CINXE.COM
Search results for: metal detection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metal detection</title> <meta name="description" content="Search results for: metal detection"> <meta name="keywords" content="metal detection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metal detection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metal detection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5792</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metal detection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5792</span> A Paper Based Sensor for Mercury Ion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20G.%20Cansu%20Ergun">Emine G. Cansu Ergun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugated system based sensors for selective detection of metal ions have been taking attention during last two decades. Fluorescent sensors are the promising candidates for ion detection due to their high selectivity towards metal ions, and rapid response times. Detection of mercury in an environmenet is important since mercury is a toxic element for human. Beyond the maximum allowable limit, mercury may cause serious problems in human health by spreading into the atmosphere, water and the food chain. In this study, a quinoxaline and 3,4-ethylenedioxy thiophene based donor-acceptor-donor type conjugated molecule used as a fluorescent sensor for detecting the mercury ion in aqueous medium. Among other various cations, existence of mercury resulted in a full quenching of the fluorescence signal. Then, a paper based sensor is constructed and used for mercury detection. As a result it is concluded that the offering sensor is a good candidate for selective mercury detection in aqueous media both in solution and paper based forms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conjugated%20molecules" title="Conjugated molecules ">Conjugated molecules </a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20quenching" title=" fluorescence quenching"> fluorescence quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ion%20detection" title=" metal ion detection "> metal ion detection </a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/128523/a-paper-based-sensor-for-mercury-ion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5791</span> Indicator-Immobilized, Cellulose Based Optical Sensing Membrane for the Detection of Heavy Metal Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Dhariwal">Nisha Dhariwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Sharma"> Anupama Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of cellulose nanofibrils quaternized with 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (CHPTAC) in NaOH/urea aqueous solution has been reported. Xylenol Orange (XO) has been used as an indicator for selective detection of Sn (II) ions, by its immobilization on quaternized cellulose membrane. The effects of pH, reagent concentration and reaction time on the immobilization of XO have also been studied. The linear response, limit of detection, and interference of other metal ions have also been studied and no significant interference has been observed. The optical chemical sensor displayed good durability and short response time with negligible leaching of the reagent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title=" chemical sensor"> chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=indicator%20immobilization" title=" indicator immobilization"> indicator immobilization</a> </p> <a href="https://publications.waset.org/abstracts/43826/indicator-immobilized-cellulose-based-optical-sensing-membrane-for-the-detection-of-heavy-metal-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5790</span> Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sai%20Snehitha%20Yadavalli">Sai Snehitha Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sruthi"> K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Ghosh%20Acharyya"> Swati Ghosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensing" title=" electrochemical sensing"> electrochemical sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon%20electrodes" title=" glassy carbon electrodes"> glassy carbon electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20Ions" title=" heavy metal Ions"> heavy metal Ions</a>, <a href="https://publications.waset.org/abstracts/search?q=Iron" title=" Iron"> Iron</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride" title=" polyvinyl chloride"> polyvinyl chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiostat" title=" potentiostat"> potentiostat</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/146822/simultaneous-detection-of-cd2-fe2-co2-and-pb2-heavy-metal-ions-by-stripping-voltammetry-using-polyvinyl-chloride-modified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5789</span> Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Babajanyan">A. J. Babajanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Abrahamyan"> T. A. Abrahamyan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Minasyan"> H. A. Minasyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Nerkararyan"> K. V. Nerkararyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-tip" title="fiber-tip">fiber-tip</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-air%20interface" title=" liquid-air interface"> liquid-air interface</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20vibration" title=" nano vibration"> nano vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=opto-mechanical%20sensor" title=" opto-mechanical sensor"> opto-mechanical sensor</a> </p> <a href="https://publications.waset.org/abstracts/28296/sensitive-detection-of-nano-scale-vibrations-by-the-metal-coated-fiber-tip-at-the-liquid-air-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5788</span> Dual Mode “Turn On-Off-On” Photoluminescence Detection of EDTA and Lead Using Moringa Oleifera Gum-Derived Carbon Dots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anisha%20Mandal">Anisha Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Swambabu%20Varanasi"> Swambabu Varanasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead is one of the most prevalent toxic heavy metal ions, and its pollution poses a significant threat to the environment and human health. On the other hand, Ethylenediaminetetraacetic acid is a widely used metal chelating agent that, due to its poor biodegradability, is an incessant pollutant to the environment. For the first time, a green, simple, and cost-effective approach is used to hydrothermally synthesise photoluminescent carbon dots using Moringa Oleifera Gum in a single step. Then, using Moringa Oleifera Gum-derived carbon dots, a photoluminescent "ON-OFF-ON" mechanism for dual mode detection of trace Pb2+ and EDTA was proposed. MOG-CDs detect Pb2+ selectively and sensitively using a photoluminescence quenching mechanism, with a detection limit (LOD) of 0.000472 ppm. (1.24 nM). The quenched photoluminescence can be restored by adding EDTA to the MOG-CD+Pb2+ system; this strategy is used to quantify EDTA at a level of detection of 0.0026 ppm. (8.9 nM). The quantification of Pb2+ and EDTA in actual samples encapsulated the applicability and dependability of the proposed photoluminescent probe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=moringa%20oleifera%20gum" title=" moringa oleifera gum"> moringa oleifera gum</a> </p> <a href="https://publications.waset.org/abstracts/165332/dual-mode-turn-on-off-on-photoluminescence-detection-of-edta-and-lead-using-moringa-oleifera-gum-derived-carbon-dots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5787</span> [Keynote Talk]: Heavy Metals in Marine Sediments of Gulf of Izmir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kam">E. Kam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20U.%20Y%C3%BCm%C3%BCn"> Z. U. Yümün</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kurt"> D. Kurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, sediment samples were collected from four sampling sites located on the shores of the Gulf of İzmir. In the samples, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled, plasma-optical emission spectrometry (ICP-OES). The average heavy metal concentrations were: Cd < LOD (limit of detection); Co 14.145 ± 0.13 μg g<sup>−1</sup>; Cr 112.868 ± 0.89 μg g<sup>−1</sup>; Cu 34.045 ± 0.53 μg g<sup>−1</sup>; Mn 481.43 ± 7.65 μg g<sup>−1</sup>; Ni 76.538 ± 3.81 μg g<sup>−1</sup>; Pb 11.059 ± 0.53 μg g<sup>−1 </sup>and Zn 140.133 ± 1.37 μg g<sup>−1</sup>, respectively. The results were compared with the average abundances of these elements in the Earth’s crust. The measured heavy metal concentrations can serve as reference values for further studies carried out on the shores of the Aegean Sea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aegean%20Sea" title=" Aegean Sea"> Aegean Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-OES" title=" ICP-OES"> ICP-OES</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/99378/keynote-talk-heavy-metals-in-marine-sediments-of-gulf-of-izmir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5786</span> WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arpan%20Kumar%20Nayak">Arpan Kumar Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Pradhan"> Debabrata Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title="gas sensing">gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20oxides" title=" mixed oxides"> mixed oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoplates" title=" nanoplates"> nanoplates</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=acetone" title=" acetone"> acetone</a> </p> <a href="https://publications.waset.org/abstracts/53334/wo3-sno2-sensors-for-selective-detection-of-volatile-organic-compounds-for-breath-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5785</span> Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syamala%20Krishnannair">Syamala Krishnannair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20monitoring" title=" process monitoring"> process monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilarity%20scale" title=" dissimilarity scale"> dissimilarity scale</a> </p> <a href="https://publications.waset.org/abstracts/83263/multivariate-statistical-process-monitoring-of-base-metal-flotation-plant-using-dissimilarity-scale-based-singular-spectrum-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5784</span> Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annu%20Sheokand">Annu Sheokand</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection%20limit" title="detection limit">detection limit</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/193481/exploring-the-gas-sensing-performance-of-cu-doped-iron-oxide-derived-from-metal-organic-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5783</span> Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juree%20Hong">Juree Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanggeun%20Lee"> Sanggeun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungmok%20Seo"> Jungmok Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Taeyoon%20Lee"> Taeyoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20nanoparticle" title="metal nanoparticle">metal nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=galvanic%20displacement%20reaction" title=" galvanic displacement reaction"> galvanic displacement reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sensor" title=" hydrogen sensor"> hydrogen sensor</a> </p> <a href="https://publications.waset.org/abstracts/18400/facile-synthesis-of-metal-nanoparticles-on-graphene-via-galvanic-displacement-reaction-for-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5782</span> One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ghasemi">Mostafa Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Urquhart"> Andrew Urquhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20sensing" title=" pH sensing"> pH sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions%20sensor" title=" metal ions sensor"> metal ions sensor</a> </p> <a href="https://publications.waset.org/abstracts/176075/one-step-synthesis-of-fluorescent-carbon-dots-in-a-green-way-as-effective-fluorescent-probes-for-detection-of-iron-ions-and-ph-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5781</span> Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davit%20Mirzoyan">Davit Mirzoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ararat%20Khachatryan"> Ararat Khachatryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20corner" title=" process corner"> process corner</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20variation" title=" process variation"> process variation</a> </p> <a href="https://publications.waset.org/abstracts/65067/metal-oxide-semiconductor-only-process-corner-monitoring-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5780</span> Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Hataivichian">Napat Hataivichian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation" title=" dehydrogenation"> dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a> </p> <a href="https://publications.waset.org/abstracts/25499/propane-dehydrogenation-with-better-stability-by-a-modified-pt-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5779</span> Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaibir%20Sharma">Jaibir Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20JaeWung"> Lee JaeWung</a>, <a href="https://publications.waset.org/abstracts/search?q=Merugu%20Srinivas"> Merugu Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Navab%20Singh"> Navab Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dewetting" title="dewetting">dewetting</a>, <a href="https://publications.waset.org/abstracts/search?q=themal%20annealing" title=" themal annealing"> themal annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a> </p> <a href="https://publications.waset.org/abstracts/31602/preparation-of-porous-metal-membrane-by-thermal-annealing-for-thin-film-encapsulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">658</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5778</span> Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aidan%20Battison">Aidan Battison</a>, <a href="https://publications.waset.org/abstracts/search?q=Neliswa%20Mama"> Neliswa Mama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemosensor" title="chemosensor">chemosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=%22click%22%20chemistry" title=" "click" chemistry"> "click" chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=coumarin" title=" coumarin"> coumarin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20quenching" title=" static quenching"> static quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=triazole" title=" triazole"> triazole</a> </p> <a href="https://publications.waset.org/abstracts/124685/synthesis-of-fluorescent-pet-type-turn-off-triazolyl-coumarin-based-chemosensors-for-the-sensitive-and-selective-sensing-of-fe3-ions-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5777</span> Cu Voids Detection of Electron Beam Inspection at the 5nm Node</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byungsik%20Moon">Byungsik Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron beam inspection (EBI) has played an important role in detecting defects during the Fab process. The study focused on capturing buried Cu metal voids for 5nm technology nodes in Qualcomm Snapdragon mass production. This paper illustrates a case study where Cu metal voids can be detected without side effects with optimized EBI scanning conditions. The voids were buried in the VIA and not detected effectively by bright field inspection. EBI showed higher detectability, about 10 times that of bright fields, and a lower landing energy of EBI can avoid film damage. A comparison of detectability between EBI and bright field inspection was performed, and TEM confirmed voids that were detected by EBI. Therefore, a much higher detectability of buried Cu metal voids can be achieved without causing film damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20inspection" title="electron beam inspection">electron beam inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=EBI" title=" EBI"> EBI</a>, <a href="https://publications.waset.org/abstracts/search?q=landing%20energy" title=" landing energy"> landing energy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%20metal%20voids" title=" Cu metal voids"> Cu metal voids</a>, <a href="https://publications.waset.org/abstracts/search?q=bright%20field%20inspection" title=" bright field inspection"> bright field inspection</a> </p> <a href="https://publications.waset.org/abstracts/170762/cu-voids-detection-of-electron-beam-inspection-at-the-5nm-node" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5776</span> Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sruthi">K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Snehitha%20Yadavalli"> Sai Snehitha Yadavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Swathi%20Gosh%20Acharyya"> Swathi Gosh Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=glassy%20carbon%20electrode" title=" glassy carbon electrode"> glassy carbon electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20wave%20anodic%20stripping%20voltammetry" title=" square wave anodic stripping voltammetry"> square wave anodic stripping voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/146805/optimized-parameters-for-simultaneous-detection-of-cd2-pb2-and-co2-ions-in-water-using-square-wave-voltammetry-on-the-unmodified-glassy-carbon-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5775</span> Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abu-Ali">H. Abu-Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nabok"> A. Nabok</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Smith"> T. Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aptamer" title="aptamer">aptamer</a>, <a href="https://publications.waset.org/abstracts/search?q=based" title=" based"> based</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=highly" title=" highly"> highly</a>, <a href="https://publications.waset.org/abstracts/search?q=specific" title=" specific"> specific</a> </p> <a href="https://publications.waset.org/abstracts/86012/highly-specific-dna-aptamer-based-electrochemical-biosensor-for-mercury-ii-and-lead-ii-ions-detection-in-water-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5774</span> Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sisuwan%20Kaseamsawat">Sisuwan Kaseamsawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivapan%20Choo-In"> Sivapan Choo-In</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=orchard" title=" orchard"> orchard</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20and%20monitoring" title=" pollution and monitoring"> pollution and monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/8591/heavy-metal-concentration-in-orchard-area-amphawa-district-samut-songkram-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5773</span> Use of Microbial Fuel Cell for Metal Recovery from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajbhan%20Sevda">Surajbhan Sevda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title="metal recovery">metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/78731/use-of-microbial-fuel-cell-for-metal-recovery-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5772</span> Development of PPy-M Composites Materials for Sensor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yatimah%20Alias">Yatimah Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilagam%20Marimuthu"> Tilagam Marimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Mahmoudian"> M. R. Mahmoudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifah%20Mohamad"> Sharifah Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic%20sensor" title=" non-enzymatic sensor"> non-enzymatic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/37259/development-of-ppy-m-composites-materials-for-sensor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5771</span> Detection of Selected Heavy Metals in Raw Milk: Lahore, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huma%20Naeem">Huma Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saif-Ur-Rehman%20Kashif"> Saif-Ur-Rehman Kashif</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nawaz%20Chaudhry"> Muhammad Nawaz Chaudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk plays a significant role in the dietary requirements of human beings as it is a single source that provides various essential nutrients. A study was conducted to evaluate the heavy metal concentration in the raw milk marketed in Data Gunj Baksh Town of Lahore. A total of 180 samples of raw milk were collected in pre-monsoon, monsoon and post-monsoon season from five colonies of Data Gunj Baksh Town, Lahore. The milk samples were subjected to heavy metal analysis (Cr, Cu) by atomic absorption spectrophotometer. Results indicated high levels of Cr and Cu in post-monsoon seasons. Heavy metals were detected in milk in all samples under study and exceeded the standards given by FAO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrophotometer" title="atomic absorption spectrophotometer">atomic absorption spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a> </p> <a href="https://publications.waset.org/abstracts/26373/detection-of-selected-heavy-metals-in-raw-milk-lahore-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5770</span> Investigation of Cylindrical Multi-Layer Hybrid Plasmonic Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateeksha%20Sharma">Prateeksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Dinesh%20Kumar"> V. Dinesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performances of cylindrical multilayer hybrid plasmonic waveguides have been investigated in detail considering their structural and material aspects. Characteristics of hybrid metal insulator metal (HMIM) and hybrid insulator metal insulator (HIMI) waveguides have been compared on the basis of propagation length and confinement factor. Necessity of this study is to understand newer kind of waveguides that overcome the limitations of conventional waveguides. Investigation reveals that sub wavelength confinement can be obtained in two low dielectric spacer layers. This study provides gateway for many applications such as nano lasers, interconnects, bio sensors and optical trapping etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20insulator%20metal%20insulator" title="hybrid insulator metal insulator">hybrid insulator metal insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20metal%20insulator%20metal" title=" hybrid metal insulator metal"> hybrid metal insulator metal</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20laser" title=" nano laser"> nano laser</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20polariton" title=" surface plasmon polariton"> surface plasmon polariton</a> </p> <a href="https://publications.waset.org/abstracts/33732/investigation-of-cylindrical-multi-layer-hybrid-plasmonic-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5769</span> A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amol%20M.%20Jadhav">Amol M. Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20S.%20Chudhari"> Sharad S. Chudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Khedkar"> S. S. Khedkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20spinning" title="metal spinning">metal spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20of%20metal%20spinning" title=" simulation of metal spinning"> simulation of metal spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering" title=" mechanical engineering"> mechanical engineering</a> </p> <a href="https://publications.waset.org/abstracts/17246/a-systamatic-review-on-experimental-fem-analysis-and-simulation-of-metal-spinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5768</span> PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shah%20Sufaid">Shah Sufaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Shahid"> Hussain Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianyan%20You"> Tianyan You</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Guiwu"> Liu Guiwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiao%20Guanjun"> Qiao Guanjun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiO%40CuO%20NFs" title="NiO@CuO NFs">NiO@CuO NFs</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20framework" title=" metal organic framework"> metal organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structure" title=" porous structure"> porous structure</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82" title=" H₂"> H₂</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a> </p> <a href="https://publications.waset.org/abstracts/186504/ppb-level-h2-gas-sensor-based-on-porous-ni-mof-derived-nio-at-cuo-nanoflowers-for-superior-sensing-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5767</span> Selective Circular Dichroism Sensor Based on the Generation of Quantum Dots for Cadmium Ion Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradthana%20Sianglam">Pradthana Sianglam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wittaya%20Ngeontae"> Wittaya Ngeontae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new approach for the fabrication of cadmium ion (Cd2+) sensor is demonstrated. The detection principle is based on the in-situ generation of cadmium sulfide quantum dots (CdS QDs) in the presence of chiral thiol containing compound and detection by the circular dichroism spectroscopy (CD). Basically, the generation of CdS QDs can be done in the presence of Cd2+, sulfide ion and suitable capping compounds. In addition, the strong CD signal can be recorded if the generated QDs possess chiral property (from chiral capping molecule). Thus, the degree of CD signal change depends on the number of the generated CdS QDs which can be related to the concentration of Cd2+ (excess of other components). In this work, we use the mixture of cysteamine (Cys) and L-Penicillamine (LPA) as the capping molecules. The strong CD signal can be observed when the solution contains sodium sulfide, Cys, LPA, and Cd2+. Moreover, the CD signal is linearly related to the concentration of Cd2+. This approach shows excellence selectivity towards the detection of Cd2+ when comparing to other cation. The proposed CD sensor provides low limit detection limits around 70 µM and can be used with real water samples with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20dichroism%20sensor" title="circular dichroism sensor">circular dichroism sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=enaniomer" title=" enaniomer"> enaniomer</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20generation" title=" in-situ generation"> in-situ generation</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20sensor" title=" chemical sensor"> chemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ion" title=" heavy metal ion"> heavy metal ion</a> </p> <a href="https://publications.waset.org/abstracts/48121/selective-circular-dichroism-sensor-based-on-the-generation-of-quantum-dots-for-cadmium-ion-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5766</span> Method Validation for Heavy Metal Determination in Spring Water and Sediments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Abdisa">Habtamu Abdisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=method%20validation" title="method validation">method validation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20water" title=" spring water"> spring water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20detection%20limit" title=" method detection limit"> method detection limit</a> </p> <a href="https://publications.waset.org/abstracts/173392/method-validation-for-heavy-metal-determination-in-spring-water-and-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5765</span> Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Jeong%20Kim">Jae-Jeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Ro%20Kim"> Ki-Ro Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MIMO-OFDM" title="MIMO-OFDM">MIMO-OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=QRD-M" title=" QRD-M"> QRD-M</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20condition" title=" channel condition"> channel condition</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a> </p> <a href="https://publications.waset.org/abstracts/3518/efficient-signal-detection-using-qrd-m-based-on-channel-condition-in-mimo-ofdm-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5764</span> Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20%20Jha"> Abhiram Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title="blast furnace">blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20tools" title=" statistical tools"> statistical tools</a> </p> <a href="https://publications.waset.org/abstracts/74955/reduction-in-hot-metal-silicon-through-statistical-analysis-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5763</span> A Review on Aluminium Metal Matric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Singh">V. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh"> S. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Garewal"> S. S. Garewal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal matrix composites with aluminum as the matrix material have been heralded as the next great development in advanced engineering materials. Aluminum metal matrix composites (AMMC) refer to the class of light weight high performance material systems. Properties of AMMCs can be tailored to the demands of different industrial applications by suitable combinations of matrix, reinforcement and processing route. AMMC finds its application in automotive, aerospace, defense, sports and structural areas. This paper presents an overview of AMMC material systems on aspects relating to processing, types and applications with case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20metal%20matrix%20composites" title="aluminum metal matrix composites">aluminum metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=applications%20of%20aluminum%20metal%20matrix%20composites" title=" applications of aluminum metal matrix composites"> applications of aluminum metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=lighting%20material%20processing%20of%20aluminum%20metal%20matrix%20composites" title=" lighting material processing of aluminum metal matrix composites"> lighting material processing of aluminum metal matrix composites</a> </p> <a href="https://publications.waset.org/abstracts/62849/a-review-on-aluminium-metal-matric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=193">193</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=194">194</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20detection&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>