CINXE.COM

Search results for: columnar structures

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: columnar structures</title> <meta name="description" content="Search results for: columnar structures"> <meta name="keywords" content="columnar structures"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="columnar structures" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="columnar structures"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4205</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: columnar structures</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4205</span> Empirical Research to Improve Performances of Paddy Columnar Dryer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duong%20Thi%20Hong">Duong Thi Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Hung"> Nguyen Van Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Gummert"> Martin Gummert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Good practices of mechanical drying can reduce losses of grain quality. Recently, with demands of higher capacity for paddy drying in the Mekong River Delta of Vietnam, columnar dryers have been introduced rapidly in this area. To improve the technology, this study was conducted to investigate and optimize the parameters for drying Jasmine paddy using an empirical cross-flow columnar dryer. The optimum parameters were resulted in air flow rate and drying temperature that are 1-1.5 m³ s-¹ t-¹ of paddy and 40-42°C, respectively. The investigation also addressed a solution of reversing drying air to achieve the uniformity of grain temperature and quality. Results of this study should be significant for developments of grain drying, contributing to reduce post harvest losses <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paddy%20drying" title="paddy drying">paddy drying</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20dryer" title=" columnar dryer"> columnar dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20rate" title=" air flow rate"> air flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20temperature" title=" drying temperature"> drying temperature</a> </p> <a href="https://publications.waset.org/abstracts/51851/empirical-research-to-improve-performances-of-paddy-columnar-dryer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4204</span> Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20V.%20Arishina"> Ksenia V. Arishina</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Zaharov"> Robert G. Zaharov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi₂₆-₂ₓMn₂ₓMo₁₀O₆₉-d and Bi₂₆Mo₁₀-₂yMn₂yO₆₉-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20molybdate" title="bismuth molybdate">bismuth molybdate</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structures" title=" columnar structures"> columnar structures</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20ionic%20conductors" title=" oxygen ionic conductors"> oxygen ionic conductors</a> </p> <a href="https://publications.waset.org/abstracts/38423/structural-and-electrochemical-characterization-of-columnar-structured-mn-doped-bi26mo10o69-d-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4203</span> Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungkyun%20Na">Jungkyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaesang%20Lee"> Jaesang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mo%20Koo"> Yang Mo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steel" title="electrical steel">electrical steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Goss%20texture" title=" Goss texture"> Goss texture</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structure" title=" columnar structure"> columnar structure</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20grain%20growth" title=" normal grain growth"> normal grain growth</a> </p> <a href="https://publications.waset.org/abstracts/74896/effect-of-heat-treatment-on-columnar-grain-growth-and-goss-texture-on-surface-in-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4202</span> Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zahran">Ahmed Zahran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria%20physiological%20properties" title="bifidobacteria physiological properties">bifidobacteria physiological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk" title=" soy milk"> soy milk</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=attachment%20epithelial%20cells" title=" attachment epithelial cells"> attachment epithelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20tissues" title=" columnar tissues"> columnar tissues</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20food" title=" probiotic food"> probiotic food</a> </p> <a href="https://publications.waset.org/abstracts/168851/growth-and-some-physiological-properties-of-three-selected-species-of-bifidobacteria-in-admixture-of-soy-milk-and-goat-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4201</span> Post-Hatching Development of the Cloacal Bursa in Chicken</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20A.%20Alhomaid">Fatimah A. Alhomaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 40 one day-old LSL chicks (Lohman Selected Loghorn) were used in this study. In 20 days-old chicks, the bursa was formed of mucosa, musculosa and serosa. Its lamina propria was lymphoid in nature. After hatching, the bursa continued to grow and became fully developed at the 30th day post- hatching. It appeared as a blind sac. Its lumen was occupied by 12-13 mucosal folds. Each fold was lined by tall columnar or pseudo- stratified columnar epithelium. Its core was made of lamina propria infiltrated by a large number of lymphoid follicles. Most follicles possessed an outer corona surrounding a germinal center. At the age of 6 weeks physiological regression of the bursa was observed. The lymphoid follicles were decreased in size, the lymphocytes were depleted and the interfollicular stroma became obvious, thicker and more fibrous. Fibrosis of the lymphoid follicles was frequently seen in some sections at the age of 30 weeks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bursa%20of%20fabricius" title="Bursa of fabricius">Bursa of fabricius</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocytes" title=" lymphocytes"> lymphocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=cloacal%20Bursa" title=" cloacal Bursa"> cloacal Bursa</a> </p> <a href="https://publications.waset.org/abstracts/28732/post-hatching-development-of-the-cloacal-bursa-in-chicken" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4200</span> Fabrication of Silicon Solar Cells Using All Sputtering Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Hua%20Li">Ching-Hua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Hui%20Chen"> Sheng-Hui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=sputtering%20process" title=" sputtering process"> sputtering process</a>, <a href="https://publications.waset.org/abstracts/search?q=pvd" title=" pvd"> pvd</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy%20target" title=" alloy target"> alloy target</a> </p> <a href="https://publications.waset.org/abstracts/30724/fabrication-of-silicon-solar-cells-using-all-sputtering-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4199</span> Soil Arching Effect in Columnar Embankments: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riya%20Roy">Riya Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Bhasi"> Anjana Bhasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Column-supported embankments provide a practical and efficient solution for construction on soft soil due to the low cost and short construction times. In the recent years, geosynthetic have been used in combination with column systems to support embankments. The load transfer mechanism in these systems is a combination of soil arching effect, which occurs between columns and membrane effect of the geosynthetic. This paper aims at the study of soil arching effect on columnar embankments using finite element software, ABAQUS. An axisymmetric finite element model is generated and using this model, parametric studies are carried out. Thus the effects of various factors such as height of embankment fill, elastic modulus of pile and tensile stiffness of geosynthetic, on soil arching have been studied. The development of negative skin friction along the pile-soil interface have also been studied and the results obtained from this study are compared with the current design methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title="ABAQUS">ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=geosynthetic" title=" geosynthetic"> geosynthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20skin%20friction" title=" negative skin friction"> negative skin friction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20arching" title=" soil arching"> soil arching</a> </p> <a href="https://publications.waset.org/abstracts/67744/soil-arching-effect-in-columnar-embankments-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4198</span> Retrofitting of Historical Structures in Van City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical structures are the most important symbols of a country that link the past with the future. In order to transfer them in their present conditions to the next generations, maintaining these historical structures are one of our main tasks. Seismic performance of historical structures damaged by the earthquake effects can be enhanced by repair and retrofitting applications. However, repair and retrofitting applications of historical structures are more complicated compared with the traditional structures. For this reason, they need much more attention in repair and retrofitting applications to preserve the spirit of historical structures. In this study, the present condition of selected historical structures built up in Van city that has a very rich historical heritage is given and the necessity of repair and retrofitting applications of historical structures are debated in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historical%20structures" title="historical structures">historical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=repair" title=" repair"> repair</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title=" retrofitting"> retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20city" title=" Van city"> Van city</a> </p> <a href="https://publications.waset.org/abstracts/43496/retrofitting-of-historical-structures-in-van-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4197</span> Microstructure of Hydrogen Permeation Barrier Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motonori%20Tamura">Motonori Tamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramics coatings consisting of fine crystal grains, with diameters of about 100 nm or less, provided superior hydrogen-permeation barriers. Applying TiN, TiC or Al₂O₃ coatings on a stainless steel substrate reduced the hydrogen permeation by a factor of about 100 to 5,000 compared with uncoated substrates. Effect of the microstructure of coatings on hydrogen-permeation behavior is studied. The test specimens coated with coatings, with columnar crystals grown vertically on the substrate, tended to exhibit higher hydrogen permeability. The grain boundaries of the coatings became trap sites for hydrogen, and microcrystalline structures with many grain boundaries are expected to provide effective hydrogen-barrier performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20permeation" title="hydrogen permeation">hydrogen permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%20coating" title=" tin coating"> tin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20grain" title=" crystal grain"> crystal grain</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/72074/microstructure-of-hydrogen-permeation-barrier-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4196</span> Sustainable Design in the Use of Deployable Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umweni%20Osahon%20Joshua">Umweni Osahon Joshua</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Ianakiev"> Anton Ianakiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deployable%20structures" title="deployable structures">deployable structures</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20design" title=" sustainable design"> sustainable design</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=earth-based%20environments" title=" earth-based environments "> earth-based environments </a> </p> <a href="https://publications.waset.org/abstracts/15693/sustainable-design-in-the-use-of-deployable-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4195</span> Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jairo%20A.%20Mu%C3%B1oz">Jairo A. Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Komissarov"> Alexander Komissarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Gromov"> Alexander Gromov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 &micro;m. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars&#39; longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloy" title=" aluminium alloy"> aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20pools" title=" melting pools"> melting pools</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a> </p> <a href="https://publications.waset.org/abstracts/131535/characterization-of-a-hypoeutectic-al-alloy-obtained-by-selective-laser-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4194</span> Effects of Coastal Structure Construction on Ecosystem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Jahangirzadeh">Afshin Jahangirzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a>, <a href="https://publications.waset.org/abstracts/search?q=Keyvan%20Kimiaei"> Keyvan Kimiaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Basser"> Hossein Basser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal defense structures were built to protect part of shore from beach erosion and flooding by sea water. Effects of coastal defense structures can be negative or positive. Some of the effects are beneficial in socioeconomic aspect, but environment matters should be given more concerns because it can bring bad consequences to the earth landscape and make the ecosystem be unbalanced. This study concerns on the negative impacts as they are dominant. Coastal structures can extremely impact the shoreline configuration. Artificial structures can influence sediment transport, split the coastal space, etc. This can result in habitats loss and lead to noise and visual disturbance of birds. There are two types of coastal defense structures, hard coastal structure and soft coastal structure. Both coastal structures have their own impacts. The impacts are induced during the construction, maintaining, and operation of the structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title="ecosystem">ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20coastal%20structures" title=" hard coastal structures"> hard coastal structures</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20coastal%20structures" title=" soft coastal structures"> soft coastal structures</a> </p> <a href="https://publications.waset.org/abstracts/9173/effects-of-coastal-structure-construction-on-ecosystem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4193</span> Analysis of Determinate and Indeterminate Structures: Applications of Non-Economic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toral%20Khalpada">Toral Khalpada</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanhai%20Joshi"> Kanhai Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, constructions of structures built in India are indeterminate structures. The purpose of this study is to investigate the application of a structure that is proved to be non-economical. The testing practice involves the application of different types of loads on both, determinate and indeterminate structure by computing it on a software system named Staad and also inspecting them practically on the construction site, analyzing the most efficient structure and diagnosing the utilization of the structure which is not so beneficial as compared to other. Redundant structures (indeterminate structure) are found to be more reasonable. All types of loads were applied on the beams of both determinate and indeterminate structures parallelly on the software and the same was done on the site practically which proved that maximum stresses in statically indeterminate structures are generally lower than those in comparable determinate structures. These structures are found to have higher stiffness resulting in lesser deformations so indeterminate structures are economical and are better than determinate structures to use for construction. On the other hand, statically determinate structures have the benefit of not producing stresses because of temperature changes. Therefore, our study tells that indeterminate structure is more beneficial but determinate structure also has used as it can be used in many areas; it can be used for the construction of two hinged arch bridges where two supports are sufficient and where there is no need for expensive indeterminate structure. Further investigation is needed to contrive more implementation of the determinate structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=determinate%20structure" title=" determinate structure"> determinate structure</a>, <a href="https://publications.waset.org/abstracts/search?q=indeterminate%20structure" title=" indeterminate structure"> indeterminate structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/95993/analysis-of-determinate-and-indeterminate-structures-applications-of-non-economic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4192</span> Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar">Manish Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration" title="deterioration">deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20condition" title=" functional condition"> functional condition</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20cement%20concrete" title=" reinforced cement concrete"> reinforced cement concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a> </p> <a href="https://publications.waset.org/abstracts/41322/structural-rehabilitation-retrofitting-and-strengthening-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4191</span> Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang">Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan-Xi%20Wang"> Zhan-Xi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xian-Sheng%20Qin"> Xian-Sheng Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20smart%20structures" title="piezoelectric smart structures">piezoelectric smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title=" aerodynamic"> aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a> </p> <a href="https://publications.waset.org/abstracts/72915/nonlinear-modelling-and-analysis-of-piezoelectric-smart-thin-walled-structures-in-supersonic-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4190</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4189</span> Health Monitoring of Concrete Assets in Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girish%20M.%20Bhatia">Girish M. Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the important structures in refinery complex are RCC Structures for which in-depth structural monitoring and inspection is required for incessant service. Reinforced concrete structures can be under threat from a combination of insidious challenges due to environmental conditions, including temperature and humidity that lead to accelerated deterioration mechanisms like carbonation, as well as marine exposure, above and below ground structures can experience ingress from aggressive ground waters carrying chlorides and sulphates leading to unexpected deterioration that threaten the integrity of a vital structural asset. By application of health monitoring techniques like corrosion monitoring with help of sensor probes, visual inspection of high rise structures with help of drones, it is possible to establish an early warning at the onset of these destructive processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structures" title="concrete structures">concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20sensors" title=" corrosion sensors"> corrosion sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20monitoring" title=" health monitoring"> health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/37034/health-monitoring-of-concrete-assets-in-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4188</span> Evaluating Alternative Structures for Prefix Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feras%20Hanandeh">Feras Hanandeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzat%20Alsmadi"> Izzat Alsmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20M.%20Kwafha"> Muhammad M. Kwafha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20structures" title="data structures">data structures</a>, <a href="https://publications.waset.org/abstracts/search?q=indexing" title=" indexing"> indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20structure" title=" tree structure"> tree structure</a>, <a href="https://publications.waset.org/abstracts/search?q=trie" title=" trie"> trie</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a> </p> <a href="https://publications.waset.org/abstracts/12226/evaluating-alternative-structures-for-prefix-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4187</span> Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saman%20Momeni">Saman Momeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghassem%20Zabihollah"> Abolghassem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Behzad"> Mehdi Behzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20laminated%20structures" title="non uniform laminated structures">non uniform laminated structures</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20fluid" title=" MR fluid"> MR fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/79955/dynamic-response-of-magnetorheological-fluid-tapered-laminated-beams-reinforced-with-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4186</span> Study and Fine Characterization of the SS 316L Microstructures Obtained by Laser Beam Melting Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Relave">Sebastien Relave</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Desrayaud"> Christophe Desrayaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Aurelien%20Vilani"> Aurelien Vilani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Sova"> Alexey Sova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser beam melting (LBM) is an additive manufacturing process that enables complex 3D parts to be designed. This process is now commonly employed for various applications such as chemistry or energy, requiring the use of stainless steel grades. LBM can offer comparable and sometimes superior mechanical properties to those of wrought materials. However, we observed an anisotropic microstructure which results from the process, caused by the very high thermal gradients along the building axis. This microstructure can be harmful depending on the application. For this reason, control and prediction of the microstructure are important to ensure the improvement and reproducibility of the mechanical properties. This study is focused on the 316L SS grade and aims at understanding the solidification and transformation mechanisms during process. Experiments to analyse the nucleation and growth of the microstructure obtained by the LBM process according to several conditions. These samples have been designed on different type of support bulk and lattice. Samples are produced on ProX DMP 200 LBM device. For the two conditions the analysis of microstructures, thanks to SEM and EBSD, revealed a single phase Austenite with preferential crystallite growth along the (100) plane. The microstructure was presented a hierarchical structure consisting columnar grains sizes in the range of 20-100 µm and sub grains structure of size 0.5 μm. These sub-grains were found in different shapes (columnar and cellular). This difference can be explained by a variation of the thermal gradient and cooling rate or element segregation while no sign of element segregation was found at the sub-grain boundaries. A high dislocation concentration was observed at sub-grain boundaries. These sub-grains are separated by very low misorientation walls ( < 2°) this causes a lattice of curvature inside large grain. A discussion is proposed on the occurrence of these microstructures formation, in regard of the LBM process conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title="selective laser melting">selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/95697/study-and-fine-characterization-of-the-ss-316l-microstructures-obtained-by-laser-beam-melting-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4185</span> Preparation Non-Woven Nanofiber Structures for Uniform and Rapid Drug Releasing Applications Using an Electrospinning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cho-Liang%20Chung">Cho-Liang Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uniform and rapid drug release are important for trauma dressing application. Low glass transition polymer system and non-woven nanofiber structures as the designs conduct rapid-release characteristics. In this study, polyvinylpyrrolidone, polysulfone, and polystyrene were dissolved in dimethylformamide to form precursor solution. These solutions were blended with vitamin C to form the electrospinning solutions. The non-woven nanofibers structures were successfully prepared using an electrospinning process. The following instruments were used to analyze the characteristics of non-woven nanofibers structures: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The AFM was used to scan the nanofibers. 3D Graphics were applied to explore the surface morphology of nanofibers. FE-SEM was used to explore the morphology of non-woven structures. XRD was used to identify crystal structures in the non-woven structures. The evolution of morphology of non-woven structures was changed dramatically in different durations, because of the moisture absorption and decreasing glass transition temperature; the non-woven nanofiber structures can be applied to uniform and rapid drug release for trauma dressing application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title="nanofibers">nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-woven" title=" non-woven"> non-woven</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning%20process" title=" electrospinning process"> electrospinning process</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20drug%20releasing" title=" rapid drug releasing"> rapid drug releasing</a> </p> <a href="https://publications.waset.org/abstracts/95209/preparation-non-woven-nanofiber-structures-for-uniform-and-rapid-drug-releasing-applications-using-an-electrospinning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4184</span> Architectural Advancements: Lightweight Structures and Future Applications in Ultra-High-Performance Concrete, Fabrics, and Flexible Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Pankaj%20Pawar">Pratik Pankaj Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight structures - structures with reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring proper durability and strength, safety, indoor environmental quality, and energy efficiency; structures that strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental, and technological factors. The growing interest in lightweight structures design makes them an ever more significant field of research. This article focuses on the architectural aspects of lightweight structures and on their contemporary and future applications. The selected advanced building technologies - i.e., Ultra-High-Performance Concrete, fabrics, and flexible photovoltaics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light%20weight%20building" title="light weight building">light weight building</a>, <a href="https://publications.waset.org/abstracts/search?q=carbyne" title=" carbyne"> carbyne</a>, <a href="https://publications.waset.org/abstracts/search?q=aerographite" title=" aerographite"> aerographite</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20reinforced%20wood%20particles%20aggregate" title=" geopolymer reinforced wood particles aggregate"> geopolymer reinforced wood particles aggregate</a> </p> <a href="https://publications.waset.org/abstracts/184505/architectural-advancements-lightweight-structures-and-future-applications-in-ultra-high-performance-concrete-fabrics-and-flexible-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4183</span> On the Creep of Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brahma">A. Brahma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of deferred deformations of concrete under sustained load shows that the creep has a leading role on deferred deformations of concrete structures. Knowledge of the creep characteristics of concrete is a Necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable deformation in pre-stressed concrete or reinforced and the appropriate steps can be taken in design to accommodate this movement. In this study, we propose a prediction model that involves the acting principal parameters on the deferred behaviour of concrete structures. For the estimation of the model parameters Levenberg-Marquardt method has proven very satisfactory. A confrontation between the experimental results and the predictions of models designed shows that it is well suited to describe the evolution of the creep of concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title="concrete structure">concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/36257/on-the-creep-of-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4182</span> A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Akpinar">E. Akpinar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/abstracts/search?q=M.F.%20Cakir"> M.F. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20prediction" title="damage prediction">damage prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20curve" title=" fragility curve"> fragility curve</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20buildings" title=" industrial buildings"> industrial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=precast%20reinforced%20concrete%20structures" title=" precast reinforced concrete structures"> precast reinforced concrete structures</a> </p> <a href="https://publications.waset.org/abstracts/100004/a-review-of-current-knowledge-on-assessment-of-precast-structures-using-fragility-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4181</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4180</span> Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younghoo%20Choi">Younghoo Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jun"> Yong Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=staggered%20wall%20systems" title="staggered wall systems">staggered wall systems</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/15060/performance-of-staggered-wall-buildings-subjected-to-low-to-medium-earthquake-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4179</span> Scouring Rate Pattern/Monitoring at Coastal and Offshore Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Saifullah%20Mazlan">Ahmad Saifullah Mazlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Basser"> Hossein Basser</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scouring pattern evaluation and measuring its depth around coastal and offshore structures is very essential issue to assure the safety of the structures as well as providing needed design parameters. Scouring is known as one of the important phenomena which threatens the safety of infrastructures. Several countermeasures have been developed to control scouring by protecting the structures against water flow attack directly or indirectly by changing the water flow pattern. Recently, monitoring methods for estimating water flow pattern and scour depth are studied to track the safety of structures. Since most of studies regarding scouring is related to monitoring scouring around piers in rivers therefore it is necessary to develop researches investigating scouring around piers in coastal and offshore areas. This paper describes a review of monitoring methods may be used for detecting scour depth around piers in coastal and offshore structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scour" title="scour">scour</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=pier" title=" pier"> pier</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal" title=" coastal"> coastal</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore" title=" offshore"> offshore</a> </p> <a href="https://publications.waset.org/abstracts/23145/scouring-rate-patternmonitoring-at-coastal-and-offshore-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4178</span> A Study of Rapid Replication of Square-Microlens Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting-Ting%20Wen">Ting-Ting Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Ruey%20Tsai"> Jung-Ruey Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=square-microlens%20structures" title="square-microlens structures">square-microlens structures</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20force-assisted%20imprinting" title=" electromagnetic force-assisted imprinting"> electromagnetic force-assisted imprinting</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20soft%20stamp" title=" magnetic soft stamp"> magnetic soft stamp</a> </p> <a href="https://publications.waset.org/abstracts/43652/a-study-of-rapid-replication-of-square-microlens-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4177</span> Numerical Simulation and Laboratory Tests for Rebar Detection in Reinforced Concrete Structures using Ground Penetrating Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Al-Soudani">Maha Al-Soudani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Klysz"> Gilles Klysz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Balayssac"> Jean-Paul Balayssac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to use Ground Penetrating Radar (GPR) as a non-destructive testing (NDT) method to increase its accuracy in recognizing the geometric reinforced concrete structures and in particular, the position of steel bars. This definition will help the managers to assess the state of their structures on the one hand vis-a-vis security constraints and secondly to quantify the need for maintenance and repair. Several configurations of acquisition and processing of the simulated signal were tested to propose and develop an appropriate imaging algorithm in the propagation medium to locate accurately the rebar. A subsequent experimental validation was used by testing the imaging algorithm on real reinforced concrete structures. The results indicate that, this algorithm is capable of estimating the reinforcing steel bar position to within (0-1) mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPR" title="GPR">GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinforced%20concrete%20structures" title=" Reinforced concrete structures"> Reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebar%20location." title=" Rebar location."> Rebar location.</a> </p> <a href="https://publications.waset.org/abstracts/34365/numerical-simulation-and-laboratory-tests-for-rebar-detection-in-reinforced-concrete-structures-using-ground-penetrating-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4176</span> Seismic Vulnerability Mitigation of Non-Engineered Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tariq%20A.%20Chaudhary">Muhammad Tariq A. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centres and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, Unreinforced Masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashmir%20earthquake" title="Kashmir earthquake">Kashmir earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=non-engineered%20buildings" title=" non-engineered buildings"> non-engineered buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20details" title=" structural details"> structural details</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20strengthening" title=" structural strengthening"> structural strengthening</a> </p> <a href="https://publications.waset.org/abstracts/7382/seismic-vulnerability-mitigation-of-non-engineered-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=141">141</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=columnar%20structures&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10