CINXE.COM

Search results for: bioink

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bioink</title> <meta name="description" content="Search results for: bioink"> <meta name="keywords" content="bioink"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bioink" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bioink"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bioink</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Dual Ion-Crosslinking Human Keratin Based Bioink for 3D Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Seo%20Lee">Jae Seo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Keun%20Kwon"> Il Keun Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, keratin-based on natural extracts has considerably increased interest as a skin tissue regeneration. However, most parts of keratin had a limitation to 3D scaffolds due to low biological affinity and general low mechanical properties. To create a 3D structure, a facile bioink was designed with a photocurable crosslinking stage system using natural polymer-based human keratin. Keratin-based bioink enables the crosslinking more quickly through two types of photo and ion crosslinking for module engineering assembly. Rheological results showed that keratin-based bioink with high concentration possessed superior mechanical rigidity for 3D bioprinting. Different 3D geometrically constructs were successfully fabricated with optimal bioprinting parameters through the 3D printer with X-Y-Z controlled UV laser system. The presented study has offered a distinct advantage for 3D printing of keratin-based hydrogel into 3D complex-shaped biomimetic constructs. Thus, keratin-based bioink opens up new avenues in bioprinting to directly substitute tissue or organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20keratin" title="human keratin">human keratin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-crosslinking" title=" ion-crosslinking"> ion-crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20bioprinting" title=" 3D bioprinting"> 3D bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/126297/dual-ion-crosslinking-human-keratin-based-bioink-for-3d-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Jiun-Ming%20Su">Jimmy Jiun-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Min%20Lin"> Yuan-Min Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title="bioprinting">bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20encapsulation" title=" cell encapsulation"> cell encapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20light%20processing" title=" digital light processing"> digital light processing</a>, <a href="https://publications.waset.org/abstracts/search?q=GelMA%20hydrogel" title=" GelMA hydrogel"> GelMA hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/90711/a-3d-bioprinting-system-for-engineering-cell-embedded-hydrogels-by-digital-light-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubusuyi%20Ayowole">Olubusuyi Ayowole</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Khoda"> Bashir Khoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20bioprinting" title="green bioprinting">green bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20bioprinting" title=" 3d bioprinting"> 3d bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20cell" title=" microalgae cell"> microalgae cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20hydrogel%20scaffolds" title=" hybrid hydrogel scaffolds"> hybrid hydrogel scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20analysis" title=" spectrophotometric analysis"> spectrophotometric analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bioink%20development" title=" bioink development"> bioink development</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20thinning%20properties" title=" shear thinning properties"> shear thinning properties</a> </p> <a href="https://publications.waset.org/abstracts/188298/spectrophotometric-evaluation-of-custom-microalgae-based-bioink-formulations-for-optimized-green-bioprinting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Design of 3D Bioprinted Scaffolds for Cartilage Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Pinilla">Gloria Pinilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Manuel%20Baena"> Jose Manuel Baena</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20%20G%C3%A1lvez-Mart%C3%ADn"> Patricia Gálvez-Martín</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Antonio%20Marchad"> Juan Antonio Marchad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cartilage%20regeneration" title="cartilage regeneration">cartilage regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title=" bioprinting"> bioprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=bioink" title=" bioink"> bioink</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=chondrocyte" title=" chondrocyte"> chondrocyte</a> </p> <a href="https://publications.waset.org/abstracts/71676/design-of-3d-bioprinted-scaffolds-for-cartilage-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Use of 3D Printed Bioscaffolds from Decellularized Umbilical Cord for Cartilage Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayyaba%20Bari">Tayyaba Bari</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hamza%20Anjum"> Muhammad Hamza Anjum</a>, <a href="https://publications.waset.org/abstracts/search?q=Samra%20Kanwal"> Samra Kanwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakhera%20Ikram"> Fakhera Ikram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoarthritis, a degenerative condition, affects more than 213 million individuals globally. Since articular cartilage has no or limited vessels, therefore, after deteriorating, it is unable to rejuvenate. Traditional approaches for cartilage repair, like autologous chondrocyte implantation, microfracture and cartilage transplantation are often associated with postoperative complications and lead to further degradation. Decellularized human umbilical cord has gained interest as a viable treatment for cartilage repair. Decellularization removes all cellular contents as well as debris, leaving a biologically active 3D network known as extracellular matrix (ECM). This matrix is biodegradable, non-immunogenic and provides a microenvironment for homeostasis, growth and repair. UC derived bioink function as 3D scaffolding material, not only mediates cell-matrix interactions but also adherence, proliferation and propagation of cells for 3D organoids. This study comprises different physical, chemical and biological approaches to optimize the decellularization of human umbilical cord (UC) tissues followed by the solubilization of these tissues to bioink formation. The decellularization process consisted of two cycles of freeze thaw where the umbilical cord at -20˚C was thawed at room temperature followed by dissection in small sections from 0.5 to 1cm. Similarly decellularization with ionic and non-ionic detergents Sodium dodecyl sulfate (SDS) and Triton-X 100 revealed that both concentrations of SDS i.e 0.1% and 1% were effective in complete removal of cells from the small UC tissues. The results of decellularization was further confirmed by running them on 1% agarose gel. Histological analysis revealed the efficacy of decellularization, which involves paraffin embedded samples of 4μm processed for Hematoxylin-eosin-safran and 4,6-diamidino-2-phenylindole (DAPI). ECM preservation was confirmed by Alcian Blue, and Masson’s trichrome staining on consecutive sections and images were obtained. Sulfated GAG’s content were determined by 1,9-dimethyl-methylene blue (DMMB) assay, similarly collagen quantification was done by hydroxy proline assay. This 3D bioengineered scaffold will provide a typical atmosphere as in the extracellular matrix of the tissue, which would be seeded with the mesenchymal cells to generate the desired 3D ink for in vitro and in vivo cartilage regeneration applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=umbilical%20cord" title="umbilical cord">umbilical cord</a>, <a href="https://publications.waset.org/abstracts/search?q=3d%20printing" title=" 3d printing"> 3d printing</a>, <a href="https://publications.waset.org/abstracts/search?q=bioink" title=" bioink"> bioink</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=cartilage%20regeneration" title=" cartilage regeneration"> cartilage regeneration</a> </p> <a href="https://publications.waset.org/abstracts/164184/use-of-3d-printed-bioscaffolds-from-decellularized-umbilical-cord-for-cartilage-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=MyungGu%20Yeo">MyungGu Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=JongHan%20Ha"> JongHan Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gi-Hoon%20Yang"> Gi-Hoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=JaeYoon%20Lee"> JaeYoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=SeungHyun%20Ahn"> SeungHyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeongjin%20Lee"> Hyeongjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=HoJun%20Jeon"> HoJun Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBok%20Kim"> YongBok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minseong%20Kim"> Minseong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=GeunHyung%20Kim"> GeunHyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioink" title="bioink">bioink</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-laden%20scaffold" title=" cell-laden scaffold"> cell-laden scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%2Fnanofibers" title=" micro/nanofibers"> micro/nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28caprolactone%29" title=" poly(caprolactone)"> poly(caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/40640/fabrication-of-hybrid-scaffolds-consisting-of-cell-laden-electrospun-micronanofibers-and-pcl-micro-structures-for-tissue-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20Cabral">J. D. Cabral</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Murray"> E. Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Turner"> P. Turner</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Hewitt"> E. Hewitt</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ali"> A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20McConnell"> M. McConnell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title=" hydrogels"> hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20bioprinting" title=" 3D bioprinting"> 3D bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/98096/development-of-chitosandextran-gelatin-methacrylate-coreshell-3d-scaffolds-and-proteinpolycaprolactone-melt-electrowriting-meshes-for-tissue-regeneration-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dean%20Robinson">Dean Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Gublebank"> Miriam Gublebank</a>, <a href="https://publications.waset.org/abstracts/search?q=Ella%20Sklan"> Ella Sklan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tali%20Tavor%20Re%27em"> Tali Tavor Re&#039;em</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title="cell culture">cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=spider%20silk" title=" spider silk"> spider silk</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprinting" title=" bioprinting"> bioprinting</a> </p> <a href="https://publications.waset.org/abstracts/148116/improving-alginate-bioink-by-recombinant-spider-silk-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10