CINXE.COM

Search results for: no take zone

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: no take zone</title> <meta name="description" content="Search results for: no take zone"> <meta name="keywords" content="no take zone"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="no take zone" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="no take zone"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1613</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: no take zone</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1613</span> Institutional Superposition, over Management and Coastal Economic Development: Coastal Areas in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingbao%20Chen">Mingbao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingli%20Zhao"> Mingli Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal zone is the intersection of land and sea system, and also is the connecting zone of the two economic systems of land and sea. In the world, all countries attach great importance to the coastal zone management and the coastal zone economy. In China, the government has developed a number of related coastal management policies and institutional, such as marine functional zoning, main function zoning, integrated coastal zone management, to ensure the sustainable utilization of the coastal zone and promote the development of coastal economic. However, in practice, the effect is not satisfactory. This paper analyses the coastal areas of coastal zone management on coastal economic growth contribution based on coastal areas economic development data with the 2007-2015 in China, which uses the method of the evaluation index system of coastal zone management institutional efficiency. The results show that the coastal zone management institutional objectives are not clear, and the institutional has high repeatability. At the same time, over management of coastal zone leads to low economic efficiency because the government management boundary is blurred. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=institutional%20overlap" title="institutional overlap">institutional overlap</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20management" title=" over management"> over management</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20zone%20management" title=" coastal zone management"> coastal zone management</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20zone%20economy" title=" coastal zone economy"> coastal zone economy</a> </p> <a href="https://publications.waset.org/abstracts/74771/institutional-superposition-over-management-and-coastal-economic-development-coastal-areas-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1612</span> Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tarmidzi">Muhammad Tarmidzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20M.%20G.%20Gani"> Reza M. G. Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Andri%20Luthfi"> Andri Luthfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons%20zone" title="hydrocarbons zone">hydrocarbons zone</a>, <a href="https://publications.waset.org/abstracts/search?q=petrophysic" title=" petrophysic"> petrophysic</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20property" title=" rock property"> rock property</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20stratigraphic" title=" sequence stratigraphic"> sequence stratigraphic</a> </p> <a href="https://publications.waset.org/abstracts/60898/rock-property-calculation-for-determine-hydrocarbon-zone-based-on-petrophysical-principal-and-sequence-stratigraphic-correlation-in-blok-m" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1611</span> The Conceptual Exploration of Comfort Zone by Using Content Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lilla%20Szab%C3%B3%20Hangya">Lilla Szabó Hangya</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Jambori"> Szilvia Jambori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The comfort zone is less studied area in the field of psychology. One of the most important definitions is that comfort zone is a psychological state in which things feel familiar to a person with low level of anxiety and stress. But the validity of comfort zone does not confirm till now. The aim of our pilot research is to test which psychological factors could determine how young adults behave during their decision process to stay in one’s comfort zone or to leave it. Every person has a number of comfort zones, so we are not able to measure it directly, only those personality traits which predict if someone leaves his comfort zone easier or harder. In our study at first we wanted to clarify the meaning of comfort zone. 110 young adults (male: 37, female: 73; ages from 18 to 70, average age: 26,6) took part in the study. Beside their demographic datas we asked them what does the comfort zone mean for them. The results showed that the meaning of the comfort zone can be grouped in five dimensions: comfort (49,6 %), leaving it-change (8,1%), ambivalent feelings (10,6%), related to other people (10,6%), pursuit of self-realization (16,8%). Our results demonstrated age related characteristics. For young people at the age of 19 the comfort zone is related to other people, because during adolescents peer relationships become more important. Subjects at the age 20-30 answered that the comfort zone means comfort and stability for them. Their life becomes stable for a while, they are studying or working. But at the age of 25, when they finish university, most of them answered comfort zone means a changing process for them. On the other hand for subjects at the age of 27 the means of the comfort zone is pursuit of self-realization. After that period at the age of 31 when they have families and stable job the stability will also dominant. We saw that the comfort zone has much more meaning besides a pleasant psychological trait. Further we would like to determine which psychological factors relate to comfort zone, and what kind of personality traits could predict leaving or staying in one’s comfort zone. We want to observe the relationship between comfort zone and subjective well-being, life satisfaction self-efficacy or self-esteem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort%20zone" title="comfort zone">comfort zone</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=personality%20trait" title=" personality trait"> personality trait</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/71275/the-conceptual-exploration-of-comfort-zone-by-using-content-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1610</span> Communication Development for Development Communication: Prospects and Challenges of New Media Technologies in South East Zone, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Ekwueme">O. I. Ekwueme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New media technologies are noted for their immense contributions in various sectors of the economy which are believed to have resulted in the development of European countries. There is an assumption that we cannot have development communication without communication development, but we are not sure if new media technologies contribute to development in the South-East zone, Nigeria. The study employed mixed method and discovered that new media technologies have a very minimal relationship to development in the South-East zone, Nigeria. It was discovered that the media report on development news is basically informative instead of interactive. The South-East zone is scarcely covered unlike other zones. It argued that the communication technologies introduced in Nigeria was as a result of their struggle for independence. It was recommended that media organisations in the South-East zone should give adequate coverage to the zone, and be more interactive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20media" title=" new media"> new media</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a> </p> <a href="https://publications.waset.org/abstracts/7966/communication-development-for-development-communication-prospects-and-challenges-of-new-media-technologies-in-south-east-zone-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1609</span> Solution to Riemann Hypothesis Critical Strip Zone Using Non-Linear Complex Variable Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manojkumar%20Sabanayagam">Manojkumar Sabanayagam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Riemann hypothesis is an unsolved millennium problem and the search for a solution to the Riemann hypothesis is to study the pattern of prime number distribution. The scope of this paper is to identify the solution for the critical strip and the critical line axis, which has the non-trivial zero solutions using complex plane functions. The Riemann graphical plot is constructed using a linear complex variable function (X+iY) and is applicable only when X>1. But the investigation shows that complex variable behavior has two zones. The first zone is the transformation zone, where the definition of the complex plane should be a non-linear variable which is the critical strip zone in the graph (X=0 to 1). The second zone is the transformed zone (X>1) defined using linear variables conventionally. This paper deals with the Non-linear function in the transformation zone derived using cosine and sinusoidal time lag w.r.t imaginary number ‘i’. The alternate complex variable (Cosθ+i Sinθ) is used to understand the variables in the critical strip zone. It is concluded that the non-trivial zeros present in the Real part 0.5 are because the linear function is not the correct approach in the critical strip. This paper provides the solution to Reimann's hypothesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reimann%20hypothesis" title="Reimann hypothesis">Reimann hypothesis</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20strip" title=" critical strip"> critical strip</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20plane" title=" complex plane"> complex plane</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20zone" title=" transformation zone"> transformation zone</a> </p> <a href="https://publications.waset.org/abstracts/137947/solution-to-riemann-hypothesis-critical-strip-zone-using-non-linear-complex-variable-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1608</span> Static Study of Piezoelectric Bimorph Beams with Delamination Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zemirline%20Adel">Zemirline Adel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouali%20Mohammed"> Ouali Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahieddine%20Ali"> Mahieddine Ali </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The FOSDT (First Order Shear Deformation Theory) is taking into consideration to study the static behavior of a bimorph beam, with a delamination zone between the upper and the lower layer. The effect of limit conditions and lengths of the delamination zone are presented in this paper, with a PVDF piezoelectric material application. A FEM “Finite Element Method” is used to discretize the beam. In the axial displacement, a displacement field appears in the debonded zone with inverse effect between the upper and the lower layer was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=static" title="static">static</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a> </p> <a href="https://publications.waset.org/abstracts/20773/static-study-of-piezoelectric-bimorph-beams-with-delamination-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1607</span> Biogenic-Sedimentary Structures of the Ordovician-Khabour Formation from the Northern Thrust Zone, Kurdistan, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Sulaiman%20Shingaly">Waleed Sulaiman Shingaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ordivician-Khabour Formation from the Northern Thrust Zone of Iraqi-Kurdistan comprises between 500 and 800 m of alternating predominantly greenish-grey sandstones, siltstones and shales. The succession has revealed an abundant ichnofossils characterized by 11 ichnogenus, namely: Helminthopsis, Gordia, Cruziana, Rusophycus, Monomorphichnus, Rhizocorallium, Thalassinoide, Planolite, Paleophycus, Deplocraterion and Skolithose. Ethologically these ichnogenera display dwelling and feeding activities of the infaunal organisms. This association of ichnofossils contains elements of the Skolithose and Cruziana ichnofacies. The presence of Skolithos ichnofacies indicates sandy shifting substrate and high energy conditions in foreshore zone while the Cruziana ichnofacies indicate unconsolidated, poorly sorted soft substrate and low energy condition in the shore face/offshore zone. These ichnogenera indicate shoreface-offshore zone of shallow-marine environment for the deposition of the rocks of the Khabour Formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ichnofossils" title="Ichnofossils">Ichnofossils</a>, <a href="https://publications.waset.org/abstracts/search?q=shoreface-offshore%20zone" title=" shoreface-offshore zone"> shoreface-offshore zone</a>, <a href="https://publications.waset.org/abstracts/search?q=Khabour%20Formation" title=" Khabour Formation"> Khabour Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Iraq" title=" Iraq"> Iraq</a> </p> <a href="https://publications.waset.org/abstracts/21587/biogenic-sedimentary-structures-of-the-ordovician-khabour-formation-from-the-northern-thrust-zone-kurdistan-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1606</span> Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Mukherjee">Niranjan Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Burga%20Braun"> Burga Braun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrich%20Szewzyk"> Ulrich Szewzyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iopromide" title="iopromide">iopromide</a>, <a href="https://publications.waset.org/abstracts/search?q=hyporheic%20zone" title=" hyporheic zone"> hyporheic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=recalcitrant%20pharmaceutical" title=" recalcitrant pharmaceutical"> recalcitrant pharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20gradients" title=" redox gradients"> redox gradients</a> </p> <a href="https://publications.waset.org/abstracts/114009/transformation-of-iopromide-due-to-redox-gradients-in-sediments-of-the-hyporheic-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1605</span> Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Wattimanela">H. J. Wattimanela</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Passaribu"> U. S. Passaribu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20T.%20Puspito"> A. N. T. Puspito</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Indratno"> S. W. Indratno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molluca%20collision%20zone" title="molluca collision zone">molluca collision zone</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20regions" title=" partition regions"> partition regions</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20statistical%20methods" title=" conventional statistical methods"> conventional statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=classifications" title=" classifications"> classifications</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a> </p> <a href="https://publications.waset.org/abstracts/18499/earthquake-classification-in-molluca-collision-zone-using-conventional-statistical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1604</span> Determining Water Infiltration Zone Using 2-D Resistivity Imaging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azim%20Hilmy%20Mohamad%20Yusof">Azim Hilmy Mohamad Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Iqbal%20Mubarak%20Faharul%20Azman"> Muhamad Iqbal Mubarak Faharul Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Azwin%20Ismail"> Nur Azwin Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Noer%20El%20Hidayah%20Ismail"> Noer El Hidayah Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infiltration is the process by which precipitation or water soaks into subsurface soils and moves into rocks through cracks and pore spaces. This paper explains how the water infiltration will be identified using 2-D resistivity imaging. Padang Minden, in Universiti Sains Malaysia, Penang has been chosen as the survey area during this study. The study area consists of microcline granite with grain size of medium to coarse. 2-D Resistivity Imaging survey is used to detect subsurface layer for many years by making measurements on the ground surface. The result shows that resistivity value of 0.015 Ωm - 10 Ωm represent the salt water intrusion zone while the resistivity value of 11 Ωm - 100 Ωm is suggested as the boundary zone between the salt water intrusion zone and low saturated zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20resistivity%20imaging" title="2-D resistivity imaging">2-D resistivity imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microcline%20granite" title=" microcline granite"> microcline granite</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20water%20intrusion" title=" salt water intrusion"> salt water intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20infiltration" title=" water infiltration"> water infiltration</a> </p> <a href="https://publications.waset.org/abstracts/62800/determining-water-infiltration-zone-using-2-d-resistivity-imaging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1603</span> Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manijeh%20Ghahroudi%20Tali">Manijeh Ghahroudi Tali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladan%20Khedri%20Gharibvand"> Ladan Khedri Gharibvand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal" title="fractal">fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavkhouni" title=" Gavkhouni"> Gavkhouni</a>, <a href="https://publications.waset.org/abstracts/search?q=microform" title=" microform"> microform</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/81310/geomorphology-evidence-of-climate-change-in-gavkhouni-lagoon-south-east-isfahan-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1602</span> Analysis of the Plastic Zone Under Mixed Mode Fracture in Bonded Composite Repair of Aircraft </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Oudad">W. Oudad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Fikirini"> H. Fikirini</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Boulenouar"> K. Boulenouar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material fracture by opening (mode I) is not alone responsible for fracture propagation. Many industrial examples show the presence of mode II and mixed mode I + II. In the present work the three-dimensional and non-linear finite element method is used to estimate the performance of the bonded composite repair of metallic aircraft structures by analyzing the plastic zone size ahead of repaired cracks under mixed mode loading. The computations are made according to Von Mises and Tresca criteria. The extension of the plastic zone which takes place at the tip of a crack strictly depends on many variables, such as the yield stress of the material, the loading conditions, the crack size and the thickness of the cracked component, The obtained results show that the presence of the composite patch reduces considerably the size of the plastic zone ahead of the crack. The effects of the composite orientation layup (adhesive properties) and the patch thickness on the plastic zone size ahead of repaired cracks were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic-plastic" title=" elastic-plastic"> elastic-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=J%20integral" title=" J integral"> J integral</a>, <a href="https://publications.waset.org/abstracts/search?q=patch" title=" patch"> patch</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20zone" title=" plastic zone"> plastic zone</a> </p> <a href="https://publications.waset.org/abstracts/30283/analysis-of-the-plastic-zone-under-mixed-mode-fracture-in-bonded-composite-repair-of-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1601</span> Development Process and Design Methods for Shared Spaces in Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuyasu%20Yoshino">Kazuyasu Yoshino</a>, <a href="https://publications.waset.org/abstracts/search?q=Keita%20Yamaguchi"> Keita Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshihiko%20Nishimura"> Toshihiko Nishimura</a>, <a href="https://publications.waset.org/abstracts/search?q=Masashi%20Kawasaki"> Masashi Kawasaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shared Space, the planning and design concept that allows pedestrians and vehicles to coexist in a street space, has been advocated and developed according to the traffic conditions in each country in Europe. Especially in German/French-speaking countries, the "Meeting Zone," which is a traffic rule combining speed regulation (20km/h) and pedestrian priority, is often applied when designing shared spaces at intersections, squares, and streets in the city center. In this study, the process of establishment and development of the Meeting Zone in Switzerland, France, and Austria was chronologically organized based on the descriptions in the major discourse and guidelines in each country. Then, the characteristics of the spatial design were extracted by analyzing representative examples of Meeting Zone applications. Finally, the relationships between the different approaches to designing of Meeting Zone and traffic regulations in different countries were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shared%20space" title="shared space">shared space</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20calming" title=" traffic calming"> traffic calming</a>, <a href="https://publications.waset.org/abstracts/search?q=meeting%20zone" title=" meeting zone"> meeting zone</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20design" title=" street design"> street design</a> </p> <a href="https://publications.waset.org/abstracts/164181/development-process-and-design-methods-for-shared-spaces-in-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1600</span> Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Ahmadi%20Ahangar">Roya Ahmadi Ahangar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Madadyari"> Hamid Madadyari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-frequency%20control" title="load-frequency control">load-frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20zone" title=" multi zone"> multi zone</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20PID%20controller" title=" robust PID controller"> robust PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20generation" title=" wind generation"> wind generation</a> </p> <a href="https://publications.waset.org/abstracts/52309/improvement-of-the-robust-proportional-integral-derivative-pid-controller-parameters-for-controlling-the-frequency-in-the-intelligent-multi-zone-system-at-the-present-of-wind-generation-using-the-seeker-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1599</span> Experimental Study of Tunable Layout Printed Fresnel Lens Structure Based on Dye Doped Liquid Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Javadzadeh">M. Javadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khoshsima"> H. Khoshsima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we present a layout printing way for producing Fresnel zone on 1294-1b doped liquid crystal with Methyl-Red azo dye. We made a Fresnel zone mask with 25 zones and radius of 5 mm using lithography technique. With layout printing way, we recorded mask&rsquo;s pattern on cell with &lambda;=532 nm solid-state diode pump laser. By recording Fresnel zone pattern on cell and making Fresnel pattern on the surface of cell, odd and even zones, will form. The printed pattern, because of Azo dye&rsquo;s photoisomerization, was permanent. Experimentally, we saw focal length tunability from 32 cm to 43 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title="liquid crystal">liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20zone" title=" Fresnel zone"> Fresnel zone</a>, <a href="https://publications.waset.org/abstracts/search?q=diffraction" title=" diffraction"> diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Fresnel%20lens" title=" Fresnel lens"> Fresnel lens</a> </p> <a href="https://publications.waset.org/abstracts/78419/experimental-study-of-tunable-layout-printed-fresnel-lens-structure-based-on-dye-doped-liquid-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1598</span> 316L Passive Film Modification During Pitting Corrosion Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Sriba">Amina Sriba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, interactions between the chemical elements forming the passive film of welded austenitic stainless steel during pitting corrosion are studied. We pay special attention to the chemical elements chromium, molybdenum, iron, nickel, and silicon since they make up the passive film that covers the fusion zone's surface in the welded joint. Molybdenum and chromium are typically the two essential components that control the three crucial stages of pit formation. It was found that while the involvement of chromium is more prominent during the propagation of a pit that has already begun, the enrichment of the molybdenum element in the passive film becomes apparent from the first stage of pit initiation. Additionally, during the pitting corrosion process, there was a noticeable fluctuation in the quantities of the produced oxides and hydroxide species from zone to zone. Regarding the formed hydroxide species, we clearly see that Nickel hydroxides are added to those of Chromium to constitute the outer layer in the passive film of the fusion zone sample, compared to the base metal sample, where only Chromium hydroxide formed on its surface during the pitting corrosion process. This reaction is caused by the preferential dissolution of the austenite phase instead of ferrite in the fusion zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusion%20zone" title="fusion zone">fusion zone</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20film" title=" passive film"> passive film</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20elements" title=" chemical elements"> chemical elements</a>, <a href="https://publications.waset.org/abstracts/search?q=pit" title=" pit"> pit</a> </p> <a href="https://publications.waset.org/abstracts/186833/316l-passive-film-modification-during-pitting-corrosion-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1597</span> Structural Anatomy and Deformation Pattern of the Palghat-Cauvery Shear Zone in the Central Sector, Tamil Nadu, Southern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mrinal%20Mukherjee">Mrinal Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gargi%20Seal"> Gargi Seal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bitopan%20Mazumdar"> Bitopan Mazumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakhar%20Agarwal"> Prakhar Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The central sector of Palghat-Cauvery Shear zone Tamil Nadu, India, had been studied with reference to development, mode of occurrence, interrelationship and variation of structural elements. The litho assemblages of the study area include gneisses migmatites granites and bear signature of multistage deformation patterns. The early deformation D1 is characterized in migmatites and gneisses by the development of tight to isoclinal, recumbent to reclined folds within the compositional bands that are refolded subsequently to produce D2 deformation structures ranging from type-II to type-III superposed geometry. The granite, in general, is undeformed, save a few places where strong mylonitic foliation developed with stretching lineation on it. The D1-D2 structures of gneisses and migmatites were affected by a D3 stage- E-W trending shear zone (Palghat-Cauvery Shear zone) that dips steeply towards north. The shear zone is characterized by the development of mylonite zone with stretching lineation on foliation, shear band structures, modification of geometry and orientation of earlier folds and foliations within the shear zone and development of shear induced folds and foliations. Several anastomosing lenses of shear zones define the larger Palghat-Cauvery Shear zone. The orientation of the shear induced folds and foliations and deflections of earlier foliation and folds within the Palghat-Cauvery shear zone indicate an oblique-slip thrust-shear with north-towards-east sense of displacement. The E-W trending shear zone is further openly folded along N-S in the D4 stage of deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformation" title="deformation">deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=migmatites" title=" migmatites"> migmatites</a>, <a href="https://publications.waset.org/abstracts/search?q=mylonites" title=" mylonites"> mylonites</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20zones" title=" shear zones"> shear zones</a> </p> <a href="https://publications.waset.org/abstracts/79150/structural-anatomy-and-deformation-pattern-of-the-palghat-cauvery-shear-zone-in-the-central-sector-tamil-nadu-southern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1596</span> Studying the Structural Behaviour of RC Beams with Circular Openings of Different Sizes and Locations Using FE Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shubbar">Ali Shubbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasanain%20Alwan"> Hasanain Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Yu%20Phur"> Ee Yu Phur</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20McLoughlin"> John McLoughlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameer%20Al-khaykan"> Ameer Al-khaykan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to investigate the structural behaviour of RC beams with circular openings of different sizes and locations modelled using ABAQUS FEM software. Seven RC beams with the dimensions of 1200 mm×150 mm×150 mm were tested under three-point loading. Group A consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the shear zone. However, Group B consists of three RC beams incorporating circular openings with diameters of 40 mm, 55 mm and 65 mm in the flexural zone. The final RC beam did not have any openings, to provide a control beam for comparison. The results show that increasing the diameter of the openings increases the maximum deflection and the ultimate failure load decreases relative to the control beam. In the shear zone, the presence of the openings caused an increase in the maximum deflection ranging between 4% and 22% and a decrease in the ultimate failure load of between 26% and 36% compared to the control beam. However, the presence of the openings in the flexural zone caused an increase in the maximum deflection of between 1.5% and 19.7% and a decrease in the ultimate failure load of between 6% and 13% relative to the control beam. In this study, the optimum location for placing circular openings was found to be in the flexural zone of the beam with a diameter of less than 30% of the depth of the beam.<o:p></o:p></span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultimate%20failure%20load" title="ultimate failure load">ultimate failure load</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20deflection" title=" maximum deflection"> maximum deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20zone%20and%20flexural%20zone" title=" shear zone and flexural zone"> shear zone and flexural zone</a> </p> <a href="https://publications.waset.org/abstracts/76164/studying-the-structural-behaviour-of-rc-beams-with-circular-openings-of-different-sizes-and-locations-using-fe-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1595</span> Foraminiferal Description and Biostratigraphy of Eocene Deposits in Zagros Basin (Izeh and Interior Fars Sub-Basins) in South-West of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ronak%20Gravand">Ronak Gravand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eocene deposits in Zagros basin in tow zones of interior Fars and Izeh include limestone and marly limestone succession along with abundant fossils. The significance of this area is due to its hydro carbonic resources. In Dashte Kuh section, limestone and marly limestone deposits with medium to thick creamy layers containing benthic foraminifera could be seen. Bio-zones identified in such deposits include Opertorbitolites Subzone, Somalina Subzone, Alveolina Nummulites Assemblage Subzone and Nummulites fabianii Silvestriella tetraedra Assembelage Zone. In Nil Kuh section, marly limestone of the succession contain abundant plagic foraminifera. The zones identified in this succession include Morozovella aragonesis Range Zone, Hantkenina nuttalli Range Zone, Hantkenina nuttalli Turborotalia cerro-azulensis Interval Zone, Turborotalia cerro-azulensis Range Zone and Morozovella aragonesis Range Zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zagros%20basin" title="zagros basin">zagros basin</a>, <a href="https://publications.waset.org/abstracts/search?q=foraminifera" title=" foraminifera "> foraminifera </a>, <a href="https://publications.waset.org/abstracts/search?q=biozone" title=" biozone"> biozone</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/12893/foraminiferal-description-and-biostratigraphy-of-eocene-deposits-in-zagros-basin-izeh-and-interior-fars-sub-basins-in-south-west-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1594</span> Microplastics in Different Coastal Zone Compartments at the South-Eastern Baltic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viktorija%20Sabaliauskait%C4%97">Viktorija Sabaliauskaitė</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar%C5%ABnas%20Bal%C4%8Di%C5%ABnas"> Arūnas Balčiūnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Rubavi%C4%8Di%C5%ABt%C4%97"> Renata Rubavičiūtė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research on microplastic pollution in aquatic environments is being conducted worldwide. This presented research focused on the South-Eastern Baltic Sea, where, due to the natural conditions, algae accumulation on beaches is common. The present conditions enabled to apply and integrate of various microplastic extraction techniques: filtration, density separation, and sample aeration in order to investigate the microplastic concentrations within different beach compartments (nearshore water reference zone, nearshore algal scum zone, beach surface sand reference zone, beach wrack zone). This study demonstrates results from a total of 496 collected samples. The comparison of microplastic mean concentrations in water-based (0,016 item/cm³) and land-based (0,29 item/cm³) samples gave a clear insight into the microplastic accumulation hot spots, which pose pollution hazards to marine ecosystems and humans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beach%20wrack" title="beach wrack">beach wrack</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20litter" title=" marine litter"> marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/178552/microplastics-in-different-coastal-zone-compartments-at-the-south-eastern-baltic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1593</span> Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20K.%20Rao"> K. R. K. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Shankar"> Ravi Shankar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomerate" title="agglomerate">agglomerate</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=softening-melting" title=" softening-melting"> softening-melting</a> </p> <a href="https://publications.waset.org/abstracts/74947/improvement-in-blast-furnace-performance-using-softening-melting-zone-profile-prediction-model-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Application of Remote Sensing and GIS for Delineating Groundwater Potential Zones of Ariyalur, Southern Part of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gnanachandrasamy">G. Gnanachandrasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhou"> Y. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Venkatramanan"> S. Venkatramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ramkumar"> T. Ramkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Wang"> S. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural resources of groundwater are the most precious resources around the world that balances are shrinking day by day. In connection, there is an urgency need for demarcation of potential groundwater zone. For these rationale integration of geographical information system (GIS) and remote sensing techniques (RS) for the hydrological studies have become a dramatic change in the field of hydrological research. These techniques are provided to locate the potential zone of groundwater. This research has been made to indent groundwater potential zone in Ariyalur of the southern part of India with help of GIS and remote sensing techniques. To identify the groundwater potential zone used by different thematic layers of geology, geomorphology, drainage, drainage density, lineaments, lineaments density, soil and slope with inverse distance weighting (IDW) methods. From the overall result reveals that the potential zone of groundwater in the study area classified into five classes named as very good (12.18 %), good (22.74 %), moderate (32.28 %), poor (27.7 %) and very poor (5.08 %). This technique suggested that very good potential zone of groundwater occurred in patches of northern and central parts of Jayamkondam, Andimadam and Palur regions in Ariyalur district. The result exhibited that inverse distance weighting method offered in this research is an effective tool for interpreting groundwater potential zones for suitable development and management of groundwater resources in different hydrogeological environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20potential%20zone" title=" groundwater potential zone"> groundwater potential zone</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/79645/application-of-remote-sensing-and-gis-for-delineating-groundwater-potential-zones-of-ariyalur-southern-part-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Mohyla">Petr Mohyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Hlavat%C3%BD"> Ivo Hlavatý</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Hrub%C3%BD"> Jiří Hrubý</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Krej%C4%8D%C3%AD"> Lucie Krejčí</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20affected%20zone" title="heat affected zone">heat affected zone</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator" title=" thermal cycle simulator"> thermal cycle simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20of%20tempering" title=" time of tempering"> time of tempering</a> </p> <a href="https://publications.waset.org/abstracts/67694/investigation-of-heat-affected-zone-of-steel-p92-using-the-thermal-cycle-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Neotectonic Features of the Fethiye-Burdur Fault Zone between Kozluca and Burdur, SW Anatolia, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkant%20Co%C5%9Fkuner">Berkant Coşkuner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmi%20Aksoy"> Rahmi Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to present some preliminary stratigraphic and structural evidence for the Fethiye-Burdur fault zone between Kozluca and Burdur. The Fethiye-Burdur fault zone, the easternmost extension of the west Anatolian extensional province, extends from the Gulf of Fethiye northeastward through Burdur, a distance of about 300 km. The research area is located in the Burdur segment of the fault zone. Here, the fault zone includes several parallel to subparallel fault branching and en-echelon faults that lie within a linear belt, as much as 20 km in width. The direction of movement in the fault zone has been oblique-slip in the left lateral sense. The basement of the study area consists of the Triassic-Eocene Lycian Nappes, the Eocene-Oligocene molasse sediments and the lower Miocene marine rocks. The Burdur basin contains two basin infills. The ancient and deformed basin fill is composed of lacustrine sediments of the upper Miocene-lower Pliocene age. The younger and undeformed basin fill comprises Plio-Quaternary alluvial fan and recent basin-floor deposits and unconformably overlies the ancient basin infill. The Burdur basin is bounded by the NE-SW trending, left lateral oblique-slip normal faults, the Karakent fault on the northwest and the Burdur fault on the southeast. These faults played a key role in the development of the Burdur basin as a pull-apart basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burdur%20basin" title="Burdur basin">Burdur basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethiye-Burdur%20fault%20zone" title=" Fethiye-Burdur fault zone"> Fethiye-Burdur fault zone</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20lateral%20oblique-slip%20fault" title=" left lateral oblique-slip fault"> left lateral oblique-slip fault</a>, <a href="https://publications.waset.org/abstracts/search?q=Western%20Anatolia" title=" Western Anatolia"> Western Anatolia</a> </p> <a href="https://publications.waset.org/abstracts/44673/neotectonic-features-of-the-fethiye-burdur-fault-zone-between-kozluca-and-burdur-sw-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Multiscale Cohesive Zone Modeling of Composite Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Iacobellis">Vincent Iacobellis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Behdinan"> Kamran Behdinan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title="cohesive zone model">cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20interface" title=" fiber-matrix interface"> fiber-matrix interface</a>, <a href="https://publications.waset.org/abstracts/search?q=microscale%20damage" title=" microscale damage"> microscale damage</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20modeling" title=" multiscale modeling"> multiscale modeling</a> </p> <a href="https://publications.waset.org/abstracts/36952/multiscale-cohesive-zone-modeling-of-composite-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Mineral Status of Feeds and Fodder and Its Subsequent Effect on Plasma of Livestock and Its Products in Red Lateritic Zone of West Bengal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Pyne">S. K. Pyne</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mondal"> M. Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Samanta"> G. Samanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A survey was carried out in red lateritic zone of West Bengal to compare the mineral status in plasma of livestock grazing over red lateritic region. Sufficient number of samples of soil, feeds, fodder and blood were collected from four districts of red lateritic zone namely, West Midnapore, Birbhum, Bankura and Purulia respectively. The samples were analysed for Calcium (Ca), Phosphorus (P), Copper (Cu), Zinc (Zn), Manganese (Mn) and Iron (Fe). Concentration of Cu, Mn and Fe in soil were above the minimum critical level, whereas, Zn deficiency is wide spread in red lateritic soil. Paddy straw is deficient in Ca, P, Zn and Mn in the region. Green fodders are also deficient in P, Cu, Zn. The richness of iron (Fe) in soil, feeds, fodder and tree leaves is the characteristics of this region. Phosphorus is deficient in plasma of all categories of livestock with the exception of bullock. Cu is deficient in plasma of calf. Plasma Mn and Fe were higher (p<0.01) in the animals of red lateritic zone. The study reveals that the overall deficiency of phosphorus in different categories of livestock and there is need of dietary supplementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral" title="mineral">mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20lateritic%20zone" title=" red lateritic zone"> red lateritic zone</a>, <a href="https://publications.waset.org/abstracts/search?q=grazing%20livestock" title=" grazing livestock"> grazing livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a> </p> <a href="https://publications.waset.org/abstracts/46146/mineral-status-of-feeds-and-fodder-and-its-subsequent-effect-on-plasma-of-livestock-and-its-products-in-red-lateritic-zone-of-west-bengal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.J.%20Wang">Y.J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Ru"> C. Q. Ru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20fracture" title="dynamic fracture">dynamic fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=traction-separation%20law" title=" traction-separation law"> traction-separation law</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20curve" title=" stress-strain curve"> stress-strain curve</a>, <a href="https://publications.waset.org/abstracts/search?q=J-integral" title=" J-integral"> J-integral</a> </p> <a href="https://publications.waset.org/abstracts/21419/a-cohesive-zone-model-with-parameters-determined-by-uniaxial-stress-strain-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Wang">Y. J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Ru"> C. Q. Ru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20fracture" title="dynamic fracture">dynamic fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=traction-separation%20law" title=" traction-separation law"> traction-separation law</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20curve" title=" stress-strain curve"> stress-strain curve</a>, <a href="https://publications.waset.org/abstracts/search?q=J-integral" title=" J-integral"> J-integral</a> </p> <a href="https://publications.waset.org/abstracts/23486/determination-of-cohesive-zone-models-parameters-based-on-the-uniaxial-stress-strain-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nt%C5%A1olo">M. Ntšolo</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kalumba"> D. Kalumba</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lefu"> N. Lefu</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Letlatsa"> G. Letlatsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Let&scaron;eng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Let&scaron;eng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20pit%20mine" title=" open pit mine"> open pit mine</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20zone" title=" shear zone"> shear zone</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a> </p> <a href="https://publications.waset.org/abstracts/60108/numerical-modelling-of-shear-zone-and-its-implications-on-slope-instability-at-letseng-diamond-open-pit-mine-lesotho" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> The Equality Test of Ceftriaxone Anti-Bacterial Effect and Ethanol Extract of Ant Plant (Myermecodia pendens Merr. and L. M Perry) to MRSA </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rifa%E2%80%99ah%20Mahmudah%20Bulu%E2%80%99">Rifa’ah Mahmudah Bulu’ </a> </p> <p class="card-text"><strong>Abstract:</strong></p> MRSA is an important nosocomial pathogen in the world. Therefore, the prevention and effort to control MRSA is still very important to conduct. One of the preventions of MRSA, which have been reported by several studies, is Cefriaxone and Ethanol Extract of Ant Plant. This research is an experimental test to determine the potency of MRSA’s anti-bacterial with Cefriaxone (30 μg) and Ethanol Extract of Ant Plant (13 mg/ml) based on inhibition zone on LAB (Lempeng Agar Biasa). The size of inhibition zone that is formed on Cefriaxone is adjusted with CSLI criteria, which ≥ 21 mm of inhibition zone is called sensitive; ≤13 mm is called resistance and between 14-20 mm is called intermediate. This research is conducted three times. Comparative test between Cefriaxone and Ethanol Extract of Ant Plant is analyzed by Maan Whitney’s statistic method. The Result of Cefriaxone anti-bacterial potency shows the variety of inhibition zone. Cefriaxone forms approximately 16,5-20 mm with average 18,22mm of inhibition zone that make Cefriaxone’s criteria to MRSA’s inhibition is intermediate. Anti-bacterial potency of Ethanol Extract of Ant Plant is about 0,5-2 mm with average 1,17 mm of inhibition zone that prove MRSA is sensitive to Ant Plant. The conclusion of this research shows that Cefriaxone is intermediate to MRSA’s inhibition, while MRSA is sensitive to Ethanol Extract of Ant Plant, which at the end; it creates different potency of anti-bacterial between Cefriaxone and Ethanol Extract of Ant Plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MRSA" title="MRSA">MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=cefriaxone" title=" cefriaxone"> cefriaxone</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20plant" title=" ant plant"> ant plant</a>, <a href="https://publications.waset.org/abstracts/search?q=CSLI" title=" CSLI"> CSLI</a>, <a href="https://publications.waset.org/abstracts/search?q=mann%20whitney" title=" mann whitney"> mann whitney</a> </p> <a href="https://publications.waset.org/abstracts/39334/the-equality-test-of-ceftriaxone-anti-bacterial-effect-and-ethanol-extract-of-ant-plant-myermecodia-pendens-merr-and-l-m-perry-to-mrsa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=no%20take%20zone&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10