CINXE.COM

Search results for: ROCOF (rate of change of frequency)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ROCOF (rate of change of frequency)</title> <meta name="description" content="Search results for: ROCOF (rate of change of frequency)"> <meta name="keywords" content="ROCOF (rate of change of frequency)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ROCOF (rate of change of frequency)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ROCOF (rate of change of frequency)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17537</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ROCOF (rate of change of frequency)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17537</span> Islanding Detection of Wind Turbine by Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipulkumar%20Jagodana">Vipulkumar Jagodana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently the use of renewable sources has increased, these sources include fuel cell, photo voltaic, and wind turbine. Islanding occurs when one portion of grid is isolated from remaining grid. Use of the renewable sources can provide continuous power to isolated portion in islanding condition. One of the common renewable sources is wind generation using wind turbine. The efficiency of wind generation can be increased in combination with conventional sources. When islanding occurs, few parameters change which may be frequency, voltage, active power, and harmonics. According to large change in one of these parameters islanding is detected. In this paper, two passive methods Rate of Change of Frequency (ROCOF) and Rate of change of Power (ROCOP) have been implemented for islanding detection of small wind-turbine. Islanding detection of both methods have been simulated in PSCAD. Simulation results show at different islanding inception angle response of ROCOF and ROCOP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=islanding" title="islanding">islanding</a>, <a href="https://publications.waset.org/abstracts/search?q=adopted%20methods" title=" adopted methods"> adopted methods</a>, <a href="https://publications.waset.org/abstracts/search?q=PSCAD%20simulation" title=" PSCAD simulation"> PSCAD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a> </p> <a href="https://publications.waset.org/abstracts/52214/islanding-detection-of-wind-turbine-by-rate-of-change-of-frequency-rocof-and-rate-of-change-of-power-rocop-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17536</span> Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Hee%20Son">Dae-Hee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Soon-Ryul%20Nam"> Soon-Ryul Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE%20user%20defined%20model" title="PSS/E user defined model">PSS/E user defined model</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20deviation" title=" power deviation"> power deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20droop%20control" title=" frequency droop control"> frequency droop control</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29" title=" ROCOF (rate of change of frequency)"> ROCOF (rate of change of frequency)</a> </p> <a href="https://publications.waset.org/abstracts/70548/development-of-psse-dynamic-model-for-controlling-battery-output-to-improve-frequency-stability-in-power-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17535</span> When Change Is the Only Constant: The Impact of Change Frequency and Diversity on Change Appraisal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danika%20Pieters">Danika Pieters</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to changing societal and economic demands, organizational change has become increasingly prevalent in work life. While a long time change research has focused on the effects of single discrete change events on different employee outcomes such as job satisfaction and organizational commitment, a nascent research stream has begun to look into the potential cumulative effects of change in the context of continuous intense reforms. This case study of a large Belgian public organization aims to add to this growing literature by examining how the frequency and diversity of past changes impact employees’ appraisals of a newly introduced change. Twelve hundred survey results were analyzed using standard ordinary least squares regression. Results showed a correlation between high past change frequency and diversity and a negative appraisal of the new change. Implications for practitioners and future research are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=change%20frequency" title="change frequency">change frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20diversity" title=" change diversity"> change diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20changes" title=" organizational changes"> organizational changes</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20appraisal" title=" change appraisal"> change appraisal</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20evaluation" title=" change evaluation"> change evaluation</a> </p> <a href="https://publications.waset.org/abstracts/147976/when-change-is-the-only-constant-the-impact-of-change-frequency-and-diversity-on-change-appraisal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17534</span> Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh">Manjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20%28electrocardiogram%29" title="ECG (electrocardiogram)">ECG (electrocardiogram)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20entropy" title=" multiscale entropy"> multiscale entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a> </p> <a href="https://publications.waset.org/abstracts/78603/optimal-ecg-sampling-frequency-for-multiscale-entropy-based-hrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17533</span> Impact Study on a Load Rich Island and Development of Frequency Based Auto-Load Shedding Scheme to Improve Service Reliability of the Island</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shafiullah">Md. Shafiullah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shafiul%20Alam"> M. Shafiul Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Bandar%20Suliman%20Alsharif"> Bandar Suliman Alsharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical quantities such as frequency, voltage, current are being fluctuated due to abnormalities in power system. Most of the abnormalities cause fluctuation in system frequency and sometimes extreme abnormalities lead to system blackout. To protect the system from complete blackout planned and proper islanding plays a very important role even in case of extreme abnormalities. Islanding operation not only helps stabilizing a faulted system but also supports power supplies to critical and important loads, in extreme emergency. But the islanding systems are weaker than integrated system so the stability of islands is the prime concern when an integrated system is disintegrated. In this paper, different impacts on a load rich island have been studied and a frequency based auto-load shedding scheme has been developed for sudden load addition, generation outage and combined effect of both to the island. The developed scheme has been applied to Khulna-Barisal Island to validate the effectiveness of the developed technique. Various types of abnormalities to the test system have been simulated and for the simulation purpose CYME PSAF (Power System Analysis Framework) has been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20load%20shedding" title="auto load shedding">auto load shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=FS%26FD%20relay" title=" FS&amp;FD relay"> FS&amp;FD relay</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20study" title=" impact study"> impact study</a>, <a href="https://publications.waset.org/abstracts/search?q=island" title=" island"> island</a>, <a href="https://publications.waset.org/abstracts/search?q=PSAF" title=" PSAF"> PSAF</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF" title=" ROCOF"> ROCOF</a> </p> <a href="https://publications.waset.org/abstracts/7890/impact-study-on-a-load-rich-island-and-development-of-frequency-based-auto-load-shedding-scheme-to-improve-service-reliability-of-the-island" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17532</span> Bit Error Rate Analysis of Multiband OFCDM UWB System in UWB Fading Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20M.%20Gulhane">Sanjay M. Gulhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Athar%20Ravish%20Khan"> Athar Ravish Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20W.%20Kaware"> Umesh W. Kaware</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Orthogonal frequency and code division multiplexing (OFCDM) has received large attention as a modulation scheme to realize high data rate transmission. Multiband (MB) Orthogonal frequency division multiplexing (OFDM) Ultra Wide Band (UWB) system become promising technique for high data rate due to its large number of advantage over Singleband (UWB) system, but it suffer from coherent frequency diversity problem. In this paper we have proposed MB-OFCDM UWB system, in which two-dimensional (2D) spreading (time and frequency domain spreading), has been introduced, combining OFDM with 2D spreading, proposed system can provide frequency diversity. This paper presents the basic structure and main functions of the MB-OFCDM system, and evaluates the bit error rate BER performance of MB-OFDM and MB-OFCDM system under UWB indoor multi-path channel model. It is observe that BER curve of MB-OFCDM UWB improve its performance by 2dB as compare to MB-OFDM UWB system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MB-OFDM%20UWB%20system" title="MB-OFDM UWB system">MB-OFDM UWB system</a>, <a href="https://publications.waset.org/abstracts/search?q=MB-OFCDM%20UWB%20system" title=" MB-OFCDM UWB system"> MB-OFCDM UWB system</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB%20IEEE%20channel%20model" title=" UWB IEEE channel model"> UWB IEEE channel model</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a> </p> <a href="https://publications.waset.org/abstracts/3112/bit-error-rate-analysis-of-multiband-ofcdm-uwb-system-in-uwb-fading-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17531</span> Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Kazmi">S. H. Kazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahmed"> T. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Javed"> K. Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghani"> A. Ghani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=islanding" title="islanding">islanding</a>, <a href="https://publications.waset.org/abstracts/search?q=under-frequency%20load%20shedding" title=" under-frequency load shedding"> under-frequency load shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20rate%20of%20change" title=" frequency rate of change"> frequency rate of change</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20UFLS" title=" static UFLS"> static UFLS</a> </p> <a href="https://publications.waset.org/abstracts/25160/static-priority-approach-to-under-frequency-based-load-shedding-scheme-in-islanded-industrial-networks-using-the-case-study-of-fatima-fertilizer-company-ltd-ffl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17530</span> Linear Frequency Modulation-Frequency Shift Keying Radar with Compressive Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Jeong%20Jin">Ho Jeong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Won%20Seo"> Chang Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Sik%20Cho"> Choon Sik Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong%20Yong%20Choi"> Bong Yong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Kyun%20Na"> Kwang Kyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Rok%20Lee"> Sang Rok Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a radar signal processing technique using the LFM-FSK (Linear Frequency Modulation-Frequency Shift Keying) is proposed for reducing the false alarm rate based on the compressive sensing. The LFM-FSK method combines FMCW (Frequency Modulation Continuous Wave) signal with FSK (Frequency Shift Keying). This shows an advantage which can suppress the ghost phenomenon without the complicated CFAR (Constant False Alarm Rate) algorithm. Moreover, the parametric sparse algorithm applying the compressive sensing that restores signals efficiently with respect to the incomplete data samples is also integrated, leading to reducing the burden of ADC in the receiver of radars. 24 GHz FMCW signal is applied and tested in the real environment with FSK modulated data for verifying the proposed algorithm along with the compressive sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title="compressive sensing">compressive sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=LFM-FSK%20radar" title=" LFM-FSK radar"> LFM-FSK radar</a>, <a href="https://publications.waset.org/abstracts/search?q=radar%20signal%20processing" title=" radar signal processing"> radar signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20algorithm" title=" sparse algorithm"> sparse algorithm</a> </p> <a href="https://publications.waset.org/abstracts/51309/linear-frequency-modulation-frequency-shift-keying-radar-with-compressive-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17529</span> Design of Decimation Filter Using Cascade Structure for Sigma Delta ADC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbahuddin%20Mahammad">Misbahuddin Mahammad</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chandra%20Sekhar"> P. Chandra Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Metuku%20Shyamsunder"> Metuku Shyamsunder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oversampled output of a sigma-delta modulator is decimated to Nyquist sampling rate by decimation filters. The decimation filters work twofold; they decimate the sampling rate by a factor of OSR (oversampling rate) and they remove the out band quantization noise resulting in an increase in resolution. The speed, area and power consumption of oversampled converter are governed largely by decimation filters in sigma-delta A/D converters. The scope of the work is to design a decimation filter for sigma-delta ADC and simulation using MATLAB. The decimation filter structure is based on cascaded-integrated comb (CIC) filter. A second decimation filter is using CIC for large rate change and cascaded FIR filters, for small rate changes, to improve the frequency response. The proposed structure is even more hardware efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sigma%20delta%20modulator" title="sigma delta modulator">sigma delta modulator</a>, <a href="https://publications.waset.org/abstracts/search?q=CIC%20filter" title=" CIC filter"> CIC filter</a>, <a href="https://publications.waset.org/abstracts/search?q=decimation%20filter" title=" decimation filter"> decimation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=compensation%20filter" title=" compensation filter"> compensation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20shaping" title=" noise shaping"> noise shaping</a> </p> <a href="https://publications.waset.org/abstracts/15366/design-of-decimation-filter-using-cascade-structure-for-sigma-delta-adc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17528</span> ESS Control Strategy for Primary Frequency Response in Microgrid Considering Ramp Rate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Jun%20Jo">Ho-Jun Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wook-Won%20Kim"> Wook-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Sung%20Kim"> Yong-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-O%20Kim"> Jin-O Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of ESS (Energy Storage Systems) in the future grids has been the solution of the microgrid. However, high investment costs necessitate accurate modeling and control strategy of ESS to justify its economic viability and further underutilization. Therefore, the reasonable control strategy for ESS which is subjected to generator and usage helps to curtail the cost of investment and operation costs. The rated frequency in power system is decreased when the load is increasing unexpectedly; hence the thermal power is operated at the capacity of only its 95% for the Governor Free (GF) to adjust the frequency as reserve (5%) in practice. The ESS can be utilized with governor at the same time for the frequency response due to characteristic of its fast response speed and moreover, the cost of ESS is declined rapidly to the reasonable price. This paper presents the ESS control strategy to extend usage of the ESS taken account into governor’s ramp rate and reduce the governor’s intervention as well. All results in this paper are simulated by MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro%20grid" title="micro grid">micro grid</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20systems" title=" energy storage systems"> energy storage systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20rate" title=" ramp rate"> ramp rate</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20strategy" title=" control strategy"> control strategy</a> </p> <a href="https://publications.waset.org/abstracts/39143/ess-control-strategy-for-primary-frequency-response-in-microgrid-considering-ramp-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17527</span> Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tri%20Wijayanti%20Septiarini">Tri Wijayanti Septiarini</a>, <a href="https://publications.waset.org/abstracts/search?q=Agus%20Maman%20Abadi"> Agus Maman Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rifki%20Taufik"> Muhammad Rifki Taufik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20exchange%20rate" title="the exchange rate">the exchange rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20mamdani" title=" fuzzy mamdani"> fuzzy mamdani</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transforms" title=" discrete wavelet transforms"> discrete wavelet transforms</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20wavelet" title=" fuzzy wavelet "> fuzzy wavelet </a> </p> <a href="https://publications.waset.org/abstracts/21207/fuzzy-wavelet-model-to-forecast-the-exchange-rate-of-idrusd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17526</span> The Impact of Climate Change on Cropland Ecosystem in Tibet Plateau</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weishou%20Shen">Weishou Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunyan%20Yang"> Chunyan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongliang%20Li"> Zhongliang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crop climate productivity and the distribution of cropland reflect long-term adaption of agriculture to climate. In order to fully understand the impact of climate change on cropland ecosystem in Tibet, the spatiotemporal changes of crop climate productivity and cropland distribution were analyzed with the help of GIS and RS software. Results indicated that the climate change to the direction of wet and warm in Tibet in the recent 30 years, with a rate of 0.79℃/10 yr and 23.28 mm/10yr respectively. Correspondingly, the climate productivity increased gradually, with a rate of 346.3kg/(hm2•10a), of which, the fastest-growing rate of the crop climate productivity is in Southern Tibet Mountain- plain-valley. During the study period, the total cropland area increased from 32.54 million ha to 37.13 million ha, and cropland has expanded to higher altitude area and northward. Overall, increased cropland area and crop climate productivity due to climate change plays a positive role for agriculture in Tibet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=cropland%20area" title=" cropland area"> cropland area</a>, <a href="https://publications.waset.org/abstracts/search?q=Tibet%20plateau" title=" Tibet plateau"> Tibet plateau</a> </p> <a href="https://publications.waset.org/abstracts/7569/the-impact-of-climate-change-on-cropland-ecosystem-in-tibet-plateau" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17525</span> Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Lamichhane">Shishir Lamichhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurav%20Dulal"> Saurav Dulal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bibek%20Gautam"> Bibek Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Madan%20Thapa%20Magar"> Madan Thapa Magar</a>, <a href="https://publications.waset.org/abstracts/search?q=Indraman%20Tamrakar"> Indraman Tamrakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20constant" title="damping constant">damping constant</a>, <a href="https://publications.waset.org/abstracts/search?q=inertia%E2%80%93constant" title=" inertia–constant"> inertia–constant</a>, <a href="https://publications.waset.org/abstracts/search?q=ROCOF" title=" ROCOF"> ROCOF</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20stability" title=" transient stability"> transient stability</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20sources" title=" distributed sources"> distributed sources</a> </p> <a href="https://publications.waset.org/abstracts/141846/power-angle-control-strategy-of-virtual-synchronous-machine-a-novel-approach-to-control-virtual-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17524</span> Research on Sensing Performance of Polyimide-Based Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Zhao">Rui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongxu%20Zhang"> Dongxu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Wan"> Min Wan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20change%20rate" title=" resistance change rate"> resistance change rate</a> </p> <a href="https://publications.waset.org/abstracts/177700/research-on-sensing-performance-of-polyimide-based-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17523</span> Estimation of Dynamic Characteristics of a Middle Rise Steel Reinforced Concrete Building Using Long-Term </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumiya%20Sugino">Fumiya Sugino</a>, <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura"> Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Miyazu"> Yuji Miyazu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In earthquake resistant design of buildings, evaluation of vibration characteristics is important. In recent years, due to the increment of super high-rise buildings, the evaluation of response is important for not only the first mode but also higher modes. The knowledge of vibration characteristics in buildings is mostly limited to the first mode and the knowledge of higher modes is still insufficient. In this paper, using earthquake observation records of a SRC building by applying frequency filter to ARX model, characteristics of first and second modes were studied. First, we studied the change of the eigen frequency and the damping ratio during the 3.11 earthquake. The eigen frequency gradually decreases from the time of earthquake occurrence, and it is almost stable after about 150 seconds have passed. At this time, the decreasing rates of the 1st and 2nd eigen frequencies are both about 0.7. Although the damping ratio has more large error than the eigen frequency, both the 1st and 2nd damping ratio are 3 to 5%. Also, there is a strong correlation between the 1st and 2nd eigen frequency, and the regression line is y=3.17x. In the damping ratio, the regression line is y=0.90x. Therefore 1st and 2nd damping ratios are approximately the same degree. Next, we study the eigen frequency and damping ratio from 1998 after 3.11 earthquakes, the final year is 2014. In all the considered earthquakes, they are connected in order of occurrence respectively. The eigen frequency slowly declined from immediately after completion, and tend to stabilize after several years. Although it has declined greatly after the 3.11 earthquake. Both the decresing rate of the 1st and 2nd eigen frequencies until about 7 years later are about 0.8. For the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1% and the 2nd increases by less than 1%. For the eigen frequency, there is a strong correlation between the 1st and 2nd, and the regression line is y=3.17x. For the damping ratio, the regression line is y=1.01x. Therefore, it can be said that the 1st and 2nd damping ratio is approximately the same degree. Based on the above results, changes in eigen frequency and damping ratio are summarized as follows. In the long-term study of the eigen frequency, both the 1st and 2nd gradually declined from immediately after completion, and tended to stabilize after a few years. Further it declined after the 3.11 earthquake. In addition, there is a strong correlation between the 1st and 2nd, and the declining time and the decreasing rate are the same degree. In the long-term study of the damping ratio, both the 1st and 2nd are about 1 to 6%. After the 3.11 earthquake, the 1st increases by about 1%, the 2nd increases by less than 1%. Also, the 1st and 2nd are approximately the same degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenfrequency" title="eigenfrequency">eigenfrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=ARX%20model" title=" ARX model"> ARX model</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20observation%20records" title=" earthquake observation records"> earthquake observation records</a> </p> <a href="https://publications.waset.org/abstracts/84888/estimation-of-dynamic-characteristics-of-a-middle-rise-steel-reinforced-concrete-building-using-long-term" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17522</span> Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20Mohamed">Mahmoud E. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Shalash"> Ahmed F. Shalash</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Kamal"> Hanan A. Kamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20detection" title=" false detection"> false detection</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement "> improvement </a> </p> <a href="https://publications.waset.org/abstracts/7978/fast-accurate-detection-of-frequency-jumps-using-kalman-filter-with-non-linear-improvements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17521</span> Hybrid GA-PSO Based Pitch Controller Design for Aircraft Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Singh%20%20Rajput">Vaibhav Singh Rajput</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kumar%20Jatoth"> Ravi Kumar Jatoth</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagu%20Bhookya"> Nagu Bhookya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhasker%20Boda"> Bhasker Boda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper proportional, integral, derivative (PID) controller is used to control the pitch angle of the aircraft when the elevation angle is changed or modified. The pitch angle is dependent on elevation angle; a change in one corresponds to a change in the other. The PID controller helps in restricted change of pitch rate in response to the elevation angle. The PID controller is dependent on different parameters like Kp, Ki, Kd which change the pitch rate as they change. Various methodologies are used for changing those parameters for getting a perfect time response pitch angle, as desired or wished by a concerned person. While reckoning the values of those parameters, trial and guessing may prove to be futile in order to provide comfort to passengers. So, using some metaheuristic techniques can be useful in handling these errors. Hybrid GA-PSO is one such powerful algorithm which can improve transient and steady state response and can give us more reliable results for PID gain scheduling problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pitch%20rate" title="pitch rate">pitch rate</a>, <a href="https://publications.waset.org/abstracts/search?q=elevation%20angle" title=" elevation angle"> elevation angle</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20controller" title=" PID controller"> PID controller</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=phugoid" title=" phugoid"> phugoid</a> </p> <a href="https://publications.waset.org/abstracts/64457/hybrid-ga-pso-based-pitch-controller-design-for-aircraft-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17520</span> Erectile Function and Heart Rate Variability in Men under 40 Years Old</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Miguel%20Costa">Rui Miguel Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Pestana"> Jose Pestana</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Costa"> David Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Mangia"> Paula Mangia</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Correia"> Catarina Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mafalda%20Pinto%20Coelho"> Mafalda Pinto Coelho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is lack of studies examining the relation of different heart rate variability (HRV) parameters with the risk of erectile dysfunction (ED) in younger men. Thus, the present study aimed at examining, in a nonclinical sample of men aged 19-39 years old (mean age = 23.98 years, SD = 4.90), the relations of risk of ED with the standard deviation of the heart rate (SD of HR), high and low frequency power of HRV, and low-to-high frequency HRV ratio. Eighty-three heterosexual Portuguese men completed the 5-item version of the International Index of Erectile Function (IIEF-5) and HRV parameters were calculated from a 5-minute resting period. Risk of ED was determined by IIEF-5 scores of 21 or less. Fifteen men (18.1%) reported symptoms of ED (14 with mild and one with mild to moderate symptoms). Univariate analyses of variance revealed that risk of ED was related to lesser SD of HR and lesser low-frequency power, the two HRV parameters that express a coupling of higher vagal and sympathetic tone. Risk of ED was unrelated to high-frequency power and low-to-high frequency HRV ratio. Further, in a logistic regression, the risk of ED was independently predicted by older age and lower SD of HR, but not by low-frequency power, having a regular sexual partner, and cohabiting. The results provide preliminary evidence that, in younger men, a coupling of higher vagal and sympathetic tone, as indexed by the SD of HR, is important for erections. Greater resting SD of HR might reflect better vascular and interpersonal function via vagal tone coupled with greater motor mobilization to pursue sexual intercourse via sympathetic tone. Many interventions can elevate HRV; future research is warranted on how they can be tailored to treat ED in younger men. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erectile%20dysfunction" title="erectile dysfunction">erectile dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20deviation%20of%20the%20heart%20rate" title=" standard deviation of the heart rate"> standard deviation of the heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=younger%20men" title=" younger men"> younger men</a> </p> <a href="https://publications.waset.org/abstracts/92756/erectile-function-and-heart-rate-variability-in-men-under-40-years-old" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17519</span> Parametric Study on Dynamic Analysis of Composite Laminated Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Kameran%20Ahmed">Junaid Kameran Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1<sup>st</sup> order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminated%20plate" title="laminated plate">laminated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20plate" title=" orthotropic plate"> orthotropic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20plate" title=" square plate"> square plate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency%20%28free%20vibration%29" title=" natural frequency (free vibration)"> natural frequency (free vibration)</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20%28graphite%20%2F%20epoxy%29" title=" composite (graphite / epoxy)"> composite (graphite / epoxy)</a> </p> <a href="https://publications.waset.org/abstracts/63332/parametric-study-on-dynamic-analysis-of-composite-laminated-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17518</span> Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Razmi">Ali Razmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Golian"> Saeed Golian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20variables" title=" climate variables"> climate variables</a>, <a href="https://publications.waset.org/abstracts/search?q=copula" title=" copula"> copula</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20probability" title=" joint probability"> joint probability</a> </p> <a href="https://publications.waset.org/abstracts/49083/joint-probability-distribution-of-extreme-water-level-with-rainfall-and-temperature-trend-analysis-of-potential-impacts-of-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17517</span> Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wittawat%20Wasusathien">Wittawat Wasusathien</a>, <a href="https://publications.waset.org/abstracts/search?q=Samran%20Santalunai"> Samran Santalunai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanaset%20Thosdeekoraphat"> Thanaset Thosdeekoraphat</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchai%20Thongsopa"> Chanchai Thongsopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20absorption%20rate%20%28SAR%29" title="specific absorption rate (SAR)">specific absorption rate (SAR)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wideband%20%28UWB%29" title=" ultra wideband (UWB)"> ultra wideband (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=coordinates" title=" coordinates"> coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/10465/ultra-wideband-breast-cancer-detection-by-using-sar-for-indication-the-tumor-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17516</span> Enhanced Bit Error Rate in Visible Light Communication: A New LED Hexagonal Array Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Matter">Karim Matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Fayed"> Heba Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abd-Elaziz"> Ahmed Abd-Elaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Hussein"> Moustafa Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the exponential growth of mobile devices and wireless services, a huge demand for radiofrequency has increased. The presence of several frequencies causes interference between cells, which must be minimized to get the lower Bit Error Rate (BER). For this reason, it is of great interest to use visible light communication (VLC). This paper suggests a VLC system that decreases the BER by applying a new LED distribution with a hexagonal shape using a Frequency Reuse (FR) concept to mitigate the interference between the reused frequencies inside the hexagonal shape. The BER is measured in two scenarios, Line of Sight (LoS) and Non-Line of Sight (Non-LoS), for each technique that we used. The recommended values of BER in the proposed model for Soft Frequency Reuse (SFR) in the case of Los at 4, 8, and 10 dB signal to noise ratio (SNR), are 3.6×10⁻⁶, 6.03×10⁻¹³, and 2.66×10⁻¹⁸, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visible%20light%20communication%20%28VLC%29" title="visible light communication (VLC)">visible light communication (VLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FoV%29" title=" field of view (FoV)"> field of view (FoV)</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20array" title=" hexagonal array"> hexagonal array</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20reuse" title=" frequency reuse"> frequency reuse</a> </p> <a href="https://publications.waset.org/abstracts/146526/enhanced-bit-error-rate-in-visible-light-communication-a-new-led-hexagonal-array-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17515</span> The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Herceg">Zoran Herceg</a>, <a href="https://publications.waset.org/abstracts/search?q=Vi%C5%A1nja%20Stuli%C4%87"> Višnja Stulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Anet%20Re%C5%BEek%20Jambrak"> Anet Režek Jambrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomislava%20Vuku%C5%A1i%C4%87"> Tomislava Vukušić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20discharge%20plasma" title="electrical discharge plasma">electrical discharge plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=escherichia%20coli%20MG%201655" title=" escherichia coli MG 1655"> escherichia coli MG 1655</a>, <a href="https://publications.waset.org/abstracts/search?q=inactivation" title=" inactivation"> inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=point-to-plate%20electrode%20configuration" title=" point-to-plate electrode configuration"> point-to-plate electrode configuration</a> </p> <a href="https://publications.waset.org/abstracts/48189/the-effect-of-electrical-discharge-plasma-on-inactivation-of-escherichia-coli-mg-1655-in-pure-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17514</span> Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim">Hiesik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Beom%20Kim"> Yong-Beom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaheon%20Gu"> Jaheon Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/71867/changing-arbitrary-data-transmission-period-by-using-bluetooth-module-on-gas-sensor-node-of-arduino-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17513</span> Changes in Temperature and Precipitation Extremes in Northern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakrit%20Chotamonsak">Chakrit Chotamonsak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20extreme" title="climate extreme">climate extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20extreme" title=" temperature extreme"> temperature extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20extreme" title=" precipitation extreme"> precipitation extreme</a>, <a href="https://publications.waset.org/abstracts/search?q=Northern%20Thailand" title=" Northern Thailand"> Northern Thailand</a> </p> <a href="https://publications.waset.org/abstracts/35651/changes-in-temperature-and-precipitation-extremes-in-northern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17512</span> When Conducting an Analysis of Workplace Incidents, It Is Imperative to Meticulously Calculate Both the Frequency and Severity of Injuries Sustain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Yousefi">Arash Yousefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experts suggest that relying exclusively on parameters to convey a situation or establish a condition may not be adequate. Assessing and appraising incidents in a system based on accident parameters, such as accident frequency, lost workdays, or fatalities, may not always be precise and occasionally erroneous. The frequency rate of accidents is a metric that assesses the correlation between the number of accidents causing work-time loss due to injuries and the total working hours of personnel over a year. Traditionally, this has been calculated based on one million working hours, but the American Occupational Safety and Health Organization has updated its standards. The new coefficient of 200/000 working hours is now used to compute the frequency rate of accidents. It's crucial to ensure that the total working hours of employees are equally represented when calculating individual event and incident numbers. The accident severity rate is a metric used to determine the amount of time lost or wasted during a given period, often a year, in relation to the total number of working hours. It measures the percentage of work hours lost or wasted compared to the total number of useful working hours, which provides valuable insight into the number of days lost or wasted due to work-related incidents for each working hour. Calculating the severity of an incident can be difficult if a worker suffers permanent disability or death. To determine lost days, coefficients specified in the "tables of days equivalent to OSHA or ANSI standards" for disabling injuries are used. The accident frequency coefficient denotes the rate at which accidents occur, while the accident severity coefficient specifies the extent of damage and injury caused by these accidents. These coefficients are crucial in accurately assessing the magnitude and impact of accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=incidents" title="incidents">incidents</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=severity" title=" severity"> severity</a>, <a href="https://publications.waset.org/abstracts/search?q=injuries" title=" injuries"> injuries</a>, <a href="https://publications.waset.org/abstracts/search?q=determine" title=" determine"> determine</a> </p> <a href="https://publications.waset.org/abstracts/172511/when-conducting-an-analysis-of-workplace-incidents-it-is-imperative-to-meticulously-calculate-both-the-frequency-and-severity-of-injuries-sustain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17511</span> Percentile Norms of Heart Rate Variability (HRV) of Indian Sportspersons Withdrawn from Competitive Games and Sports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar">Pawan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjoy%20Shaw"> Dhananjoy Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart rate variability (HRV) is the physiological phenomenon of variation in the time interval between heartbeats and is alterable with fitness, age and different medical conditions including withdrawal/retirement from games/sports. Objectives of the study were to develop (a) percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity (b) percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity. The study was conducted on 430 males. Ages of the sample ranged from 30 to 35 years of same socio-economic status. Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with percentile from one to hundred. The finding showed that the percentile norms of heart rate variability (HRV) variables derived from time domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely, NN50 count (ranged from 1 to 189 score as percentile range). pNN50 count (ranged from .24 to 60.80 score as percentile range). SDNN (ranged from 17.34 to 167.29 score as percentile range). SDSD (ranged from 11.14 to 120.46 score as percentile range). RMMSD (ranged from 11.19 to 120.24 score as percentile range) and SDANN (ranged from 4.02 to 88.75 score as percentile range). The percentile norms of heart rate variability (HRV) variables derived from frequency domain analysis of the Indian sportspersons withdrawn from competitive games/sports pertaining to sympathetic and parasympathetic activity namely Low Frequency (Normalized Power) ranged from 20.68 to 90.49 score as percentile range. High Frequency (Normalized Power) ranged from 14.37 to 81.60 score as percentile range. LF/ HF ratio(ranged from 0.26 to 9.52 score as percentile range). LF (Absolute Power) ranged from 146.79 to 5669.33 score as percentile range. HF (Absolute Power) ranged from 102.85 to 10735.71 score as percentile range and Total Power (Absolute Power) ranged from 471.45 to 25879.23 score as percentile range. Conclusion: The analysis documented percentile norms for time domain analysis and frequency domain analysis for versatile use and evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RMSSD" title="RMSSD">RMSSD</a>, <a href="https://publications.waset.org/abstracts/search?q=Percentile" title=" Percentile"> Percentile</a>, <a href="https://publications.waset.org/abstracts/search?q=SDANN" title=" SDANN"> SDANN</a>, <a href="https://publications.waset.org/abstracts/search?q=HF" title=" HF"> HF</a>, <a href="https://publications.waset.org/abstracts/search?q=LF" title=" LF"> LF</a> </p> <a href="https://publications.waset.org/abstracts/4231/percentile-norms-of-heart-rate-variability-hrv-of-indian-sportspersons-withdrawn-from-competitive-games-and-sports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17510</span> The Effect of Blue Lighting on Feeding Behaviour, Growth, and Corticosterone of Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sri%20Harimurti">Sri Harimurti</a>, <a href="https://publications.waset.org/abstracts/search?q=Diah%20Reni%20Asih"> Diah Reni Asih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designated to investigate the effect of intermittent and continuous blue lighting on the feeding behaviour, growth and corticosterone hormone concentration of broiler. Two thousands and seven hundreds unsexed day-old broiler were divided into three groups of lighting treatment. Each treatment consisted of three replicates of 300 birds. The treatments were ordinary lighting (C), intermittent blue lighting (IBL) and continuous blue lighting (CBL). The data were collected in the study were feeding behaviour such as feeding duration and frequency of feeding, growth rate of birds and corticosterone hormone concentration. Results showed that the CBL have significant effect (P<0,05) on duration and frequency of feeding and growth rate of birds. The CBL have the highest feeding duration, the lowest frequency of feeding that those 290.33±1.52 minutes/day, 35.58±0.50 times/day at 15 to 28 days of age.The concentration of corticosterone hormone of IBL and CBL were a significant (P<0.05) decrease. The conclusion of this study indicated that continuous blue lighting may be a good tool for improving welfare management of broiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title="blue light">blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=corticosterone%20hormone" title=" corticosterone hormone"> corticosterone hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=feeding%20behaviour" title=" feeding behaviour"> feeding behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20rate" title=" growth rate"> growth rate</a> </p> <a href="https://publications.waset.org/abstracts/71273/the-effect-of-blue-lighting-on-feeding-behaviour-growth-and-corticosterone-of-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17509</span> Visualization Tool for EEG Signal Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sweeti">Sweeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Kant%20Godiyal"> Anoop Kant Godiyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Singh"> Neha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneh%20Anand"> Sneh Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Panigrahi"> B. K. Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayasree%20Santhosh"> Jayasree Santhosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de-noising" title="de-noising">de-noising</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-channel%20data" title=" multi-channel data"> multi-channel data</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectra" title=" power spectra"> power spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/37186/visualization-tool-for-eeg-signal-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17508</span> Establishing a Change Management Model for Precision Machinery Industry in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng-Tsung%20Cheng">Feng-Tsung Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Li%20Wang"> Shu-Li Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Fang%20Wu"> Mei-Fang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Yu%20Chuang">Hui-Yu Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rapid development of modern technology, the widespread usage of the Internet makes business environment changing quickly. In order to be a leader in the global competitive market and to pursuit survive, “changing” becomes an unspoken rules need to follow for the company survival. The purpose of this paper is to build change model by using SWOT, strategy map, and balance scorecard, KPI and change management theory. The research findings indicate that organizational change plan formulated by the case company should require the employee to resist change factors and performance management system issues into consideration and must be set organizational change related programs, such as performance appraisal reward system, consulting and counseling mechanisms programs to improve motivation and reduce staff negative emotions. Then according to the model revised strategy maps and performance indicators proposed in this paper, such as strategy maps add and modify corporate culture, improve internal processes management, increase the growth rate of net income and other strategies. The performance indicators are based on strategy maps new and modified by adding net income growth rate, to achieve target production rate, manpower training achievement rates and other indicators, through amendments to achieve the company’s goal, be a leading brand of precision machinery industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organizational%20change" title="organizational change">organizational change</a>, <a href="https://publications.waset.org/abstracts/search?q=SWOT%20analysis" title=" SWOT analysis"> SWOT analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20maps" title=" strategy maps"> strategy maps</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20indicators" title=" performance indicators"> performance indicators</a> </p> <a href="https://publications.waset.org/abstracts/32406/establishing-a-change-management-model-for-precision-machinery-industry-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=584">584</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=585">585</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ROCOF%20%28rate%20of%20change%20of%20frequency%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10