CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;9 of 9 results for author: <span class="mathjax">Gutman, D H</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/math" aria-role="search"> Searching in archive <strong>math</strong>. <a href="/search/?searchtype=author&amp;query=Gutman%2C+D+H">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Gutman, D H"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Gutman%2C+D+H&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Gutman, D H"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09927">arXiv:2407.09927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09927">pdf</a>, <a href="https://arxiv.org/ps/2407.09927">ps</a>, <a href="https://arxiv.org/format/2407.09927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> An Adaptive Proximal ADMM for Nonconvex Linearly-Constrained Composite Programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Maia%2C+L+F">Leandro Farias Maia</a>, <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David H. Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Monteiro%2C+R+D+C">Renato D. C. Monteiro</a>, <a href="/search/math?searchtype=author&amp;query=Silva%2C+G+N">Gilson N. Silva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09927v1-abstract-short" style="display: inline;"> This paper develops an adaptive Proximal Alternating Direction Method of Multipliers (P-ADMM) for solving linearly-constrained, weakly convex, composite optimization problems. This method is adaptive to all problem parameters, including smoothness and weak convexity constants. It is assumed that the smooth component of the objective is weakly convex and possibly nonseparable, while the non-smooth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09927v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09927v1-abstract-full" style="display: none;"> This paper develops an adaptive Proximal Alternating Direction Method of Multipliers (P-ADMM) for solving linearly-constrained, weakly convex, composite optimization problems. This method is adaptive to all problem parameters, including smoothness and weak convexity constants. It is assumed that the smooth component of the objective is weakly convex and possibly nonseparable, while the non-smooth component is convex and block-separable. The proposed method is tolerant to the inexact solution of its block proximal subproblem so it does not require that the non-smooth component has easily computable block proximal maps. Each iteration of our adaptive P-ADMM consists of two steps: (1) the sequential solution of each block proximal subproblem, and (2) adaptive tests to decide whether to perform a full Lagrange multiplier and/or penalty parameter update(s). Without any rank assumptions on the constraint matrices, it is shown that the adaptive P-ADMM obtains an approximate first-order stationary point of the constrained problem in a number of iterations that matches the state-of-the-art complexity for the class of P-ADMMs. The two proof-of-concept numerical experiments that conclude the paper suggest our adaptive P-ADMM enjoys significant computational benefits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09927v1-abstract-full').style.display = 'none'; document.getElementById('2407.09927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08080">arXiv:2403.08080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08080">pdf</a>, <a href="https://arxiv.org/ps/2403.08080">ps</a>, <a href="https://arxiv.org/format/2403.08080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> The Randomized Block Coordinate Descent Method in the H枚lder Smooth Setting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Maia%2C+L+F">Leandro Farias Maia</a>, <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David Huckleberry Gutman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08080v1-abstract-short" style="display: inline;"> This work provides the first convergence analysis for the Randomized Block Coordinate Descent method for minimizing a function that is both H枚lder smooth and block H枚lder smooth. Our analysis applies to objective functions that are non-convex, convex, and strongly convex. For non-convex functions, we show that the expected gradient norm reduces at an $O\left(k^{\frac纬{1+纬}}\right)$ rate, where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08080v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08080v1-abstract-full" style="display: none;"> This work provides the first convergence analysis for the Randomized Block Coordinate Descent method for minimizing a function that is both H枚lder smooth and block H枚lder smooth. Our analysis applies to objective functions that are non-convex, convex, and strongly convex. For non-convex functions, we show that the expected gradient norm reduces at an $O\left(k^{\frac纬{1+纬}}\right)$ rate, where $k$ is the iteration count and $纬$ is the H枚lder exponent. For convex functions, we show that the expected suboptimality gap reduces at the rate $O\left(k^{-纬}\right)$. In the strongly convex setting, we show this rate for the expected suboptimality gap improves to $O\left(k^{-\frac{2纬}{1-纬}}\right)$ when $纬&gt;1$ and to a linear rate when $纬=1$. Notably, these new convergence rates coincide with those furnished in the existing literature for the Lipschitz smooth setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08080v1-abstract-full').style.display = 'none'; document.getElementById('2403.08080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00896">arXiv:2201.00896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.00896">pdf</a>, <a href="https://arxiv.org/ps/2201.00896">ps</a>, <a href="https://arxiv.org/format/2201.00896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> The Inexact Cyclic Block Proximal Gradient Method and Properties of Inexact Proximal Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Maia%2C+L">Leandro Maia</a>, <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David Huckleberry Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Hughes%2C+R+C">Ryan Christopher Hughes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00896v1-abstract-short" style="display: inline;"> This paper expands the Cyclic Block Proximal Gradient method for block separable composite minimization by allowing for inexactly computed gradients and proximal maps. The resultant algorithm, the Inexact Cyclic Block Proximal Gradient (I-CBPG) method, shares the same convergence rate as its exactly computed analogue provided the allowable errors decrease sufficiently quickly or are pre-selected t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00896v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00896v1-abstract-full" style="display: none;"> This paper expands the Cyclic Block Proximal Gradient method for block separable composite minimization by allowing for inexactly computed gradients and proximal maps. The resultant algorithm, the Inexact Cyclic Block Proximal Gradient (I-CBPG) method, shares the same convergence rate as its exactly computed analogue provided the allowable errors decrease sufficiently quickly or are pre-selected to be sufficiently small. We provide numerical experiments that showcase the practical computational advantage of I-CBPG for certain fixed tolerances of approximation error and for a dynamically decreasing error tolerance regime in particular. We establish a tight relationship between inexact proximal map evaluations and $未$-subgradients in our $未$-Second Prox Theorem. This theorem forms the foundation of our convergence analysis and enables us to show that inexact gradient computations and other notions of inexact proximal map computation can be subsumed within a single unifying framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00896v1-abstract-full').style.display = 'none'; document.getElementById('2201.00896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.10627">arXiv:1912.10627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.10627">pdf</a>, <a href="https://arxiv.org/ps/1912.10627">ps</a>, <a href="https://arxiv.org/format/1912.10627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Coordinate Descent Without Coordinates: Tangent Subspace Descent on Riemannian Manifolds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David Huckleberry Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Ho-Nguyen%2C+N">Nam Ho-Nguyen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.10627v3-abstract-short" style="display: inline;"> We extend coordinate descent to manifold domains, and provide convergence analyses for geodesically convex and non-convex smooth objective functions. Our key insight is to draw an analogy between coordinate blocks in Euclidean space and tangent subspaces of a manifold. Hence, our method is called tangent subspace descent (TSD). The core principle behind ensuring convergence of TSD is the appropria&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10627v3-abstract-full').style.display = 'inline'; document.getElementById('1912.10627v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.10627v3-abstract-full" style="display: none;"> We extend coordinate descent to manifold domains, and provide convergence analyses for geodesically convex and non-convex smooth objective functions. Our key insight is to draw an analogy between coordinate blocks in Euclidean space and tangent subspaces of a manifold. Hence, our method is called tangent subspace descent (TSD). The core principle behind ensuring convergence of TSD is the appropriate choice of subspace at each iteration. To this end, we propose two novel conditions, the gap ensuring and $C$-randomized norm conditions on deterministic and randomized modes of subspace selection respectively, that promise convergence for smooth functions and that are satisfied in practical contexts. We propose two subspace selection rules of particular practical interest that satisfy these conditions: a deterministic one for the manifold of square orthogonal matrices, and a randomized one for the Stiefel manifold. Our proof-of-concept numerical experiments on the orthogonal Procrustes problem demonstrate TSD&#39;s efficacy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.10627v3-abstract-full').style.display = 'none'; document.getElementById('1912.10627v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.08359">arXiv:1901.08359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.08359">pdf</a>, <a href="https://arxiv.org/format/1901.08359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> The condition number of a function relative to a set </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David H. Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Pena%2C+J+F">Javier F. Pena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.08359v4-abstract-short" style="display: inline;"> The condition number of a differentiable convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is the square of the aspect ratio of a canonical ellipsoid associated to the function. Furthermore, the condition number of a function bounds the line&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08359v4-abstract-full').style.display = 'inline'; document.getElementById('1901.08359v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.08359v4-abstract-full" style="display: none;"> The condition number of a differentiable convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is the square of the aspect ratio of a canonical ellipsoid associated to the function. Furthermore, the condition number of a function bounds the linear rate of convergence of the gradient descent algorithm for unconstrained convex minimization. We propose a condition number of a differentiable convex function relative to a reference convex set and distance function pair. This relative condition number is defined as the ratio of a relative smoothness to a relative strong convexity constants. We show that the relative condition number extends the main properties of the traditional condition number both in terms of its geometric insight and in terms of its role in characterizing the linear convergence of first-order methods for constrained convex minimization. When the reference set $X$ is a convex cone or a polyhedron and the function $f$ is of the form $f = g\circ A$, we provide characterizations of and bounds on the condition number of $f$ relative to $X$ in terms of the usual condition number of $g$ and a suitable condition number of the pair $(A,X)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.08359v4-abstract-full').style.display = 'none'; document.getElementById('1901.08359v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 4 figures. To Appear in Mathematical Programming</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.10198">arXiv:1812.10198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.10198">pdf</a>, <a href="https://arxiv.org/ps/1812.10198">ps</a>, <a href="https://arxiv.org/format/1812.10198">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Perturbed Fenchel duality and first-order methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David H. Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Pe%C3%B1a%2C+J+F">Javier F. Pe帽a</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.10198v7-abstract-short" style="display: inline;"> We show that the iterates generated by a generic first-order meta-algorithm satisfy a canonical perturbed Fenchel duality inequality. The latter in turn readily yields a unified derivation of the best known convergence rates for various popular first-order algorithms including the conditional gradient method as well as the main kinds of Bregman proximal methods: subgradient, gradient, fast gradien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10198v7-abstract-full').style.display = 'inline'; document.getElementById('1812.10198v7-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.10198v7-abstract-full" style="display: none;"> We show that the iterates generated by a generic first-order meta-algorithm satisfy a canonical perturbed Fenchel duality inequality. The latter in turn readily yields a unified derivation of the best known convergence rates for various popular first-order algorithms including the conditional gradient method as well as the main kinds of Bregman proximal methods: subgradient, gradient, fast gradient, and universal gradient methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10198v7-abstract-full').style.display = 'none'; document.getElementById('1812.10198v7-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05982">arXiv:1807.05982</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.05982">pdf</a>, <a href="https://arxiv.org/ps/1807.05982">ps</a>, <a href="https://arxiv.org/format/1807.05982">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Basic Procedures for the Projection and Rescaling Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David H. Gutman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05982v1-abstract-short" style="display: inline;"> Using an efficient algorithmic implementation of Caratheodory&#39;s theorem, we propose three enhanced versions of the Projection and Rescaling algorithm&#39;s basic procedures each of which improves upon the order of complexity of its analogue in [Mathematical Programming Series A, 166 (2017), pp. 87-111]. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05982v1-abstract-full" style="display: none;"> Using an efficient algorithmic implementation of Caratheodory&#39;s theorem, we propose three enhanced versions of the Projection and Rescaling algorithm&#39;s basic procedures each of which improves upon the order of complexity of its analogue in [Mathematical Programming Series A, 166 (2017), pp. 87-111]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05982v1-abstract-full').style.display = 'none'; document.getElementById('1807.05982v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.00271">arXiv:1802.00271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.00271">pdf</a>, <a href="https://arxiv.org/ps/1802.00271">ps</a>, <a href="https://arxiv.org/format/1802.00271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> The condition of a function relative to a polytope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David H. Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Pena%2C+J+F">Javier F. Pena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.00271v1-abstract-short" style="display: inline;"> The condition number of a smooth convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is precisely the square of the diameter-to-width ratio of a canonical ellipsoid associated to the function. Furthermore, the condition number of a function bo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00271v1-abstract-full').style.display = 'inline'; document.getElementById('1802.00271v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.00271v1-abstract-full" style="display: none;"> The condition number of a smooth convex function, namely the ratio of its smoothness to strong convexity constants, is closely tied to fundamental properties of the function. In particular, the condition number of a quadratic convex function is precisely the square of the diameter-to-width ratio of a canonical ellipsoid associated to the function. Furthermore, the condition number of a function bounds the linear rate of convergence of the gradient descent algorithm for unconstrained minimization. We propose a condition number of a smooth convex function relative to a reference polytope. This relative condition number is defined as the ratio of a relative smooth constant to a relative strong convexity constant of the function, where both constants are relative to the reference polytope. The relative condition number extends the main properties of the traditional condition number. In particular, we show that the condition number of a quadratic convex function relative to a polytope is precisely the square of the diameter-to-facial-distance ratio of a scaled polytope for a canonical scaling induced by the function. Furthermore, we illustrate how the relative condition number of a function bounds the linear rate of convergence of first-order methods for minimization of the function over the polytope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.00271v1-abstract-full').style.display = 'none'; document.getElementById('1802.00271v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.02509">arXiv:1801.02509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.02509">pdf</a>, <a href="https://arxiv.org/ps/1801.02509">ps</a>, <a href="https://arxiv.org/format/1801.02509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Convergence rates of proximal gradient methods via the convex conjugate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/math?searchtype=author&amp;query=Gutman%2C+D+H">David H. Gutman</a>, <a href="/search/math?searchtype=author&amp;query=Pena%2C+J+F">Javier F. Pena</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.02509v2-abstract-short" style="display: inline;"> We give a novel proof of the $O(1/k)$ and $O(1/k^2)$ convergence rates of the proximal gradient and accelerated proximal gradient methods for composite convex minimization. The crux of the new proof is an upper bound constructed via the convex conjugate of the objective function. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.02509v2-abstract-full" style="display: none;"> We give a novel proof of the $O(1/k)$ and $O(1/k^2)$ convergence rates of the proximal gradient and accelerated proximal gradient methods for composite convex minimization. The crux of the new proof is an upper bound constructed via the convex conjugate of the objective function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.02509v2-abstract-full').style.display = 'none'; document.getElementById('1801.02509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 90C25; 90C46; 90C52 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10