamic removal of a pre-established two-fold degeneracy. We observe that the transmittance in the photo-excited Huygens metasurface can exceed unity transmittance, i.e., THz wave amplification, by a factor over 20% in intensity at frequencies tunable by varying the arrival of time boundary with respect to that of the seed terahertz pulse. By numerical simulations and analysis with time-dependent coupled mode theory, we show that the wave amplification results from the ultrafast Q-switching and shift in resonant frequencies. This work demonstrates a new approach to achieve tunable amplification in an optical microcavity by exploiting the concept of time-variant media and the unique electromagnetic properties of Huygens metasurface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03069v1-abstract-full').style.display = 'none'; document.getElementById('2407.03069v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.16663">arXiv:2406.16663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.16663">pdf</a>, <a href="https://arxiv.org/format/2406.16663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Light-induced percolative topological phase transition in type-II Weyl semimetal WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhou%2C+X">Xiaoyue Zhou</a>, <a href="/search/?searchtype=author&amp;query=Deng%2C+F">Fu Deng</a>, <a href="/search/?searchtype=author&amp;query=Gao%2C+Y">Yifan Gao</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yi Chan</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shulei Li</a>, <a href="/search/?searchtype=author&amp;query=Wang%2C+N">Ning Wang</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J">Junwei Liu</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+J">Jingdi Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.16663v2-abstract-short" style="display: inline;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'inline'; document.getElementById('2406.16663v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.16663v2-abstract-full" style="display: none;"> We report on an ultrafast terahertz free-carrier dynamic study of a photo-excited WTe2 thin film. In the photo-excited state, we observe a metastable electronic state featuring negative differential terahertz photoconductivity and reduced scattering rate. Detailed electrodynamics analysis and first-principal calculation attribute it to light-induced topological phase transition, reducing density of states near the Fermi level. Furthermore, the emergence of an unconventional temporal isosbestic point marks a dynamic universality, strongly suggesting a percolative interaction between the two topologically distinct phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.16663v2-abstract-full').style.display = 'none'; document.getElementById('2406.16663v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15613">arXiv:2406.15613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.15613">pdf</a>, <a href="https://arxiv.org/format/2406.15613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Algebraic Topology">math.AT</span> </div> </div> <p class="title is-5 mathjax"> MOUNTAINEER: Topology-Driven Visual Analytics for Comparing Local Explanations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Solunke%2C+P">Parikshit Solunke</a>, <a href="/search/?searchtype=author&amp;query=Guardieiro%2C+V">Vitoria Guardieiro</a>, <a href="/search/?searchtype=author&amp;query=Rulff%2C+J">Joao Rulff</a>, <a href="/search/?searchtype=author&amp;query=Xenopoulos%2C+P">Peter Xenopoulos</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+G+Y">Gromit Yeuk-Yin Chan</a>, <a href="/search/?searchtype=author&amp;query=Barr%2C+B">Brian Barr</a>, <a href="/search/?searchtype=author&amp;query=Nonato%2C+L+G">Luis Gustavo Nonato</a>, <a href="/search/?searchtype=author&amp;query=Silva%2C+C">Claudio Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15613v1-abstract-short" style="display: inline;"> With the increasing use of black-box Machine Learning (ML) techniques in critical applications, there is a growing demand for methods that can provide transparency and accountability for model predictions. As a result, a large number of local explainability methods for black-box models have been developed and popularized. However, machine learning explanations are still hard to evaluate and compar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15613v1-abstract-full').style.display = 'inline'; document.getElementById('2406.15613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15613v1-abstract-full" style="display: none;"> With the increasing use of black-box Machine Learning (ML) techniques in critical applications, there is a growing demand for methods that can provide transparency and accountability for model predictions. As a result, a large number of local explainability methods for black-box models have been developed and popularized. However, machine learning explanations are still hard to evaluate and compare due to the high dimensionality, heterogeneous representations, varying scales, and stochastic nature of some of these methods. Topological Data Analysis (TDA) can be an effective method in this domain since it can be used to transform attributions into uniform graph representations, providing a common ground for comparison across different explanation methods. We present a novel topology-driven visual analytics tool, Mountaineer, that allows ML practitioners to interactively analyze and compare these representations by linking the topological graphs back to the original data distribution, model predictions, and feature attributions. Mountaineer facilitates rapid and iterative exploration of ML explanations, enabling experts to gain deeper insights into the explanation techniques, understand the underlying data distributions, and thus reach well-founded conclusions about model behavior. Furthermore, we demonstrate the utility of Mountaineer through two case studies using real-world data. In the first, we show how Mountaineer enabled us to compare black-box ML explanations and discern regions of and causes of disagreements between different explanations. In the second, we demonstrate how the tool can be used to compare and understand ML models themselves. Finally, we conducted interviews with three industry experts to help us evaluate our work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15613v1-abstract-full').style.display = 'none'; document.getElementById('2406.15613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author version of article accepted to IEEE Transactions on Visualization and Computer Graphics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.14377">arXiv:2406.14377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.14377">pdf</a>, <a href="https://arxiv.org/format/2406.14377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> CE-SSL: Computation-Efficient Semi-Supervised Learning for ECG-based Cardiovascular Diseases Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhou%2C+R">Rushuang Zhou</a>, <a href="/search/?searchtype=author&amp;query=Clifton%2C+L">Lei Clifton</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Zijun Liu</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+K+W+Y">Kannie W. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Clifton%2C+D+A">David A. Clifton</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+Y">Yuan-Ting Zhang</a>, <a href="/search/?searchtype=author&amp;query=Dong%2C+Y">Yining Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.14377v2-abstract-short" style="display: inline;"> The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14377v2-abstract-full').style.display = 'inline'; document.getElementById('2406.14377v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.14377v2-abstract-full" style="display: none;"> The label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing the computational efficiency during model training. Here, we propose a computation-efficient semi-supervised learning paradigm (CE-SSL) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream datasets demonstrate that CE-SSL not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision. Code and Supplementary Materials are available at https://github.com/KAZABANA/CE-SSL <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.14377v2-abstract-full').style.display = 'none'; document.getElementById('2406.14377v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13907">arXiv:2406.13907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13907">pdf</a>, <a href="https://arxiv.org/format/2406.13907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of full contrast icosahedral Bose-Einstein statistics in laser desorbed, buffer gas cooled C$_{60}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Ya-Chu Chan</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+L+R">Lee R. Liu</a>, <a href="/search/?searchtype=author&amp;query=Scheck%2C+A">Andrew Scheck</a>, <a href="/search/?searchtype=author&amp;query=Nesbitt%2C+D+J">David J. Nesbitt</a>, <a href="/search/?searchtype=author&amp;query=Ye%2C+J">Jun Ye</a>, <a href="/search/?searchtype=author&amp;query=Rosenberg%2C+D">Dina Rosenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13907v2-abstract-short" style="display: inline;"> The quantum mechanical nature of spherical top molecules is particularly evident at low angular momentum quantum number J. Using infrared spectroscopy on the 8.4$渭$m rovibrational band of buffer gas cooled $^{12}$C$_{60}$, we observe the hitherto unseen R(J = 0 - 29) rotational progression, including the complete disappearance of certain transitions due to the molecule&#39;s perfect icosahedral symmet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13907v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13907v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13907v2-abstract-full" style="display: none;"> The quantum mechanical nature of spherical top molecules is particularly evident at low angular momentum quantum number J. Using infrared spectroscopy on the 8.4$渭$m rovibrational band of buffer gas cooled $^{12}$C$_{60}$, we observe the hitherto unseen R(J = 0 - 29) rotational progression, including the complete disappearance of certain transitions due to the molecule&#39;s perfect icosahedral symmetry and identical bosonic nuclei. The observation of extremely weak C$_{60}$ absorption is facilitated by a laser desorption C$_{60}$ vapor source, which transfers 1000-fold less heat to the cryogenic buffer gas cell than a traditional oven source. This technique paves the way to cooling C$_{60}$ and other large gas phase molecules to much lower temperatures, providing continued advances for spectral resolution and sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13907v2-abstract-full').style.display = 'none'; document.getElementById('2406.13907v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13546">arXiv:2406.13546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13546">pdf</a>, <a href="https://arxiv.org/ps/2406.13546">ps</a>, <a href="https://arxiv.org/format/2406.13546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Representation Theory">math.RT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Number Theory">math.NT</span> </div> </div> <p class="title is-5 mathjax"> Dual of the Geometric Lemma and the Second Adjointness Theorem for $p$-adic reductive groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chan%2C+K+Y">Kei Yuen Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13546v2-abstract-short" style="display: inline;"> Let $P,Q$ be standard parabolic subgroups of a $p$-adic reductive group $G$. We study the smooth dual of the filtration on a parabolically induced module arising from the geometric lemma associated to the cosets $P\setminus G/Q$. We prove that the dual filtration coincides with the filtration associated to the cosets $P\setminus G/Q^-$ via the Bernstein-Casselman canonical pairing from the second&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13546v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13546v2-abstract-full" style="display: none;"> Let $P,Q$ be standard parabolic subgroups of a $p$-adic reductive group $G$. We study the smooth dual of the filtration on a parabolically induced module arising from the geometric lemma associated to the cosets $P\setminus G/Q$. We prove that the dual filtration coincides with the filtration associated to the cosets $P\setminus G/Q^-$ via the Bernstein-Casselman canonical pairing from the second adjointness of parabolic induction. This result generalizes a result of Bezrukavnikov-Kazhdan on the explicit description in the second adjointness. Along the way, we also study some group theoretic results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13546v2-abstract-full').style.display = 'none'; document.getElementById('2406.13546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, comments welcome, v2: fixed some typos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12844">arXiv:2406.12844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12844">pdf</a>, <a href="https://arxiv.org/format/2406.12844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Synergizing Foundation Models and Federated Learning: A Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shenghui Li</a>, <a href="/search/?searchtype=author&amp;query=Ye%2C+F">Fanghua Ye</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+M">Meng Fang</a>, <a href="/search/?searchtype=author&amp;query=Zhao%2C+J">Jiaxu Zhao</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y">Yun-Hin Chan</a>, <a href="/search/?searchtype=author&amp;query=Ngai%2C+E+C+-">Edith C. -H. Ngai</a>, <a href="/search/?searchtype=author&amp;query=Voigt%2C+T">Thiemo Voigt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12844v1-abstract-short" style="display: inline;"> The recent development of Foundation Models (FMs), represented by large language models, vision transformers, and multimodal models, has been making a significant impact on both academia and industry. Compared with small-scale models, FMs have a much stronger demand for high-volume data during the pre-training phase. Although general FMs can be pre-trained on data collected from open sources such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12844v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12844v1-abstract-full" style="display: none;"> The recent development of Foundation Models (FMs), represented by large language models, vision transformers, and multimodal models, has been making a significant impact on both academia and industry. Compared with small-scale models, FMs have a much stronger demand for high-volume data during the pre-training phase. Although general FMs can be pre-trained on data collected from open sources such as the Internet, domain-specific FMs need proprietary data, posing a practical challenge regarding the amount of data available due to privacy concerns. Federated Learning (FL) is a collaborative learning paradigm that breaks the barrier of data availability from different participants. Therefore, it provides a promising solution to customize and adapt FMs to a wide range of domain-specific tasks using distributed datasets whilst preserving privacy. This survey paper discusses the potentials and challenges of synergizing FL and FMs and summarizes core techniques, future directions, and applications. A periodically updated paper collection on FM-FL is available at https://github.com/lishenghui/awesome-fm-fl. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12844v1-abstract-full').style.display = 'none'; document.getElementById('2406.12844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04364">arXiv:2406.04364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04364">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LSENS.2024.3408320">10.1109/LSENS.2024.3408320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Use of a Multiscale Vision Transformer to predict Nursing Activities Score from Low Resolution Thermal Videos in an Intensive Care Unit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lee%2C+I+Y">Isaac YL Lee</a>, <a href="/search/?searchtype=author&amp;query=Nguyen-Duc%2C+T">Thanh Nguyen-Duc</a>, <a href="/search/?searchtype=author&amp;query=Ueno%2C+R">Ryo Ueno</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+J">Jesse Smith</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+P+Y">Peter Y Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04364v1-abstract-short" style="display: inline;"> Excessive caregiver workload in hospital nurses has been implicated in poorer patient care and increased worker burnout. Measurement of this workload in the Intensive Care Unit (ICU) is often done using the Nursing Activities Score (NAS), but this is usually recorded manually and sporadically. Previous work has made use of Ambient Intelligence (AmI) by using computer vision to passively derive car&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04364v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04364v1-abstract-full" style="display: none;"> Excessive caregiver workload in hospital nurses has been implicated in poorer patient care and increased worker burnout. Measurement of this workload in the Intensive Care Unit (ICU) is often done using the Nursing Activities Score (NAS), but this is usually recorded manually and sporadically. Previous work has made use of Ambient Intelligence (AmI) by using computer vision to passively derive caregiver-patient interaction times to monitor staff workload. In this letter, we propose using a Multiscale Vision Transformer (MViT) to passively predict the NAS from low-resolution thermal videos recorded in an ICU. 458 videos were obtained from an ICU in Melbourne, Australia and used to train a MViTv2 model using an indirect prediction and a direct prediction method. The indirect method predicted 1 of 8 potentially identifiable NAS activities from the video before inferring the NAS. The direct method predicted the NAS score immediately from the video. The indirect method yielded an average 5-fold accuracy of 57.21%, an area under the receiver operating characteristic curve (ROC AUC) of 0.865, a F1 score of 0.570 and a mean squared error (MSE) of 28.16. The direct method yielded a MSE of 18.16. We also showed that the MViTv2 outperforms similar models such as R(2+1)D and ResNet50-LSTM under identical settings. This study shows the feasibility of using a MViTv2 to passively predict the NAS in an ICU and monitor staff workload automatically. Our results above also show an increased accuracy in predicting NAS directly versus predicting NAS indirectly. We hope that our study can provide a direction for future work and further improve the accuracy of passive NAS monitoring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04364v1-abstract-full').style.display = 'none'; document.getElementById('2406.04364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16781">arXiv:2405.16781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.16781">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Emergent topological magnetism in Hund&#39;s excitonic insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Okuma%2C+R">R. Okuma</a>, <a href="/search/?searchtype=author&amp;query=Yamagami%2C+K">K. Yamagami</a>, <a href="/search/?searchtype=author&amp;query=Fujisawa%2C+Y">Y. Fujisawa</a>, <a href="/search/?searchtype=author&amp;query=Hsu%2C+C+H">C. H. Hsu</a>, <a href="/search/?searchtype=author&amp;query=Obata%2C+Y">Y. Obata</a>, <a href="/search/?searchtype=author&amp;query=Tomoda%2C+N">N. Tomoda</a>, <a href="/search/?searchtype=author&amp;query=Dronova%2C+M">M. Dronova</a>, <a href="/search/?searchtype=author&amp;query=Kuroda%2C+K">K. Kuroda</a>, <a href="/search/?searchtype=author&amp;query=Ishikawa%2C+H">H. Ishikawa</a>, <a href="/search/?searchtype=author&amp;query=Kawaguchi%2C+K">K. Kawaguchi</a>, <a href="/search/?searchtype=author&amp;query=Aido%2C+K">K. Aido</a>, <a href="/search/?searchtype=author&amp;query=Kindo%2C+K">K. Kindo</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+Y+H">Y. H. Chan</a>, <a href="/search/?searchtype=author&amp;query=Lin%2C+H">H. Lin</a>, <a href="/search/?searchtype=author&amp;query=Ihara%2C+Y">Y. Ihara</a>, <a href="/search/?searchtype=author&amp;query=Kondo%2C+T">T. Kondo</a>, <a href="/search/?searchtype=author&amp;query=Okada%2C+Y">Y. Okada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16781v1-abstract-short" style="display: inline;"> Analogous to the charged electron-electron pair condensation in superconductors, an excitonic insulator (EI) represents Fermi surface instability due to spontaneous formation and condensation of charge-neutral electron-hole pair (exciton). Unlike in superconductors, however, the charge-neutral nature of exciton makes probing emergent EI phase via macroscopic physical properties generally difficult&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16781v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16781v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16781v1-abstract-full" style="display: none;"> Analogous to the charged electron-electron pair condensation in superconductors, an excitonic insulator (EI) represents Fermi surface instability due to spontaneous formation and condensation of charge-neutral electron-hole pair (exciton). Unlike in superconductors, however, the charge-neutral nature of exciton makes probing emergent EI phase via macroscopic physical properties generally difficult. Here, we propose a van der Waals coupled antiferromagnetic semiconductor GdGaI (GGI) as a new material category leading to emergent multi-q magnet intertwined with spontaneous exciton formation/condensation. Before excitonic band hybridization, a simple picture for the parent electronic state consists of electron (Gd-derived 5d) and hole (Ga-derived 4p) delocalized bands, together with Gd-derived 4f localized antiferromagnets with S = 7/2 classical nature. Through intra Gd atom 4f-5d Hund&#39;s coupling, a notable finding is the emergent minimum length scale (2a) Skyrmion-like spin texture resulting from spontaneous condensation/formation of spin-polarized exciton with BCS-BEC crossover phenomenology. This discovered platform is promising for realizing valuable quantum matter on the nanoscale; our finding will provide significant insight into designing the atomic scale topological magnetism out of itinerant systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16781v1-abstract-full').style.display = 'none'; document.getElementById('2405.16781v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12216">arXiv:2405.12216</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12216">pdf</a>, <a href="https://arxiv.org/format/2405.12216">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae1311">10.1093/mnras/stae1311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiative transfer of 21-cm line through ionised cavities in an expanding universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Wu%2C+K">Kinwah Wu</a>, <a href="/search/?searchtype=author&amp;query=Han%2C+Q">Qin Han</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+J+Y+H">Jennifer Y. H. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12216v1-abstract-short" style="display: inline;"> The optical depth parameterisation is typically used to study the 21-cm signals associated with the properties of the neutral hydrogen (HI) gas and the ionisation morphology during the Epoch of Reionisation (EoR), without solving the radiative transfer equation. To assess the uncertainties resulting from this simplification, we conduct explicit radiative transfer calculations using the cosmologica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12216v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12216v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12216v1-abstract-full" style="display: none;"> The optical depth parameterisation is typically used to study the 21-cm signals associated with the properties of the neutral hydrogen (HI) gas and the ionisation morphology during the Epoch of Reionisation (EoR), without solving the radiative transfer equation. To assess the uncertainties resulting from this simplification, we conduct explicit radiative transfer calculations using the cosmological 21-cm radiative transfer (C21LRT) code and examine the imprints of ionisation structures on the 21-cm spectrum. We consider a globally averaged reionisation history and implement fully ionised cavities (HII bubbles) of diameters $d$ ranging from 0.01 Mpc to 10 Mpc at epochs within the emission and the absorption regimes of the 21-cm global signal. The single-ray C21LRT calculations show that the shape of the imprinted spectral features are primarily determined by $d$ and the 21-cm line profile, which is parametrised by the turbulent velocity of the HI gas. It reveals the spectral features tied to the transition from ionised to neutral regions that calculations based on the optical depth parametrisation were unable to capture. We also present analytical approximations of the calculated spectral features of the HII bubbles. The multiple-ray calculations show that the apparent shape of a HII bubble (of $d=5$ Mpc at $z=8$), because of the finite speed of light, differs depending on whether the bubble&#39;s ionisation front is stationary or expanding. Our study shows the necessity of properly accounting for the effects of line-continuum interaction, line broadening and cosmological expansion to correctly predict the EoR 21-cm signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12216v1-abstract-full').style.display = 'none'; document.getElementById('2405.12216v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 11 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05847">arXiv:2405.05847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05847">pdf</a>, <a href="https://arxiv.org/format/2405.05847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learned feature representations are biased by complexity, learning order, position, and more </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Lampinen%2C+A+K">Andrew Kyle Lampinen</a>, <a href="/search/?searchtype=author&amp;query=Chan%2C+S+C+Y">Stephanie C. Y. Chan</a>, <a href="/search/?searchtype=author&amp;query=Hermann%2C+K">Katherine Hermann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05847v3-abstract-short" style="display: inline;"> Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system&#39;s computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05847v3-abstract-full').style.display = 'inline'; document.getElementById('2405.05847v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05847v3-abstract-full" style="display: none;"> Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system&#39;s computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. We then illustrate the downstream effects of these biases on various commonly-used methods for analyzing or intervening on representations. These results highlight a key challenge for interpretability $-$ or for comparing the representations of models and brains $-$ disentangling extraneous biases from the computationally important aspects of a system&#39;s internal representations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05847v3-abstract-full').style.display = 'none'; document.getElementById('2405.05847v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in TMLR: https://openreview.net/forum?id=aY2nsgE97a</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Chan%2C+Y&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10