CINXE.COM

Discrete cosine transform - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Discrete cosine transform - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"cb504959-7f9a-4de1-a8ce-c49b175a8934","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Discrete_cosine_transform","wgTitle":"Discrete cosine transform","wgCurRevisionId":1257176998,"wgRevisionId":1257176998,"wgArticleId":59962,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Accuracy disputes from July 2022","All accuracy disputes","Articles containing potentially dated statements from 2019","All articles containing potentially dated statements","Commons category link is on Wikidata","Data compression","Digital signal processing","Fourier analysis","Discrete transforms","Image compression","Indian inventions","H.26x","JPEG", "Lossy compression algorithms","Video compression"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Discrete_cosine_transform","wgRelevantArticleId":59962,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader": true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2877","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Discrete cosine transform - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Discrete_cosine_transform"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Discrete_cosine_transform"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Discrete_cosine_transform rootpage-Discrete_cosine_transform skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Discrete+cosine+transform" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Discrete+cosine+transform" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Discrete+cosine+transform" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Discrete+cosine+transform" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-General_applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>General applications</span> </div> </a> <ul id="toc-General_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Visual_media_standards" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Visual_media_standards"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Visual media standards</span> </div> </a> <ul id="toc-Visual_media_standards-sublist" class="vector-toc-list"> <li id="toc-Image_formats" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Image_formats"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Image formats</span> </div> </a> <ul id="toc-Image_formats-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Video_formats" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Video_formats"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Video formats</span> </div> </a> <ul id="toc-Video_formats-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-MDCT_audio_standards" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#MDCT_audio_standards"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>MDCT audio standards</span> </div> </a> <ul id="toc-MDCT_audio_standards-sublist" class="vector-toc-list"> <li id="toc-General_audio" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#General_audio"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>General audio</span> </div> </a> <ul id="toc-General_audio-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Speech_coding" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Speech_coding"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>Speech coding</span> </div> </a> <ul id="toc-Speech_coding-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Multidimensional_DCT" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multidimensional_DCT"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Multidimensional DCT</span> </div> </a> <ul id="toc-Multidimensional_DCT-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Digital_signal_processing" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Digital_signal_processing"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Digital signal processing</span> </div> </a> <ul id="toc-Digital_signal_processing-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Compression_artifacts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Compression_artifacts"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Compression artifacts</span> </div> </a> <ul id="toc-Compression_artifacts-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Informal_overview" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Informal_overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Informal overview</span> </div> </a> <ul id="toc-Informal_overview-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Formal_definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Formal_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Formal definition</span> </div> </a> <button aria-controls="toc-Formal_definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Formal definition subsection</span> </button> <ul id="toc-Formal_definition-sublist" class="vector-toc-list"> <li id="toc-DCT-I" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DCT-I"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>DCT-I</span> </div> </a> <ul id="toc-DCT-I-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DCT-II" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DCT-II"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>DCT-II</span> </div> </a> <ul id="toc-DCT-II-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DCT-III" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DCT-III"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>DCT-III</span> </div> </a> <ul id="toc-DCT-III-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DCT-IV" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DCT-IV"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>DCT-IV</span> </div> </a> <ul id="toc-DCT-IV-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-DCT_V-VIII" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#DCT_V-VIII"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>DCT V-VIII</span> </div> </a> <ul id="toc-DCT_V-VIII-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Inverse_transforms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Inverse_transforms"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Inverse transforms</span> </div> </a> <ul id="toc-Inverse_transforms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multidimensional_DCTs" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Multidimensional_DCTs"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Multidimensional DCTs</span> </div> </a> <button aria-controls="toc-Multidimensional_DCTs-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Multidimensional DCTs subsection</span> </button> <ul id="toc-Multidimensional_DCTs-sublist" class="vector-toc-list"> <li id="toc-M-D_DCT-II" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#M-D_DCT-II"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>M-D DCT-II</span> </div> </a> <ul id="toc-M-D_DCT-II-sublist" class="vector-toc-list"> <li id="toc-3-D_DCT-II_VR_DIF" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#3-D_DCT-II_VR_DIF"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>3-D DCT-II VR DIF</span> </div> </a> <ul id="toc-3-D_DCT-II_VR_DIF-sublist" class="vector-toc-list"> <li id="toc-Arithmetic_complexity" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Arithmetic_complexity"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1.1</span> <span>Arithmetic complexity</span> </div> </a> <ul id="toc-Arithmetic_complexity-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-MD-DCT-IV" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#MD-DCT-IV"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>MD-DCT-IV</span> </div> </a> <ul id="toc-MD-DCT-IV-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Computation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Computation"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Computation</span> </div> </a> <ul id="toc-Computation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example_of_IDCT" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Example_of_IDCT"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Example of IDCT</span> </div> </a> <ul id="toc-Example_of_IDCT-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Discrete cosine transform</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%AD%D9%88%D9%8A%D9%84_%D8%AC%D9%8A%D8%A8_%D8%A7%D9%84%D8%AA%D9%85%D8%A7%D9%85_%D8%A7%D9%84%D9%85%D8%AA%D9%82%D8%B7%D8%B9" title="تحويل جيب التمام المتقطع – Arabic" lang="ar" hreflang="ar" data-title="تحويل جيب التمام المتقطع" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Transformada_cosinus_discreta" title="Transformada cosinus discreta – Catalan" lang="ca" hreflang="ca" data-title="Transformada cosinus discreta" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Diskr%C3%A9tn%C3%AD_kosinov%C3%A1_transformace" title="Diskrétní kosinová transformace – Czech" lang="cs" hreflang="cs" data-title="Diskrétní kosinová transformace" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Diskrete_Kosinustransformation" title="Diskrete Kosinustransformation – German" lang="de" hreflang="de" data-title="Diskrete Kosinustransformation" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Diskreetne_koosinusteisendus" title="Diskreetne koosinusteisendus – Estonian" lang="et" hreflang="et" data-title="Diskreetne koosinusteisendus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Transformada_de_coseno_discreta" title="Transformada de coseno discreta – Spanish" lang="es" hreflang="es" data-title="Transformada de coseno discreta" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Kosinuaren_transformatu_diskretu" title="Kosinuaren transformatu diskretu – Basque" lang="eu" hreflang="eu" data-title="Kosinuaren transformatu diskretu" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%A8%D8%AF%DB%8C%D9%84_%DA%A9%D8%B3%DB%8C%D9%86%D9%88%D8%B3%DB%8C_%DA%AF%D8%B3%D8%B3%D8%AA%D9%87" title="تبدیل کسینوسی گسسته – Persian" lang="fa" hreflang="fa" data-title="تبدیل کسینوسی گسسته" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Transform%C3%A9e_en_cosinus_discr%C3%A8te" title="Transformée en cosinus discrète – French" lang="fr" hreflang="fr" data-title="Transformée en cosinus discrète" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9D%B4%EC%82%B0_%EC%BD%94%EC%82%AC%EC%9D%B8_%EB%B3%80%ED%99%98" title="이산 코사인 변환 – Korean" lang="ko" hreflang="ko" data-title="이산 코사인 변환" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Trasformata_discreta_del_coseno" title="Trasformata discreta del coseno – Italian" lang="it" hreflang="it" data-title="Trasformata discreta del coseno" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A1%E0%B2%BF%E0%B2%B8%E0%B3%8D%E0%B2%95%E0%B3%8D%E0%B2%B0%E0%B3%80%E0%B2%9F%E0%B3%8D%E2%80%8C_%E0%B2%95%E0%B3%8A%E0%B2%B8%E0%B3%88%E0%B2%A8%E0%B3%8D%E2%80%8C_%E0%B2%9F%E0%B3%8D%E0%B2%B0%E0%B2%BE%E0%B2%A8%E0%B3%8D%E0%B2%B8%E0%B3%8D%E2%80%8C%E0%B2%AB%E0%B2%BE%E0%B2%B0%E0%B3%8D%E0%B2%AE%E0%B3%8D" title="ಡಿಸ್ಕ್ರೀಟ್‌ ಕೊಸೈನ್‌ ಟ್ರಾನ್ಸ್‌ಫಾರ್ಮ್ – Kannada" lang="kn" hreflang="kn" data-title="ಡಿಸ್ಕ್ರೀಟ್‌ ಕೊಸೈನ್‌ ಟ್ರಾನ್ಸ್‌ಫಾರ್ಮ್" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D1%82%D1%96%D0%BA_%D0%BA%D0%BE%D1%81%D0%B8%D0%BD%D1%83%D1%81%D1%82%D1%8B%D2%9B_%D1%82%D2%AF%D1%80%D0%BB%D0%B5%D0%BD%D0%B4%D1%96%D1%80%D1%83" title="Дискреттік косинустық түрлендіру – Kazakh" lang="kk" hreflang="kk" data-title="Дискреттік косинустық түрлендіру" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Diskreti_kosinuso_transformacija" title="Diskreti kosinuso transformacija – Lithuanian" lang="lt" hreflang="lt" data-title="Diskreti kosinuso transformacija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Diszkr%C3%A9t_koszinusz-transzform%C3%A1ci%C3%B3" title="Diszkrét koszinusz-transzformáció – Hungarian" lang="hu" hreflang="hu" data-title="Diszkrét koszinusz-transzformáció" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Discrete_cosinustransformatie" title="Discrete cosinustransformatie – Dutch" lang="nl" hreflang="nl" data-title="Discrete cosinustransformatie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E9%9B%A2%E6%95%A3%E3%82%B3%E3%82%B5%E3%82%A4%E3%83%B3%E5%A4%89%E6%8F%9B" title="離散コサイン変換 – Japanese" lang="ja" hreflang="ja" data-title="離散コサイン変換" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Dyskretna_transformacja_kosinusowa" title="Dyskretna transformacja kosinusowa – Polish" lang="pl" hreflang="pl" data-title="Dyskretna transformacja kosinusowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Transformada_discreta_de_cosseno" title="Transformada discreta de cosseno – Portuguese" lang="pt" hreflang="pt" data-title="Transformada discreta de cosseno" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Transformata_cosinus_discret%C4%83" title="Transformata cosinus discretă – Romanian" lang="ro" hreflang="ro" data-title="Transformata cosinus discretă" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%BE%D0%B5_%D0%BA%D0%BE%D1%81%D0%B8%D0%BD%D1%83%D1%81%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5" title="Дискретное косинусное преобразование – Russian" lang="ru" hreflang="ru" data-title="Дискретное косинусное преобразование" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Discrete_cosine_transform" title="Discrete cosine transform – Simple English" lang="en-simple" hreflang="en-simple" data-title="Discrete cosine transform" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%B0_%D0%BA%D0%BE%D1%81%D0%B8%D0%BD%D1%83%D1%81_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%98%D0%B0" title="Дискретна косинус трансформација – Serbian" lang="sr" hreflang="sr" data-title="Дискретна косинус трансформација" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Diskreetti_kosinimuunnos" title="Diskreetti kosinimuunnos – Finnish" lang="fi" hreflang="fi" data-title="Diskreetti kosinimuunnos" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Diskret_cosinustransform" title="Diskret cosinustransform – Swedish" lang="sv" hreflang="sv" data-title="Diskret cosinustransform" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%81%E0%B8%9B%E0%B8%A5%E0%B8%87%E0%B9%82%E0%B8%84%E0%B9%84%E0%B8%8B%E0%B8%99%E0%B9%8C%E0%B9%84%E0%B8%A1%E0%B9%88%E0%B8%95%E0%B9%88%E0%B8%AD%E0%B9%80%E0%B8%99%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%87" title="การแปลงโคไซน์ไม่ต่อเนื่อง – Thai" lang="th" hreflang="th" data-title="การแปลงโคไซน์ไม่ต่อเนื่อง" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%B5_%D0%BA%D0%BE%D1%81%D0%B8%D0%BD%D1%83%D1%81%D0%BD%D0%B5_%D0%BF%D0%B5%D1%80%D0%B5%D1%82%D0%B2%D0%BE%D1%80%D0%B5%D0%BD%D0%BD%D1%8F" title="Дискретне косинусне перетворення – Ukrainian" lang="uk" hreflang="uk" data-title="Дискретне косинусне перетворення" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%A6%BB%E6%95%A3%E4%BD%99%E5%BC%A6%E5%8F%98%E6%8D%A2" title="离散余弦变换 – Chinese" lang="zh" hreflang="zh" data-title="离散余弦变换" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2877#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Discrete_cosine_transform" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Discrete_cosine_transform" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Discrete_cosine_transform"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Discrete_cosine_transform"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Discrete_cosine_transform" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Discrete_cosine_transform" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;oldid=1257176998" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Discrete_cosine_transform&amp;id=1257176998&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDiscrete_cosine_transform"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDiscrete_cosine_transform"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Discrete_cosine_transform&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Discrete_cosine_transform&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Discrete_cosine_transform" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2877" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Technique used in signal processing and data compression</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Jagged_85_cleanup plainlinks metadata ambox ambox-content ambox-jagged-85-cleanup" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>may misquote or misrepresent many of its sources.</b> Please see the <a href="/wiki/Wikipedia_talk:Requests_for_comment/Jagged_85/Cleanup" title="Wikipedia talk:Requests for comment/Jagged 85/Cleanup">cleanup page</a> for more information.<span class="hide-when-compact"> <small>Editors: please remove this warning only after the diffs listed [[Wikipedia talk:Requests for comment/Jagged 85/{{{subpage}}}|here]] have been checked for accuracy.</small></span> <span class="date-container"><i>(<span class="date">July 2022</span>)</i></span></div></td></tr></tbody></table> <p>A <b>discrete cosine transform</b> (<b>DCT</b>) expresses a finite sequence of <a href="/wiki/Data_points" class="mw-redirect" title="Data points">data points</a> in terms of a sum of <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> functions oscillating at different <a href="/wiki/Frequency" title="Frequency">frequencies</a>. The DCT, first proposed by <a href="/wiki/Nasir_Ahmed_(engineer)" title="Nasir Ahmed (engineer)">Nasir Ahmed</a> in 1972, is a widely used transformation technique in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a> and <a href="/wiki/Data_compression" title="Data compression">data compression</a>. It is used in most <a href="/wiki/Digital_media" title="Digital media">digital media</a>, including <a href="/wiki/Digital_images" class="mw-redirect" title="Digital images">digital images</a> (such as <a href="/wiki/JPEG" title="JPEG">JPEG</a> and <a href="/wiki/HEIF" class="mw-redirect" title="HEIF">HEIF</a>), <a href="/wiki/Digital_video" title="Digital video">digital video</a> (such as <a href="/wiki/MPEG" class="mw-redirect" title="MPEG">MPEG</a> and <span class="nowrap"><a href="/wiki/H.26x" class="mw-redirect" title="H.26x">H.26x</a></span>), <a href="/wiki/Digital_audio" title="Digital audio">digital audio</a> (such as <a href="/wiki/Dolby_Digital" title="Dolby Digital">Dolby Digital</a>, <a href="/wiki/MP3" title="MP3">MP3</a> and <a href="/wiki/Advanced_Audio_Coding" title="Advanced Audio Coding">AAC</a>), <a href="/wiki/Digital_television" title="Digital television">digital television</a> (such as <a href="/wiki/SDTV" class="mw-redirect" title="SDTV">SDTV</a>, <a href="/wiki/HDTV" class="mw-redirect" title="HDTV">HDTV</a> and <a href="/wiki/Video_on_demand" title="Video on demand">VOD</a>), <a href="/wiki/Digital_radio" title="Digital radio">digital radio</a> (such as <a href="/wiki/AAC%2B" class="mw-redirect" title="AAC+">AAC+</a> and <a href="/wiki/DAB%2B" class="mw-redirect" title="DAB+">DAB+</a>), and <a href="/wiki/Speech_coding" title="Speech coding">speech coding</a> (such as <a href="/wiki/AAC-LD" title="AAC-LD">AAC-LD</a>, <a href="/wiki/Siren_(codec)" title="Siren (codec)">Siren</a> and <a href="/wiki/Opus_(audio_format)" title="Opus (audio format)">Opus</a>). DCTs are also important to numerous other applications in <a href="/wiki/Science_and_engineering" class="mw-redirect" title="Science and engineering">science and engineering</a>, such as <a href="/wiki/Digital_signal_processing" title="Digital signal processing">digital signal processing</a>, <a href="/wiki/Telecommunication" class="mw-redirect" title="Telecommunication">telecommunication</a> devices, reducing <a href="/wiki/Network_bandwidth" class="mw-redirect" title="Network bandwidth">network bandwidth</a> usage, and <a href="/wiki/Spectral_method" title="Spectral method">spectral methods</a> for the numerical solution of <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a>. </p><p>A DCT is a <a href="/wiki/List_of_Fourier-related_transforms" title="List of Fourier-related transforms">Fourier-related transform</a> similar to the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">discrete Fourier transform</a> (DFT), but using only <a href="/wiki/Real_number" title="Real number">real numbers</a>. The DCTs are generally related to <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> coefficients of a periodically and symmetrically extended sequence whereas DFTs are related to Fourier series coefficients of only periodically extended sequences. DCTs are equivalent to DFTs of roughly twice the length, operating on real data with <a href="/wiki/Even_and_odd_functions" title="Even and odd functions">even</a> symmetry (since the Fourier transform of a real and even function is real and even), whereas in some variants the input or output data are shifted by half a sample. </p><p>There are eight standard DCT variants, of which four are common. The most common variant of discrete cosine transform is the type-II DCT, which is often called simply <i>the DCT</i>. This was the original DCT as first proposed by Ahmed. Its inverse, the type-III DCT, is correspondingly often called simply <i>the inverse DCT</i> or <i>the IDCT</i>. Two related transforms are the <a href="/wiki/Discrete_sine_transform" title="Discrete sine transform">discrete sine transform</a> (DST), which is equivalent to a DFT of real and <a href="/wiki/Odd_function" class="mw-redirect" title="Odd function">odd functions</a>, and the <a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">modified discrete cosine transform</a> (MDCT), which is based on a DCT of overlapping data. Multidimensional DCTs (MD DCTs) are developed to extend the concept of DCT to multidimensional signals. A variety of fast algorithms have been developed to reduce the computational complexity of implementing DCT. One of these is the integer DCT (IntDCT),<sup id="cite_ref-Stankovic_1-0" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> an <a href="/wiki/Integer" title="Integer">integer</a> approximation of the standard DCT,<sup id="cite_ref-Britanak2010_2-0" class="reference"><a href="#cite_note-Britanak2010-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: ix, xiii, 1, 141–304">&#58;&#8202;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=iRlQHcK-r_kC&amp;pg=PA141">ix,&#8202;xiii,&#8202;1,&#8202;141–304</a>&#8202;</span></sup> used in several <a href="/wiki/ISO/IEC" class="mw-redirect" title="ISO/IEC">ISO/IEC</a> and <a href="/wiki/ITU-T" title="ITU-T">ITU-T</a> international standards.<sup id="cite_ref-Stankovic_1-1" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Britanak2010_2-1" class="reference"><a href="#cite_note-Britanak2010-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>DCT compression, also known as block compression, compresses data in sets of discrete DCT blocks.<sup id="cite_ref-Alikhani_3-0" class="reference"><a href="#cite_note-Alikhani-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> DCT blocks sizes including 8x8 <a href="/wiki/Pixels" class="mw-redirect" title="Pixels">pixels</a> for the standard DCT, and varied integer DCT sizes between 4x4 and 32x32 pixels.<sup id="cite_ref-Stankovic_1-2" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-apple_4-0" class="reference"><a href="#cite_note-apple-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The DCT has a strong <i>energy compaction</i> property,<sup id="cite_ref-pubDCT_5-0" class="reference"><a href="#cite_note-pubDCT-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pubRaoYip_6-0" class="reference"><a href="#cite_note-pubRaoYip-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> capable of achieving high quality at high <a href="/wiki/Data_compression_ratio" title="Data compression ratio">data compression ratios</a>.<sup id="cite_ref-Barbero_7-0" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lea_8-0" class="reference"><a href="#cite_note-Lea-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> However, blocky <a href="/wiki/Compression_artifacts" class="mw-redirect" title="Compression artifacts">compression artifacts</a> can appear when heavy DCT compression is applied. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The DCT was first conceived by <a href="/wiki/Nasir_Ahmed_(engineer)" title="Nasir Ahmed (engineer)">Nasir Ahmed</a>, T. Natarajan and <a href="/wiki/K._R._Rao" title="K. R. Rao">K. R. Rao</a> while working at <a href="/wiki/Kansas_State_University" title="Kansas State University">Kansas State University</a>. The concept was proposed to the <a href="/wiki/National_Science_Foundation" title="National Science Foundation">National Science Foundation</a> in 1972. The DCT was originally intended for <a href="/wiki/Image_compression" title="Image compression">image compression</a>.<sup id="cite_ref-Ahmed_9-0" class="reference"><a href="#cite_note-Ahmed-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stankovic_1-3" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Ahmed developed a practical DCT algorithm with his PhD students T. Raj Natarajan, Wills Dietrich, and Jeremy Fries, and his friend Dr. <a href="/wiki/K._R._Rao" title="K. R. Rao">K. R. Rao</a> at the <a href="/wiki/University_of_Texas_at_Arlington" title="University of Texas at Arlington">University of Texas at Arlington</a> in 1973.<sup id="cite_ref-Ahmed_9-1" class="reference"><a href="#cite_note-Ahmed-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> They presented their results in a January 1974 paper, titled <i>Discrete Cosine Transform</i>.<sup id="cite_ref-pubDCT_5-1" class="reference"><a href="#cite_note-pubDCT-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pubRaoYip_6-1" class="reference"><a href="#cite_note-pubRaoYip-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-t81_10-0" class="reference"><a href="#cite_note-t81-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> It described what is now called the type-II DCT (DCT-II),<sup id="cite_ref-Britanak2010_2-2" class="reference"><a href="#cite_note-Britanak2010-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 51">&#58;&#8202;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=iRlQHcK-r_kC&amp;pg=PA51">51</a>&#8202;</span></sup> as well as the type-III inverse DCT (IDCT).<sup id="cite_ref-pubDCT_5-2" class="reference"><a href="#cite_note-pubDCT-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Since its introduction in 1974, there has been significant research on the DCT.<sup id="cite_ref-t81_10-1" class="reference"><a href="#cite_note-t81-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> In 1977, Wen-Hsiung Chen published a paper with C. Harrison Smith and Stanley C. Fralick presenting a fast DCT algorithm.<sup id="cite_ref-A_Fast_Computational_Algorithm_for_11-0" class="reference"><a href="#cite_note-A_Fast_Computational_Algorithm_for-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-t81_10-2" class="reference"><a href="#cite_note-t81-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Further developments include a 1978 paper by M. J. Narasimha and A. M. Peterson, and a 1984 paper by B. G. Lee.<sup id="cite_ref-t81_10-3" class="reference"><a href="#cite_note-t81-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> These research papers, along with the original 1974 Ahmed paper and the 1977 Chen paper, were cited by the <a href="/wiki/Joint_Photographic_Experts_Group" title="Joint Photographic Experts Group">Joint Photographic Experts Group</a> as the basis for <a href="/wiki/JPEG" title="JPEG">JPEG</a>'s lossy image compression algorithm in 1992.<sup id="cite_ref-t81_10-4" class="reference"><a href="#cite_note-t81-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-chen_12-0" class="reference"><a href="#cite_note-chen-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Discrete_sine_transform" title="Discrete sine transform">discrete sine transform</a> (DST) was derived from the DCT, by replacing the <a href="/wiki/Neumann_boundary_condition" title="Neumann boundary condition">Neumann condition</a> at <i>x=0</i> with a <a href="/wiki/Dirichlet_condition" class="mw-redirect" title="Dirichlet condition">Dirichlet condition</a>.<sup id="cite_ref-Britanak2010_2-3" class="reference"><a href="#cite_note-Britanak2010-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 35-36">&#58;&#8202;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=iRlQHcK-r_kC&amp;pg=PA35">35-36</a>&#8202;</span></sup> The DST was described in the 1974 DCT paper by Ahmed, Natarajan and Rao.<sup id="cite_ref-pubDCT_5-3" class="reference"><a href="#cite_note-pubDCT-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> A type-I DST (DST-I) was later described by <a href="/wiki/Anil_K._Jain_(electrical_engineer,_born_1946)" title="Anil K. Jain (electrical engineer, born 1946)">Anil K. Jain</a> in 1976, and a type-II DST (DST-II) was then described by H.B. Kekra and J.K. Solanka in 1978.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1975, John A. Roese and Guner S. Robinson adapted the DCT for <a href="/wiki/Inter-frame" class="mw-redirect" title="Inter-frame">inter-frame</a> <a href="/wiki/Motion_compensation" title="Motion compensation">motion-compensated</a> <a href="/wiki/Video_coding" class="mw-redirect" title="Video coding">video coding</a>. They experimented with the DCT and the <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> (FFT), developing inter-frame hybrid coders for both, and found that the DCT is the most efficient due to its reduced complexity, capable of compressing image data down to 0.25-<a href="/wiki/Bit" title="Bit">bit</a> per <a href="/wiki/Pixel" title="Pixel">pixel</a> for a <a href="/wiki/Videotelephone" class="mw-redirect" title="Videotelephone">videotelephone</a> scene with image quality comparable to an <a href="/wiki/Intra-frame_coding" title="Intra-frame coding">intra-frame coder</a> requiring 2-bit per pixel.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Roese_15-0" class="reference"><a href="#cite_note-Roese-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> In 1979, <a href="/wiki/Anil_K._Jain_(electrical_engineer,_born_1946)" title="Anil K. Jain (electrical engineer, born 1946)">Anil K. Jain</a> and Jaswant R. Jain further developed motion-compensated DCT video compression,<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ITU_17-0" class="reference"><a href="#cite_note-ITU-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> also called block motion compensation.<sup id="cite_ref-ITU_17-1" class="reference"><a href="#cite_note-ITU-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> This led to Chen developing a practical video compression algorithm, called motion-compensated DCT or adaptive scene coding, in 1981.<sup id="cite_ref-ITU_17-2" class="reference"><a href="#cite_note-ITU-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Motion-compensated DCT later became the standard coding technique for video compression from the late 1980s onwards.<sup id="cite_ref-Ghanbari_18-0" class="reference"><a href="#cite_note-Ghanbari-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Li_19-0" class="reference"><a href="#cite_note-Li-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>A DCT variant, the <a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">modified discrete cosine transform</a> (MDCT), was developed by John P. Princen, A.W. Johnson and Alan B. Bradley at the <a href="/wiki/University_of_Surrey" title="University of Surrey">University of Surrey</a> in 1987,<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> following earlier work by Princen and Bradley in 1986.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> The MDCT is used in most modern <a href="/wiki/Audio_compression_(data)" class="mw-redirect" title="Audio compression (data)">audio compression</a> formats, such as <a href="/wiki/Dolby_Digital" title="Dolby Digital">Dolby Digital</a> (AC-3),<sup id="cite_ref-Luo_22-0" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Britanak2011_23-0" class="reference"><a href="#cite_note-Britanak2011-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/MP3" title="MP3">MP3</a> (which uses a hybrid DCT-<a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a> algorithm),<sup id="cite_ref-Guckert_24-0" class="reference"><a href="#cite_note-Guckert-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Advanced_Audio_Coding" title="Advanced Audio Coding">Advanced Audio Coding</a> (AAC),<sup id="cite_ref-brandenburg_25-0" class="reference"><a href="#cite_note-brandenburg-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Vorbis" title="Vorbis">Vorbis</a> (<a href="/wiki/Ogg" title="Ogg">Ogg</a>).<sup id="cite_ref-vorbis-mdct_26-0" class="reference"><a href="#cite_note-vorbis-mdct-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p><p>Nasir Ahmed also developed a lossless DCT algorithm with Giridhar Mandyam and Neeraj Magotra at the <a href="/wiki/University_of_New_Mexico" title="University of New Mexico">University of New Mexico</a> in 1995. This allows the DCT technique to be used for <a href="/wiki/Lossless_compression" title="Lossless compression">lossless compression</a> of images. It is a modification of the original DCT algorithm, and incorporates elements of inverse DCT and <a href="/wiki/Delta_modulation" title="Delta modulation">delta modulation</a>. It is a more effective lossless compression algorithm than <a href="/wiki/Entropy_coding" title="Entropy coding">entropy coding</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Lossless DCT is also known as LDCT.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=2" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The DCT is the most widely used transformation technique in <a href="/wiki/Signal_processing" title="Signal processing">signal processing</a>,<sup id="cite_ref-Muchahary_29-0" class="reference"><a href="#cite_note-Muchahary-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> and by far the most widely used linear transform in <a href="/wiki/Data_compression" title="Data compression">data compression</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Uncompressed <a href="/wiki/Digital_media" title="Digital media">digital media</a> as well as <a href="/wiki/Lossless_compression" title="Lossless compression">lossless compression</a> have high <a href="/wiki/Computer_memory" title="Computer memory">memory</a> and <a href="/wiki/Bandwidth_(computing)" title="Bandwidth (computing)">bandwidth</a> requirements, which is significantly reduced by the DCT <a href="/wiki/Lossy_compression" title="Lossy compression">lossy compression</a> technique,<sup id="cite_ref-Barbero_7-1" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lea_8-1" class="reference"><a href="#cite_note-Lea-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> capable of achieving <a href="/wiki/Data_compression_ratio" title="Data compression ratio">data compression ratios</a> from 8:1 to 14:1 for near-studio-quality,<sup id="cite_ref-Barbero_7-2" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> up to 100:1 for acceptable-quality content.<sup id="cite_ref-Lea_8-2" class="reference"><a href="#cite_note-Lea-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> DCT compression standards are used in digital media technologies, such as <a href="/wiki/Digital_images" class="mw-redirect" title="Digital images">digital images</a>, <a href="/wiki/Digital_photo" class="mw-redirect" title="Digital photo">digital photos</a>,<sup id="cite_ref-Atlantic_31-0" class="reference"><a href="#cite_note-Atlantic-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-epfl_32-0" class="reference"><a href="#cite_note-epfl-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Digital_video" title="Digital video">digital video</a>,<sup id="cite_ref-Ghanbari_18-1" class="reference"><a href="#cite_note-Ghanbari-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lee1995_33-0" class="reference"><a href="#cite_note-Lee1995-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Streaming_media" title="Streaming media">streaming media</a>,<sup id="cite_ref-Lee_34-0" class="reference"><a href="#cite_note-Lee-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Digital_television" title="Digital television">digital television</a>, <a href="/wiki/Streaming_television" title="Streaming television">streaming television</a>, <a href="/wiki/Video_on_demand" title="Video on demand">video on demand</a> (VOD),<sup id="cite_ref-Lea_8-3" class="reference"><a href="#cite_note-Lea-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Digital_cinema" title="Digital cinema">digital cinema</a>,<sup id="cite_ref-Luo_22-1" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/High-definition_video" title="High-definition video">high-definition video</a> (HD video), and <a href="/wiki/High-definition_television" title="High-definition television">high-definition television</a> (HDTV).<sup id="cite_ref-Barbero_7-3" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Shishikui_35-0" class="reference"><a href="#cite_note-Shishikui-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> </p><p>The DCT, and in particular the DCT-II, is often used in signal and image processing, especially for lossy compression, because it has a strong <i>energy compaction</i> property.<sup id="cite_ref-pubDCT_5-4" class="reference"><a href="#cite_note-pubDCT-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pubRaoYip_6-2" class="reference"><a href="#cite_note-pubRaoYip-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> In typical applications, most of the signal information tends to be concentrated in a few low-frequency components of the DCT. For strongly correlated <a href="/wiki/Markov_process" class="mw-redirect" title="Markov process">Markov processes</a>, the DCT can approach the compaction efficiency of the <a href="/wiki/Karhunen-Lo%C3%A8ve_transform" class="mw-redirect" title="Karhunen-Loève transform">Karhunen-Loève transform</a> (which is optimal in the decorrelation sense). As explained below, this stems from the boundary conditions implicit in the cosine functions. </p><p>DCTs are widely employed in solving <a href="/wiki/Partial_differential_equations" class="mw-redirect" title="Partial differential equations">partial differential equations</a> by <a href="/wiki/Spectral_methods" class="mw-redirect" title="Spectral methods">spectral methods</a>, where the different variants of the DCT correspond to slightly different even and odd boundary conditions at the two ends of the array. </p><p>DCTs are closely related to <a href="/wiki/Chebyshev_polynomials" title="Chebyshev polynomials">Chebyshev polynomials</a>, and fast DCT algorithms (below) are used in <a href="/wiki/Chebyshev_approximation" class="mw-redirect" title="Chebyshev approximation">Chebyshev approximation</a> of arbitrary functions by series of Chebyshev polynomials, for example in <a href="/wiki/Clenshaw%E2%80%93Curtis_quadrature" title="Clenshaw–Curtis quadrature">Clenshaw–Curtis quadrature</a>. </p> <div class="mw-heading mw-heading3"><h3 id="General_applications">General applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=3" title="Edit section: General applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The DCT is widely used in many applications, which include the following. </p> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 50em;"> <ul><li><a href="/wiki/Audio_signal_processing" title="Audio signal processing">Audio signal processing</a> — <a href="/wiki/Audio_coding" class="mw-redirect" title="Audio coding">audio coding</a>, <a href="/wiki/Audio_data_compression" class="mw-redirect" title="Audio data compression">audio data compression</a> (lossy and lossless),<sup id="cite_ref-Ochoa129_36-0" class="reference"><a href="#cite_note-Ochoa129-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Surround_sound" title="Surround sound">surround sound</a>,<sup id="cite_ref-Luo_22-2" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Acoustic_echo_cancellation" class="mw-redirect" title="Acoustic echo cancellation">acoustic echo</a> and <a href="/wiki/Adaptive_feedback_cancellation" title="Adaptive feedback cancellation">feedback cancellation</a>, <a href="/wiki/Phoneme" title="Phoneme">phoneme</a> recognition, <a href="/wiki/Time-domain_aliasing_cancellation" class="mw-redirect" title="Time-domain aliasing cancellation">time-domain aliasing cancellation</a> (TDAC)<sup id="cite_ref-Ochoa_37-0" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Digital_audio" title="Digital audio">Digital audio</a><sup id="cite_ref-Stankovic_1-4" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Digital_radio" title="Digital radio">Digital radio</a> — <a href="/wiki/Digital_Audio_Broadcasting" title="Digital Audio Broadcasting">Digital Audio Broadcasting</a> (DAB+),<sup id="cite_ref-Britanak_38-0" class="reference"><a href="#cite_note-Britanak-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/HD_Radio" title="HD Radio">HD Radio</a><sup id="cite_ref-Jones_39-0" class="reference"><a href="#cite_note-Jones-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Speech_processing" title="Speech processing">Speech processing</a> — <a href="/wiki/Speech_coding" title="Speech coding">speech coding</a><sup id="cite_ref-Hersent_40-0" class="reference"><a href="#cite_note-Hersent-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AppleInsider_standards_1_41-0" class="reference"><a href="#cite_note-AppleInsider_standards_1-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Speech_recognition" title="Speech recognition">speech recognition</a>, <a href="/wiki/Voice_activity_detection" title="Voice activity detection">voice activity detection</a> (VAD)<sup id="cite_ref-Ochoa_37-1" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Digital_telephony" class="mw-redirect" title="Digital telephony">Digital telephony</a> — <a href="/wiki/Voice_over_IP" title="Voice over IP">voice over IP</a> (VoIP),<sup id="cite_ref-Hersent_40-1" class="reference"><a href="#cite_note-Hersent-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Mobile_telephony" title="Mobile telephony">mobile telephony</a>, <a href="/wiki/Video_telephony" class="mw-redirect" title="Video telephony">video telephony</a>,<sup id="cite_ref-AppleInsider_standards_1_41-1" class="reference"><a href="#cite_note-AppleInsider_standards_1-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Teleconferencing" class="mw-redirect" title="Teleconferencing">teleconferencing</a>, <a href="/wiki/Videoconferencing" class="mw-redirect" title="Videoconferencing">videoconferencing</a><sup id="cite_ref-Stankovic_1-5" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Biometrics" title="Biometrics">Biometrics</a> — <a href="/wiki/Fingerprint" title="Fingerprint">fingerprint</a> orientation, <a href="/wiki/Facial_recognition_systems" class="mw-redirect" title="Facial recognition systems">facial recognition systems</a>, biometric <a href="/wiki/Digital_watermarking" title="Digital watermarking">watermarking</a>, fingerprint-based biometric watermarking, <a href="/wiki/Palm_print" title="Palm print">palm print</a> identification/recognition<sup id="cite_ref-Ochoa_37-2" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Face_detection" title="Face detection">Face detection</a> — <a href="/wiki/Facial_recognition_system" title="Facial recognition system">facial recognition</a><sup id="cite_ref-Ochoa_37-3" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Computers" class="mw-redirect" title="Computers">Computers</a> and the <a href="/wiki/Internet" title="Internet">Internet</a> — the <a href="/wiki/World_Wide_Web" title="World Wide Web">World Wide Web</a>, <a href="/wiki/Social_media" title="Social media">social media</a>,<sup id="cite_ref-Atlantic_31-1" class="reference"><a href="#cite_note-Atlantic-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-epfl_32-1" class="reference"><a href="#cite_note-epfl-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Internet_video" title="Internet video">Internet video</a><sup id="cite_ref-Encodes_42-0" class="reference"><a href="#cite_note-Encodes-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Network_bandwidth" class="mw-redirect" title="Network bandwidth">Network bandwidth</a> usage reducation<sup id="cite_ref-Stankovic_1-6" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Consumer_electronics" title="Consumer electronics">Consumer electronics</a><sup id="cite_ref-Ochoa_37-4" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Multimedia" title="Multimedia">multimedia</a> systems,<sup id="cite_ref-Stankovic_1-7" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> multimedia <a href="/wiki/Telecommunication" class="mw-redirect" title="Telecommunication">telecommunication</a> devices,<sup id="cite_ref-Stankovic_1-8" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> consumer devices<sup id="cite_ref-Encodes_42-1" class="reference"><a href="#cite_note-Encodes-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Cryptography" title="Cryptography">Cryptography</a> — <a href="/wiki/Encryption" title="Encryption">encryption</a>, <a href="/wiki/Steganography" title="Steganography">steganography</a>, <a href="/wiki/Copyright" title="Copyright">copyright</a> protection<sup id="cite_ref-Ochoa_37-5" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Data_compression" title="Data compression">Data compression</a> — <a href="/wiki/Transform_coding" title="Transform coding">transform coding</a>, <a href="/wiki/Lossy_compression" title="Lossy compression">lossy compression</a>, <a href="/wiki/Lossless_compression" title="Lossless compression">lossless compression</a><sup id="cite_ref-Ochoa129_36-1" class="reference"><a href="#cite_note-Ochoa129-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Encoding" class="mw-redirect" title="Encoding">Encoding</a> operations — <a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">quantization</a>, perceptual weighting, <a href="/wiki/Entropy_encoding" class="mw-redirect" title="Entropy encoding">entropy encoding</a>, <a href="/wiki/Variable_bitrate_encoding" class="mw-redirect" title="Variable bitrate encoding">variable bitrate encoding</a><sup id="cite_ref-Stankovic_1-9" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Digital_media" title="Digital media">Digital media</a><sup id="cite_ref-Lee_34-1" class="reference"><a href="#cite_note-Lee-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Digital_distribution" title="Digital distribution">digital distribution</a><sup id="cite_ref-Bitmovin_43-0" class="reference"><a href="#cite_note-Bitmovin-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Streaming_media" title="Streaming media">Streaming media</a><sup id="cite_ref-Lee_34-2" class="reference"><a href="#cite_note-Lee-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Streaming_audio" class="mw-redirect" title="Streaming audio">streaming audio</a>, <a href="/wiki/Streaming_video" class="mw-redirect" title="Streaming video">streaming video</a>, <a href="/wiki/Streaming_television" title="Streaming television">streaming television</a>, <a href="/wiki/Video-on-demand" class="mw-redirect" title="Video-on-demand">video-on-demand</a> (VOD)<sup id="cite_ref-Lea_8-4" class="reference"><a href="#cite_note-Lea-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Forgery_detection" class="mw-redirect" title="Forgery detection">Forgery detection</a><sup id="cite_ref-Ochoa_37-6" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Geophysical" class="mw-redirect" title="Geophysical">Geophysical</a> <a href="/wiki/Transient_electromagnetics" title="Transient electromagnetics">transient electromagnetics</a> (transient EM)<sup id="cite_ref-Ochoa_37-7" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Image" title="Image">Images</a> — <a href="/wiki/Artist" title="Artist">artist</a> identification,<sup id="cite_ref-Ochoa_37-8" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Focus_(optics)" title="Focus (optics)">focus</a> and <a href="/wiki/Bokeh" title="Bokeh">blurriness</a> measure,<sup id="cite_ref-Ochoa_37-9" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Feature_extraction" class="mw-redirect" title="Feature extraction">feature extraction</a><sup id="cite_ref-Ochoa_37-10" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Color" title="Color">Color</a> formatting — formatting <a href="/wiki/Luminance" title="Luminance">luminance</a> and color differences, color formats (such as <a href="/wiki/YUV444" class="mw-redirect" title="YUV444">YUV444</a> and <a href="/wiki/YUV411" class="mw-redirect" title="YUV411">YUV411</a>), <a href="/wiki/Encoding" class="mw-redirect" title="Encoding">decoding</a> operations such as the inverse operation between display color formats (<a href="/wiki/YIQ" title="YIQ">YIQ</a>, <a href="/wiki/YUV" class="mw-redirect" title="YUV">YUV</a>, <a href="/wiki/RGB" class="mw-redirect" title="RGB">RGB</a>)<sup id="cite_ref-Stankovic_1-10" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Digital_imaging" title="Digital imaging">Digital imaging</a> — <a href="/wiki/Digital_image" title="Digital image">digital images</a>, <a href="/wiki/Digital_camera" title="Digital camera">digital cameras</a>, <a href="/wiki/Digital_photography" title="Digital photography">digital photography</a>,<sup id="cite_ref-Atlantic_31-2" class="reference"><a href="#cite_note-Atlantic-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-epfl_32-2" class="reference"><a href="#cite_note-epfl-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/High-dynamic-range_imaging" class="mw-redirect" title="High-dynamic-range imaging">high-dynamic-range imaging</a> (HDR imaging)<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Image_compression" title="Image compression">Image compression</a><sup id="cite_ref-Ochoa_37-11" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-McKernan58_45-0" class="reference"><a href="#cite_note-McKernan58-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Image_file_format" title="Image file format">image file formats</a>,<sup id="cite_ref-Baraniuk_46-0" class="reference"><a href="#cite_note-Baraniuk-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/2D-plus-depth" title="2D-plus-depth">multiview image</a> compression, <a href="/wiki/Progressive_JPEG" class="mw-redirect" title="Progressive JPEG">progressive image</a> transmission<sup id="cite_ref-Ochoa_37-12" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Image_processing" class="mw-redirect" title="Image processing">Image processing</a> — <a href="/wiki/Digital_image_processing" title="Digital image processing">digital image processing</a>,<sup id="cite_ref-Stankovic_1-11" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Image_analysis" title="Image analysis">image analysis</a>, <a href="/wiki/Content-based_image_retrieval" title="Content-based image retrieval">content-based image retrieval</a>, <a href="/wiki/Corner_detection" title="Corner detection">corner detection</a>, directional block-wise <a href="/wiki/Sparse_approximation" title="Sparse approximation">image representation</a>, <a href="/wiki/Edge_detection" title="Edge detection">edge detection</a>, <a href="/wiki/Image_enhancement" class="mw-redirect" title="Image enhancement">image enhancement</a>, <a href="/wiki/Image_fusion" title="Image fusion">image fusion</a>, <a href="/wiki/Image_segmentation" title="Image segmentation">image segmentation</a>, <a href="/wiki/Interpolation" title="Interpolation">interpolation</a>, <a href="/wiki/Image_noise" title="Image noise">image noise</a> level estimation, mirroring, rotation, <a href="/wiki/Just-noticeable_difference" title="Just-noticeable difference">just-noticeable distortion</a> (JND) profile, <a href="/wiki/Spatiotemporal" class="mw-redirect" title="Spatiotemporal">spatiotemporal</a> masking effects, <a href="/wiki/Foveated_imaging" title="Foveated imaging">foveated imaging</a><sup id="cite_ref-Ochoa_37-13" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Image_quality" title="Image quality">Image quality</a> assessment — DCT-based quality degradation metric (DCT QM)<sup id="cite_ref-Ochoa_37-14" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Image_reconstruction" class="mw-redirect" title="Image reconstruction">Image reconstruction</a> — directional <a href="/wiki/Image_texture" title="Image texture">textures</a> auto inspection, image restoration, <a href="/wiki/Inpainting" title="Inpainting">inpainting</a>, <a href="/wiki/Photo_recovery" title="Photo recovery">visual recovery</a><sup id="cite_ref-Ochoa_37-15" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Medical_technology" class="mw-redirect" title="Medical technology">Medical technology</a> <ul><li><a href="/wiki/Electrocardiography" title="Electrocardiography">Electrocardiography</a> (ECG) — <a href="/wiki/Vectorcardiography" title="Vectorcardiography">vectorcardiography</a> (VCG)<sup id="cite_ref-Ochoa_37-16" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Medical_imaging" title="Medical imaging">Medical imaging</a> — medical image compression, image fusion, watermarking, <a href="/wiki/Brain_tumor" title="Brain tumor">brain tumor</a> <a href="/wiki/Brain_compression" class="mw-redirect" title="Brain compression">compression</a> classification<sup id="cite_ref-Ochoa_37-17" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Pattern_recognition" title="Pattern recognition">Pattern recognition</a><sup id="cite_ref-Ochoa_37-18" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Region_of_interest" title="Region of interest">Region of interest</a> (ROI) extraction<sup id="cite_ref-Ochoa_37-19" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Signal_processing" title="Signal processing">Signal processing</a> — <a href="/wiki/Digital_signal_processing" title="Digital signal processing">digital signal processing</a>, <a href="/wiki/Digital_signal_processor" title="Digital signal processor">digital signal processors</a> (DSP), DSP <a href="/wiki/Software" title="Software">software</a>, <a href="/wiki/Multiplexing" title="Multiplexing">multiplexing</a>, <a href="/wiki/Signaling" class="mw-redirect" title="Signaling">signaling</a>, control signals, <a href="/wiki/Analog-to-digital_conversion" class="mw-redirect" title="Analog-to-digital conversion">analog-to-digital conversion</a> (ADC),<sup id="cite_ref-Stankovic_1-12" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Compressive_sampling" class="mw-redirect" title="Compressive sampling">compressive sampling</a>, DCT pyramid <a href="/wiki/Error_concealment" title="Error concealment">error concealment</a>, <a href="/wiki/Downsampling" class="mw-redirect" title="Downsampling">downsampling</a>, <a href="/wiki/Upsampling" title="Upsampling">upsampling</a>, <a href="/wiki/Signal-to-noise_ratio" title="Signal-to-noise ratio">signal-to-noise ratio</a> (SNR) estimation, <a href="/wiki/Transmux" title="Transmux">transmux</a>, <a href="/wiki/Wiener_filter" title="Wiener filter">Wiener filter</a><sup id="cite_ref-Ochoa_37-20" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <ul><li><a href="/wiki/Complex_cepstrum" class="mw-redirect" title="Complex cepstrum">Complex cepstrum</a> feature analysis<sup id="cite_ref-Ochoa_37-21" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li>DCT <a href="/wiki/Filter_(signal_processing)" title="Filter (signal processing)">filtering</a><sup id="cite_ref-Ochoa_37-22" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Surveillance" title="Surveillance">Surveillance</a><sup id="cite_ref-Ochoa_37-23" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li>Vehicular <a href="/wiki/Event_data_recorder" title="Event data recorder">event data recorder</a> camera<sup id="cite_ref-Ochoa_37-24" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Video" title="Video">Video</a> <ul><li><a href="/wiki/Digital_cinema" title="Digital cinema">Digital cinema</a><sup id="cite_ref-McKernan58_45-1" class="reference"><a href="#cite_note-McKernan58-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Digital_cinematography" title="Digital cinematography">digital cinematography</a>, <a href="/wiki/Digital_movie_camera" title="Digital movie camera">digital movie cameras</a>, <a href="/wiki/Video_editing" title="Video editing">video editing</a>, <a href="/wiki/Film_editing" title="Film editing">film editing</a>,<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Dolby_Digital" title="Dolby Digital">Dolby Digital</a> audio<sup id="cite_ref-Stankovic_1-13" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Luo_22-3" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Digital_television" title="Digital television">Digital television</a> (DTV)<sup id="cite_ref-Barbero_7-4" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Digital_television_broadcasting" class="mw-redirect" title="Digital television broadcasting">digital television broadcasting</a>,<sup id="cite_ref-McKernan58_45-2" class="reference"><a href="#cite_note-McKernan58-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Standard-definition_television" title="Standard-definition television">standard-definition television</a> (SDTV), <a href="/wiki/High-definition_TV" class="mw-redirect" title="High-definition TV">high-definition TV</a> (HDTV),<sup id="cite_ref-Barbero_7-5" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Shishikui_35-1" class="reference"><a href="#cite_note-Shishikui-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> HDTV <a href="/wiki/Video_decoder" title="Video decoder">encoder/decoder chips</a>, <a href="/wiki/Ultra_HDTV" class="mw-redirect" title="Ultra HDTV">ultra HDTV</a> (UHDTV)<sup id="cite_ref-Stankovic_1-14" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Digital_video" title="Digital video">Digital video</a><sup id="cite_ref-Ghanbari_18-2" class="reference"><a href="#cite_note-Ghanbari-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lee1995_33-1" class="reference"><a href="#cite_note-Lee1995-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Digital_versatile_disc" class="mw-redirect" title="Digital versatile disc">digital versatile disc</a> (DVD),<sup id="cite_ref-McKernan58_45-3" class="reference"><a href="#cite_note-McKernan58-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/High-definition_video" title="High-definition video">high-definition</a> (HD) video<sup id="cite_ref-Barbero_7-6" class="reference"><a href="#cite_note-Barbero-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Shishikui_35-2" class="reference"><a href="#cite_note-Shishikui-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Video_coding" class="mw-redirect" title="Video coding">Video coding</a> — <a href="/wiki/Video_compression" class="mw-redirect" title="Video compression">video compression</a>,<sup id="cite_ref-Stankovic_1-15" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Video_coding_standards" class="mw-redirect" title="Video coding standards">video coding standards</a>,<sup id="cite_ref-Ochoa_37-25" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Motion_estimation" title="Motion estimation">motion estimation</a>, <a href="/wiki/Motion_compensation" title="Motion compensation">motion compensation</a>, <a href="/wiki/Inter-frame" class="mw-redirect" title="Inter-frame">inter-frame</a> prediction, <a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">motion vectors</a>,<sup id="cite_ref-Stankovic_1-16" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Stereoscopic_video_coding" title="Stereoscopic video coding">3D video coding</a>, local distortion detection probability (LDDP) model, <a href="/wiki/Moving_object_detection" title="Moving object detection">moving object detection</a>, <a href="/wiki/Multiview_Video_Coding" title="Multiview Video Coding">Multiview Video Coding</a> (MVC)<sup id="cite_ref-Ochoa_37-26" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Video_processing" title="Video processing">Video processing</a> — <a href="/wiki/Motion_analysis" title="Motion analysis">motion analysis</a>, 3D-DCT motion analysis, <a href="/wiki/Video_content_analysis" title="Video content analysis">video content analysis</a>, <a href="/wiki/Data_extraction" title="Data extraction">data extraction</a>,<sup id="cite_ref-Ochoa_37-27" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Video_browsing" title="Video browsing">video browsing</a>,<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> professional <a href="/wiki/Video_production" title="Video production">video production</a><sup id="cite_ref-loc_50-0" class="reference"><a href="#cite_note-loc-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Watermark" title="Watermark">Watermarking</a> — <a href="/wiki/Digital_watermarking" title="Digital watermarking">digital watermarking</a>, <a href="/wiki/Image_watermarking" class="mw-redirect" title="Image watermarking">image watermarking</a>, video watermarking, <a href="/wiki/3D_video" class="mw-redirect" title="3D video">3D video</a> watermarking, <a href="/wiki/Digital_watermarking#Reversible_data_hiding" title="Digital watermarking">reversible data hiding</a>, watermarking detection<sup id="cite_ref-Ochoa_37-28" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Wireless" title="Wireless">Wireless</a> technology <ul><li><a href="/wiki/Mobile_devices" class="mw-redirect" title="Mobile devices">Mobile devices</a><sup id="cite_ref-Encodes_42-2" class="reference"><a href="#cite_note-Encodes-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> — <a href="/wiki/Mobile_phones" class="mw-redirect" title="Mobile phones">mobile phones</a>, <a href="/wiki/Smartphones" class="mw-redirect" title="Smartphones">smartphones</a>,<sup id="cite_ref-AppleInsider_standards_1_41-2" class="reference"><a href="#cite_note-AppleInsider_standards_1-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Videophones" class="mw-redirect" title="Videophones">videophones</a><sup id="cite_ref-Stankovic_1-17" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Radio_frequency" title="Radio frequency">Radio frequency</a> (RF) technology — <a href="/wiki/RF_engineering" class="mw-redirect" title="RF engineering">RF engineering</a>, <a href="/wiki/Aperture_synthesis" title="Aperture synthesis">aperture</a> <a href="/wiki/Sensor_array" title="Sensor array">arrays</a>,<sup id="cite_ref-Ochoa_37-29" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Beamforming" title="Beamforming">beamforming</a>, <a href="/wiki/Digital_electronics" title="Digital electronics">digital</a> <a href="/wiki/Arithmetic_circuit" class="mw-redirect" title="Arithmetic circuit">arithmetic circuits</a>, directional <a href="/wiki/Sensor" title="Sensor">sensing</a>, <a href="/wiki/Astronomical_image_processing" class="mw-redirect" title="Astronomical image processing">space imaging</a><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup></li></ul></li> <li><a href="/wiki/Wireless_sensor_network" title="Wireless sensor network">Wireless sensor network</a> (WSN) — wireless <a href="/wiki/Surface_acoustic_wave_sensor" title="Surface acoustic wave sensor">acoustic sensor</a> networks<sup id="cite_ref-Ochoa_37-30" class="reference"><a href="#cite_note-Ochoa-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li></ul></div> <div class="mw-heading mw-heading3"><h3 id="Visual_media_standards">Visual media standards</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=4" title="Edit section: Visual media standards"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The DCT-II is an important image compression technique. It is used in image compression standards such as <a href="/wiki/JPEG" title="JPEG">JPEG</a>, and <a href="/wiki/Video_compression" class="mw-redirect" title="Video compression">video compression</a> standards such as <span class="nowrap"><a href="/wiki/H.26x" class="mw-redirect" title="H.26x">H.26x</a></span>, <a href="/wiki/MJPEG" class="mw-redirect" title="MJPEG">MJPEG</a>, <a href="/wiki/MPEG" class="mw-redirect" title="MPEG">MPEG</a>, <a href="/wiki/DV_(video_format)" title="DV (video format)">DV</a>, <a href="/wiki/Theora" title="Theora">Theora</a> and <a href="/wiki/Daala" title="Daala">Daala</a>. There, the two-dimensional DCT-II of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\times N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>&#x00D7;<!-- × --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\times N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99a86c5231bb3cbb863d9d428ebe9ac8db8d4ffb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.968ex; height:2.176ex;" alt="{\displaystyle N\times N}"></span> blocks are computed and the results are <a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">quantized</a> and <a href="/wiki/Entropy_encoding" class="mw-redirect" title="Entropy encoding">entropy coded</a>. In this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> is typically 8 and the DCT-II formula is applied to each row and column of the block. The result is an 8&#160;× 8 transform coefficient array in which the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d630d3e781a53b0a3559ae7e5b45f9479a3141a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (0,0)}"></span> element (top-left) is the DC (zero-frequency) component and entries with increasing vertical and horizontal index values represent higher vertical and horizontal spatial frequencies. </p><p>The integer DCT, an integer approximation of the DCT,<sup id="cite_ref-Britanak2010_2-4" class="reference"><a href="#cite_note-Britanak2010-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stankovic_1-18" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> is used in <a href="/wiki/Advanced_Video_Coding" title="Advanced Video Coding">Advanced Video Coding</a> (AVC),<sup id="cite_ref-Wang_52-0" class="reference"><a href="#cite_note-Wang-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stankovic_1-19" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> introduced in 2003, and <a href="/wiki/High_Efficiency_Video_Coding" title="High Efficiency Video Coding">High Efficiency Video Coding</a> (HEVC),<sup id="cite_ref-apple_4-1" class="reference"><a href="#cite_note-apple-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stankovic_1-20" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> introduced in 2013. The integer DCT is also used in the <a href="/wiki/High_Efficiency_Image_Format" class="mw-redirect" title="High Efficiency Image Format">High Efficiency Image Format</a> (HEIF), which uses a subset of the <a href="/wiki/HEVC" class="mw-redirect" title="HEVC">HEVC</a> video coding format for coding still images.<sup id="cite_ref-apple_4-2" class="reference"><a href="#cite_note-apple-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> AVC uses 4&#160;x 4 and 8&#160;x 8 blocks. HEVC and HEIF use varied block sizes between 4&#160;x 4 and 32&#160;x 32 <a href="/wiki/Pixels" class="mw-redirect" title="Pixels">pixels</a>.<sup id="cite_ref-apple_4-3" class="reference"><a href="#cite_note-apple-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stankovic_1-21" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> As of 2019<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Discrete_cosine_transform&amp;action=edit">&#91;update&#93;</a></sup>, AVC is by far the most commonly used format for the recording, compression and distribution of video content, used by 91% of video developers, followed by HEVC which is used by 43% of developers.<sup id="cite_ref-Bitmovin_43-1" class="reference"><a href="#cite_note-Bitmovin-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Image_formats">Image formats</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=5" title="Edit section: Image formats"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th>Image compression standard</th> <th>Year</th> <th>Common applications </th></tr> <tr> <td><a href="/wiki/JPEG" title="JPEG">JPEG</a><sup id="cite_ref-Stankovic_1-22" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></td> <td>1992</td> <td>The most widely used image compression standard<sup id="cite_ref-Hudson_53-0" class="reference"><a href="#cite_note-Hudson-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> and digital <a href="/wiki/Image_format" class="mw-redirect" title="Image format">image format</a>.<sup id="cite_ref-Baraniuk_46-1" class="reference"><a href="#cite_note-Baraniuk-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/JPEG_XR" title="JPEG XR">JPEG XR</a></td> <td>2009</td> <td><a href="/wiki/Open_XML_Paper_Specification" title="Open XML Paper Specification">Open XML Paper Specification</a> </td></tr> <tr> <td><a href="/wiki/WebP" title="WebP">WebP</a></td> <td>2010</td> <td>A graphic format that supports the lossy compression of digital images. Developed by <a href="/wiki/Google" title="Google">Google</a>. </td></tr> <tr> <td><a href="/wiki/High_Efficiency_Image_Format" class="mw-redirect" title="High Efficiency Image Format">High Efficiency Image Format</a> (HEIF)</td> <td>2013</td> <td><a href="/wiki/Image_file_format" title="Image file format">Image file format</a> based on HEVC compression. It improves compression over JPEG,<sup id="cite_ref-apple_4-4" class="reference"><a href="#cite_note-apple-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> and supports <a href="/wiki/Animation" title="Animation">animation</a> with much more efficient compression than the <a href="/wiki/Animated_GIF" class="mw-redirect" title="Animated GIF">animated GIF</a> format.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Better_Portable_Graphics" title="Better Portable Graphics">BPG</a></td> <td>2014</td> <td>Based on HEVC compression </td></tr> <tr> <td><a href="/wiki/JPEG_XL" title="JPEG XL">JPEG XL</a><sup id="cite_ref-jxl_56-0" class="reference"><a href="#cite_note-jxl-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup></td> <td>2020</td> <td>A royalty-free raster-graphics file format that supports both lossy and lossless compression. </td></tr></tbody></table> <div class="mw-heading mw-heading4"><h4 id="Video_formats">Video formats</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=6" title="Edit section: Video formats"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Video_coding_standard" class="mw-redirect" title="Video coding standard">Video coding standard</a></th> <th>Year</th> <th>Common applications </th></tr> <tr> <td><span class="nowrap"><a href="/wiki/H.261" title="H.261">H.261</a></span><sup id="cite_ref-video-standards_57-0" class="reference"><a href="#cite_note-video-standards-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup></td> <td>1988</td> <td>First of a family of <a href="/wiki/Video_coding_standards" class="mw-redirect" title="Video coding standards">video coding standards</a>. Used primarily in older <a href="/wiki/Video_conferencing" class="mw-redirect" title="Video conferencing">video conferencing</a> and <a href="/wiki/Video_telephone" class="mw-redirect" title="Video telephone">video telephone</a> products. </td></tr> <tr> <td><a href="/wiki/Motion_JPEG" title="Motion JPEG">Motion JPEG</a> (MJPEG)<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></td> <td>1992</td> <td><a href="/wiki/QuickTime" title="QuickTime">QuickTime</a>, <a href="/wiki/Video_editing" title="Video editing">video editing</a>, <a href="/wiki/Non-linear_editing" title="Non-linear editing">non-linear editing</a>, <a href="/wiki/Digital_cameras" class="mw-redirect" title="Digital cameras">digital cameras</a> </td></tr> <tr> <td><a href="/wiki/MPEG-1" title="MPEG-1">MPEG-1</a> Video<sup id="cite_ref-Rao_60-0" class="reference"><a href="#cite_note-Rao-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup></td> <td>1993</td> <td><a href="/wiki/Digital_video" title="Digital video">Digital video</a> distribution on <a href="/wiki/CD" class="mw-redirect" title="CD">CD</a> or <a href="/wiki/Internet_video" title="Internet video">Internet video</a> </td></tr> <tr> <td><a href="/wiki/MPEG-2_Video" class="mw-redirect" title="MPEG-2 Video">MPEG-2 Video</a> (<span class="nowrap">H.262</span>)<sup id="cite_ref-Rao_60-1" class="reference"><a href="#cite_note-Rao-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup></td> <td>1995</td> <td>Storage and handling of digital images in broadcast applications, <a href="/wiki/Digital_television" title="Digital television">digital television</a>, <a href="/wiki/HDTV" class="mw-redirect" title="HDTV">HDTV</a>, cable, satellite, high-speed <a href="/wiki/Internet" title="Internet">Internet</a>, <a href="/wiki/DVD" title="DVD">DVD</a> video distribution </td></tr> <tr> <td><a href="/wiki/DV_(video_format)" title="DV (video format)">DV</a></td> <td>1995</td> <td><a href="/wiki/Camcorders" class="mw-redirect" title="Camcorders">Camcorders</a>, <a href="/wiki/Digital_cassettes" title="Digital cassettes">digital cassettes</a> </td></tr> <tr> <td><a href="/wiki/H.263" title="H.263">H.263</a> (<a href="/wiki/MPEG-4_Part_2" title="MPEG-4 Part 2">MPEG-4 Part 2</a>)<sup id="cite_ref-video-standards_57-1" class="reference"><a href="#cite_note-video-standards-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup></td> <td>1996</td> <td><a href="/wiki/Video_telephony" class="mw-redirect" title="Video telephony">Video telephony</a> over <a href="/wiki/Public_switched_telephone_network" title="Public switched telephone network">public switched telephone network</a> (PSTN), <span class="nowrap"><a href="/wiki/H.320" title="H.320">H.320</a></span>, <a href="/wiki/Integrated_Services_Digital_Network" class="mw-redirect" title="Integrated Services Digital Network">Integrated Services Digital Network</a> (ISDN)<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Advanced_Video_Coding" title="Advanced Video Coding">Advanced Video Coding</a> (AVC, <span class="nowrap">H.264</span>, <a href="/wiki/MPEG-4" title="MPEG-4">MPEG-4</a>)<sup id="cite_ref-Stankovic_1-23" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Wang_52-1" class="reference"><a href="#cite_note-Wang-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup></td> <td>2003</td> <td>Popular <a href="/wiki/HD_video" class="mw-redirect" title="HD video">HD video</a> recording, compression and distribution format, <a href="/wiki/Internet_video" title="Internet video">Internet video</a>, <a href="/wiki/YouTube" title="YouTube">YouTube</a>, <a href="/wiki/Blu-ray_Discs" class="mw-redirect" title="Blu-ray Discs">Blu-ray Discs</a>, <a href="/wiki/HDTV" class="mw-redirect" title="HDTV">HDTV</a> broadcasts, <a href="/wiki/Web_browsers" class="mw-redirect" title="Web browsers">web browsers</a>, <a href="/wiki/Streaming_television" title="Streaming television">streaming television</a>, <a href="/wiki/Mobile_devices" class="mw-redirect" title="Mobile devices">mobile devices</a>, consumer devices, <a href="/wiki/Netflix" title="Netflix">Netflix</a>,<sup id="cite_ref-Encodes_42-3" class="reference"><a href="#cite_note-Encodes-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Video_telephony" class="mw-redirect" title="Video telephony">video telephony</a>, <a href="/wiki/FaceTime" title="FaceTime">FaceTime</a><sup id="cite_ref-AppleInsider_standards_1_41-3" class="reference"><a href="#cite_note-AppleInsider_standards_1-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Theora" title="Theora">Theora</a></td> <td>2004</td> <td>Internet video, web browsers </td></tr> <tr> <td><a href="/wiki/VC-1" title="VC-1">VC-1</a></td> <td>2006</td> <td><a href="/wiki/Windows" class="mw-redirect" title="Windows">Windows</a> media, <a href="/wiki/Blu-ray_Disc" class="mw-redirect" title="Blu-ray Disc">Blu-ray Discs</a> </td></tr> <tr> <td><a href="/wiki/Apple_ProRes" title="Apple ProRes">Apple ProRes</a></td> <td>2007</td> <td>Professional video production.<sup id="cite_ref-loc_50-1" class="reference"><a href="#cite_note-loc-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/VP9" title="VP9">VP9</a></td> <td>2010</td> <td>A video codec developed by <a href="/wiki/Google" title="Google">Google</a> used in the <a href="/wiki/WebM" title="WebM">WebM</a> container format with <a href="/wiki/HTML5" title="HTML5">HTML5</a>. </td></tr> <tr> <td><a href="/wiki/High_Efficiency_Video_Coding" title="High Efficiency Video Coding">High Efficiency Video Coding</a> (HEVC, <span class="nowrap">H.265</span>)<sup id="cite_ref-Stankovic_1-24" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-apple_4-5" class="reference"><a href="#cite_note-apple-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></td> <td>2013</td> <td>Successor to the <span class="nowrap">H.264</span> standard, having substantially improved compression capability </td></tr> <tr> <td><a href="/wiki/Daala" title="Daala">Daala</a></td> <td>2013</td> <td>Research video format by <a href="/wiki/Xiph.org" class="mw-redirect" title="Xiph.org">Xiph.org</a> </td></tr> <tr> <td><a href="/wiki/AV1" title="AV1">AV1</a><sup id="cite_ref-AV1_63-0" class="reference"><a href="#cite_note-AV1-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup></td> <td>2018</td> <td>An open source format based on VP10 (<a href="/wiki/VP9" title="VP9">VP9</a>'s internal successor), <a href="/wiki/Daala" title="Daala">Daala</a> and <a href="/wiki/Thor_(video_codec)" title="Thor (video codec)">Thor</a>; used by content providers such as <a href="/wiki/YouTube" title="YouTube">YouTube</a><sup id="cite_ref-YT_AV1_Beta_Playlist_64-0" class="reference"><a href="#cite_note-YT_AV1_Beta_Playlist-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-YT_AV1_65-0" class="reference"><a href="#cite_note-YT_AV1-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Netflix" title="Netflix">Netflix</a>.<sup id="cite_ref-Netflix_AV1_Android_66-0" class="reference"><a href="#cite_note-Netflix_AV1_Android-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Netflix_AV1_TV_67-0" class="reference"><a href="#cite_note-Netflix_AV1_TV-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="MDCT_audio_standards">MDCT audio standards</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=7" title="Edit section: MDCT audio standards"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">Modified discrete cosine transform</a></div> <div class="mw-heading mw-heading4"><h4 id="General_audio">General audio</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=8" title="Edit section: General audio"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th>Audio compression standard </th> <th>Year </th> <th>Common applications </th></tr> <tr> <td><a href="/wiki/Dolby_Digital" title="Dolby Digital">Dolby Digital</a> (AC-3)<sup id="cite_ref-Luo_22-4" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Britanak2011_23-1" class="reference"><a href="#cite_note-Britanak2011-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1991 </td> <td><a href="/wiki/Film" title="Film">Cinema</a>, <a href="/wiki/Digital_cinema" title="Digital cinema">digital cinema</a>, <a href="/wiki/DVD" title="DVD">DVD</a>, <a href="/wiki/Blu-ray" title="Blu-ray">Blu-ray</a>, <a href="/wiki/Streaming_media" title="Streaming media">streaming media</a>, <a href="/wiki/Video_games" class="mw-redirect" title="Video games">video games</a> </td></tr> <tr> <td><a href="/wiki/Adaptive_Transform_Acoustic_Coding" class="mw-redirect" title="Adaptive Transform Acoustic Coding">Adaptive Transform Acoustic Coding</a> (ATRAC)<sup id="cite_ref-Luo_22-5" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1992 </td> <td><a href="/wiki/MiniDisc" title="MiniDisc">MiniDisc</a> </td></tr> <tr> <td><a href="/wiki/MP3" title="MP3">MP3</a><sup id="cite_ref-Guckert_24-1" class="reference"><a href="#cite_note-Guckert-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Stankovic_1-25" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1993 </td> <td><a href="/wiki/Digital_audio" title="Digital audio">Digital audio</a> distribution, <a href="/wiki/MP3_players" class="mw-redirect" title="MP3 players">MP3 players</a>, <a href="/wiki/Portable_media_players" class="mw-redirect" title="Portable media players">portable media players</a>, <a href="/wiki/Streaming_media" title="Streaming media">streaming media</a> </td></tr> <tr> <td><a href="/wiki/Perceptual_Audio_Coder" title="Perceptual Audio Coder">Perceptual Audio Coder</a> (PAC)<sup id="cite_ref-Luo_22-6" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1996 </td> <td><a href="/wiki/Digital_audio_radio_service" title="Digital audio radio service">Digital audio radio service</a> (DARS) </td></tr> <tr> <td><a href="/wiki/Advanced_Audio_Coding" title="Advanced Audio Coding">Advanced Audio Coding</a> (AAC / <a href="/wiki/MP4" class="mw-redirect" title="MP4">MP4</a> Audio)<sup id="cite_ref-brandenburg_25-1" class="reference"><a href="#cite_note-brandenburg-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Luo_22-7" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1997 </td> <td><a href="/wiki/Digital_audio" title="Digital audio">Digital audio</a> distribution, <a href="/wiki/Portable_media_players" class="mw-redirect" title="Portable media players">portable media players</a>, <a href="/wiki/Streaming_media" title="Streaming media">streaming media</a>, <a href="/wiki/Game_consoles" class="mw-redirect" title="Game consoles">game consoles</a>, <a href="/wiki/Mobile_devices" class="mw-redirect" title="Mobile devices">mobile devices</a>, <a href="/wiki/IOS" title="IOS">iOS</a>, <a href="/wiki/ITunes" title="ITunes">iTunes</a>, <a href="/wiki/Android_(operating_system)" title="Android (operating system)">Android</a>, <a href="/wiki/BlackBerry" title="BlackBerry">BlackBerry</a> </td></tr> <tr> <td><a href="/wiki/High-Efficiency_Advanced_Audio_Coding" title="High-Efficiency Advanced Audio Coding">High-Efficiency Advanced Audio Coding</a> (AAC+)<sup id="cite_ref-Herre_68-0" class="reference"><a href="#cite_note-Herre-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Britanak_38-1" class="reference"><a href="#cite_note-Britanak-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 478">&#58;&#8202;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=cZ4vDwAAQBAJ&amp;pg=PA478">478</a>&#8202;</span></sup> </td> <td>1997 </td> <td><a href="/wiki/Digital_radio" title="Digital radio">Digital radio</a>, <a href="/wiki/Digital_audio_broadcasting" class="mw-redirect" title="Digital audio broadcasting">digital audio broadcasting</a> (DAB+),<sup id="cite_ref-Britanak_38-2" class="reference"><a href="#cite_note-Britanak-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Digital_Radio_Mondiale" title="Digital Radio Mondiale">Digital Radio Mondiale</a> (DRM) </td></tr> <tr> <td><a href="/wiki/Cook_Codec" title="Cook Codec">Cook Codec</a> </td> <td>1998 </td> <td><a href="/wiki/RealAudio" title="RealAudio">RealAudio</a> </td></tr> <tr> <td><a href="/wiki/Windows_Media_Audio" title="Windows Media Audio">Windows Media Audio</a> (WMA)<sup id="cite_ref-Luo_22-8" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1999 </td> <td><a href="/wiki/Windows_Media" title="Windows Media">Windows Media</a> </td></tr> <tr> <td><a href="/wiki/Vorbis" title="Vorbis">Vorbis</a><sup id="cite_ref-vorbis-mdct_26-1" class="reference"><a href="#cite_note-vorbis-mdct-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Luo_22-9" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2000 </td> <td><a href="/wiki/Digital_audio" title="Digital audio">Digital audio</a> distribution, <a href="/wiki/Radio_station" class="mw-redirect" title="Radio station">radio stations</a>, <a href="/wiki/Streaming_media" title="Streaming media">streaming media</a>, <a href="/wiki/Video_game" title="Video game">video games</a>, <a href="/wiki/Spotify" title="Spotify">Spotify</a>, <a href="/wiki/Wikipedia" title="Wikipedia">Wikipedia</a> </td></tr> <tr> <td><a href="/wiki/High-Definition_Coding" title="High-Definition Coding">High-Definition Coding</a> (HDC)<sup id="cite_ref-Jones_39-1" class="reference"><a href="#cite_note-Jones-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2002 </td> <td>Digital radio, <a href="/wiki/HD_Radio" title="HD Radio">HD Radio</a> </td></tr> <tr> <td><a href="/wiki/Dynamic_Resolution_Adaptation" title="Dynamic Resolution Adaptation">Dynamic Resolution Adaptation</a> (DRA)<sup id="cite_ref-Luo_22-10" class="reference"><a href="#cite_note-Luo-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2008 </td> <td>China national audio standard, <a href="/wiki/China_Multimedia_Mobile_Broadcasting" title="China Multimedia Mobile Broadcasting">China Multimedia Mobile Broadcasting</a>, <a href="/wiki/DVB-H" title="DVB-H">DVB-H</a> </td></tr> <tr> <td><a href="/wiki/Opus_(audio_format)" title="Opus (audio format)">Opus</a><sup id="cite_ref-Valin_69-0" class="reference"><a href="#cite_note-Valin-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2012 </td> <td>VoIP,<sup id="cite_ref-homepage_70-0" class="reference"><a href="#cite_note-homepage-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> mobile telephony, <a href="/wiki/WhatsApp" title="WhatsApp">WhatsApp</a>,<sup id="cite_ref-Register_71-0" class="reference"><a href="#cite_note-Register-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hazra_72-0" class="reference"><a href="#cite_note-Hazra-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Srivastava_73-0" class="reference"><a href="#cite_note-Srivastava-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/PlayStation_4" title="PlayStation 4">PlayStation 4</a><sup id="cite_ref-PlayStation_74-0" class="reference"><a href="#cite_note-PlayStation-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Dolby_AC-4" title="Dolby AC-4">Dolby AC-4</a><sup id="cite_ref-Dolby_AC-4_75-0" class="reference"><a href="#cite_note-Dolby_AC-4-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> </td> <td rowspan="2">2015 </td> <td rowspan="2"><a href="/wiki/ATSC_3.0" title="ATSC 3.0">ATSC 3.0</a>, <a href="/wiki/Ultra-high-definition_television" title="Ultra-high-definition television">ultra-high-definition television</a> (UHD TV) </td></tr> <tr> <td><a href="/wiki/MPEG-H_3D_Audio" title="MPEG-H 3D Audio">MPEG-H 3D Audio</a><sup id="cite_ref-Bleidt_76-0" class="reference"><a href="#cite_note-Bleidt-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading4"><h4 id="Speech_coding">Speech coding</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=9" title="Edit section: Speech coding"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable"> <tbody><tr> <th><a href="/wiki/Speech_coding" title="Speech coding">Speech coding</a> standard</th> <th>Year </th> <th>Common applications </th></tr> <tr> <td><a href="/wiki/AAC-LD" title="AAC-LD">AAC-LD</a> (LD-MDCT)<sup id="cite_ref-Schnell_77-0" class="reference"><a href="#cite_note-Schnell-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1999 </td> <td><a href="/wiki/Mobile_telephony" title="Mobile telephony">Mobile telephony</a>, <a href="/wiki/Voice-over-IP" class="mw-redirect" title="Voice-over-IP">voice-over-IP</a> (VoIP), <a href="/wiki/IOS" title="IOS">iOS</a>, <a href="/wiki/FaceTime" title="FaceTime">FaceTime</a><sup id="cite_ref-AppleInsider_standards_1_41-4" class="reference"><a href="#cite_note-AppleInsider_standards_1-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Siren_(codec)" title="Siren (codec)">Siren</a><sup id="cite_ref-Hersent_40-2" class="reference"><a href="#cite_note-Hersent-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1999 </td> <td><a href="/wiki/VoIP" class="mw-redirect" title="VoIP">VoIP</a>, <a href="/wiki/Wideband_audio" title="Wideband audio">wideband audio</a>, <a href="/wiki/G.722.1" title="G.722.1">G.722.1</a> </td></tr> <tr> <td><a href="/wiki/G.722.1" title="G.722.1">G.722.1</a><sup id="cite_ref-Lutzky_78-0" class="reference"><a href="#cite_note-Lutzky-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> </td> <td>1999 </td> <td>VoIP, wideband audio, <a href="/wiki/G.722" title="G.722">G.722</a> </td></tr> <tr> <td><a href="/wiki/G.729.1" title="G.729.1">G.729.1</a><sup id="cite_ref-Nagireddi_79-0" class="reference"><a href="#cite_note-Nagireddi-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2006 </td> <td><a href="/wiki/G.729" title="G.729">G.729</a>, VoIP, wideband audio,<sup id="cite_ref-Nagireddi_79-1" class="reference"><a href="#cite_note-Nagireddi-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Mobile_telephony" title="Mobile telephony">mobile telephony</a> </td></tr> <tr> <td><a href="/wiki/Enhanced_Variable_Rate_Codec_B" title="Enhanced Variable Rate Codec B">EVRC-WB</a><sup id="cite_ref-Britanak_38-3" class="reference"><a href="#cite_note-Britanak-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 31, 478">&#58;&#8202;<a rel="nofollow" class="external text" href="https://books.google.com/books?id=cZ4vDwAAQBAJ&amp;pg=PA31">31</a>, 478]&#8202;</span></sup> </td> <td>2007 </td> <td><a href="/wiki/Wideband_audio" title="Wideband audio">Wideband audio</a> </td></tr> <tr> <td><a href="/wiki/G.718" title="G.718">G.718</a><sup id="cite_ref-ITU-T_80-0" class="reference"><a href="#cite_note-ITU-T-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2008 </td> <td>VoIP, wideband audio, mobile telephony </td></tr> <tr> <td><a href="/wiki/G.719" title="G.719">G.719</a><sup id="cite_ref-Britanak_38-4" class="reference"><a href="#cite_note-Britanak-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2008 </td> <td><a href="/wiki/Teleconferencing" class="mw-redirect" title="Teleconferencing">Teleconferencing</a>, <a href="/wiki/Videoconferencing" class="mw-redirect" title="Videoconferencing">videoconferencing</a>, <a href="/wiki/Voice_mail" class="mw-redirect" title="Voice mail">voice mail</a> </td></tr> <tr> <td><a href="/wiki/CELT" title="CELT">CELT</a><sup id="cite_ref-Terriberry_81-0" class="reference"><a href="#cite_note-Terriberry-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2011 </td> <td>VoIP,<sup id="cite_ref-ekiga_82-0" class="reference"><a href="#cite_note-ekiga-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FreeSWITCH_83-0" class="reference"><a href="#cite_note-FreeSWITCH-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> mobile telephony </td></tr> <tr> <td><a href="/wiki/Enhanced_Voice_Services" title="Enhanced Voice Services">Enhanced Voice Services</a> (EVS)<sup id="cite_ref-EVS_84-0" class="reference"><a href="#cite_note-EVS-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </td> <td>2014 </td> <td>Mobile telephony, VoIP, wideband audio </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Multidimensional_DCT">Multidimensional DCT</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=10" title="Edit section: Multidimensional DCT"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/ZPEG" title="ZPEG">ZPEG</a></div> <p>Multidimensional DCTs (MD DCTs) have several applications, mainly 3-D DCTs such as the 3-D DCT-II, which has several new applications like Hyperspectral Imaging coding systems,<sup id="cite_ref-appDCT_85-0" class="reference"><a href="#cite_note-appDCT-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> variable temporal length 3-D DCT coding,<sup id="cite_ref-app2DCT_86-0" class="reference"><a href="#cite_note-app2DCT-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Video_coding" class="mw-redirect" title="Video coding">video coding</a> algorithms,<sup id="cite_ref-app3DCT_87-0" class="reference"><a href="#cite_note-app3DCT-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> adaptive video coding<sup id="cite_ref-app4DCT_88-0" class="reference"><a href="#cite_note-app4DCT-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> and 3-D Compression.<sup id="cite_ref-app5DCT_89-0" class="reference"><a href="#cite_note-app5DCT-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> Due to enhancement in the hardware, software and introduction of several fast algorithms, the necessity of using MD DCTs is rapidly increasing. <a href="#DCT-IV">DCT-IV</a> has gained popularity for its applications in fast implementation of real-valued polyphase filtering banks,<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> lapped orthogonal transform<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-FOOTNOTEMalvar1992_92-0" class="reference"><a href="#cite_note-FOOTNOTEMalvar1992-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> and cosine-modulated wavelet bases.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Digital_signal_processing">Digital signal processing</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=11" title="Edit section: Digital signal processing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>DCT plays an important role in <a href="/wiki/Digital_signal_processing" title="Digital signal processing">digital signal processing</a> specifically <a href="/wiki/Data_compression" title="Data compression">data compression</a>. The DCT is widely implemented in <a href="/wiki/Digital_signal_processors" class="mw-redirect" title="Digital signal processors">digital signal processors</a> (DSP), as well as digital signal processing software. Many companies have developed DSPs based on DCT technology. DCTs are widely used for applications such as <a href="/wiki/Encoding" class="mw-redirect" title="Encoding">encoding</a>, decoding, video, audio, <a href="/wiki/Multiplexing" title="Multiplexing">multiplexing</a>, control signals, <a href="/wiki/Signaling" class="mw-redirect" title="Signaling">signaling</a>, and <a href="/wiki/Analog-to-digital_conversion" class="mw-redirect" title="Analog-to-digital conversion">analog-to-digital conversion</a>. DCTs are also commonly used for <a href="/wiki/High-definition_television" title="High-definition television">high-definition television</a> (HDTV) encoder/decoder <a href="/wiki/Integrated_circuit" title="Integrated circuit">chips</a>.<sup id="cite_ref-Stankovic_1-26" class="reference"><a href="#cite_note-Stankovic-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Compression_artifacts">Compression artifacts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=12" title="Edit section: Compression artifacts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A common issue with DCT compression in <a href="/wiki/Digital_media" title="Digital media">digital media</a> are blocky <a href="/wiki/Compression_artifacts" class="mw-redirect" title="Compression artifacts">compression artifacts</a>,<sup id="cite_ref-Katsaggelos_94-0" class="reference"><a href="#cite_note-Katsaggelos-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> caused by DCT blocks.<sup id="cite_ref-Alikhani_3-1" class="reference"><a href="#cite_note-Alikhani-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> In a DCT algorithm, an image (or frame in an image sequence) is divided into square blocks which are processed independently from each other, then the DCT blocks is taken within each block and the resulting DCT coefficients are <a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">quantized</a>. This process can cause blocking artifacts, primarily at high <a href="/wiki/Data_compression_ratio" title="Data compression ratio">data compression ratios</a>.<sup id="cite_ref-Katsaggelos_94-1" class="reference"><a href="#cite_note-Katsaggelos-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> This can also cause the <a href="/wiki/Mosquito_noise" class="mw-redirect" title="Mosquito noise">mosquito noise</a> effect, commonly found in <a href="/wiki/Digital_video" title="Digital video">digital video</a>.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> </p><p>DCT blocks are often used in <a href="/wiki/Glitch_art" title="Glitch art">glitch art</a>.<sup id="cite_ref-Alikhani_3-2" class="reference"><a href="#cite_note-Alikhani-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The artist <a href="/wiki/Rosa_Menkman" title="Rosa Menkman">Rosa Menkman</a> makes use of DCT-based compression artifacts in her glitch art,<sup id="cite_ref-Menkman_96-0" class="reference"><a href="#cite_note-Menkman-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> particularly the DCT blocks found in most <a href="/wiki/Digital_media" title="Digital media">digital media</a> formats such as <a href="/wiki/JPEG" title="JPEG">JPEG</a> digital images and <a href="/wiki/MP3" title="MP3">MP3</a> audio.<sup id="cite_ref-Alikhani_3-3" class="reference"><a href="#cite_note-Alikhani-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Another example is <i>Jpegs</i> by German photographer <a href="/wiki/Thomas_Ruff" title="Thomas Ruff">Thomas Ruff</a>, which uses intentional <a href="/wiki/JPEG" title="JPEG">JPEG</a> artifacts as the basis of the picture's style.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Informal_overview">Informal overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=13" title="Edit section: Informal overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Like any Fourier-related transform, DCTs express a function or a signal in terms of a sum of <a href="/wiki/Sinusoid" class="mw-redirect" title="Sinusoid">sinusoids</a> with different <a href="/wiki/Frequencies" class="mw-redirect" title="Frequencies">frequencies</a> and <a href="/wiki/Amplitude" title="Amplitude">amplitudes</a>. Like the DFT, a DCT operates on a function at a finite number of <a href="/wiki/Discrete_signal" class="mw-redirect" title="Discrete signal">discrete data points</a>. The obvious distinction between a DCT and a DFT is that the former uses only cosine functions, while the latter uses both cosines and sines (in the form of <a href="/wiki/Complex_exponential" class="mw-redirect" title="Complex exponential">complex exponentials</a>). However, this visible difference is merely a consequence of a deeper distinction: a DCT implies different <a href="/wiki/Boundary_condition" class="mw-redirect" title="Boundary condition">boundary conditions</a> from the DFT or other related transforms. </p><p>The Fourier-related transforms that operate on a function over a finite <a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a>, such as the DFT or DCT or a <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a>, can be thought of as implicitly defining an <i>extension</i> of that function outside the domain. That is, once you write a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> as a sum of sinusoids, you can evaluate that sum at any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, even for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> where the original <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> was not specified. The DFT, like the Fourier series, implies a <a href="/wiki/Periodic_function" title="Periodic function">periodic</a> extension of the original function. A DCT, like a <a href="/wiki/Sine_and_cosine_transforms" title="Sine and cosine transforms">cosine transform</a>, implies an <a href="/wiki/Even_and_odd_functions" title="Even and odd functions">even</a> extension of the original function. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:DCT-symmetries.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/DCT-symmetries.svg/350px-DCT-symmetries.svg.png" decoding="async" width="350" height="392" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/DCT-symmetries.svg/525px-DCT-symmetries.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/DCT-symmetries.svg/700px-DCT-symmetries.svg.png 2x" data-file-width="580" data-file-height="650" /></a><figcaption>Illustration of the implicit even/odd extensions of DCT input data, for <i>N</i>=11 data points (red dots), for the four most common types of DCT (types I-IV). Note the subtle differences at the interfaces between the data and the extensions: in DCT-II and DCT-IV both the end points are replicated in the extensions but not in DCT-I or DCT-III (and a zero point is inserted at the sign reversal extension in DCT-III).</figcaption></figure> <p>However, because DCTs operate on <i>finite</i>, <i>discrete</i> sequences, two issues arise that do not apply for the continuous cosine transform. First, one has to specify whether the function is even or odd at <i>both</i> the left and right boundaries of the domain (i.e. the min-<i>n</i> and max-<i>n</i> boundaries in the definitions below, respectively). Second, one has to specify around <i>what point</i> the function is even or odd. In particular, consider a sequence <i>abcd</i> of four equally spaced data points, and say that we specify an even <i>left</i> boundary. There are two sensible possibilities: either the data are even about the sample <i>a</i>, in which case the even extension is <i>dcbabcd</i>, or the data are even about the point <i>halfway</i> between <i>a</i> and the previous point, in which case the even extension is <i>dcbaabcd</i> (<i>a</i> is repeated). </p><p>These choices lead to all the standard variations of DCTs and also <a href="/wiki/Discrete_sine_transform" title="Discrete sine transform">discrete sine transforms</a> (DSTs). Each boundary can be either even or odd (2 choices per boundary) and can be symmetric about a data point or the point halfway between two data points (2 choices per boundary), for a total of 2 × 2 × 2 × 2 = 16 possibilities. Half of these possibilities, those where the <i>left</i> boundary is even, correspond to the 8 types of DCT; the other half are the 8 types of DST. </p><p>These different boundary conditions strongly affect the applications of the transform and lead to uniquely useful properties for the various DCT types. Most directly, when using Fourier-related transforms to solve <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> by <a href="/wiki/Spectral_method" title="Spectral method">spectral methods</a>, the boundary conditions are directly specified as a part of the problem being solved. Or, for the <a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a> (based on the type-IV DCT), the boundary conditions are intimately involved in the MDCT's critical property of time-domain aliasing cancellation. In a more subtle fashion, the boundary conditions are responsible for the "energy compactification" properties that make DCTs useful for image and audio compression, because the boundaries affect the rate of convergence of any Fourier-like series. </p><p>In particular, it is well known that any <a href="/wiki/Classification_of_discontinuities" title="Classification of discontinuities">discontinuities</a> in a function reduce the <a href="/wiki/Rate_of_convergence" title="Rate of convergence">rate of convergence</a> of the Fourier series, so that more sinusoids are needed to represent the function with a given accuracy. The same principle governs the usefulness of the DFT and other transforms for signal compression; the smoother a function is, the fewer terms in its DFT or DCT are required to represent it accurately, and the more it can be compressed. (Here, we think of the DFT or DCT as approximations for the <a href="/wiki/Fourier_series" title="Fourier series">Fourier series</a> or <a href="/wiki/Cosine_series" class="mw-redirect" title="Cosine series">cosine series</a> of a function, respectively, in order to talk about its "smoothness".) However, the implicit periodicity of the DFT means that discontinuities usually occur at the boundaries: any random segment of a signal is unlikely to have the same value at both the left and right boundaries. (A similar problem arises for the DST, in which the odd left boundary condition implies a discontinuity for any function that does not happen to be zero at that boundary.) In contrast, a DCT where <i>both</i> boundaries are even <i>always</i> yields a continuous extension at the boundaries (although the <a href="/wiki/Slope" title="Slope">slope</a> is generally discontinuous). This is why DCTs, and in particular DCTs of types I, II, V, and VI (the types that have two even boundaries) generally perform better for signal compression than DFTs and DSTs. In practice, a type-II DCT is usually preferred for such applications, in part for reasons of computational convenience. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_definition">Formal definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=14" title="Edit section: Formal definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Formally, the discrete cosine transform is a <a href="/wiki/Linear" class="mw-redirect" title="Linear">linear</a>, invertible <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{N}\to \mathbb {R} ^{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{N}\to \mathbb {R} ^{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1850d46354a856720b4f8cdc6f913a4fa493a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.569ex; height:3.009ex;" alt="{\displaystyle f:\mathbb {R} ^{N}\to \mathbb {R} ^{N}}"></span> (where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> denotes the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>), or equivalently an invertible <span class="texhtml mvar" style="font-style:italic;">N</span> × <span class="texhtml mvar" style="font-style:italic;">N</span> <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a>. There are several variants of the DCT with slightly modified definitions. The <span class="texhtml mvar" style="font-style:italic;">N</span> real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~x_{0},\ \ldots \ x_{N-1}~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~x_{0},\ \ldots \ x_{N-1}~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d750bfe1061fa3732b3af6d493820dd219f8513f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.36ex; height:2.009ex;" alt="{\displaystyle ~x_{0},\ \ldots \ x_{N-1}~}"></span> are transformed into the <span class="texhtml mvar" style="font-style:italic;">N</span> real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{0},\,\ldots ,\,X_{N-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{0},\,\ldots ,\,X_{N-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53b006d2eb2d2a9fa369fb3aa42c6b52399346d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.647ex; height:2.509ex;" alt="{\displaystyle X_{0},\,\ldots ,\,X_{N-1}}"></span> according to one of the formulas: </p> <div class="mw-heading mw-heading3"><h3 id="DCT-I">DCT-I</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=15" title="Edit section: DCT-I"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}={\frac {1}{2}}(x_{0}+(-1)^{k}x_{N-1})+\sum _{n=1}^{N-2}x_{n}\cos \left[\,{\tfrac {\ \pi }{\,N-1\,}}\,n\,k\,\right]\qquad {\text{ for }}~k=0,\ \ldots \ N-1~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>&#x03C0;<!-- π --></mi> </mrow> <mrow> <mspace width="thinmathspace" /> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mspace width="thinmathspace" /> </mrow> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> <mi>k</mi> <mspace width="thinmathspace" /> </mrow> <mo>]</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}={\frac {1}{2}}(x_{0}+(-1)^{k}x_{N-1})+\sum _{n=1}^{N-2}x_{n}\cos \left[\,{\tfrac {\ \pi }{\,N-1\,}}\,n\,k\,\right]\qquad {\text{ for }}~k=0,\ \ldots \ N-1~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51126bccb0538b10ecd80fb4b40646d24951be39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:78.119ex; height:7.343ex;" alt="{\displaystyle X_{k}={\frac {1}{2}}(x_{0}+(-1)^{k}x_{N-1})+\sum _{n=1}^{N-2}x_{n}\cos \left[\,{\tfrac {\ \pi }{\,N-1\,}}\,n\,k\,\right]\qquad {\text{ for }}~k=0,\ \ldots \ N-1~.}"></span></dd></dl> <p>Some authors further multiply the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{N-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{N-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7df9ede29e0429afc8d9b7d32c831ab2df6723e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.122ex; height:2.009ex;" alt="{\displaystyle x_{N-1}}"></span> terms by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2\,}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mspace width="thinmathspace" /> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2\,}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df644510238514755b939db799739666eb00c53d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.519ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2\,}}\,,}"></span> and correspondingly multiply the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6381fdad2b9f11954b1fc2db08bbaccf634ededa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{N-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{N-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddd3fd31df96b1fdf8e2a133c4ba717011dc3022" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.716ex; height:2.509ex;" alt="{\displaystyle X_{N-1}}"></span> terms by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/{\sqrt {2\,}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mspace width="thinmathspace" /> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/{\sqrt {2\,}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbf6a452910f04614c5f2410b5fdc1b9dab1f35a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.844ex; height:3.176ex;" alt="{\displaystyle 1/{\sqrt {2\,}}\,,}"></span> which, if one further multiplies by an overall scale factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {{\tfrac {2}{N-1\,}}\,}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mrow> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mspace width="thinmathspace" /> </mrow> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {{\tfrac {2}{N-1\,}}\,}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1e4f46bdc1196d00114fcec44ba4e433eb157a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.141ex; height:4.843ex;" alt="{\displaystyle {\sqrt {{\tfrac {2}{N-1\,}}\,}},}"></span>, makes the DCT-I matrix <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a> but breaks the direct correspondence with a real-even <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a>. </p><p>The DCT-I is exactly equivalent (up to an overall scale factor of 2), to a <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2(N-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2(N-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4410f19685c51f4a556471897ccb38286f5f07c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.038ex; height:2.843ex;" alt="{\displaystyle 2(N-1)}"></span> real numbers with even symmetry. For example, a DCT-I of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ea204e60e1d27578912bb557d2859e759f4d67c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.325ex; height:2.176ex;" alt="{\displaystyle N=5}"></span> real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\ b\ c\ d\ e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mtext>&#xA0;</mtext> <mi>b</mi> <mtext>&#xA0;</mtext> <mi>c</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mtext>&#xA0;</mtext> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\ b\ c\ d\ e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a260e0d32521ceb4b64afe560076c896eb5766c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.856ex; height:2.176ex;" alt="{\displaystyle a\ b\ c\ d\ e}"></span> is exactly equivalent to a DFT of eight real numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\ b\ c\ d\ e\ d\ c\ b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mtext>&#xA0;</mtext> <mi>b</mi> <mtext>&#xA0;</mtext> <mi>c</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mtext>&#xA0;</mtext> <mi>e</mi> <mtext>&#xA0;</mtext> <mi>d</mi> <mtext>&#xA0;</mtext> <mi>c</mi> <mtext>&#xA0;</mtext> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\ b\ c\ d\ e\ d\ c\ b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7d02159dc6511f922294354a02574172002e18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.818ex; height:2.176ex;" alt="{\displaystyle a\ b\ c\ d\ e\ d\ c\ b}"></span> (even symmetry), divided by two. (In contrast, DCT types II-IV involve a half-sample shift in the equivalent DFT.) </p><p>Note, however, that the DCT-I is not defined for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> less than 2, while all other DCT types are defined for any positive <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/356b8b60a047de347b447f2bdafaaccf47502031" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.71ex; height:2.176ex;" alt="{\displaystyle N.}"></span> </p><p>Thus, the DCT-I corresponds to the boundary conditions: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span> is even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> and even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=N-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=N-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41749647b4bc797ccb5bff075fa4730e5944abc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.56ex; height:2.343ex;" alt="{\displaystyle n=N-1}"></span>; similarly for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c04fca5a5d7f8d48f21d5640d286507dccc5dd93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.66ex; height:2.509ex;" alt="{\displaystyle X_{k}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="DCT-II">DCT-II</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=16" title="Edit section: DCT-II"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\left(n+{\tfrac {1}{2}}\right)k\,\right]\qquad {\text{ for }}~k=0,\ \dots \ N-1~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> </mrow> <mi>N</mi> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mi>k</mi> <mspace width="thinmathspace" /> </mrow> <mo>]</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\left(n+{\tfrac {1}{2}}\right)k\,\right]\qquad {\text{ for }}~k=0,\ \dots \ N-1~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d6a9bb1a9eedda6874f60046dee69bbd4b94c93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:59.266ex; height:7.343ex;" alt="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\left(n+{\tfrac {1}{2}}\right)k\,\right]\qquad {\text{ for }}~k=0,\ \dots \ N-1~.}"></span></dd></dl> <p>The DCT-II is probably the most commonly used form, and is often simply referred to as "the DCT".<sup id="cite_ref-pubDCT_5-5" class="reference"><a href="#cite_note-pubDCT-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-pubRaoYip_6-3" class="reference"><a href="#cite_note-pubRaoYip-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>This transform is exactly equivalent (up to an overall scale factor of 2) to a <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fc080b972918855f349631dd1d838c538162366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.226ex; height:2.176ex;" alt="{\displaystyle 4N}"></span> real inputs of even symmetry where the even-indexed elements are zero. That is, it is half of the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a> of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fc080b972918855f349631dd1d838c538162366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.226ex; height:2.176ex;" alt="{\displaystyle 4N}"></span> inputs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa69de01af153c0d9aa2d8ef09a96c40232a1dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.005ex; height:2.009ex;" alt="{\displaystyle y_{n},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2n}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2n}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0cb4c0ecf91f06aea4f27a1e94ef6bafc5ce4dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.087ex; height:2.509ex;" alt="{\displaystyle y_{2n}=0,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2n+1}=x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2n+1}=x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a42ee5bd574a42782c18d2e3079835b3b21e357c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.927ex; height:2.009ex;" alt="{\displaystyle y_{2n+1}=x_{n}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq n&lt;N,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>n</mi> <mo>&lt;</mo> <mi>N</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq n&lt;N,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a4faf72d7f59cff647c2c6a0105e6f24b1ffdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.465ex; height:2.509ex;" alt="{\displaystyle 0\leq n&lt;N,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{2N}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>N</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{2N}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebb3a8f4298ada293035b890aac38a11a5545c81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.56ex; height:2.509ex;" alt="{\displaystyle y_{2N}=0,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{4N-n}=y_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{4N-n}=y_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dba17f6d7126821c452390bb727456802c303170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.374ex; height:2.009ex;" alt="{\displaystyle y_{4N-n}=y_{n}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;n&lt;2N.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>n</mi> <mo>&lt;</mo> <mn>2</mn> <mi>N</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;n&lt;2N.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/964664557b0bf4f075273b0938c8562b37c16c4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.627ex; height:2.176ex;" alt="{\displaystyle 0&lt;n&lt;2N.}"></span> DCT-II transformation is also possible using 2<span class="texhtml mvar" style="font-style:italic;">N</span> signal followed by a multiplication by half shift. This is demonstrated by <a href="/wiki/John_Makhoul" title="John Makhoul">Makhoul</a>. </p><p>Some authors further multiply the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6381fdad2b9f11954b1fc2db08bbaccf634ededa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{0}}"></span> term by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/{\sqrt {N\,}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>N</mi> <mspace width="thinmathspace" /> </msqrt> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/{\sqrt {N\,}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c006fa07dc5191017bd6d1c46947d36bac3aa14e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.099ex; height:3.176ex;" alt="{\displaystyle 1/{\sqrt {N\,}}\,}"></span> and multiply the rest of the matrix by an overall scale factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {{2}/{N}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {{2}/{N}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b99799742c369e887980ac1ed84dc8425c67378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.712ex; height:3.343ex;" alt="{\textstyle {\sqrt {{2}/{N}}}}"></span> (see below for the corresponding change in DCT-III). This makes the DCT-II matrix <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a>, but breaks the direct correspondence with a real-even <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a> of half-shifted input. This is the normalization used by <a href="/wiki/Matlab" class="mw-redirect" title="Matlab">Matlab</a>, for example, see.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> In many applications, such as <a href="/wiki/JPEG" title="JPEG">JPEG</a>, the scaling is arbitrary because scale factors can be combined with a subsequent computational step (e.g. the <a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">quantization</a> step in JPEG<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup>), and a scaling can be chosen that allows the DCT to be computed with fewer multiplications.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> </p><p>The DCT-II implies the boundary conditions: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span> is even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=-1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=-1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b2e0129774c12b9419b3032d59ad929050f5fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.789ex; height:2.843ex;" alt="{\displaystyle n=-1/2}"></span> and even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=N-1/2\,;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mspace width="thinmathspace" /> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=N-1/2\,;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a211c793f73a1a9c95ba0e1630111285b26e34f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.919ex; height:2.843ex;" alt="{\displaystyle n=N-1/2\,;}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33c25229c6989c235f9cbb7908331f6d01d0abfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.013ex; height:2.509ex;" alt="{\displaystyle X_{k}}"></span> is even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6307c8a99dad7d0bcb712352ae0a748bd99a038b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.472ex; height:2.176ex;" alt="{\displaystyle k=0}"></span> and odd around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=N.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>N</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=N.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/885cd540dd443e374615746849123c82a453b479" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.02ex; height:2.176ex;" alt="{\displaystyle k=N.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="DCT-III">DCT-III</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=17" title="Edit section: DCT-III"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}={\tfrac {1}{2}}x_{0}+\sum _{n=1}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\left(k+{\tfrac {1}{2}}\right)n\,\right]\qquad {\text{ for }}~k=0,\ \ldots \ N-1~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> </mrow> <mi>N</mi> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mi>n</mi> <mspace width="thinmathspace" /> </mrow> <mo>]</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}={\tfrac {1}{2}}x_{0}+\sum _{n=1}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\left(k+{\tfrac {1}{2}}\right)n\,\right]\qquad {\text{ for }}~k=0,\ \ldots \ N-1~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54964bf4edeb811b15c3455a127339bf4f7c87f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:66.149ex; height:7.343ex;" alt="{\displaystyle X_{k}={\tfrac {1}{2}}x_{0}+\sum _{n=1}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\left(k+{\tfrac {1}{2}}\right)n\,\right]\qquad {\text{ for }}~k=0,\ \ldots \ N-1~.}"></span></dd></dl> <p>Because it is the inverse of DCT-II up to a scale factor (see below), this form is sometimes simply referred to as "the inverse DCT" ("IDCT").<sup id="cite_ref-pubRaoYip_6-4" class="reference"><a href="#cite_note-pubRaoYip-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some authors divide the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> term by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> instead of by 2 (resulting in an overall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}/{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}/{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba7aa315bf15ab3c7b0571f2ed9d807711514893" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.645ex; height:3.176ex;" alt="{\displaystyle x_{0}/{\sqrt {2}}}"></span> term) and multiply the resulting matrix by an overall scale factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {2/N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {2/N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc67f411ae2805d323fa48a91e852adce10c0fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.712ex; height:3.343ex;" alt="{\textstyle {\sqrt {2/N}}}"></span> (see above for the corresponding change in DCT-II), so that the DCT-II and DCT-III are transposes of one another. This makes the DCT-III matrix <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a>, but breaks the direct correspondence with a real-even <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a> of half-shifted output. </p><p>The DCT-III implies the boundary conditions: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span> is even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> and odd around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=N;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>N</mi> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=N;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32aae191706a06c08fb75a3727ecc0297257692b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.204ex; height:2.509ex;" alt="{\displaystyle n=N;}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33c25229c6989c235f9cbb7908331f6d01d0abfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.013ex; height:2.509ex;" alt="{\displaystyle X_{k}}"></span> is even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=-1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=-1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c85787e5beba35dd2ae145d7aa5a8a1758d01d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.605ex; height:2.843ex;" alt="{\displaystyle k=-1/2}"></span> and even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=N-1/2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=N-1/2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcd7c65518ba86721acbba155a2b877b00168142" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.348ex; height:2.843ex;" alt="{\displaystyle k=N-1/2.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="DCT-IV">DCT-IV</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=18" title="Edit section: DCT-IV"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\,\left(n+{\tfrac {1}{2}}\right)\left(k+{\tfrac {1}{2}}\right)\,\right]\qquad {\text{ for }}k=0,\ \ldots \ N-1~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> </mrow> <mi>N</mi> </mfrac> </mstyle> </mrow> <mspace width="thinmathspace" /> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mrow> <mo>]</mo> </mrow> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for&#xA0;</mtext> </mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\,\left(n+{\tfrac {1}{2}}\right)\left(k+{\tfrac {1}{2}}\right)\,\right]\qquad {\text{ for }}k=0,\ \ldots \ N-1~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd046a94a30671a18f12d188598bcfb96e797eae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:65.701ex; height:7.343ex;" alt="{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\cos \left[\,{\tfrac {\,\pi \,}{N}}\,\left(n+{\tfrac {1}{2}}\right)\left(k+{\tfrac {1}{2}}\right)\,\right]\qquad {\text{ for }}k=0,\ \ldots \ N-1~.}"></span></dd></dl> <p>The DCT-IV matrix becomes <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a> (and thus, being clearly symmetric, its own inverse) if one further multiplies by an overall scale factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {2/N}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {2/N}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ed8f5aa98dce26668299e9cb96bf42ab0fec18e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.359ex; height:3.343ex;" alt="{\textstyle {\sqrt {2/N}}.}"></span> </p><p>A variant of the DCT-IV, where data from different transforms are <i>overlapped</i>, is called the <a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">modified discrete cosine transform</a> (MDCT).<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> </p><p>The DCT-IV implies the boundary conditions: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ea190699149306d242b70439e663559e3ffbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle x_{n}}"></span> is even around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=-1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=-1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b2e0129774c12b9419b3032d59ad929050f5fcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.789ex; height:2.843ex;" alt="{\displaystyle n=-1/2}"></span> and odd around <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=N-1/2;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=N-1/2;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d84fd329c2f42cc7f34fd3a6e4553da6d1f3b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.531ex; height:2.843ex;" alt="{\displaystyle n=N-1/2;}"></span> similarly for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c04fca5a5d7f8d48f21d5640d286507dccc5dd93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.66ex; height:2.509ex;" alt="{\displaystyle X_{k}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="DCT_V-VIII">DCT V-VIII</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=19" title="Edit section: DCT V-VIII"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>DCTs of types I–IV treat both boundaries consistently regarding the point of symmetry: they are even/odd around either a data point for both boundaries or halfway between two data points for both boundaries. By contrast, DCTs of types V-VIII imply boundaries that are even/odd around a data point for one boundary and halfway between two data points for the other boundary. </p><p>In other words, DCT types I–IV are equivalent to real-even <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFTs</a> of even order (regardless of whether <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> is even or odd), since the corresponding DFT is of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2(N-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2(N-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4410f19685c51f4a556471897ccb38286f5f07c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.038ex; height:2.843ex;" alt="{\displaystyle 2(N-1)}"></span> (for DCT-I) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fc080b972918855f349631dd1d838c538162366" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.226ex; height:2.176ex;" alt="{\displaystyle 4N}"></span> (for DCT-II &amp; III) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 8N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>8</mn> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 8N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06b40cbc3ff3084650894d4577be045dd193c4a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.226ex; height:2.176ex;" alt="{\displaystyle 8N}"></span> (for DCT-IV). The four additional types of discrete cosine transform<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> correspond essentially to real-even DFTs of logically odd order, which have factors of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\pm {1}/{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\pm {1}/{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/144aacae5fc6adf3fc9eb60ed2df3ebe2161f4b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.391ex; height:2.843ex;" alt="{\displaystyle N\pm {1}/{2}}"></span> in the denominators of the cosine arguments. </p><p>However, these variants seem to be rarely used in practice. One reason, perhaps, is that <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a> algorithms for odd-length DFTs are generally more complicated than <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a> algorithms for even-length DFTs (e.g. the simplest radix-2 algorithms are only for even lengths), and this increased intricacy carries over to the DCTs as described below. </p><p>(The trivial real-even array, a length-one DFT (odd length) of a single number <span class="texhtml mvar" style="font-style:italic;">a</span>&#160;, corresponds to a DCT-V of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/606bc237d1a1ee6bf610c9c2730a9dcf2a2bb001" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.971ex; height:2.176ex;" alt="{\displaystyle N=1.}"></span>) </p> <div class="mw-heading mw-heading2"><h2 id="Inverse_transforms">Inverse transforms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=20" title="Edit section: Inverse transforms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using the normalization conventions above, the inverse of DCT-I is DCT-I multiplied by 2/(<i>N</i>&#160;−&#160;1). The inverse of DCT-IV is DCT-IV multiplied by 2/<i>N</i>. The inverse of DCT-II is DCT-III multiplied by 2/<i>N</i> and vice versa.<sup id="cite_ref-pubRaoYip_6-5" class="reference"><a href="#cite_note-pubRaoYip-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Like for the <a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">DFT</a>, the normalization factor in front of these transform definitions is merely a convention and differs between treatments. For example, some authors multiply the transforms by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {2/N}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {2/N}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc67f411ae2805d323fa48a91e852adce10c0fd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.712ex; height:3.343ex;" alt="{\textstyle {\sqrt {2/N}}}"></span> so that the inverse does not require any additional multiplicative factor. Combined with appropriate factors of <span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span> (see above), this can be used to make the transform matrix <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Multidimensional_DCTs">Multidimensional DCTs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=21" title="Edit section: Multidimensional DCTs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Multidimensional variants of the various DCT types follow straightforwardly from the one-dimensional definitions: they are simply a separable product (equivalently, a composition) of DCTs along each dimension. </p> <div class="mw-heading mw-heading3"><h3 id="M-D_DCT-II">M-D DCT-II</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=22" title="Edit section: M-D DCT-II"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For example, a two-dimensional DCT-II of an image or a matrix is simply the one-dimensional DCT-II, from above, performed along the rows and then along the columns (or vice versa). That is, the 2D DCT-II is given by the formula (omitting normalization and other scale factors, as above): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}X_{k_{1},k_{2}}&amp;=\sum _{n_{1}=0}^{N_{1}-1}\left(\sum _{n_{2}=0}^{N_{2}-1}x_{n_{1},n_{2}}\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\right)\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\\&amp;=\sum _{n_{1}=0}^{N_{1}-1}\sum _{n_{2}=0}^{N_{2}-1}x_{n_{1},n_{2}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right].\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}X_{k_{1},k_{2}}&amp;=\sum _{n_{1}=0}^{N_{1}-1}\left(\sum _{n_{2}=0}^{N_{2}-1}x_{n_{1},n_{2}}\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\right)\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\\&amp;=\sum _{n_{1}=0}^{N_{1}-1}\sum _{n_{2}=0}^{N_{2}-1}x_{n_{1},n_{2}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right].\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b130f0c2ff55fcf6a7c26247d018e159abe7f6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:75.371ex; height:15.676ex;" alt="{\displaystyle {\begin{aligned}X_{k_{1},k_{2}}&amp;=\sum _{n_{1}=0}^{N_{1}-1}\left(\sum _{n_{2}=0}^{N_{2}-1}x_{n_{1},n_{2}}\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\right)\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\\&amp;=\sum _{n_{1}=0}^{N_{1}-1}\sum _{n_{2}=0}^{N_{2}-1}x_{n_{1},n_{2}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right].\end{aligned}}}"></span></dd> <dd>The inverse of a multi-dimensional DCT is just a separable product of the inverses of the corresponding one-dimensional DCTs (see above), e.g. the one-dimensional inverses applied along one dimension at a time in a row-column algorithm.</dd></dl> <p>The <i>3-D DCT-II</i> is only the extension of <i>2-D DCT-II</i> in three dimensional space and mathematically can be calculated by the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k_{1},k_{2},k_{3}}=\sum _{n_{1}=0}^{N_{1}-1}\sum _{n_{2}=0}^{N_{2}-1}\sum _{n_{3}=0}^{N_{3}-1}x_{n_{1},n_{2},n_{3}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\cos \left[{\frac {\pi }{N_{3}}}\left(n_{3}+{\frac {1}{2}}\right)k_{3}\right],\quad {\text{for }}k_{i}=0,1,2,\dots ,N_{i}-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k_{1},k_{2},k_{3}}=\sum _{n_{1}=0}^{N_{1}-1}\sum _{n_{2}=0}^{N_{2}-1}\sum _{n_{3}=0}^{N_{3}-1}x_{n_{1},n_{2},n_{3}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\cos \left[{\frac {\pi }{N_{3}}}\left(n_{3}+{\frac {1}{2}}\right)k_{3}\right],\quad {\text{for }}k_{i}=0,1,2,\dots ,N_{i}-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d83b579efc3f88bb1ea1ea9f9e7ce0b2cc938a92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:133.337ex; height:7.843ex;" alt="{\displaystyle X_{k_{1},k_{2},k_{3}}=\sum _{n_{1}=0}^{N_{1}-1}\sum _{n_{2}=0}^{N_{2}-1}\sum _{n_{3}=0}^{N_{3}-1}x_{n_{1},n_{2},n_{3}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\cos \left[{\frac {\pi }{N_{3}}}\left(n_{3}+{\frac {1}{2}}\right)k_{3}\right],\quad {\text{for }}k_{i}=0,1,2,\dots ,N_{i}-1.}"></span></dd></dl> <p>The inverse of <b>3-D DCT-II</b> is <b>3-D DCT-III</b> and can be computed from the formula given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n_{1},n_{2},n_{3}}=\sum _{k_{1}=0}^{N_{1}-1}\sum _{k_{2}=0}^{N_{2}-1}\sum _{k_{3}=0}^{N_{3}-1}X_{k_{1},k_{2},k_{3}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\cos \left[{\frac {\pi }{N_{3}}}\left(n_{3}+{\frac {1}{2}}\right)k_{3}\right],\quad {\text{for }}n_{i}=0,1,2,\dots ,N_{i}-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>for&#xA0;</mtext> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n_{1},n_{2},n_{3}}=\sum _{k_{1}=0}^{N_{1}-1}\sum _{k_{2}=0}^{N_{2}-1}\sum _{k_{3}=0}^{N_{3}-1}X_{k_{1},k_{2},k_{3}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\cos \left[{\frac {\pi }{N_{3}}}\left(n_{3}+{\frac {1}{2}}\right)k_{3}\right],\quad {\text{for }}n_{i}=0,1,2,\dots ,N_{i}-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85e084f4d392271aad0753fc1e18370df38d57c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:133.521ex; height:7.843ex;" alt="{\displaystyle x_{n_{1},n_{2},n_{3}}=\sum _{k_{1}=0}^{N_{1}-1}\sum _{k_{2}=0}^{N_{2}-1}\sum _{k_{3}=0}^{N_{3}-1}X_{k_{1},k_{2},k_{3}}\cos \left[{\frac {\pi }{N_{1}}}\left(n_{1}+{\frac {1}{2}}\right)k_{1}\right]\cos \left[{\frac {\pi }{N_{2}}}\left(n_{2}+{\frac {1}{2}}\right)k_{2}\right]\cos \left[{\frac {\pi }{N_{3}}}\left(n_{3}+{\frac {1}{2}}\right)k_{3}\right],\quad {\text{for }}n_{i}=0,1,2,\dots ,N_{i}-1.}"></span></dd></dl> <p>Technically, computing a two-, three- (or -multi) dimensional DCT by sequences of one-dimensional DCTs along each dimension is known as a <i>row-column</i> algorithm. As with <a href="/wiki/Fast_Fourier_transform#Multidimensional_FFTs" title="Fast Fourier transform">multidimensional FFT algorithms</a>, however, there exist other methods to compute the same thing while performing the computations in a different order (i.e. interleaving/combining the algorithms for the different dimensions). Owing to the rapid growth in the applications based on the 3-D DCT, several fast algorithms are developed for the computation of 3-D DCT-II. Vector-Radix algorithms are applied for computing M-D DCT to reduce the computational complexity and to increase the computational speed. To compute 3-D DCT-II efficiently, a fast algorithm, Vector-Radix Decimation in Frequency (VR DIF) algorithm was developed. </p> <div class="mw-heading mw-heading4"><h4 id="3-D_DCT-II_VR_DIF">3-D DCT-II VR DIF</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=23" title="Edit section: 3-D DCT-II VR DIF"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In order to apply the VR DIF algorithm the input data is to be formulated and rearranged as follows.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:0_106-0" class="reference"><a href="#cite_note-:0-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> The transform size <i>N × N × N</i> is assumed to be&#160;2. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg/246px-Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg" decoding="async" width="246" height="336" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/93/Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg/369px-Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/93/Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg/493px-Stages_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg 2x" data-file-width="654" data-file-height="892" /></a><figcaption>The four basic stages of computing 3-D DCT-II using VR DIF Algorithm.</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{lcl}{\tilde {x}}(n_{1},n_{2},n_{3})=x(2n_{1},2n_{2},2n_{3})\\{\tilde {x}}(n_{1},n_{2},N-n_{3}-1)=x(2n_{1},2n_{2},2n_{3}+1)\\{\tilde {x}}(n_{1},N-n_{2}-1,n_{3})=x(2n_{1},2n_{2}+1,2n_{3})\\{\tilde {x}}(n_{1},N-n_{2}-1,N-n_{3}-1)=x(2n_{1},2n_{2}+1,2n_{3}+1)\\{\tilde {x}}(N-n_{1}-1,n_{2},n_{3})=x(2n_{1}+1,2n_{2},2n_{3})\\{\tilde {x}}(N-n_{1}-1,n_{2},N-n_{3}-1)=x(2n_{1}+1,2n_{2},2n_{3}+1)\\{\tilde {x}}(N-n_{1}-1,N-n_{2}-1,n_{3})=x(2n_{1}+1,2n_{2}+1,2n_{3})\\{\tilde {x}}(N-n_{1}-1,N-n_{2}-1,N-n_{3}-1)=x(2n_{1}+1,2n_{2}+1,2n_{3}+1)\\\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{lcl}{\tilde {x}}(n_{1},n_{2},n_{3})=x(2n_{1},2n_{2},2n_{3})\\{\tilde {x}}(n_{1},n_{2},N-n_{3}-1)=x(2n_{1},2n_{2},2n_{3}+1)\\{\tilde {x}}(n_{1},N-n_{2}-1,n_{3})=x(2n_{1},2n_{2}+1,2n_{3})\\{\tilde {x}}(n_{1},N-n_{2}-1,N-n_{3}-1)=x(2n_{1},2n_{2}+1,2n_{3}+1)\\{\tilde {x}}(N-n_{1}-1,n_{2},n_{3})=x(2n_{1}+1,2n_{2},2n_{3})\\{\tilde {x}}(N-n_{1}-1,n_{2},N-n_{3}-1)=x(2n_{1}+1,2n_{2},2n_{3}+1)\\{\tilde {x}}(N-n_{1}-1,N-n_{2}-1,n_{3})=x(2n_{1}+1,2n_{2}+1,2n_{3})\\{\tilde {x}}(N-n_{1}-1,N-n_{2}-1,N-n_{3}-1)=x(2n_{1}+1,2n_{2}+1,2n_{3}+1)\\\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7794e26b232b1ebc17d08b9c9737732fe19bfe7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.671ex; width:71.174ex; height:26.509ex;" alt="{\displaystyle {\begin{array}{lcl}{\tilde {x}}(n_{1},n_{2},n_{3})=x(2n_{1},2n_{2},2n_{3})\\{\tilde {x}}(n_{1},n_{2},N-n_{3}-1)=x(2n_{1},2n_{2},2n_{3}+1)\\{\tilde {x}}(n_{1},N-n_{2}-1,n_{3})=x(2n_{1},2n_{2}+1,2n_{3})\\{\tilde {x}}(n_{1},N-n_{2}-1,N-n_{3}-1)=x(2n_{1},2n_{2}+1,2n_{3}+1)\\{\tilde {x}}(N-n_{1}-1,n_{2},n_{3})=x(2n_{1}+1,2n_{2},2n_{3})\\{\tilde {x}}(N-n_{1}-1,n_{2},N-n_{3}-1)=x(2n_{1}+1,2n_{2},2n_{3}+1)\\{\tilde {x}}(N-n_{1}-1,N-n_{2}-1,n_{3})=x(2n_{1}+1,2n_{2}+1,2n_{3})\\{\tilde {x}}(N-n_{1}-1,N-n_{2}-1,N-n_{3}-1)=x(2n_{1}+1,2n_{2}+1,2n_{3}+1)\\\end{array}}}"></span></dd> <dd>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq n_{1},n_{2},n_{3}\leq {\frac {N}{2}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>N</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq n_{1},n_{2},n_{3}\leq {\frac {N}{2}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8de53f73f29cd25062e7a41dcd19e00662404bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:23.677ex; height:5.176ex;" alt="{\displaystyle 0\leq n_{1},n_{2},n_{3}\leq {\frac {N}{2}}-1}"></span></dd></dl> <p>The figure to the adjacent shows the four stages that are involved in calculating 3-D DCT-II using VR DIF algorithm. The first stage is the 3-D reordering using the index mapping illustrated by the above equations. The second stage is the butterfly calculation. Each butterfly calculates eight points together as shown in the figure just below, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(\varphi _{i})=\cos(\varphi _{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(\varphi _{i})=\cos(\varphi _{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5dbeed0f0eb13e29237ff617b07f495d9fa0b28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.475ex; height:2.843ex;" alt="{\displaystyle c(\varphi _{i})=\cos(\varphi _{i})}"></span>. </p><p>The original 3-D DCT-II now can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(k_{1},k_{2},k_{3})=\sum _{n_{1}=1}^{N-1}\sum _{n_{2}=1}^{N-1}\sum _{n_{3}=1}^{N-1}{\tilde {x}}(n_{1},n_{2},n_{3})\cos(\varphi k_{1})\cos(\varphi k_{2})\cos(\varphi k_{3})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(k_{1},k_{2},k_{3})=\sum _{n_{1}=1}^{N-1}\sum _{n_{2}=1}^{N-1}\sum _{n_{3}=1}^{N-1}{\tilde {x}}(n_{1},n_{2},n_{3})\cos(\varphi k_{1})\cos(\varphi k_{2})\cos(\varphi k_{3})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed57cfa5040af2521d3a7f2396a235690a614ed9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:68.501ex; height:7.676ex;" alt="{\displaystyle X(k_{1},k_{2},k_{3})=\sum _{n_{1}=1}^{N-1}\sum _{n_{2}=1}^{N-1}\sum _{n_{3}=1}^{N-1}{\tilde {x}}(n_{1},n_{2},n_{3})\cos(\varphi k_{1})\cos(\varphi k_{2})\cos(\varphi k_{3})}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{i}={\frac {\pi }{2N}}(4N_{i}+1),{\text{ and }}i=1,2,3.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>4</mn> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{i}={\frac {\pi }{2N}}(4N_{i}+1),{\text{ and }}i=1,2,3.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f7bdd6a16d0148ac7391571fee3f843c2574478" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.167ex; height:4.676ex;" alt="{\displaystyle \varphi _{i}={\frac {\pi }{2N}}(4N_{i}+1),{\text{ and }}i=1,2,3.}"></span> </p><p> If the even and the odd parts of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{1},k_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{1},k_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38464b8cbb84b71e60d41873e4bfe788027f3cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.565ex; height:2.509ex;" alt="{\displaystyle k_{1},k_{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40d32e1c66b85257bfd6ad8be93186742d71a804" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.265ex; height:2.509ex;" alt="{\displaystyle k_{3}}"></span> and are considered, the general formula for the calculation of the 3-D DCT-II can be expressed as </p><figure typeof="mw:File/Thumb"><a href="/wiki/File:Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg/310px-Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg" decoding="async" width="310" height="148" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/31/Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg/465px-Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/31/Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg/620px-Single_butterfly_of_the_3-D_DCT-II_VR_DIF_algorithm.jpg 2x" data-file-width="1811" data-file-height="864" /></a><figcaption>The single butterfly stage of VR DIF algorithm.</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X(k_{1},k_{2},k_{3})=\sum _{n_{1}=1}^{{\tfrac {N}{2}}-1}\sum _{n_{2}=1}^{{\tfrac {N}{2}}-1}\sum _{n_{1}=1}^{{\tfrac {N}{2}}-1}{\tilde {x}}_{ijl}(n_{1},n_{2},n_{3})\cos(\varphi (2k_{1}+i)\cos(\varphi (2k_{2}+j)\cos(\varphi (2k_{3}+l))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>N</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>N</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>N</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>j</mi> <mo stretchy="false">)</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>l</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X(k_{1},k_{2},k_{3})=\sum _{n_{1}=1}^{{\tfrac {N}{2}}-1}\sum _{n_{2}=1}^{{\tfrac {N}{2}}-1}\sum _{n_{1}=1}^{{\tfrac {N}{2}}-1}{\tilde {x}}_{ijl}(n_{1},n_{2},n_{3})\cos(\varphi (2k_{1}+i)\cos(\varphi (2k_{2}+j)\cos(\varphi (2k_{3}+l))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fad790076764fe61641954a1130bd19ecfedf34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:89.982ex; height:9.343ex;" alt="{\displaystyle X(k_{1},k_{2},k_{3})=\sum _{n_{1}=1}^{{\tfrac {N}{2}}-1}\sum _{n_{2}=1}^{{\tfrac {N}{2}}-1}\sum _{n_{1}=1}^{{\tfrac {N}{2}}-1}{\tilde {x}}_{ijl}(n_{1},n_{2},n_{3})\cos(\varphi (2k_{1}+i)\cos(\varphi (2k_{2}+j)\cos(\varphi (2k_{3}+l))}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {x}}_{ijl}(n_{1},n_{2},n_{3})={\tilde {x}}(n_{1},n_{2},n_{3})+(-1)^{l}{\tilde {x}}\left(n_{1},n_{2},n_{3}+{\frac {n}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>l</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {x}}_{ijl}(n_{1},n_{2},n_{3})={\tilde {x}}(n_{1},n_{2},n_{3})+(-1)^{l}{\tilde {x}}\left(n_{1},n_{2},n_{3}+{\frac {n}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d171604dd04fc955373cc315919399393e28317d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:57.494ex; height:4.843ex;" alt="{\displaystyle {\tilde {x}}_{ijl}(n_{1},n_{2},n_{3})={\tilde {x}}(n_{1},n_{2},n_{3})+(-1)^{l}{\tilde {x}}\left(n_{1},n_{2},n_{3}+{\frac {n}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +(-1)^{j}{\tilde {x}}\left(n_{1},n_{2}+{\frac {n}{2}},n_{3}\right)+(-1)^{j+l}{\tilde {x}}\left(n_{1},n_{2}+{\frac {n}{2}},n_{3}+{\frac {n}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>+</mo> <mi>l</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +(-1)^{j}{\tilde {x}}\left(n_{1},n_{2}+{\frac {n}{2}},n_{3}\right)+(-1)^{j+l}{\tilde {x}}\left(n_{1},n_{2}+{\frac {n}{2}},n_{3}+{\frac {n}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39845a0b04f45d2437904528644bb3da933a7867" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:60.824ex; height:4.843ex;" alt="{\displaystyle +(-1)^{j}{\tilde {x}}\left(n_{1},n_{2}+{\frac {n}{2}},n_{3}\right)+(-1)^{j+l}{\tilde {x}}\left(n_{1},n_{2}+{\frac {n}{2}},n_{3}+{\frac {n}{2}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +(-1)^{i}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2},n_{3}\right)+(-1)^{i+j}{\tilde {x}}\left(n_{1}+{\frac {n}{2}}+{\frac {n}{2}},n_{2},n_{3}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mi>j</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +(-1)^{i}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2},n_{3}\right)+(-1)^{i+j}{\tilde {x}}\left(n_{1}+{\frac {n}{2}}+{\frac {n}{2}},n_{2},n_{3}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469baaa623b197c66106234a88e5a0de7389792c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:60.791ex; height:4.843ex;" alt="{\displaystyle +(-1)^{i}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2},n_{3}\right)+(-1)^{i+j}{\tilde {x}}\left(n_{1}+{\frac {n}{2}}+{\frac {n}{2}},n_{2},n_{3}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +(-1)^{i+l}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2},n_{3}+{\frac {n}{3}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mi>l</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>3</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +(-1)^{i+l}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2},n_{3}+{\frac {n}{3}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88d2cc01816c1dd9fbbd6d1cce7c014265d0638d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.206ex; height:4.843ex;" alt="{\displaystyle +(-1)^{i+l}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2},n_{3}+{\frac {n}{3}}\right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +(-1)^{i+j+l}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2}+{\frac {n}{2}},n_{3}+{\frac {n}{2}}\right){\text{ where }}i,j,l=0{\text{ or }}1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mi>j</mi> <mo>+</mo> <mi>l</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;where&#xA0;</mtext> </mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +(-1)^{i+j+l}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2}+{\frac {n}{2}},n_{3}+{\frac {n}{2}}\right){\text{ where }}i,j,l=0{\text{ or }}1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0762a6b2ecaa4e5dc1b87e4b34b95f59c832fff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:61.556ex; height:4.843ex;" alt="{\displaystyle +(-1)^{i+j+l}{\tilde {x}}\left(n_{1}+{\frac {n}{2}},n_{2}+{\frac {n}{2}},n_{3}+{\frac {n}{2}}\right){\text{ where }}i,j,l=0{\text{ or }}1.}"></span></dd></dl> <div class="mw-heading mw-heading5"><h5 id="Arithmetic_complexity">Arithmetic complexity</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=24" title="Edit section: Arithmetic complexity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The whole 3-D DCT calculation needs <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~[\log _{2}N]~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo stretchy="false">[</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~[\log _{2}N]~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27d8bb5d31213b1734af79717a89534491e1f3c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.932ex; height:2.843ex;" alt="{\displaystyle ~[\log _{2}N]~}"></span> stages, and each stage involves <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\tfrac {1}{8}}\ N^{3}~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mstyle> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\tfrac {1}{8}}\ N^{3}~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43c7db17eb75a30c803b114125e2d7864cb1d24d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.577ex; height:3.676ex;" alt="{\displaystyle ~{\tfrac {1}{8}}\ N^{3}~}"></span> butterflies. The whole 3-D DCT requires <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\left[{\tfrac {1}{8}}\ N^{3}\log _{2}N\right]~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>8</mn> </mfrac> </mstyle> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\left[{\tfrac {1}{8}}\ N^{3}\log _{2}N\right]~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91efa02764854739533932d0917df6fbb8faad42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:16.41ex; height:4.843ex;" alt="{\displaystyle ~\left[{\tfrac {1}{8}}\ N^{3}\log _{2}N\right]~}"></span> butterflies to be computed. Each butterfly requires seven real multiplications (including trivial multiplications) and 24&#160;real additions (including trivial additions). Therefore, the total number of real multiplications needed for this stage is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\left[{\tfrac {7}{8}}\ N^{3}\ \log _{2}N\right]~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>7</mn> <mn>8</mn> </mfrac> </mstyle> </mrow> <mtext>&#xA0;</mtext> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\left[{\tfrac {7}{8}}\ N^{3}\ \log _{2}N\right]~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1eee6265f015b96f01166b9015dbe8228d41b6f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.638ex; height:4.843ex;" alt="{\displaystyle ~\left[{\tfrac {7}{8}}\ N^{3}\ \log _{2}N\right]~,}"></span> and the total number of real additions i.e. including the post-additions (recursive additions) which can be calculated directly after the butterfly stage or after the bit-reverse stage are given by<sup id="cite_ref-:0_106-1" class="reference"><a href="#cite_note-:0-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\underbrace {\left[{\frac {3}{2}}N^{3}\log _{2}N\right]} _{\text{Real}}+\underbrace {\left[{\frac {3}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]} _{\text{Recursive}}=\left[{\frac {9}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> </mrow> <mo>]</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Real</mtext> </mrow> </munder> <mo>+</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Recursive</mtext> </mrow> </munder> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\underbrace {\left[{\frac {3}{2}}N^{3}\log _{2}N\right]} _{\text{Real}}+\underbrace {\left[{\frac {3}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]} _{\text{Recursive}}=\left[{\frac {9}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ced5ebac308145cfd6efa3c1b191749e4ae23f0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:80.338ex; height:9.676ex;" alt="{\displaystyle ~\underbrace {\left[{\frac {3}{2}}N^{3}\log _{2}N\right]} _{\text{Real}}+\underbrace {\left[{\frac {3}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]} _{\text{Recursive}}=\left[{\frac {9}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]~.}"></span> </p><p>The conventional method to calculate MD-DCT-II is using a Row-Column-Frame (RCF) approach which is computationally complex and less productive on most advanced recent hardware platforms. The number of multiplications required to compute VR DIF Algorithm when compared to RCF algorithm are quite a few in number. The number of Multiplications and additions involved in RCF approach are given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\left[{\frac {3}{2}}N^{3}\log _{2}N\right]~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\left[{\frac {3}{2}}N^{3}\log _{2}N\right]~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a35aa8c853807e7646c3ab9aaaa804f9e92f519d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.43ex; height:6.176ex;" alt="{\displaystyle ~\left[{\frac {3}{2}}N^{3}\log _{2}N\right]~}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\left[{\frac {9}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\left[{\frac {9}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0fcd1a48d8b3795e4c1f5cec76e8642e096d084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.437ex; height:6.176ex;" alt="{\displaystyle ~\left[{\frac {9}{2}}N^{3}\log _{2}N-3N^{3}+3N^{2}\right]~,}"></span> respectively. From Table 1, it can be seen that the total number </p> <table class="wikitable sortable"> <caption>TABLE 1 Comparison of VR DIF &amp; RCF Algorithms for computing 3D-DCT-II </caption> <tbody><tr> <th>Transform Size </th> <th>3D VR Mults </th> <th>RCF Mults </th> <th>3D VR Adds </th> <th>RCF Adds </th></tr> <tr> <td>8 × 8 × 8 </td> <td>2.625 </td> <td>4.5 </td> <td>10.875 </td> <td>10.875 </td></tr> <tr> <td>16 × 16 × 16 </td> <td>3.5 </td> <td>6 </td> <td>15.188 </td> <td>15.188 </td></tr> <tr> <td>32 × 32 × 32 </td> <td>4.375 </td> <td>7.5 </td> <td>19.594 </td> <td>19.594 </td></tr> <tr> <td>64 × 64 × 64 </td> <td>5.25 </td> <td>9 </td> <td>24.047 </td> <td>24.047 </td></tr></tbody></table> <p>of multiplications associated with the 3-D DCT VR algorithm is less than that associated with the RCF approach by more than 40%. In addition, the RCF approach involves matrix transpose and more indexing and data swapping than the new VR algorithm. This makes the 3-D DCT VR algorithm more efficient and better suited for 3-D applications that involve the 3-D DCT-II such as video compression and other 3-D image processing applications. </p><p>The main consideration in choosing a fast algorithm is to avoid computational and structural complexities. As the technology of computers and DSPs advances, the execution time of arithmetic operations (multiplications and additions) is becoming very fast, and regular computational structure becomes the most important factor.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> Therefore, although the above proposed 3-D VR algorithm does not achieve the theoretical lower bound on the number of multiplications,<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> it has a simpler computational structure as compared to other 3-D DCT algorithms. It can be implemented in place using a single butterfly and possesses the properties of the <a href="/wiki/Cooley%E2%80%93Tukey_FFT_algorithm" title="Cooley–Tukey FFT algorithm">Cooley–Tukey FFT algorithm</a> in 3-D. Hence, the 3-D VR presents a good choice for reducing arithmetic operations in the calculation of the 3-D DCT-II, while keeping the simple structure that characterize butterfly-style <a href="/wiki/Cooley%E2%80%93Tukey_FFT_algorithm" title="Cooley–Tukey FFT algorithm">Cooley–Tukey FFT algorithms</a>. </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:DCT-8x8.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/DCT-8x8.png/250px-DCT-8x8.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/DCT-8x8.png/375px-DCT-8x8.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/24/DCT-8x8.png 2x" data-file-width="438" data-file-height="438" /></a><figcaption>Two-dimensional DCT frequencies from the <a href="/wiki/JPEG#Discrete_cosine_transform" title="JPEG">JPEG DCT</a></figcaption></figure> <p>The image to the right shows a combination of horizontal and vertical frequencies for an <span class="nowrap"> 8 × 8 </span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (~N_{1}=N_{2}=8~)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>8</mn> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (~N_{1}=N_{2}=8~)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a9285dfe5c6ba6839a02429645ebd85156e077c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.171ex; height:2.843ex;" alt="{\displaystyle (~N_{1}=N_{2}=8~)}"></span> two-dimensional DCT. Each step from left to right and top to bottom is an increase in frequency by 1/2 cycle. For example, moving right one from the top-left square yields a half-cycle increase in the horizontal frequency. Another move to the right yields two half-cycles. A move down yields two half-cycles horizontally and a half-cycle vertically. The source data <span class="nowrap">( 8×8 )</span> is transformed to a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of these 64&#160;frequency squares. </p> <div class="mw-heading mw-heading3"><h3 id="MD-DCT-IV">MD-DCT-IV</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=25" title="Edit section: MD-DCT-IV"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The M-D DCT-IV is just an extension of 1-D DCT-IV on to <span class="texhtml mvar" style="font-style:italic;">M</span>&#160;dimensional domain. The 2-D DCT-IV of a matrix or an image is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k,\ell }=\sum _{n=0}^{N-1}\;\sum _{m=0}^{M-1}\ x_{n,m}\cos \left(\ {\frac {\,(2m+1)(2k+1)\ \pi \,}{4N}}\ \right)\cos \left(\ {\frac {\,(2n+1)(2\ell +1)\ \pi \,}{4M}}\ \right)~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mspace width="thickmathspace" /> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mtext>&#xA0;</mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> </mrow> <mrow> <mn>4</mn> <mi>N</mi> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x2113;<!-- ℓ --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> </mrow> <mrow> <mn>4</mn> <mi>M</mi> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k,\ell }=\sum _{n=0}^{N-1}\;\sum _{m=0}^{M-1}\ x_{n,m}\cos \left(\ {\frac {\,(2m+1)(2k+1)\ \pi \,}{4N}}\ \right)\cos \left(\ {\frac {\,(2n+1)(2\ell +1)\ \pi \,}{4M}}\ \right)~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f69415ad62be9a5d95a7b59fbb7568a1dfcfd68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:79.039ex; height:7.343ex;" alt="{\displaystyle X_{k,\ell }=\sum _{n=0}^{N-1}\;\sum _{m=0}^{M-1}\ x_{n,m}\cos \left(\ {\frac {\,(2m+1)(2k+1)\ \pi \,}{4N}}\ \right)\cos \left(\ {\frac {\,(2n+1)(2\ell +1)\ \pi \,}{4M}}\ \right)~,}"></span></dd></dl> <dl><dd>for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~k=0,\ 1,\ 2\ \ldots \ N-1~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>k</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>1</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>2</mn> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~k=0,\ 1,\ 2\ \ldots \ N-1~~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc16a175673f1702ff43940a201124ae0b734949" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.074ex; height:2.509ex;" alt="{\displaystyle ~~k=0,\ 1,\ 2\ \ldots \ N-1~~}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~\ell =0,\ 1,\ 2,\ \ldots \ M-1~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>1</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>2</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~\ell =0,\ 1,\ 2,\ \ldots \ M-1~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29d7e531e7909ae7996c6d7918bb35c0fe8b38b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.311ex; height:2.509ex;" alt="{\displaystyle ~~\ell =0,\ 1,\ 2,\ \ldots \ M-1~.}"></span></dd></dl> <p>We can compute the MD DCT-IV using the regular row-column method or we can use the polynomial transform method<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> for the fast and efficient computation. The main idea of this algorithm is to use the Polynomial Transform to convert the multidimensional DCT into a series of 1-D DCTs directly. MD DCT-IV also has several applications in various fields. </p> <div class="mw-heading mw-heading2"><h2 id="Computation">Computation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=26" title="Edit section: Computation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although the direct application of these formulas would require <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\mathcal {O}}(N^{2})~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\mathcal {O}}(N^{2})~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df84243526b91109c3fe5a41dea855f8bf63af03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.998ex; height:3.176ex;" alt="{\displaystyle ~{\mathcal {O}}(N^{2})~}"></span> operations, it is possible to compute the same thing with only <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\mathcal {O}}(N\log N)~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\mathcal {O}}(N\log N)~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dab22ab2eef7e7838d517dbeb16c8115c3fd9715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.694ex; height:2.843ex;" alt="{\displaystyle ~{\mathcal {O}}(N\log N)~}"></span> complexity by factorizing the computation similarly to the <a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">fast Fourier transform</a> (FFT). One can also compute DCTs via FFTs combined with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\mathcal {O}}(N)~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\mathcal {O}}(N)~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c11453790a547932579d2d1d6d0797ec38920e9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:2.843ex;" alt="{\displaystyle ~{\mathcal {O}}(N)~}"></span> pre- and post-processing steps. In general, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\mathcal {O}}(N\log N)~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\mathcal {O}}(N\log N)~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dab22ab2eef7e7838d517dbeb16c8115c3fd9715" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.694ex; height:2.843ex;" alt="{\displaystyle ~{\mathcal {O}}(N\log N)~}"></span> methods to compute DCTs are known as fast cosine transform (FCT) algorithms. </p><p>The most efficient algorithms, in principle, are usually those that are specialized directly for the DCT, as opposed to using an ordinary FFT plus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\mathcal {O}}(N)~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\mathcal {O}}(N)~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c11453790a547932579d2d1d6d0797ec38920e9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:2.843ex;" alt="{\displaystyle ~{\mathcal {O}}(N)~}"></span> extra operations (see below for an exception). However, even "specialized" DCT algorithms (including all of those that achieve the lowest known arithmetic counts, at least for <a href="/wiki/Power_of_two" title="Power of two">power-of-two</a> sizes) are typically closely related to FFT algorithms – since DCTs are essentially DFTs of real-even data, one can design a fast DCT algorithm by taking an FFT and eliminating the redundant operations due to this symmetry. This can even be done automatically (<a href="#CITEREFFrigoJohnson2005">Frigo &amp; Johnson 2005</a>). Algorithms based on the <a href="/wiki/Cooley%E2%80%93Tukey_FFT_algorithm" title="Cooley–Tukey FFT algorithm">Cooley–Tukey FFT algorithm</a> are most common, but any other FFT algorithm is also applicable. For example, the <a href="/w/index.php?title=Winograd_FFT_algorithm&amp;action=edit&amp;redlink=1" class="new" title="Winograd FFT algorithm (page does not exist)">Winograd FFT algorithm</a> leads to minimal-multiplication algorithms for the DFT, albeit generally at the cost of more additions, and a similar algorithm was proposed by (<a href="#CITEREFFeigWinograd1992a">Feig &amp; Winograd 1992a</a>) for the DCT. Because the algorithms for DFTs, DCTs, and similar transforms are all so closely related, any improvement in algorithms for one transform will theoretically lead to immediate gains for the other transforms as well (<a href="#CITEREFDuhamelVetterli1990">Duhamel &amp; Vetterli 1990</a>). </p><p>While DCT algorithms that employ an unmodified FFT often have some theoretical overhead compared to the best specialized DCT algorithms, the former also have a distinct advantage: Highly optimized FFT programs are widely available. Thus, in practice, it is often easier to obtain high performance for general lengths <span class="texhtml mvar" style="font-style:italic;">N</span> with FFT-based algorithms.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> Specialized DCT algorithms, on the other hand, see widespread use for transforms of small, fixed sizes such as the <span class="nowrap"> 8 × 8 </span> DCT-II used in <a href="/wiki/JPEG" title="JPEG">JPEG</a> compression, or the small DCTs (or MDCTs) typically used in audio compression. (Reduced code size may also be a reason to use a specialized DCT for embedded-device applications.) </p><p>In fact, even the DCT algorithms using an ordinary FFT are sometimes equivalent to pruning the redundant operations from a larger FFT of real-symmetric data, and they can even be optimal from the perspective of arithmetic counts. For example, a type-II DCT is equivalent to a DFT of size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~4N~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mn>4</mn> <mi>N</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~4N~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dab67f680d80d426fdeeb9d5827fccd3a4e09735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.387ex; height:2.176ex;" alt="{\displaystyle ~4N~}"></span> with real-even symmetry whose even-indexed elements are zero. One of the most common methods for computing this via an FFT (e.g. the method used in <a href="/wiki/FFTPACK" title="FFTPACK">FFTPACK</a> and <a href="/wiki/FFTW" title="FFTW">FFTW</a>) was described by <a href="#CITEREFNarasimhaPeterson1978">Narasimha &amp; Peterson (1978)</a> and <a href="#CITEREFMakhoul1980">Makhoul (1980)</a>, and this method in hindsight can be seen as one step of a radix-4 decimation-in-time Cooley–Tukey algorithm applied to the "logical" real-even DFT corresponding to the DCT-II.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> Because the even-indexed elements are zero, this radix-4 step is exactly the same as a split-radix step. If the subsequent size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~N~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>N</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~N~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9025f4623f468c4be704a2634cffd698a87fd21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.225ex; height:2.176ex;" alt="{\displaystyle ~N~}"></span> real-data FFT is also performed by a real-data <a href="/wiki/Split-radix_FFT_algorithm" title="Split-radix FFT algorithm">split-radix algorithm</a> (as in <a href="#CITEREFSorensenJonesHeidemanBurrus1987">Sorensen et al. (1987)</a>), then the resulting algorithm actually matches what was long the lowest published arithmetic count for the power-of-two DCT-II (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~2N\log _{2}N-N+2~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mn>2</mn> <mi>N</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <mo>+</mo> <mn>2</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~2N\log _{2}N-N+2~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/424899e2a755cf09985e0f8385be4374a5ef3bee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.158ex; height:2.676ex;" alt="{\displaystyle ~2N\log _{2}N-N+2~}"></span> real-arithmetic operations<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup>). </p><p>A recent reduction in the operation count to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\tfrac {17}{9}}N\log _{2}N+{\mathcal {O}}(N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>17</mn> <mn>9</mn> </mfrac> </mstyle> </mrow> <mi>N</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\tfrac {17}{9}}N\log _{2}N+{\mathcal {O}}(N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7adfa7941847bff3b93739db511b3f21205073b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:20.551ex; height:3.843ex;" alt="{\displaystyle ~{\tfrac {17}{9}}N\log _{2}N+{\mathcal {O}}(N)}"></span> also uses a real-data FFT.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> So, there is nothing intrinsically bad about computing the DCT via an FFT from an arithmetic perspective – it is sometimes merely a question of whether the corresponding FFT algorithm is optimal. (As a practical matter, the function-call overhead in invoking a separate FFT routine might be significant for small <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~N~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>N</mi> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~N~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7471f2b90757f67d798f526321e3e5e4eb4e217" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.872ex; height:2.509ex;" alt="{\displaystyle ~N~,}"></span> but this is an implementation rather than an algorithmic question since it can be solved by unrolling or inlining.) </p> <div class="mw-heading mw-heading2"><h2 id="Example_of_IDCT">Example of IDCT</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=27" title="Edit section: Example of IDCT"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:DCT_filter_comparison.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/DCT_filter_comparison.png/220px-DCT_filter_comparison.png" decoding="async" width="220" height="290" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/DCT_filter_comparison.png/330px-DCT_filter_comparison.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/DCT_filter_comparison.png/440px-DCT_filter_comparison.png 2x" data-file-width="538" data-file-height="709" /></a><figcaption>An example showing eight different filters applied to a test image (top left) by multiplying its DCT spectrum (top right) with each filter.</figcaption></figure> <p>Consider this 8x8 grayscale image of capital letter A. </p> <figure class="mw-halign-center" typeof="mw:File/Frame"><a href="/wiki/File:Letter-a-8x8.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/1/1a/Letter-a-8x8.png" decoding="async" width="240" height="81" class="mw-file-element" data-file-width="240" data-file-height="81" /></a><figcaption>Original size, scaled 10x (nearest neighbor), scaled 10x (bilinear).</figcaption></figure> <figure class="mw-halign-center" typeof="mw:File/Frame"><a href="/wiki/File:Dct-table.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/6/63/Dct-table.png" decoding="async" width="684" height="684" class="mw-file-element" data-file-width="684" data-file-height="684" /></a><figcaption>Basis functions of the discrete cosine transformation with corresponding coefficients (specific for our image). <br />DCT of the image = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}6.1917&amp;-0.3411&amp;1.2418&amp;0.1492&amp;0.1583&amp;0.2742&amp;-0.0724&amp;0.0561\\0.2205&amp;0.0214&amp;0.4503&amp;0.3947&amp;-0.7846&amp;-0.4391&amp;0.1001&amp;-0.2554\\1.0423&amp;0.2214&amp;-1.0017&amp;-0.2720&amp;0.0789&amp;-0.1952&amp;0.2801&amp;0.4713\\-0.2340&amp;-0.0392&amp;-0.2617&amp;-0.2866&amp;0.6351&amp;0.3501&amp;-0.1433&amp;0.3550\\0.2750&amp;0.0226&amp;0.1229&amp;0.2183&amp;-0.2583&amp;-0.0742&amp;-0.2042&amp;-0.5906\\0.0653&amp;0.0428&amp;-0.4721&amp;-0.2905&amp;0.4745&amp;0.2875&amp;-0.0284&amp;-0.1311\\0.3169&amp;0.0541&amp;-0.1033&amp;-0.0225&amp;-0.0056&amp;0.1017&amp;-0.1650&amp;-0.1500\\-0.2970&amp;-0.0627&amp;0.1960&amp;0.0644&amp;-0.1136&amp;-0.1031&amp;0.1887&amp;0.1444\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>6.1917</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.3411</mn> </mtd> <mtd> <mn>1.2418</mn> </mtd> <mtd> <mn>0.1492</mn> </mtd> <mtd> <mn>0.1583</mn> </mtd> <mtd> <mn>0.2742</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0724</mn> </mtd> <mtd> <mn>0.0561</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.2205</mn> </mtd> <mtd> <mn>0.0214</mn> </mtd> <mtd> <mn>0.4503</mn> </mtd> <mtd> <mn>0.3947</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.7846</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.4391</mn> </mtd> <mtd> <mn>0.1001</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2554</mn> </mtd> </mtr> <mtr> <mtd> <mn>1.0423</mn> </mtd> <mtd> <mn>0.2214</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1.0017</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2720</mn> </mtd> <mtd> <mn>0.0789</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1952</mn> </mtd> <mtd> <mn>0.2801</mn> </mtd> <mtd> <mn>0.4713</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2340</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0392</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2617</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2866</mn> </mtd> <mtd> <mn>0.6351</mn> </mtd> <mtd> <mn>0.3501</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1433</mn> </mtd> <mtd> <mn>0.3550</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.2750</mn> </mtd> <mtd> <mn>0.0226</mn> </mtd> <mtd> <mn>0.1229</mn> </mtd> <mtd> <mn>0.2183</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2583</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0742</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2042</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.5906</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.0653</mn> </mtd> <mtd> <mn>0.0428</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.4721</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2905</mn> </mtd> <mtd> <mn>0.4745</mn> </mtd> <mtd> <mn>0.2875</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0284</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1311</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.3169</mn> </mtd> <mtd> <mn>0.0541</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1033</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0225</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0056</mn> </mtd> <mtd> <mn>0.1017</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1650</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1500</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.2970</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.0627</mn> </mtd> <mtd> <mn>0.1960</mn> </mtd> <mtd> <mn>0.0644</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1136</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>0.1031</mn> </mtd> <mtd> <mn>0.1887</mn> </mtd> <mtd> <mn>0.1444</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}6.1917&amp;-0.3411&amp;1.2418&amp;0.1492&amp;0.1583&amp;0.2742&amp;-0.0724&amp;0.0561\\0.2205&amp;0.0214&amp;0.4503&amp;0.3947&amp;-0.7846&amp;-0.4391&amp;0.1001&amp;-0.2554\\1.0423&amp;0.2214&amp;-1.0017&amp;-0.2720&amp;0.0789&amp;-0.1952&amp;0.2801&amp;0.4713\\-0.2340&amp;-0.0392&amp;-0.2617&amp;-0.2866&amp;0.6351&amp;0.3501&amp;-0.1433&amp;0.3550\\0.2750&amp;0.0226&amp;0.1229&amp;0.2183&amp;-0.2583&amp;-0.0742&amp;-0.2042&amp;-0.5906\\0.0653&amp;0.0428&amp;-0.4721&amp;-0.2905&amp;0.4745&amp;0.2875&amp;-0.0284&amp;-0.1311\\0.3169&amp;0.0541&amp;-0.1033&amp;-0.0225&amp;-0.0056&amp;0.1017&amp;-0.1650&amp;-0.1500\\-0.2970&amp;-0.0627&amp;0.1960&amp;0.0644&amp;-0.1136&amp;-0.1031&amp;0.1887&amp;0.1444\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbbd724a246196dad6f8fb89243fee203908c887" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.171ex; width:86.248ex; height:25.509ex;" alt="{\displaystyle {\begin{bmatrix}6.1917&amp;-0.3411&amp;1.2418&amp;0.1492&amp;0.1583&amp;0.2742&amp;-0.0724&amp;0.0561\\0.2205&amp;0.0214&amp;0.4503&amp;0.3947&amp;-0.7846&amp;-0.4391&amp;0.1001&amp;-0.2554\\1.0423&amp;0.2214&amp;-1.0017&amp;-0.2720&amp;0.0789&amp;-0.1952&amp;0.2801&amp;0.4713\\-0.2340&amp;-0.0392&amp;-0.2617&amp;-0.2866&amp;0.6351&amp;0.3501&amp;-0.1433&amp;0.3550\\0.2750&amp;0.0226&amp;0.1229&amp;0.2183&amp;-0.2583&amp;-0.0742&amp;-0.2042&amp;-0.5906\\0.0653&amp;0.0428&amp;-0.4721&amp;-0.2905&amp;0.4745&amp;0.2875&amp;-0.0284&amp;-0.1311\\0.3169&amp;0.0541&amp;-0.1033&amp;-0.0225&amp;-0.0056&amp;0.1017&amp;-0.1650&amp;-0.1500\\-0.2970&amp;-0.0627&amp;0.1960&amp;0.0644&amp;-0.1136&amp;-0.1031&amp;0.1887&amp;0.1444\\\end{bmatrix}}}"></span>.</figcaption></figure> <p>Each basis function is multiplied by its coefficient and then this product is added to the final image. </p> <figure class="mw-halign-center" typeof="mw:File/Frame"><a href="/wiki/File:Idct-animation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/5/5e/Idct-animation.gif" decoding="async" width="241" height="81" class="mw-file-element" data-file-width="241" data-file-height="81" /></a><figcaption>On the left is the final image. In the middle is the weighted function (multiplied by a coefficient) which is added to the final image. On the right is the current function and corresponding coefficient. Images are scaled (using bilinear interpolation) by factor 10×.</figcaption></figure> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=28" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">Discrete wavelet transform</a></li> <li><a href="/wiki/JPEG#Discrete_cosine_transform" title="JPEG">JPEG<span class="nowrap">&#160;</span>&#45;<span class="nowrap">&#160;</span>Discrete<span class="nowrap">&#160;</span>cosine<span class="nowrap">&#160;</span>transform</a><span class="nowrap">&#160;</span>&#45;<span class="nowrap">&#160;</span>Contains a potentially easier to understand example of DCT transformation</li> <li><a href="/wiki/List_of_Fourier-related_transforms" title="List of Fourier-related transforms">List of Fourier-related transforms</a></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">Modified discrete cosine transform</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=29" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"> Algorithmic performance on modern hardware is typically not principally determined by simple arithmetic counts, and optimization requires substantial engineering effort to make best use, within its intrinsic limits, of available built-in hardware optimization.</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text"> The radix-4 step reduces the size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~4N~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mn>4</mn> <mi>N</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~4N~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dab67f680d80d426fdeeb9d5827fccd3a4e09735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.387ex; height:2.176ex;" alt="{\displaystyle ~4N~}"></span> DFT to four size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~N~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>N</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~N~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9025f4623f468c4be704a2634cffd698a87fd21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.225ex; height:2.176ex;" alt="{\displaystyle ~N~}"></span> DFTs of real data, two of which are zero, and two of which are equal to one another by the even symmetry. Hence giving a single size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~N~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>N</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~N~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9025f4623f468c4be704a2634cffd698a87fd21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.225ex; height:2.176ex;" alt="{\displaystyle ~N~}"></span> FFT of real data plus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~{\mathcal {O}}(N)~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~{\mathcal {O}}(N)~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c11453790a547932579d2d1d6d0797ec38920e9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:2.843ex;" alt="{\displaystyle ~{\mathcal {O}}(N)~}"></span> <a href="/wiki/Butterfly_(FFT_algorithm)" class="mw-redirect" title="Butterfly (FFT algorithm)">butterflies</a>, once the trivial and / or duplicate parts are eliminated and / or merged.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text"> The precise count of real arithmetic operations, and in particular the count of real multiplications, depends somewhat on the scaling of the transform definition. The <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~2N\log _{2}N-N+2~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mn>2</mn> <mi>N</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <mo>+</mo> <mn>2</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~2N\log _{2}N-N+2~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/424899e2a755cf09985e0f8385be4374a5ef3bee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.158ex; height:2.676ex;" alt="{\displaystyle ~2N\log _{2}N-N+2~}"></span> count is for the DCT-II definition shown here; two multiplications can be saved if the transform is scaled by an overall <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> factor. Additional multiplications can be saved if one permits the outputs of the transform to be rescaled individually, as was shown by <a href="#CITEREFAraiAguiNakajima1988">Arai, Agui &amp; Nakajima (1988)</a> for the size-8 case used in JPEG.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=30" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Stankovic-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Stankovic_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Stankovic_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Stankovic_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Stankovic_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Stankovic_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Stankovic_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Stankovic_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Stankovic_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Stankovic_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Stankovic_1-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Stankovic_1-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Stankovic_1-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Stankovic_1-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Stankovic_1-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Stankovic_1-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Stankovic_1-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Stankovic_1-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Stankovic_1-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Stankovic_1-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-Stankovic_1-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-Stankovic_1-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-Stankovic_1-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-Stankovic_1-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-Stankovic_1-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-Stankovic_1-24"><sup><i><b>y</b></i></sup></a> <a href="#cite_ref-Stankovic_1-25"><sup><i><b>z</b></i></sup></a> <a href="#cite_ref-Stankovic_1-26"><sup><i><b>aa</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFStankovićAstola2012" class="citation journal cs1">Stanković, Radomir S.; Astola, Jaakko T. (2012). <a rel="nofollow" class="external text" href="https://ethw.org/w/images/1/19/Report-60.pdf">"Reminiscences of the Early Work in DCT: Interview with K.R. Rao"</a> <span class="cs1-format">(PDF)</span>. <i>Reprints from the Early Days of Information Sciences</i>. <b>60</b>. Tampere International Center for Signal Processing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-9521528187" title="Special:BookSources/978-9521528187"><bdi>978-9521528187</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1456-2774">1456-2774</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211230214050/https://ethw.org/w/images/1/19/Report-60.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 30 December 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">30 December</span> 2021</span> &#8211; via <a href="/wiki/Engineering_and_Technology_History_Wiki" title="Engineering and Technology History Wiki">ETHW</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reprints+from+the+Early+Days+of+Information+Sciences&amp;rft.atitle=Reminiscences+of+the+Early+Work+in+DCT%3A+Interview+with+K.R.+Rao&amp;rft.volume=60&amp;rft.date=2012&amp;rft.issn=1456-2774&amp;rft.isbn=978-9521528187&amp;rft.aulast=Stankovi%C4%87&amp;rft.aufirst=Radomir+S.&amp;rft.au=Astola%2C+Jaakko+T.&amp;rft_id=https%3A%2F%2Fethw.org%2Fw%2Fimages%2F1%2F19%2FReport-60.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Britanak2010-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Britanak2010_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Britanak2010_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Britanak2010_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Britanak2010_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Britanak2010_2-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBritanakYipRao2006" class="citation book cs1">Britanak, Vladimir; Yip, Patrick C.; <a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K. R.</a> (6 November 2006). <i>Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations</i>. <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0123736246" title="Special:BookSources/978-0123736246"><bdi>978-0123736246</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/2006931102">2006931102</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/220853454">220853454</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL18495589M">18495589M</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118873224">118873224</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete+Cosine+and+Sine+Transforms%3A+General+Properties%2C+Fast+Algorithms+and+Integer+Approximations&amp;rft.pub=Academic+Press&amp;rft.date=2006-11-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118873224%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL18495589M%23id-name%3DOL&amp;rft_id=info%3Alccn%2F2006931102&amp;rft_id=info%3Aoclcnum%2F220853454&amp;rft.isbn=978-0123736246&amp;rft.aulast=Britanak&amp;rft.aufirst=Vladimir&amp;rft.au=Yip%2C+Patrick+C.&amp;rft.au=Rao%2C+K.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Alikhani-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Alikhani_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Alikhani_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Alikhani_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Alikhani_3-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlikhani2015" class="citation web cs1">Alikhani, Darya (April 1, 2015). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191019082218/http://postmatter.merimedia.com/articles/archive-2012-2016/2015/51-rosa-menkman/">"Beyond resolution: Rosa Menkman's glitch art"</a>. <i>POSTmatter</i>. Archived from <a rel="nofollow" class="external text" href="http://postmatter.merimedia.com/articles/archive-2012-2016/2015/51-rosa-menkman/">the original</a> on 19 October 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=POSTmatter&amp;rft.atitle=Beyond+resolution%3A+Rosa+Menkman%27s+glitch+art&amp;rft.date=2015-04-01&amp;rft.aulast=Alikhani&amp;rft.aufirst=Darya&amp;rft_id=http%3A%2F%2Fpostmatter.merimedia.com%2Farticles%2Farchive-2012-2016%2F2015%2F51-rosa-menkman%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-apple-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-apple_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-apple_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-apple_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-apple_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-apple_4-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-apple_4-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThomsonShah2017" class="citation web cs1">Thomson, Gavin; Shah, Athar (2017). <a rel="nofollow" class="external text" href="https://devstreaming-cdn.apple.com/videos/wwdc/2017/503i6plfvfi7o3222/503/503_introducing_heif_and_hevc.pdf">"Introducing HEIF and HEVC"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Apple_Inc." title="Apple Inc.">Apple Inc.</a><span class="reference-accessdate"> Retrieved <span class="nowrap">5 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Introducing+HEIF+and+HEVC&amp;rft.pub=Apple+Inc.&amp;rft.date=2017&amp;rft.aulast=Thomson&amp;rft.aufirst=Gavin&amp;rft.au=Shah%2C+Athar&amp;rft_id=https%3A%2F%2Fdevstreaming-cdn.apple.com%2Fvideos%2Fwwdc%2F2017%2F503i6plfvfi7o3222%2F503%2F503_introducing_heif_and_hevc.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-pubDCT-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-pubDCT_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pubDCT_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-pubDCT_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-pubDCT_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-pubDCT_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-pubDCT_5-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmedNatarajanRao1974" class="citation journal cs1"><a href="/wiki/Nasir_Ahmed_(engineer)" title="Nasir Ahmed (engineer)">Ahmed, Nasir</a>; Natarajan, T. Raj; <a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K.R.</a> (1 January 1974). "Discrete Cosine Transform". <i><a href="/wiki/IEEE_Transactions_on_Computers" title="IEEE Transactions on Computers">IEEE Transactions on Computers</a></i>. <b>C-23</b> (1). IEEE Computer Society: 90–93. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FT-C.1974.223784">10.1109/T-C.1974.223784</a>. <a href="/wiki/EISSN_(identifier)" class="mw-redirect" title="EISSN (identifier)">eISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1557-9956">1557-9956</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9340">0018-9340</a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/75642478">75642478</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1799331">1799331</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:206619973">206619973</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Computers&amp;rft.atitle=Discrete+Cosine+Transform&amp;rft.volume=C-23&amp;rft.issue=1&amp;rft.pages=90-93&amp;rft.date=1974-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A206619973%23id-name%3DS2CID&amp;rft.eissn=1557-9956&amp;rft_id=info%3Adoi%2F10.1109%2FT-C.1974.223784&amp;rft_id=info%3Aoclcnum%2F1799331&amp;rft.issn=0018-9340&amp;rft_id=info%3Alccn%2F75642478&amp;rft.aulast=Ahmed&amp;rft.aufirst=Nasir&amp;rft.au=Natarajan%2C+T.+Raj&amp;rft.au=Rao%2C+K.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-pubRaoYip-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-pubRaoYip_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pubRaoYip_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-pubRaoYip_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-pubRaoYip_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-pubRaoYip_6-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-pubRaoYip_6-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaoYip1990" class="citation book cs1"><a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K. Ramamohan</a>; Yip, Patrick C. (11 September 1990). <i>Discrete Cosine Transform: Algorithms, Advantages, Applications</i>. Signal, Image and Speech Processing. <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1109.0337">1109.0337</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fc2009-0-22279-3">10.1016/c2009-0-22279-3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0125802031" title="Special:BookSources/978-0125802031"><bdi>978-0125802031</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/89029800">89029800</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1008648293">1008648293</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL2207570M">2207570M</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12270940">12270940</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete+Cosine+Transform%3A+Algorithms%2C+Advantages%2C+Applications&amp;rft.series=Signal%2C+Image+and+Speech+Processing&amp;rft.pub=Academic+Press&amp;rft.date=1990-09-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12270940%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL2207570M%23id-name%3DOL&amp;rft_id=info%3Adoi%2F10.1016%2Fc2009-0-22279-3&amp;rft_id=info%3Aoclcnum%2F1008648293&amp;rft_id=info%3Alccn%2F89029800&amp;rft_id=info%3Aarxiv%2F1109.0337&amp;rft.isbn=978-0125802031&amp;rft.aulast=Rao&amp;rft.aufirst=K.+Ramamohan&amp;rft.au=Yip%2C+Patrick+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Barbero-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Barbero_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Barbero_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Barbero_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Barbero_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Barbero_7-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Barbero_7-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Barbero_7-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarberoHofmannWells1991" class="citation journal cs1">Barbero, M.; Hofmann, H.; Wells, N. D. (14 November 1991). <a rel="nofollow" class="external text" href="https://tech.ebu.ch/publications/trev_251-barbero">"DCT source coding and current implementations for HDTV"</a>. <i>EBU Technical Review</i> (251). <a href="/wiki/European_Broadcasting_Union" title="European Broadcasting Union">European Broadcasting Union</a>: 22–33<span class="reference-accessdate">. Retrieved <span class="nowrap">4 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EBU+Technical+Review&amp;rft.atitle=DCT+source+coding+and+current+implementations+for+HDTV&amp;rft.issue=251&amp;rft.pages=22-33&amp;rft.date=1991-11-14&amp;rft.aulast=Barbero&amp;rft.aufirst=M.&amp;rft.au=Hofmann%2C+H.&amp;rft.au=Wells%2C+N.+D.&amp;rft_id=https%3A%2F%2Ftech.ebu.ch%2Fpublications%2Ftrev_251-barbero&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Lea-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lea_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lea_8-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Lea_8-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Lea_8-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Lea_8-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLea1994" class="citation journal cs1">Lea, William (1994). <a rel="nofollow" class="external text" href="https://researchbriefings.parliament.uk/ResearchBriefing/Summary/RP94-68">"Video on demand: Research Paper 94/68"</a>. <i><a href="/wiki/House_of_Commons_Library" title="House of Commons Library">House of Commons Library</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">20 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=House+of+Commons+Library&amp;rft.atitle=Video+on+demand%3A+Research+Paper+94%2F68&amp;rft.date=1994&amp;rft.aulast=Lea&amp;rft.aufirst=William&amp;rft_id=https%3A%2F%2Fresearchbriefings.parliament.uk%2FResearchBriefing%2FSummary%2FRP94-68&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Ahmed-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ahmed_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ahmed_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmed1991" class="citation journal cs1"><a href="/wiki/N._Ahmed" class="mw-redirect" title="N. Ahmed">Ahmed, Nasir</a> (January 1991). <a rel="nofollow" class="external text" href="https://www.cse.iitd.ac.in/~pkalra/col783-2017/DCT-History.pdf">"How I Came Up With the Discrete Cosine Transform"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Digital_Signal_Processing_(journal)" title="Digital Signal Processing (journal)">Digital Signal Processing</a></i>. <b>1</b> (1): 4–5. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991DSP.....1....4A">1991DSP.....1....4A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F1051-2004%2891%2990086-Z">10.1016/1051-2004(91)90086-Z</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Digital+Signal+Processing&amp;rft.atitle=How+I+Came+Up+With+the+Discrete+Cosine+Transform&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=4-5&amp;rft.date=1991-01&amp;rft_id=info%3Adoi%2F10.1016%2F1051-2004%2891%2990086-Z&amp;rft_id=info%3Abibcode%2F1991DSP.....1....4A&amp;rft.aulast=Ahmed&amp;rft.aufirst=Nasir&amp;rft_id=https%3A%2F%2Fwww.cse.iitd.ac.in%2F~pkalra%2Fcol783-2017%2FDCT-History.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-t81-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-t81_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-t81_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-t81_10-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-t81_10-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-t81_10-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.w3.org/Graphics/JPEG/itu-t81.pdf">"T.81 – Digital compression and coding of continuous-tone still images – Requirements and guidelines"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/CCITT" class="mw-redirect" title="CCITT">CCITT</a>. September 1992<span class="reference-accessdate">. Retrieved <span class="nowrap">12 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=T.81+%E2%80%93+Digital+compression+and+coding+of+continuous-tone+still+images+%E2%80%93+Requirements+and+guidelines&amp;rft.pub=CCITT&amp;rft.date=1992-09&amp;rft_id=https%3A%2F%2Fwww.w3.org%2FGraphics%2FJPEG%2Fitu-t81.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-A_Fast_Computational_Algorithm_for-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-A_Fast_Computational_Algorithm_for_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenSmithFralick1977" class="citation journal cs1">Chen, Wen-Hsiung; Smith, C. H.; Fralick, S. C. (September 1977). "A Fast Computational Algorithm for the Discrete Cosine Transform". <i><a href="/wiki/IEEE_Transactions_on_Communications" title="IEEE Transactions on Communications">IEEE Transactions on Communications</a></i>. <b>25</b> (9): 1004–1009. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCOM.1977.1093941">10.1109/TCOM.1977.1093941</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Communications&amp;rft.atitle=A+Fast+Computational+Algorithm+for+the+Discrete+Cosine+Transform&amp;rft.volume=25&amp;rft.issue=9&amp;rft.pages=1004-1009&amp;rft.date=1977-09&amp;rft_id=info%3Adoi%2F10.1109%2FTCOM.1977.1093941&amp;rft.aulast=Chen&amp;rft.aufirst=Wen-Hsiung&amp;rft.au=Smith%2C+C.+H.&amp;rft.au=Fralick%2C+S.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-chen-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-chen_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithFralick1977" class="citation journal cs1">Smith, C.; Fralick, S. (1977). "A Fast Computational Algorithm for the Discrete Cosine Transform". <i>IEEE Transactions on Communications</i>. <b>25</b> (9): 1004–1009. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCOM.1977.1093941">10.1109/TCOM.1977.1093941</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0090-6778">0090-6778</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Communications&amp;rft.atitle=A+Fast+Computational+Algorithm+for+the+Discrete+Cosine+Transform&amp;rft.volume=25&amp;rft.issue=9&amp;rft.pages=1004-1009&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.1109%2FTCOM.1977.1093941&amp;rft.issn=0090-6778&amp;rft.aulast=Smith&amp;rft.aufirst=C.&amp;rft.au=Fralick%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDhamijaJain2011" class="citation journal cs1">Dhamija, Swati; Jain, Priyanka (September 2011). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/267228857">"Comparative Analysis for Discrete Sine Transform as a suitable method for noise estimation"</a>. <i>IJCSI International Journal of Computer Science</i>. <b>8</b> (5, No. 3): 162–164 (162)<span class="reference-accessdate">. Retrieved <span class="nowrap">4 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IJCSI+International+Journal+of+Computer+Science&amp;rft.atitle=Comparative+Analysis+for+Discrete+Sine+Transform+as+a+suitable+method+for+noise+estimation&amp;rft.volume=8&amp;rft.issue=5%2C+No.+3&amp;rft.pages=162-164+%28162%29&amp;rft.date=2011-09&amp;rft.aulast=Dhamija&amp;rft.aufirst=Swati&amp;rft.au=Jain%2C+Priyanka&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F267228857&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuang1981" class="citation book cs1">Huang, T. S. (1981). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bAirCAAAQBAJ&amp;pg=PA29"><i>Image Sequence Analysis</i></a>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science &amp; Business Media">Springer Science &amp; Business Media</a>. p.&#160;29. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783642870378" title="Special:BookSources/9783642870378"><bdi>9783642870378</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Image+Sequence+Analysis&amp;rft.pages=29&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=1981&amp;rft.isbn=9783642870378&amp;rft.aulast=Huang&amp;rft.aufirst=T.+S.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbAirCAAAQBAJ%26pg%3DPA29&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Roese-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Roese_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoeseRobinson1975" class="citation journal cs1">Roese, John A.; Robinson, Guner S. (30 October 1975). Tescher, Andrew G. (ed.). "Combined Spatial And Temporal Coding Of Digital Image Sequences". <i>Efficient Transmission of Pictorial Information</i>. <b>0066</b>. International Society for Optics and Photonics: 172–181. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1975SPIE...66..172R">1975SPIE...66..172R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F12.965361">10.1117/12.965361</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62725808">62725808</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Efficient+Transmission+of+Pictorial+Information&amp;rft.atitle=Combined+Spatial+And+Temporal+Coding+Of+Digital+Image+Sequences&amp;rft.volume=0066&amp;rft.pages=172-181&amp;rft.date=1975-10-30&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62725808%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1117%2F12.965361&amp;rft_id=info%3Abibcode%2F1975SPIE...66..172R&amp;rft.aulast=Roese&amp;rft.aufirst=John+A.&amp;rft.au=Robinson%2C+Guner+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCianci2014" class="citation book cs1">Cianci, Philip J. (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0mbsfr38GTgC&amp;pg=PA63"><i>High Definition Television: The Creation, Development and Implementation of HDTV Technology</i></a>. McFarland. p.&#160;63. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780786487974" title="Special:BookSources/9780786487974"><bdi>9780786487974</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=High+Definition+Television%3A+The+Creation%2C+Development+and+Implementation+of+HDTV+Technology&amp;rft.pages=63&amp;rft.pub=McFarland&amp;rft.date=2014&amp;rft.isbn=9780786487974&amp;rft.aulast=Cianci&amp;rft.aufirst=Philip+J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0mbsfr38GTgC%26pg%3DPA63&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-ITU-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-ITU_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ITU_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ITU_17-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itu.int/wftp3/av-arch/jvt-site/2002_07_Klagenfurt/JVT-D068.doc">"History of Video Compression"</a>. <i><a href="/wiki/ITU-T" title="ITU-T">ITU-T</a></i>. Joint Video Team (JVT) of ISO/IEC MPEG &amp; ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6). July 2002. pp.&#160;11, 24–9, 33, 40–1, 53–6<span class="reference-accessdate">. Retrieved <span class="nowrap">3 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ITU-T&amp;rft.atitle=History+of+Video+Compression&amp;rft.pages=11%2C+24-9%2C+33%2C+40-1%2C+53-6&amp;rft.date=2002-07&amp;rft_id=https%3A%2F%2Fwww.itu.int%2Fwftp3%2Fav-arch%2Fjvt-site%2F2002_07_Klagenfurt%2FJVT-D068.doc&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Ghanbari-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ghanbari_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ghanbari_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ghanbari_18-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGhanbari2003" class="citation book cs1">Ghanbari, Mohammed (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7XuU8T3ooOAC&amp;pg=PA1"><i>Standard Codecs: Image Compression to Advanced Video Coding</i></a>. <a href="/wiki/Institution_of_Engineering_and_Technology" title="Institution of Engineering and Technology">Institution of Engineering and Technology</a>. pp.&#160;1–2. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780852967102" title="Special:BookSources/9780852967102"><bdi>9780852967102</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Standard+Codecs%3A+Image+Compression+to+Advanced+Video+Coding&amp;rft.pages=1-2&amp;rft.pub=Institution+of+Engineering+and+Technology&amp;rft.date=2003&amp;rft.isbn=9780852967102&amp;rft.aulast=Ghanbari&amp;rft.aufirst=Mohammed&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7XuU8T3ooOAC%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Li-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Li_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLi2006" class="citation book cs1">Li, Jian Ping (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FZiK3zXdK7sC&amp;pg=PA847"><i>Proceedings of the International Computer Conference 2006 on Wavelet Active Media Technology and Information Processing: Chongqing, China, 29-31 August 2006</i></a>. <a href="/wiki/World_Scientific" title="World Scientific">World Scientific</a>. p.&#160;847. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9789812709998" title="Special:BookSources/9789812709998"><bdi>9789812709998</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proceedings+of+the+International+Computer+Conference+2006+on+Wavelet+Active+Media+Technology+and+Information+Processing%3A+Chongqing%2C+China%2C+29-31+August+2006&amp;rft.pages=847&amp;rft.pub=World+Scientific&amp;rft.date=2006&amp;rft.isbn=9789812709998&amp;rft.aulast=Li&amp;rft.aufirst=Jian+Ping&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFZiK3zXdK7sC%26pg%3DPA847&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrincenJohnsonBradley1987" class="citation book cs1">Princen, John P.; Johnson, A.W.; Bradley, Alan B. (1987). "Subband/Transform coding using filter bank designs based on time domain aliasing cancellation". <i>ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing</i>. Vol.&#160;12. pp.&#160;2161–2164. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FICASSP.1987.1169405">10.1109/ICASSP.1987.1169405</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:58446992">58446992</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Subband%2FTransform+coding+using+filter+bank+designs+based+on+time+domain+aliasing+cancellation&amp;rft.btitle=ICASSP+%2787.+IEEE+International+Conference+on+Acoustics%2C+Speech%2C+and+Signal+Processing&amp;rft.pages=2161-2164&amp;rft.date=1987&amp;rft_id=info%3Adoi%2F10.1109%2FICASSP.1987.1169405&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A58446992%23id-name%3DS2CID&amp;rft.aulast=Princen&amp;rft.aufirst=John+P.&amp;rft.au=Johnson%2C+A.W.&amp;rft.au=Bradley%2C+Alan+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrincenBradley1986" class="citation journal cs1">Princen, J.; Bradley, A. (1986). "Analysis/Synthesis filter bank design based on time domain aliasing cancellation". <i>IEEE Transactions on Acoustics, Speech, and Signal Processing</i>. <b>34</b> (5): 1153–1161. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTASSP.1986.1164954">10.1109/TASSP.1986.1164954</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Acoustics%2C+Speech%2C+and+Signal+Processing&amp;rft.atitle=Analysis%2FSynthesis+filter+bank+design+based+on+time+domain+aliasing+cancellation&amp;rft.volume=34&amp;rft.issue=5&amp;rft.pages=1153-1161&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1109%2FTASSP.1986.1164954&amp;rft.aulast=Princen&amp;rft.aufirst=J.&amp;rft.au=Bradley%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Luo-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-Luo_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Luo_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Luo_22-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Luo_22-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Luo_22-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Luo_22-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Luo_22-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Luo_22-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Luo_22-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Luo_22-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Luo_22-10"><sup><i><b>k</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuo2008" class="citation book cs1">Luo, Fa-Long (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=l6PovWat8SMC&amp;pg=PA590"><i>Mobile Multimedia Broadcasting Standards: Technology and Practice</i></a>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science &amp; Business Media">Springer Science &amp; Business Media</a>. p.&#160;590. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780387782638" title="Special:BookSources/9780387782638"><bdi>9780387782638</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mobile+Multimedia+Broadcasting+Standards%3A+Technology+and+Practice&amp;rft.pages=590&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2008&amp;rft.isbn=9780387782638&amp;rft.aulast=Luo&amp;rft.aufirst=Fa-Long&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dl6PovWat8SMC%26pg%3DPA590&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Britanak2011-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-Britanak2011_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Britanak2011_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBritanak2011" class="citation journal cs1">Britanak, V. (2011). "On Properties, Relations, and Simplified Implementation of Filter Banks in the Dolby Digital (Plus) AC-3 Audio Coding Standards". <i>IEEE Transactions on Audio, Speech, and Language Processing</i>. <b>19</b> (5): 1231–1241. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTASL.2010.2087755">10.1109/TASL.2010.2087755</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:897622">897622</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Audio%2C+Speech%2C+and+Language+Processing&amp;rft.atitle=On+Properties%2C+Relations%2C+and+Simplified+Implementation+of+Filter+Banks+in+the+Dolby+Digital+%28Plus%29+AC-3+Audio+Coding+Standards&amp;rft.volume=19&amp;rft.issue=5&amp;rft.pages=1231-1241&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1109%2FTASL.2010.2087755&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A897622%23id-name%3DS2CID&amp;rft.aulast=Britanak&amp;rft.aufirst=V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Guckert-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Guckert_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Guckert_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuckert2012" class="citation web cs1">Guckert, John (Spring 2012). <a rel="nofollow" class="external text" href="http://www.math.utah.edu/~gustafso/s2012/2270/web-projects/Guckert-audio-compression-svd-mdct-MP3.pdf">"The Use of FFT and MDCT in MP3 Audio Compression"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/University_of_Utah" title="University of Utah">University of Utah</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=University+of+Utah&amp;rft.atitle=The+Use+of+FFT+and+MDCT+in+MP3+Audio+Compression&amp;rft.ssn=spring&amp;rft.date=2012&amp;rft.aulast=Guckert&amp;rft.aufirst=John&amp;rft_id=http%3A%2F%2Fwww.math.utah.edu%2F~gustafso%2Fs2012%2F2270%2Fweb-projects%2FGuckert-audio-compression-svd-mdct-MP3.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-brandenburg-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-brandenburg_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-brandenburg_25-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrandenburg1999" class="citation web cs1">Brandenburg, Karlheinz (1999). <a rel="nofollow" class="external text" href="http://graphics.ethz.ch/teaching/mmcom12/slides/mp3_and_aac_brandenburg.pdf">"MP3 and AAC Explained"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170213191747/https://graphics.ethz.ch/teaching/mmcom12/slides/mp3_and_aac_brandenburg.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2017-02-13.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=MP3+and+AAC+Explained&amp;rft.date=1999&amp;rft.aulast=Brandenburg&amp;rft.aufirst=Karlheinz&amp;rft_id=http%3A%2F%2Fgraphics.ethz.ch%2Fteaching%2Fmmcom12%2Fslides%2Fmp3_and_aac_brandenburg.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-vorbis-mdct-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-vorbis-mdct_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-vorbis-mdct_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXiph.Org_Foundation2009" class="citation web cs1">Xiph.Org Foundation (2009-06-02). <a rel="nofollow" class="external text" href="http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-50001.1.2">"Vorbis I specification - 1.1.2 Classification"</a>. Xiph.Org Foundation<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-09-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Vorbis+I+specification+-+1.1.2+Classification&amp;rft.pub=Xiph.Org+Foundation&amp;rft.date=2009-06-02&amp;rft.au=Xiph.Org+Foundation&amp;rft_id=http%3A%2F%2Fwww.xiph.org%2Fvorbis%2Fdoc%2FVorbis_I_spec.html%23x1-50001.1.2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMandyamAhmedMagotra1995" class="citation journal cs1"><a href="/wiki/N._Ahmed" class="mw-redirect" title="N. Ahmed">Mandyam, Giridhar D.</a>; Ahmed, Nasir; Magotra, Neeraj (17 April 1995). Rodriguez, Arturo A.; Safranek, Robert J.; Delp, Edward J. (eds.). "DCT-based scheme for lossless image compression". <i>Digital Video Compression: Algorithms and Technologies 1995</i>. <b>2419</b>. International Society for Optics and Photonics: 474–478. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995SPIE.2419..474M">1995SPIE.2419..474M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F12.206386">10.1117/12.206386</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13894279">13894279</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Digital+Video+Compression%3A+Algorithms+and+Technologies+1995&amp;rft.atitle=DCT-based+scheme+for+lossless+image+compression&amp;rft.volume=2419&amp;rft.pages=474-478&amp;rft.date=1995-04-17&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13894279%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1117%2F12.206386&amp;rft_id=info%3Abibcode%2F1995SPIE.2419..474M&amp;rft.aulast=Mandyam&amp;rft.aufirst=Giridhar+D.&amp;rft.au=Ahmed%2C+Nasir&amp;rft.au=Magotra%2C+Neeraj&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKomatsuSezaki1998" class="citation book cs1">Komatsu, K.; Sezaki, Kaoru (1998). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/3747502">"Reversible discrete cosine transform"</a>. <i>Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181)</i>. Vol.&#160;3. pp.&#160;1769–1772 vol.3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FICASSP.1998.681802">10.1109/ICASSP.1998.681802</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7803-4428-6" title="Special:BookSources/0-7803-4428-6"><bdi>0-7803-4428-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17045923">17045923</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Reversible+discrete+cosine+transform&amp;rft.btitle=Proceedings+of+the+1998+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing%2C+ICASSP+%2798+%28Cat.+No.98CH36181%29&amp;rft.pages=1769-1772+vol.3&amp;rft.date=1998&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17045923%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FICASSP.1998.681802&amp;rft.isbn=0-7803-4428-6&amp;rft.aulast=Komatsu&amp;rft.aufirst=K.&amp;rft.au=Sezaki%2C+Kaoru&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F3747502&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Muchahary-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Muchahary_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuchaharyMondalParmarBorah2015" class="citation book cs1">Muchahary, D.; Mondal, A. J.; Parmar, R. S.; Borah, A. D.; Majumder, A. (2015). "A Simplified Design Approach for Efficient Computation of DCT". <i>2015 Fifth International Conference on Communication Systems and Network Technologies</i>. pp.&#160;483–487. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FCSNT.2015.134">10.1109/CSNT.2015.134</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4799-1797-6" title="Special:BookSources/978-1-4799-1797-6"><bdi>978-1-4799-1797-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16411333">16411333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=A+Simplified+Design+Approach+for+Efficient+Computation+of+DCT&amp;rft.btitle=2015+Fifth+International+Conference+on+Communication+Systems+and+Network+Technologies&amp;rft.pages=483-487&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16411333%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FCSNT.2015.134&amp;rft.isbn=978-1-4799-1797-6&amp;rft.aulast=Muchahary&amp;rft.aufirst=D.&amp;rft.au=Mondal%2C+A.+J.&amp;rft.au=Parmar%2C+R.+S.&amp;rft.au=Borah%2C+A.+D.&amp;rft.au=Majumder%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen2004" class="citation book cs1">Chen, Wai Kai (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qhHsSlazGrQC&amp;pg=PA906"><i>The Electrical Engineering Handbook</i></a>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. p.&#160;906. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780080477480" title="Special:BookSources/9780080477480"><bdi>9780080477480</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Electrical+Engineering+Handbook&amp;rft.pages=906&amp;rft.pub=Elsevier&amp;rft.date=2004&amp;rft.isbn=9780080477480&amp;rft.aulast=Chen&amp;rft.aufirst=Wai+Kai&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqhHsSlazGrQC%26pg%3DPA906&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Atlantic-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Atlantic_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Atlantic_31-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Atlantic_31-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.theatlantic.com/technology/archive/2013/09/what-is-a-jpeg-the-invisible-object-you-see-every-day/279954/">"What Is a JPEG? The Invisible Object You See Every Day"</a>. <i><a href="/wiki/The_Atlantic" title="The Atlantic">The Atlantic</a></i>. 24 September 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">13 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Atlantic&amp;rft.atitle=What+Is+a+JPEG%3F+The+Invisible+Object+You+See+Every+Day&amp;rft.date=2013-09-24&amp;rft_id=https%3A%2F%2Fwww.theatlantic.com%2Ftechnology%2Farchive%2F2013%2F09%2Fwhat-is-a-jpeg-the-invisible-object-you-see-every-day%2F279954%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-epfl-32"><span class="mw-cite-backlink">^ <a href="#cite_ref-epfl_32-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-epfl_32-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-epfl_32-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPessina2014" class="citation news cs1">Pessina, Laure-Anne (12 December 2014). <a rel="nofollow" class="external text" href="https://actu.epfl.ch/news/jpeg-changed-our-world/">"JPEG changed our world"</a>. <i>EPFL News</i>. <a href="/wiki/%C3%89cole_Polytechnique_F%C3%A9d%C3%A9rale_de_Lausanne" title="École Polytechnique Fédérale de Lausanne">École Polytechnique Fédérale de Lausanne</a><span class="reference-accessdate">. Retrieved <span class="nowrap">13 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EPFL+News&amp;rft.atitle=JPEG+changed+our+world&amp;rft.date=2014-12-12&amp;rft.aulast=Pessina&amp;rft.aufirst=Laure-Anne&amp;rft_id=https%3A%2F%2Factu.epfl.ch%2Fnews%2Fjpeg-changed-our-world%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Lee1995-33"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lee1995_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lee1995_33-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeBeckLambSeverson1995" class="citation journal cs1">Lee, Ruby Bei-Loh; Beck, John P.; Lamb, Joel; Severson, Kenneth E. (April 1995). <a rel="nofollow" class="external text" href="https://www.hpl.hp.com/hpjournal/95apr/apr95a7.pdf">"Real-time software MPEG video decoder on multimedia-enhanced PA 7100LC processors"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Hewlett-Packard_Journal" title="Hewlett-Packard Journal">Hewlett-Packard Journal</a></i>. <b>46</b> (2). <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-1153">0018-1153</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Hewlett-Packard+Journal&amp;rft.atitle=Real-time+software+MPEG+video+decoder+on+multimedia-enhanced+PA+7100LC+processors&amp;rft.volume=46&amp;rft.issue=2&amp;rft.date=1995-04&amp;rft.issn=0018-1153&amp;rft.aulast=Lee&amp;rft.aufirst=Ruby+Bei-Loh&amp;rft.au=Beck%2C+John+P.&amp;rft.au=Lamb%2C+Joel&amp;rft.au=Severson%2C+Kenneth+E.&amp;rft_id=https%3A%2F%2Fwww.hpl.hp.com%2Fhpjournal%2F95apr%2Fapr95a7.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Lee-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lee_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lee_34-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Lee_34-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLee2005" class="citation book cs1">Lee, Jack (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=7fuvu52cyNEC&amp;pg=PA25"><i>Scalable Continuous Media Streaming Systems: Architecture, Design, Analysis and Implementation</i></a>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. p.&#160;25. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780470857649" title="Special:BookSources/9780470857649"><bdi>9780470857649</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Scalable+Continuous+Media+Streaming+Systems%3A+Architecture%2C+Design%2C+Analysis+and+Implementation&amp;rft.pages=25&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=9780470857649&amp;rft.aulast=Lee&amp;rft.aufirst=Jack&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D7fuvu52cyNEC%26pg%3DPA25&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Shishikui-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-Shishikui_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Shishikui_35-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Shishikui_35-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShishikuiNakanishiImaizumi1993" class="citation book cs1">Shishikui, Yoshiaki; Nakanishi, Hiroshi; Imaizumi, Hiroyuki (October 26–28, 1993). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=j9XSBQAAQBAJ&amp;pg=PA611">"An HDTV Coding Scheme using Adaptive-Dimension DCT"</a>. <i>Signal Processing of HDTV</i>. <a href="/wiki/Elsevier" title="Elsevier">Elsevier</a>. pp.&#160;611–618. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-444-81844-7.50072-3">10.1016/B978-0-444-81844-7.50072-3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781483298511" title="Special:BookSources/9781483298511"><bdi>9781483298511</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=An+HDTV+Coding+Scheme+using+Adaptive-Dimension+DCT&amp;rft.btitle=Signal+Processing+of+HDTV&amp;rft.pages=611-618&amp;rft.pub=Elsevier&amp;rft.date=1993-10-26%2F1993-10-28&amp;rft_id=info%3Adoi%2F10.1016%2FB978-0-444-81844-7.50072-3&amp;rft.isbn=9781483298511&amp;rft.aulast=Shishikui&amp;rft.aufirst=Yoshiaki&amp;rft.au=Nakanishi%2C+Hiroshi&amp;rft.au=Imaizumi%2C+Hiroyuki&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dj9XSBQAAQBAJ%26pg%3DPA611&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Ochoa129-36"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ochoa129_36-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ochoa129_36-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOchoa-DominguezRao2019" class="citation book cs1">Ochoa-Dominguez, Humberto; <a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K. R.</a> (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dVOWDwAAQBAJ"><i>Discrete Cosine Transform, Second Edition</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. pp.&#160;1–3, 129. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781351396486" title="Special:BookSources/9781351396486"><bdi>9781351396486</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete+Cosine+Transform%2C+Second+Edition&amp;rft.pages=1-3%2C+129&amp;rft.pub=CRC+Press&amp;rft.date=2019&amp;rft.isbn=9781351396486&amp;rft.aulast=Ochoa-Dominguez&amp;rft.aufirst=Humberto&amp;rft.au=Rao%2C+K.+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdVOWDwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Ochoa-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ochoa_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ochoa_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ochoa_37-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Ochoa_37-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Ochoa_37-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Ochoa_37-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Ochoa_37-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Ochoa_37-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Ochoa_37-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Ochoa_37-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Ochoa_37-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Ochoa_37-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Ochoa_37-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Ochoa_37-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Ochoa_37-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Ochoa_37-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-Ochoa_37-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-Ochoa_37-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-Ochoa_37-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-Ochoa_37-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-Ochoa_37-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-Ochoa_37-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-Ochoa_37-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-Ochoa_37-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-Ochoa_37-24"><sup><i><b>y</b></i></sup></a> <a href="#cite_ref-Ochoa_37-25"><sup><i><b>z</b></i></sup></a> <a href="#cite_ref-Ochoa_37-26"><sup><i><b>aa</b></i></sup></a> <a href="#cite_ref-Ochoa_37-27"><sup><i><b>ab</b></i></sup></a> <a href="#cite_ref-Ochoa_37-28"><sup><i><b>ac</b></i></sup></a> <a href="#cite_ref-Ochoa_37-29"><sup><i><b>ad</b></i></sup></a> <a href="#cite_ref-Ochoa_37-30"><sup><i><b>ae</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOchoa-DominguezRao2019" class="citation book cs1">Ochoa-Dominguez, Humberto; <a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K. R.</a> (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dVOWDwAAQBAJ&amp;pg=PA1"><i>Discrete Cosine Transform, Second Edition</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. pp.&#160;1–3. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781351396486" title="Special:BookSources/9781351396486"><bdi>9781351396486</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete+Cosine+Transform%2C+Second+Edition&amp;rft.pages=1-3&amp;rft.pub=CRC+Press&amp;rft.date=2019&amp;rft.isbn=9781351396486&amp;rft.aulast=Ochoa-Dominguez&amp;rft.aufirst=Humberto&amp;rft.au=Rao%2C+K.+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdVOWDwAAQBAJ%26pg%3DPA1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Britanak-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-Britanak_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Britanak_38-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Britanak_38-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Britanak_38-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Britanak_38-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBritanakRao2017" class="citation book cs1">Britanak, Vladimir; Rao, K. R. (2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=cZ4vDwAAQBAJ&amp;pg=PA478"><i>Cosine-/Sine-Modulated Filter Banks: General Properties, Fast Algorithms and Integer Approximations</i></a>. Springer. p.&#160;478. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783319610801" title="Special:BookSources/9783319610801"><bdi>9783319610801</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Cosine-%2FSine-Modulated+Filter+Banks%3A+General+Properties%2C+Fast+Algorithms+and+Integer+Approximations&amp;rft.pages=478&amp;rft.pub=Springer&amp;rft.date=2017&amp;rft.isbn=9783319610801&amp;rft.aulast=Britanak&amp;rft.aufirst=Vladimir&amp;rft.au=Rao%2C+K.+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DcZ4vDwAAQBAJ%26pg%3DPA478&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Jones-39"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jones_39-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jones_39-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJonesLayerOsenkowsky2013" class="citation book cs1">Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=K9N1TVhf82YC&amp;pg=PA558"><i>National Association of Broadcasters Engineering Handbook: NAB Engineering Handbook</i></a>. <a href="/wiki/Taylor_%26_Francis" title="Taylor &amp; Francis">Taylor &amp; Francis</a>. pp.&#160;558–9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-136-03410-7" title="Special:BookSources/978-1-136-03410-7"><bdi>978-1-136-03410-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=National+Association+of+Broadcasters+Engineering+Handbook%3A+NAB+Engineering+Handbook&amp;rft.pages=558-9&amp;rft.pub=Taylor+%26+Francis&amp;rft.date=2013&amp;rft.isbn=978-1-136-03410-7&amp;rft.aulast=Jones&amp;rft.aufirst=Graham+A.&amp;rft.au=Layer%2C+David+H.&amp;rft.au=Osenkowsky%2C+Thomas+G.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DK9N1TVhf82YC%26pg%3DPA558&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Hersent-40"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hersent_40-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hersent_40-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hersent_40-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHersentPetitGurle2005" class="citation book cs1">Hersent, Olivier; Petit, Jean-Pierre; Gurle, David (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SMvNToRs-DgC&amp;pg=PA55"><i>Beyond VoIP Protocols: Understanding Voice Technology and Networking Techniques for IP Telephony</i></a>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. p.&#160;55. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780470023631" title="Special:BookSources/9780470023631"><bdi>9780470023631</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Beyond+VoIP+Protocols%3A+Understanding+Voice+Technology+and+Networking+Techniques+for+IP+Telephony&amp;rft.pages=55&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2005&amp;rft.isbn=9780470023631&amp;rft.aulast=Hersent&amp;rft.aufirst=Olivier&amp;rft.au=Petit%2C+Jean-Pierre&amp;rft.au=Gurle%2C+David&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSMvNToRs-DgC%26pg%3DPA55&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-AppleInsider_standards_1-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-AppleInsider_standards_1_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AppleInsider_standards_1_41-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-AppleInsider_standards_1_41-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-AppleInsider_standards_1_41-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-AppleInsider_standards_1_41-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaniel_Eran_Dilger2010" class="citation web cs1">Daniel Eran Dilger (June 8, 2010). <a rel="nofollow" class="external text" href="http://www.appleinsider.com/articles/10/06/08/inside_iphone_4_facetime_video_calling.html">"Inside iPhone 4: FaceTime video calling"</a>. <a href="/wiki/Apple_community#AppleInsider" title="Apple community">AppleInsider</a><span class="reference-accessdate">. Retrieved <span class="nowrap">June 9,</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Inside+iPhone+4%3A+FaceTime+video+calling&amp;rft.pub=AppleInsider&amp;rft.date=2010-06-08&amp;rft.au=Daniel+Eran+Dilger&amp;rft_id=http%3A%2F%2Fwww.appleinsider.com%2Farticles%2F10%2F06%2F08%2Finside_iphone_4_facetime_video_calling.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Encodes-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Encodes_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Encodes_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Encodes_42-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Encodes_42-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNetflix_Technology_Blog2017" class="citation news cs1">Netflix Technology Blog (19 April 2017). <a rel="nofollow" class="external text" href="https://medium.com/netflix-techblog/more-efficient-mobile-encodes-for-netflix-downloads-625d7b082909">"More Efficient Mobile Encodes for Netflix Downloads"</a>. <i><a href="/wiki/Medium.com" class="mw-redirect" title="Medium.com">Medium.com</a></i>. <a href="/wiki/Netflix" title="Netflix">Netflix</a><span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Medium.com&amp;rft.atitle=More+Efficient+Mobile+Encodes+for+Netflix+Downloads&amp;rft.date=2017-04-19&amp;rft.au=Netflix+Technology+Blog&amp;rft_id=https%3A%2F%2Fmedium.com%2Fnetflix-techblog%2Fmore-efficient-mobile-encodes-for-netflix-downloads-625d7b082909&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Bitmovin-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-Bitmovin_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Bitmovin_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cdn2.hubspot.net/hubfs/3411032/Bitmovin%20Magazine/Video%20Developer%20Report%202019/bitmovin-video-developer-report-2019.pdf">"Video Developer Report 2019"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Bitmovin" title="Bitmovin">Bitmovin</a></i>. 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Bitmovin&amp;rft.atitle=Video+Developer+Report+2019&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fcdn2.hubspot.net%2Fhubfs%2F3411032%2FBitmovin%2520Magazine%2FVideo%2520Developer%2520Report%25202019%2Fbitmovin-video-developer-report-2019.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOchoa-DominguezRao2019" class="citation book cs1">Ochoa-Dominguez, Humberto; Rao, K. R. (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dVOWDwAAQBAJ&amp;pg=PA186"><i>Discrete Cosine Transform, Second Edition</i></a>. CRC Press. p.&#160;186. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781351396486" title="Special:BookSources/9781351396486"><bdi>9781351396486</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete+Cosine+Transform%2C+Second+Edition&amp;rft.pages=186&amp;rft.pub=CRC+Press&amp;rft.date=2019&amp;rft.isbn=9781351396486&amp;rft.aulast=Ochoa-Dominguez&amp;rft.aufirst=Humberto&amp;rft.au=Rao%2C+K.+R.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdVOWDwAAQBAJ%26pg%3DPA186&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-McKernan58-45"><span class="mw-cite-backlink">^ <a href="#cite_ref-McKernan58_45-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McKernan58_45-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-McKernan58_45-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-McKernan58_45-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcKernan2005" class="citation book cs1">McKernan, Brian (2005). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5vBTAAAAMAAJ"><i>Digital cinema: the revolution in cinematography, postproduction, distribution</i></a>. <a href="/wiki/McGraw-Hill" class="mw-redirect" title="McGraw-Hill">McGraw-Hill</a>. p.&#160;58. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-142963-4" title="Special:BookSources/978-0-07-142963-4"><bdi>978-0-07-142963-4</bdi></a>. <q>DCT is used in most of the compression systems standardized by the Moving Picture Experts Group (MPEG), is the dominant technology for image compression. In particular, it is the core technology of MPEG-2, the system used for DVDs, digital television broadcasting, that has been used for many of the trials of digital cinema.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Digital+cinema%3A+the+revolution+in+cinematography%2C+postproduction%2C+distribution&amp;rft.pages=58&amp;rft.pub=McGraw-Hill&amp;rft.date=2005&amp;rft.isbn=978-0-07-142963-4&amp;rft.aulast=McKernan&amp;rft.aufirst=Brian&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5vBTAAAAMAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Baraniuk-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Baraniuk_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Baraniuk_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaraniuk2015" class="citation news cs1">Baraniuk, Chris (15 October 2015). <a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/technology-34538705">"Copy protections could come to JPegs"</a>. <i><a href="/wiki/BBC_News" title="BBC News">BBC News</a></i>. <a href="/wiki/BBC" title="BBC">BBC</a><span class="reference-accessdate">. Retrieved <span class="nowrap">13 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BBC+News&amp;rft.atitle=Copy+protections+could+come+to+JPegs&amp;rft.date=2015-10-15&amp;rft.aulast=Baraniuk&amp;rft.aufirst=Chris&amp;rft_id=https%3A%2F%2Fwww.bbc.co.uk%2Fnews%2Ftechnology-34538705&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAscherPincus2012" class="citation book cs1">Ascher, Steven; Pincus, Edward (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zp4KMKwnYVoC&amp;pg=PA246"><i>The Filmmaker's Handbook: A Comprehensive Guide for the Digital Age: Fifth Edition</i></a>. Penguin. pp.&#160;246–7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-101-61380-1" title="Special:BookSources/978-1-101-61380-1"><bdi>978-1-101-61380-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Filmmaker%27s+Handbook%3A+A+Comprehensive+Guide+for+the+Digital+Age%3A+Fifth+Edition&amp;rft.pages=246-7&amp;rft.pub=Penguin&amp;rft.date=2012&amp;rft.isbn=978-1-101-61380-1&amp;rft.aulast=Ascher&amp;rft.aufirst=Steven&amp;rft.au=Pincus%2C+Edward&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dzp4KMKwnYVoC%26pg%3DPA246&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBertalmio2014" class="citation book cs1">Bertalmio, Marcelo (2014). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6mnNBQAAQBAJ&amp;pg=PA95"><i>Image Processing for Cinema</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. p.&#160;95. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4398-9928-1" title="Special:BookSources/978-1-4398-9928-1"><bdi>978-1-4398-9928-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Image+Processing+for+Cinema&amp;rft.pages=95&amp;rft.pub=CRC+Press&amp;rft.date=2014&amp;rft.isbn=978-1-4398-9928-1&amp;rft.aulast=Bertalmio&amp;rft.aufirst=Marcelo&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6mnNBQAAQBAJ%26pg%3DPA95&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang1998" class="citation book cs1">Zhang, HongJiang (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5zfC1wI0wzUC&amp;pg=PA89">"Content-Based Video Browsing And Retrieval"</a>. In Furht, Borko (ed.). <a rel="nofollow" class="external text" href="https://archive.org/details/handbookofintern0000unse_a3l0/page/83"><i>Handbook of Internet and Multimedia Systems and Applications</i></a>. <a href="/wiki/CRC_Press" title="CRC Press">CRC Press</a>. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/handbookofintern0000unse_a3l0/page/83">83–108 (89)</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780849318580" title="Special:BookSources/9780849318580"><bdi>9780849318580</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Content-Based+Video+Browsing+And+Retrieval&amp;rft.btitle=Handbook+of+Internet+and+Multimedia+Systems+and+Applications&amp;rft.pages=83-108+%2889%29&amp;rft.pub=CRC+Press&amp;rft.date=1998&amp;rft.isbn=9780849318580&amp;rft.aulast=Zhang&amp;rft.aufirst=HongJiang&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5zfC1wI0wzUC%26pg%3DPA89&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-loc-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-loc_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-loc_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.loc.gov/preservation/digital/formats/fdd/fdd000389.shtml">"Apple ProRes 422 Codec Family"</a>. <i><a href="/wiki/Library_of_Congress" title="Library of Congress">Library of Congress</a></i>. 17 November 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">13 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Library+of+Congress&amp;rft.atitle=Apple+ProRes+422+Codec+Family&amp;rft.date=2014-11-17&amp;rft_id=http%3A%2F%2Fwww.loc.gov%2Fpreservation%2Fdigital%2Fformats%2Ffdd%2Ffdd000389.shtml&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPotluriMadanayakeCintraBayer2012" class="citation journal cs1">Potluri, U. S.; Madanayake, A.; Cintra, R. J.; Bayer, F. M.; Rajapaksha, N. (17 October 2012). "Multiplier-free DCT approximations for RF multi-beam digital aperture-array space imaging and directional sensing". <i>Measurement Science and Technology</i>. <b>23</b> (11): 114003. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0957-0233%2F23%2F11%2F114003">10.1088/0957-0233/23/11/114003</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0957-0233">0957-0233</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119888170">119888170</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Measurement+Science+and+Technology&amp;rft.atitle=Multiplier-free+DCT+approximations+for+RF+multi-beam+digital+aperture-array+space+imaging+and+directional+sensing&amp;rft.volume=23&amp;rft.issue=11&amp;rft.pages=114003&amp;rft.date=2012-10-17&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119888170%23id-name%3DS2CID&amp;rft.issn=0957-0233&amp;rft_id=info%3Adoi%2F10.1088%2F0957-0233%2F23%2F11%2F114003&amp;rft.aulast=Potluri&amp;rft.aufirst=U.+S.&amp;rft.au=Madanayake%2C+A.&amp;rft.au=Cintra%2C+R.+J.&amp;rft.au=Bayer%2C+F.+M.&amp;rft.au=Rajapaksha%2C+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Wang-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wang_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wang_52-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangKwongKok2006" class="citation journal cs1">Wang, Hanli; Kwong, S.; Kok, C. (2006). "Efficient prediction algorithm of integer DCT coefficients for <span class="nowrap">H.264</span>/AVC optimization". <i>IEEE Transactions on Circuits and Systems for Video Technology</i>. <b>16</b> (4): 547–552. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCSVT.2006.871390">10.1109/TCSVT.2006.871390</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2060937">2060937</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Circuits+and+Systems+for+Video+Technology&amp;rft.atitle=Efficient+prediction+algorithm+of+integer+DCT+coefficients+for+%3Cspan+class%3D%22nowrap%22%3EH.264%3C%2Fspan%3E%2FAVC+optimization&amp;rft.volume=16&amp;rft.issue=4&amp;rft.pages=547-552&amp;rft.date=2006&amp;rft_id=info%3Adoi%2F10.1109%2FTCSVT.2006.871390&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2060937%23id-name%3DS2CID&amp;rft.aulast=Wang&amp;rft.aufirst=Hanli&amp;rft.au=Kwong%2C+S.&amp;rft.au=Kok%2C+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Hudson-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hudson_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHudsonLégerNissSebestyén2018" class="citation journal cs1">Hudson, Graham; Léger, Alain; Niss, Birger; Sebestyén, István; Vaaben, Jørgen (31 August 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F1.JEI.27.4.040901">"JPEG-1 standard 25 years: past, present, and future reasons for a success"</a>. <i><a href="/wiki/Journal_of_Electronic_Imaging" title="Journal of Electronic Imaging">Journal of Electronic Imaging</a></i>. <b>27</b> (4): 1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1117%2F1.JEI.27.4.040901">10.1117/1.JEI.27.4.040901</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Electronic+Imaging&amp;rft.atitle=JPEG-1+standard+25+years%3A+past%2C+present%2C+and+future+reasons+for+a+success&amp;rft.volume=27&amp;rft.issue=4&amp;rft.pages=1&amp;rft.date=2018-08-31&amp;rft_id=info%3Adoi%2F10.1117%2F1.JEI.27.4.040901&amp;rft.aulast=Hudson&amp;rft.aufirst=Graham&amp;rft.au=L%C3%A9ger%2C+Alain&amp;rft.au=Niss%2C+Birger&amp;rft.au=Sebesty%C3%A9n%2C+Istv%C3%A1n&amp;rft.au=Vaaben%2C+J%C3%B8rgen&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1117%252F1.JEI.27.4.040901&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://home.bt.com/tech-gadgets/photography/what-is-a-jpeg-11364206889349">"The JPEG image format explained"</a>. <i><a href="/wiki/BT.com" class="mw-redirect" title="BT.com">BT.com</a></i>. <a href="/wiki/BT_Group" title="BT Group">BT Group</a>. 31 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">5 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=BT.com&amp;rft.atitle=The+JPEG+image+format+explained&amp;rft.date=2018-05-31&amp;rft_id=https%3A%2F%2Fhome.bt.com%2Ftech-gadgets%2Fphotography%2Fwhat-is-a-jpeg-11364206889349&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://nokiatech.github.io/heif/comparison.html">"HEIF Comparison - High Efficiency Image File Format"</a>. <a href="/wiki/Nokia_Technologies" class="mw-redirect" title="Nokia Technologies">Nokia Technologies</a><span class="reference-accessdate">. Retrieved <span class="nowrap">5 August</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=HEIF+Comparison+-+High+Efficiency+Image+File+Format&amp;rft.pub=Nokia+Technologies&amp;rft_id=https%3A%2F%2Fnokiatech.github.io%2Fheif%2Fcomparison.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-jxl-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-jxl_56-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlakuijalaSneyersVersariWassenberg2021" class="citation web cs1">Alakuijala, Jyrki; Sneyers, Jon; Versari, Luca; Wassenberg, Jan (22 January 2021). <a rel="nofollow" class="external text" href="http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf">"JPEG XL White Paper"</a> <span class="cs1-format">(PDF)</span>. <i>JPEG Org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210502025653/http://ds.jpeg.org/whitepapers/jpeg-xl-whitepaper.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2 May 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">14 Jan</span> 2022</span>. <q>Variable-sized DCT (square or rectangular from 2x2 to 256x256) serves as a fast approximation of the optimal decorrelating transform.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=JPEG+Org.&amp;rft.atitle=JPEG+XL+White+Paper&amp;rft.date=2021-01-22&amp;rft.aulast=Alakuijala&amp;rft.aufirst=Jyrki&amp;rft.au=Sneyers%2C+Jon&amp;rft.au=Versari%2C+Luca&amp;rft.au=Wassenberg%2C+Jan&amp;rft_id=http%3A%2F%2Fds.jpeg.org%2Fwhitepapers%2Fjpeg-xl-whitepaper.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-video-standards-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-video-standards_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-video-standards_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWang2006" class="citation web cs1">Wang, Yao (2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130123211453/http://eeweb.poly.edu/~yao/EL6123/coding_standards_pt1.pdf">"Video Coding Standards: Part I"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://eeweb.poly.edu/~yao/EL6123/coding_standards_pt1.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2013-01-23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Video+Coding+Standards%3A+Part+I&amp;rft.date=2006&amp;rft.aulast=Wang&amp;rft.aufirst=Yao&amp;rft_id=http%3A%2F%2Feeweb.poly.edu%2F~yao%2FEL6123%2Fcoding_standards_pt1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWang2006" class="citation web cs1">Wang, Yao (2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130123211453/http://eeweb.poly.edu/~yao/EL6123/coding_standards_pt2.pdf">"Video Coding Standards: Part II"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://eeweb.poly.edu/~yao/EL6123/coding_standards_pt2.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2013-01-23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Video+Coding+Standards%3A+Part+II&amp;rft.date=2006&amp;rft.aulast=Wang&amp;rft.aufirst=Yao&amp;rft_id=http%3A%2F%2Feeweb.poly.edu%2F~yao%2FEL6123%2Fcoding_standards_pt2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHoffman2012" class="citation book cs1">Hoffman, Roy (2012). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FOfTBwAAQBAJ"><i>Data Compression in Digital Systems</i></a>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science &amp; Business Media">Springer Science &amp; Business Media</a>. p.&#160;255. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781461560319" title="Special:BookSources/9781461560319"><bdi>9781461560319</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Data+Compression+in+Digital+Systems&amp;rft.pages=255&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2012&amp;rft.isbn=9781461560319&amp;rft.aulast=Hoffman&amp;rft.aufirst=Roy&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFOfTBwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Rao-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rao_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rao_60-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaoHwang1996" class="citation book cs1"><a href="/wiki/K._R._Rao" title="K. R. Rao">Rao, K.R.</a>; Hwang, J. J. (18 July 1996). <i>Techniques and Standards for Image, Video, and Audio Coding</i>. Prentice Hall. JPEG: Chapter 8; <span class="nowrap">H.261</span>: Chapter 9; MPEG-1: Chapter 10; MPEG-2: Chapter 11. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0133099072" title="Special:BookSources/978-0133099072"><bdi>978-0133099072</bdi></a>. <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a>&#160;<a rel="nofollow" class="external text" href="https://lccn.loc.gov/96015550">96015550</a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/34617596">34617596</a>. <a href="/wiki/OL_(identifier)" class="mw-redirect" title="OL (identifier)">OL</a>&#160;<a rel="nofollow" class="external text" href="https://openlibrary.org/books/OL978319M">978319M</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:56983045">56983045</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Techniques+and+Standards+for+Image%2C+Video%2C+and+Audio+Coding&amp;rft.pages=JPEG%3A+Chapter+8%3B+%3Cspan+class%3D%22nowrap%22%3EH.261%3C%2Fspan%3E%3A+Chapter+9%3B+MPEG-1%3A+Chapter+10%3B+MPEG-2%3A+Chapter+11&amp;rft.pub=Prentice+Hall&amp;rft.date=1996-07-18&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A56983045%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fopenlibrary.org%2Fbooks%2FOL978319M%23id-name%3DOL&amp;rft_id=info%3Alccn%2F96015550&amp;rft_id=info%3Aoclcnum%2F34617596&amp;rft.isbn=978-0133099072&amp;rft.aulast=Rao&amp;rft.aufirst=K.R.&amp;rft.au=Hwang%2C+J.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavis1997" class="citation news cs1">Davis, Andrew (13 June 1997). <a rel="nofollow" class="external text" href="https://www.eetimes.com/document.asp?doc_id=1275886">"The H.320 Recommendation Overview"</a>. <i><a href="/wiki/EE_Times" title="EE Times">EE Times</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">7 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EE+Times&amp;rft.atitle=The+H.320+Recommendation+Overview&amp;rft.date=1997-06-13&amp;rft.aulast=Davis&amp;rft.aufirst=Andrew&amp;rft_id=https%3A%2F%2Fwww.eetimes.com%2Fdocument.asp%3Fdoc_id%3D1275886&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=8vhEAQAAIAAJ"><i>IEEE WESCANEX 97: communications, power, and computing&#160;: conference proceedings</i></a>. University of Manitoba, Winnipeg, Manitoba, Canada: <a href="/wiki/Institute_of_Electrical_and_Electronics_Engineers" title="Institute of Electrical and Electronics Engineers">Institute of Electrical and Electronics Engineers</a>. May 22–23, 1997. p.&#160;30. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780780341470" title="Special:BookSources/9780780341470"><bdi>9780780341470</bdi></a>. <q><span class="nowrap">H.263</span> is similar to, but more complex than <span class="nowrap">H.261</span>. It is currently the most widely used international video compression standard for video telephony on ISDN (Integrated Services Digital Network) telephone lines.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=IEEE+WESCANEX+97%3A+communications%2C+power%2C+and+computing+%3A+conference+proceedings&amp;rft.place=University+of+Manitoba%2C+Winnipeg%2C+Manitoba%2C+Canada&amp;rft.pages=30&amp;rft.pub=Institute+of+Electrical+and+Electronics+Engineers&amp;rft.date=1997-05-22%2F1997-05-23&amp;rft.isbn=9780780341470&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D8vhEAQAAIAAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-AV1-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-AV1_63-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_de_RivazJack_Haughton2018" class="citation web cs1">Peter de Rivaz; Jack Haughton (2018). <a rel="nofollow" class="external text" href="https://aomediacodec.github.io/av1-spec/av1-spec.pdf">"AV1 Bitstream &amp; Decoding Process Specification"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Alliance_for_Open_Media" title="Alliance for Open Media">Alliance for Open Media</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-01-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=AV1+Bitstream+%26+Decoding+Process+Specification&amp;rft.pub=Alliance+for+Open+Media&amp;rft.date=2018&amp;rft.au=Peter+de+Rivaz&amp;rft.au=Jack+Haughton&amp;rft_id=https%3A%2F%2Faomediacodec.github.io%2Fav1-spec%2Fav1-spec.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-YT_AV1_Beta_Playlist-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-YT_AV1_Beta_Playlist_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYouTube_Developers2018" class="citation web cs1">YouTube Developers (15 September 2018). <a rel="nofollow" class="external text" href="https://www.youtube.com/playlist?list=PLyqf6gJt7KuHBmeVzZteZUlNUQAVLwrZS">"AV1 Beta Launch Playlist"</a>. <i><a href="/wiki/YouTube" title="YouTube">YouTube</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 January</span> 2022</span>. <q>The first videos to receive YouTube's AV1 transcodes.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=YouTube&amp;rft.atitle=AV1+Beta+Launch+Playlist&amp;rft.date=2018-09-15&amp;rft.au=YouTube+Developers&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fplaylist%3Flist%3DPLyqf6gJt7KuHBmeVzZteZUlNUQAVLwrZS&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-YT_AV1-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-YT_AV1_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrinkmann2018" class="citation web cs1">Brinkmann, Martin (13 September 2018). <a rel="nofollow" class="external text" href="https://www.ghacks.net/2018/09/13/how-to-enable-av1-support-on-youtube/">"How to enable AV1 support on YouTube"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=How+to+enable+AV1+support+on+YouTube&amp;rft.date=2018-09-13&amp;rft.aulast=Brinkmann&amp;rft.aufirst=Martin&amp;rft_id=https%3A%2F%2Fwww.ghacks.net%2F2018%2F09%2F13%2Fhow-to-enable-av1-support-on-youtube%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Netflix_AV1_Android-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Netflix_AV1_Android_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNetflix_Technology_Blog2020" class="citation web cs1">Netflix Technology Blog (5 February 2020). <a rel="nofollow" class="external text" href="https://netflixtechblog.com/netflix-now-streaming-av1-on-android-d5264a515202">"Netflix Now Streaming AV1 on Android"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Netflix+Now+Streaming+AV1+on+Android&amp;rft.date=2020-02-05&amp;rft.au=Netflix+Technology+Blog&amp;rft_id=https%3A%2F%2Fnetflixtechblog.com%2Fnetflix-now-streaming-av1-on-android-d5264a515202&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Netflix_AV1_TV-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-Netflix_AV1_TV_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNetflix_Technology_Blog2021" class="citation web cs1">Netflix Technology Blog (9 November 2021). <a rel="nofollow" class="external text" href="https://netflixtechblog.com/bringing-av1-streaming-to-netflix-members-tvs-b7fc88e42320">"Bringing AV1 Streaming to Netflix Members' TVs"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">14 January</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Bringing+AV1+Streaming+to+Netflix+Members%27+TVs&amp;rft.date=2021-11-09&amp;rft.au=Netflix+Technology+Blog&amp;rft_id=https%3A%2F%2Fnetflixtechblog.com%2Fbringing-av1-streaming-to-netflix-members-tvs-b7fc88e42320&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Herre-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-Herre_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerreDietz2008" class="citation journal cs1">Herre, J.; Dietz, M. (2008). "MPEG-4 high-efficiency AAC coding [Standards in a Nutshell]". <i>IEEE Signal Processing Magazine</i>. <b>25</b> (3): 137–142. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ISPM...25..137H">2008ISPM...25..137H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FMSP.2008.918684">10.1109/MSP.2008.918684</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Signal+Processing+Magazine&amp;rft.atitle=MPEG-4+high-efficiency+AAC+coding+%5BStandards+in+a+Nutshell%5D&amp;rft.volume=25&amp;rft.issue=3&amp;rft.pages=137-142&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1109%2FMSP.2008.918684&amp;rft_id=info%3Abibcode%2F2008ISPM...25..137H&amp;rft.aulast=Herre&amp;rft.aufirst=J.&amp;rft.au=Dietz%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Valin-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-Valin_69-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValinMaxwellTerriberryVos2013" class="citation conference cs1">Valin, Jean-Marc; Maxwell, Gregory; Terriberry, Timothy B.; Vos, Koen (October 2013). <i>High-Quality, Low-Delay Music Coding in the Opus Codec</i>. 135th AES Convention. <a href="/wiki/Audio_Engineering_Society" title="Audio Engineering Society">Audio Engineering Society</a>. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.04845">1602.04845</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=High-Quality%2C+Low-Delay+Music+Coding+in+the+Opus+Codec&amp;rft.pub=Audio+Engineering+Society&amp;rft.date=2013-10&amp;rft_id=info%3Aarxiv%2F1602.04845&amp;rft.aulast=Valin&amp;rft.aufirst=Jean-Marc&amp;rft.au=Maxwell%2C+Gregory&amp;rft.au=Terriberry%2C+Timothy+B.&amp;rft.au=Vos%2C+Koen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-homepage-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-homepage_70-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://opus-codec.org/">"Opus Codec"</a>. <i>Opus</i> (Home page). Xiph.org Foundation<span class="reference-accessdate">. Retrieved <span class="nowrap">July 31,</span> 2012</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Opus&amp;rft.atitle=Opus+Codec&amp;rft_id=http%3A%2F%2Fopus-codec.org%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Register-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-Register_71-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeyden2015" class="citation news cs1">Leyden, John (27 October 2015). <a rel="nofollow" class="external text" href="https://www.theregister.co.uk/2015/10/27/whatsapp_forensic_analysis/">"WhatsApp laid bare: Info-sucking app's innards probed"</a>. <i><a href="/wiki/The_Register" title="The Register">The Register</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Register&amp;rft.atitle=WhatsApp+laid+bare%3A+Info-sucking+app%27s+innards+probed&amp;rft.date=2015-10-27&amp;rft.aulast=Leyden&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fwww.theregister.co.uk%2F2015%2F10%2F27%2Fwhatsapp_forensic_analysis%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Hazra-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hazra_72-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHazraMateti2017" class="citation book cs1">Hazra, Sudip; Mateti, Prabhaker (September 13–16, 2017). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1u09DwAAQBAJ&amp;pg=PA290">"Challenges in Android Forensics"</a>. In Thampi, Sabu M.; Pérez, Gregorio Martínez; Westphall, Carlos Becker; Hu, Jiankun; Fan, Chun I.; Mármol, Félix Gómez (eds.). <i>Security in Computing and Communications: 5th International Symposium, SSCC 2017</i>. Springer. pp.&#160;286–299 (290). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-981-10-6898-0_24">10.1007/978-981-10-6898-0_24</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9789811068980" title="Special:BookSources/9789811068980"><bdi>9789811068980</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Challenges+in+Android+Forensics&amp;rft.btitle=Security+in+Computing+and+Communications%3A+5th+International+Symposium%2C+SSCC+2017&amp;rft.pages=286-299+%28290%29&amp;rft.pub=Springer&amp;rft.date=2017-09-13%2F2017-09-16&amp;rft_id=info%3Adoi%2F10.1007%2F978-981-10-6898-0_24&amp;rft.isbn=9789811068980&amp;rft.aulast=Hazra&amp;rft.aufirst=Sudip&amp;rft.au=Mateti%2C+Prabhaker&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1u09DwAAQBAJ%26pg%3DPA290&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Srivastava-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-Srivastava_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSrivastavaDubeShrivastayaSharma2019" class="citation book cs1">Srivastava, Saurabh Ranjan; Dube, Sachin; Shrivastaya, Gulshan; Sharma, Kavita (2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=FzGtDwAAQBAJ&amp;pg=PA200">"Smartphone Triggered Security Challenges - Issues, Case Studies and Prevention"</a>. In Le, Dac-Nhuong; Kumar, Raghvendra; Mishra, Brojo Kishore; Chatterjee, Jyotir Moy; Khari, Manju (eds.). <i>Cyber Security in Parallel and Distributed Computing: Concepts, Techniques, Applications and Case Studies</i>. John Wiley &amp; Sons. pp.&#160;187–206 (200). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9781119488330.ch12">10.1002/9781119488330.ch12</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781119488057" title="Special:BookSources/9781119488057"><bdi>9781119488057</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:214034702">214034702</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Smartphone+Triggered+Security+Challenges+-+Issues%2C+Case+Studies+and+Prevention&amp;rft.btitle=Cyber+Security+in+Parallel+and+Distributed+Computing%3A+Concepts%2C+Techniques%2C+Applications+and+Case+Studies&amp;rft.pages=187-206+%28200%29&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A214034702%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2F9781119488330.ch12&amp;rft.isbn=9781119488057&amp;rft.aulast=Srivastava&amp;rft.aufirst=Saurabh+Ranjan&amp;rft.au=Dube%2C+Sachin&amp;rft.au=Shrivastaya%2C+Gulshan&amp;rft.au=Sharma%2C+Kavita&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DFzGtDwAAQBAJ%26pg%3DPA200&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-PlayStation-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-PlayStation_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://doc.dl.playstation.net/doc/ps4-oss/">"Open Source Software used in PlayStation 4"</a>. Sony Interactive Entertainment Inc<span class="reference-accessdate">. Retrieved <span class="nowrap">2017-12-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Open+Source+Software+used+in+PlayStation+4&amp;rft.pub=Sony+Interactive+Entertainment+Inc.&amp;rft_id=https%3A%2F%2Fdoc.dl.playstation.net%2Fdoc%2Fps4-oss%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Dolby_AC-4-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dolby_AC-4_75-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190530051301/https://www.dolby.com/us/en/technologies/ac-4/Next-Generation-Entertainment-Services.pdf">"Dolby AC-4: Audio Delivery for Next-Generation Entertainment Services"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Dolby_Laboratories" class="mw-redirect" title="Dolby Laboratories">Dolby Laboratories</a></i>. June 2015. Archived from <a rel="nofollow" class="external text" href="https://www.dolby.com/us/en/technologies/ac-4/Next-Generation-Entertainment-Services.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 30 May 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">11 November</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Dolby+Laboratories&amp;rft.atitle=Dolby+AC-4%3A+Audio+Delivery+for+Next-Generation+Entertainment+Services&amp;rft.date=2015-06&amp;rft_id=https%3A%2F%2Fwww.dolby.com%2Fus%2Fen%2Ftechnologies%2Fac-4%2FNext-Generation-Entertainment-Services.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Bleidt-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bleidt_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBleidtSenNiedermeierCzelhan2017" class="citation journal cs1">Bleidt, R. L.; Sen, D.; Niedermeier, A.; Czelhan, B.; Füg, S.; et&#160;al. (2017). <a rel="nofollow" class="external text" href="https://www.iis.fraunhofer.de/content/dam/iis/en/doc/ame/Conference-Paper/BleidtR-IEEE-2017-Development-of-MPEG-H-TV-Audio-System-for-ATSC-3-0.pdf">"Development of the MPEG-H TV Audio System for ATSC 3.0"</a> <span class="cs1-format">(PDF)</span>. <i>IEEE Transactions on Broadcasting</i>. <b>63</b> (1): 202–236. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTBC.2017.2661258">10.1109/TBC.2017.2661258</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:30821673">30821673</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Broadcasting&amp;rft.atitle=Development+of+the+MPEG-H+TV+Audio+System+for+ATSC+3.0&amp;rft.volume=63&amp;rft.issue=1&amp;rft.pages=202-236&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1109%2FTBC.2017.2661258&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A30821673%23id-name%3DS2CID&amp;rft.aulast=Bleidt&amp;rft.aufirst=R.+L.&amp;rft.au=Sen%2C+D.&amp;rft.au=Niedermeier%2C+A.&amp;rft.au=Czelhan%2C+B.&amp;rft.au=F%C3%BCg%2C+S.&amp;rft_id=https%3A%2F%2Fwww.iis.fraunhofer.de%2Fcontent%2Fdam%2Fiis%2Fen%2Fdoc%2Fame%2FConference-Paper%2FBleidtR-IEEE-2017-Development-of-MPEG-H-TV-Audio-System-for-ATSC-3-0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Schnell-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-Schnell_77-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchnellSchmidtJanderAlbert2008" class="citation conference cs1">Schnell, Markus; Schmidt, Markus; Jander, Manuel; Albert, Tobias; Geiger, Ralf; Ruoppila, Vesa; Ekstrand, Per; Bernhard, Grill (October 2008). <a rel="nofollow" class="external text" href="https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/conference/AES-125-Convention_AAC-ELD-NewStandardForHighQualityCommunication_AES7503.pdf"><i>MPEG-4 Enhanced Low Delay AAC - A New Standard for High Quality Communication</i></a> <span class="cs1-format">(PDF)</span>. 125th AES Convention. <i><a href="/wiki/Fraunhofer_IIS" class="mw-redirect" title="Fraunhofer IIS">Fraunhofer IIS</a></i>. <a href="/wiki/Audio_Engineering_Society" title="Audio Engineering Society">Audio Engineering Society</a><span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=conference&amp;rft.jtitle=Fraunhofer+IIS&amp;rft.atitle=MPEG-4+Enhanced+Low+Delay+AAC+-+A+New+Standard+for+High+Quality+Communication&amp;rft.date=2008-10&amp;rft.aulast=Schnell&amp;rft.aufirst=Markus&amp;rft.au=Schmidt%2C+Markus&amp;rft.au=Jander%2C+Manuel&amp;rft.au=Albert%2C+Tobias&amp;rft.au=Geiger%2C+Ralf&amp;rft.au=Ruoppila%2C+Vesa&amp;rft.au=Ekstrand%2C+Per&amp;rft.au=Bernhard%2C+Grill&amp;rft_id=https%3A%2F%2Fwww.iis.fraunhofer.de%2Fcontent%2Fdam%2Fiis%2Fde%2Fdoc%2Fame%2Fconference%2FAES-125-Convention_AAC-ELD-NewStandardForHighQualityCommunication_AES7503.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Lutzky-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lutzky_78-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLutzkySchullerGayerKrämer2004" class="citation conference cs1">Lutzky, Manfred; Schuller, Gerald; Gayer, Marc; Krämer, Ulrich; Wabnik, Stefan (May 2004). <a rel="nofollow" class="external text" href="https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/conference/AES-116-Convention_guideline-to-audio-codec-delay_AES116.pdf"><i>A guideline to audio codec delay</i></a> <span class="cs1-format">(PDF)</span>. 116th AES Convention. <i><a href="/wiki/Fraunhofer_IIS" class="mw-redirect" title="Fraunhofer IIS">Fraunhofer IIS</a></i>. <a href="/wiki/Audio_Engineering_Society" title="Audio Engineering Society">Audio Engineering Society</a><span class="reference-accessdate">. Retrieved <span class="nowrap">24 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=conference&amp;rft.jtitle=Fraunhofer+IIS&amp;rft.atitle=A+guideline+to+audio+codec+delay&amp;rft.date=2004-05&amp;rft.aulast=Lutzky&amp;rft.aufirst=Manfred&amp;rft.au=Schuller%2C+Gerald&amp;rft.au=Gayer%2C+Marc&amp;rft.au=Kr%C3%A4mer%2C+Ulrich&amp;rft.au=Wabnik%2C+Stefan&amp;rft_id=https%3A%2F%2Fwww.iis.fraunhofer.de%2Fcontent%2Fdam%2Fiis%2Fde%2Fdoc%2Fame%2Fconference%2FAES-116-Convention_guideline-to-audio-codec-delay_AES116.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Nagireddi-79"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nagireddi_79-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nagireddi_79-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNagireddi2008" class="citation book cs1">Nagireddi, Sivannarayana (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5AneeZFE71MC&amp;pg=PA69"><i>VoIP Voice and Fax Signal Processing</i></a>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. p.&#160;69. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780470377864" title="Special:BookSources/9780470377864"><bdi>9780470377864</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=VoIP+Voice+and+Fax+Signal+Processing&amp;rft.pages=69&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2008&amp;rft.isbn=9780470377864&amp;rft.aulast=Nagireddi&amp;rft.aufirst=Sivannarayana&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5AneeZFE71MC%26pg%3DPA69&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-ITU-T-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-ITU-T_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itu.int/ITU-T/workprog/wp_item.aspx?isn=344">"ITU-T Work Programme"</a>. <i>ITU</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ITU&amp;rft.atitle=ITU-T+Work+Programme&amp;rft_id=https%3A%2F%2Fwww.itu.int%2FITU-T%2Fworkprog%2Fwp_item.aspx%3Fisn%3D344&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Terriberry-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-Terriberry_81-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTerriberry" class="citation audio-visual cs1">Terriberry, Timothy B. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110807182250/http://people.xiph.org/~greg/video/linux_conf_au_CELT_2.ogv"><i>Presentation of the CELT codec</i></a>. Event occurs at 65 minutes. Archived from <a rel="nofollow" class="external text" href="http://people.xiph.org/~greg/video/linux_conf_au_CELT_2.ogv">the original</a> on 2011-08-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-10-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Presentation+of+the+CELT+codec&amp;rft.aulast=Terriberry&amp;rft.aufirst=Timothy+B.&amp;rft_id=http%3A%2F%2Fpeople.xiph.org%2F~greg%2Fvideo%2Flinux_conf_au_CELT_2.ogv&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span>, also <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.celt-codec.org/presentations/misc/lca-celt.pdf">"CELT codec presentation slides"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=CELT+codec+presentation+slides&amp;rft_id=http%3A%2F%2Fwww.celt-codec.org%2Fpresentations%2Fmisc%2Flca-celt.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-ekiga-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-ekiga_82-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110930034502/http://blog.ekiga.net/?p=112">"Ekiga 3.1.0 available"</a>. Archived from <a rel="nofollow" class="external text" href="http://blog.ekiga.net/?p=112">the original</a> on 2011-09-30<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-10-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Ekiga+3.1.0+available&amp;rft_id=http%3A%2F%2Fblog.ekiga.net%2F%3Fp%3D112&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-FreeSWITCH-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-FreeSWITCH_83-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://signalwire.com/freeswitch">"☏ FreeSWITCH"</a>. <i>SignalWire</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=SignalWire&amp;rft.atitle=%E2%98%8F+FreeSWITCH&amp;rft_id=https%3A%2F%2Fsignalwire.com%2Ffreeswitch&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-EVS-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-EVS_84-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.iis.fraunhofer.de/content/dam/iis/de/doc/ame/wp/FraunhoferIIS_Technical-Paper_EVS.pdf">"Enhanced Voice Services (EVS) Codec"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/Fraunhofer_IIS" class="mw-redirect" title="Fraunhofer IIS">Fraunhofer IIS</a>. March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Enhanced+Voice+Services+%28EVS%29+Codec&amp;rft.pub=Fraunhofer+IIS&amp;rft.date=2017-03&amp;rft_id=https%3A%2F%2Fwww.iis.fraunhofer.de%2Fcontent%2Fdam%2Fiis%2Fde%2Fdoc%2Fame%2Fwp%2FFraunhoferIIS_Technical-Paper_EVS.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-appDCT-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-appDCT_85-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbouslemanMarcellinHunt1995" class="citation cs2">Abousleman, G. P.; Marcellin, M. W.; Hunt, B. R. (January 1995), "Compression of hyperspectral imagery using 3-D DCT and hybrid DPCM/DCT", <i>IEEE Trans. Geosci. Remote Sens.</i>, <b>33</b> (1): 26–34, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995ITGRS..33...26A">1995ITGRS..33...26A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F36.368225">10.1109/36.368225</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Trans.+Geosci.+Remote+Sens.&amp;rft.atitle=Compression+of+hyperspectral+imagery+using+3-D+DCT+and+hybrid+DPCM%2FDCT&amp;rft.volume=33&amp;rft.issue=1&amp;rft.pages=26-34&amp;rft.date=1995-01&amp;rft_id=info%3Adoi%2F10.1109%2F36.368225&amp;rft_id=info%3Abibcode%2F1995ITGRS..33...26A&amp;rft.aulast=Abousleman&amp;rft.aufirst=G.+P.&amp;rft.au=Marcellin%2C+M.+W.&amp;rft.au=Hunt%2C+B.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-app2DCT-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-app2DCT_86-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanSiu1997" class="citation cs2">Chan, Y.; Siu, W. (May 1997), <a rel="nofollow" class="external text" href="http://www.en.polyu.edu.hk/~wcsiu/paper_store/Journal/1997/1997_J3-IEEE-Chan%26Siu.pdf">"Variable temporal-length 3-D discrete cosine transform coding"</a> <span class="cs1-format">(PDF)</span>, <i>IEEE Trans. Image Process.</i>, <b>6</b> (5): 758–763, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997ITIP....6..758C">1997ITIP....6..758C</a>, <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.516.2824">10.1.1.516.2824</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F83.568933">10.1109/83.568933</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10397%2F1928">10397/1928</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18282969">18282969</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Trans.+Image+Process.&amp;rft.atitle=Variable+temporal-length+3-D+discrete+cosine+transform+coding&amp;rft.volume=6&amp;rft.issue=5&amp;rft.pages=758-763&amp;rft.date=1997-05&amp;rft_id=info%3Ahdl%2F10397%2F1928&amp;rft_id=info%3Abibcode%2F1997ITIP....6..758C&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.516.2824%23id-name%3DCiteSeerX&amp;rft_id=info%3Apmid%2F18282969&amp;rft_id=info%3Adoi%2F10.1109%2F83.568933&amp;rft.aulast=Chan&amp;rft.aufirst=Y.&amp;rft.au=Siu%2C+W.&amp;rft_id=http%3A%2F%2Fwww.en.polyu.edu.hk%2F~wcsiu%2Fpaper_store%2FJournal%2F1997%2F1997_J3-IEEE-Chan%2526Siu.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-app3DCT-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-app3DCT_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSongSXiongLiuLiu" class="citation cs2">Song, J.; SXiong, Z.; Liu, X.; Liu, Y., "An algorithm for layered video coding and transmission", <i>Proc. Fourth Int. Conf./Exh. High Performance Comput. Asia-Pacific Region</i>, <b>2</b>: 700–703</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+Fourth+Int.+Conf.%2FExh.+High+Performance+Comput.+Asia-Pacific+Region&amp;rft.atitle=An+algorithm+for+layered+video+coding+and+transmission&amp;rft.volume=2&amp;rft.pages=700-703&amp;rft.aulast=Song&amp;rft.aufirst=J.&amp;rft.au=SXiong%2C+Z.&amp;rft.au=Liu%2C+X.&amp;rft.au=Liu%2C+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-app4DCT-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-app4DCT_88-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTaiGiLin2000" class="citation cs2">Tai, S.-C; Gi, Y.; Lin, C.-W. (September 2000), "An adaptive 3-D discrete cosine transform coder for medical image compression", <i>IEEE Trans. Inf. Technol. Biomed.</i>, <b>4</b> (3): 259–263, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F4233.870036">10.1109/4233.870036</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11026596">11026596</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18016215">18016215</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Trans.+Inf.+Technol.+Biomed.&amp;rft.atitle=An+adaptive+3-D+discrete+cosine+transform+coder+for+medical+image+compression&amp;rft.volume=4&amp;rft.issue=3&amp;rft.pages=259-263&amp;rft.date=2000-09&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18016215%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11026596&amp;rft_id=info%3Adoi%2F10.1109%2F4233.870036&amp;rft.aulast=Tai&amp;rft.aufirst=S.-C&amp;rft.au=Gi%2C+Y.&amp;rft.au=Lin%2C+C.-W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-app5DCT-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-app5DCT_89-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYeoLiu1995" class="citation cs2">Yeo, B.; Liu, B. (May 1995), "Volume rendering of DCT-based compressed 3D scalar data", <i>IEEE Transactions on Visualization and Computer Graphics</i>, <b>1</b>: 29–43, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F2945.468390">10.1109/2945.468390</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Visualization+and+Computer+Graphics&amp;rft.atitle=Volume+rendering+of+DCT-based+compressed+3D+scalar+data&amp;rft.volume=1&amp;rft.pages=29-43&amp;rft.date=1995-05&amp;rft_id=info%3Adoi%2F10.1109%2F2945.468390&amp;rft.aulast=Yeo&amp;rft.aufirst=B.&amp;rft.au=Liu%2C+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanLiuHo2000" class="citation book cs1">Chan, S.C.; Liu, W.; Ho, K.I. (2000). "Perfect reconstruction modulated filter banks with sum of powers-of-two coefficients". <i>2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)</i>. Vol.&#160;2. pp.&#160;73–76. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FISCAS.2000.856261">10.1109/ISCAS.2000.856261</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/10722%2F46174">10722/46174</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7803-5482-6" title="Special:BookSources/0-7803-5482-6"><bdi>0-7803-5482-6</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1757438">1757438</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Perfect+reconstruction+modulated+filter+banks+with+sum+of+powers-of-two+coefficients&amp;rft.btitle=2000+IEEE+International+Symposium+on+Circuits+and+Systems.+Emerging+Technologies+for+the+21st+Century.+Proceedings+%28IEEE+Cat+No.00CH36353%29&amp;rft.pages=73-76&amp;rft.date=2000&amp;rft_id=info%3Ahdl%2F10722%2F46174&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1757438%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FISCAS.2000.856261&amp;rft.isbn=0-7803-5482-6&amp;rft.aulast=Chan&amp;rft.aufirst=S.C.&amp;rft.au=Liu%2C+W.&amp;rft.au=Ho%2C+K.I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQueirozNguyen1996" class="citation journal cs1">Queiroz, R. L.; Nguyen, T. Q. (1996). "Lapped transforms for efficient transform/subband coding". <i>IEEE Trans. Signal Process</i>. <b>44</b> (5): 497–507.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Trans.+Signal+Process.&amp;rft.atitle=Lapped+transforms+for+efficient+transform%2Fsubband+coding&amp;rft.volume=44&amp;rft.issue=5&amp;rft.pages=497-507&amp;rft.date=1996&amp;rft.aulast=Queiroz&amp;rft.aufirst=R.+L.&amp;rft.au=Nguyen%2C+T.+Q.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEMalvar1992-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMalvar1992_92-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMalvar1992">Malvar 1992</a>.</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanLuoHo1998" class="citation journal cs1">Chan, S. C.; Luo, L.; Ho, K. L. (1998). "M-Channel compactly supported biorthogonal cosine-modulated wavelet bases". <i>IEEE Trans. Signal Process</i>. <b>46</b> (2): 1142–1151. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998ITSP...46.1142C">1998ITSP...46.1142C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F78.668566">10.1109/78.668566</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10722%2F42775">10722/42775</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Trans.+Signal+Process.&amp;rft.atitle=M-Channel+compactly+supported+biorthogonal+cosine-modulated+wavelet+bases&amp;rft.volume=46&amp;rft.issue=2&amp;rft.pages=1142-1151&amp;rft.date=1998&amp;rft_id=info%3Ahdl%2F10722%2F42775&amp;rft_id=info%3Adoi%2F10.1109%2F78.668566&amp;rft_id=info%3Abibcode%2F1998ITSP...46.1142C&amp;rft.aulast=Chan&amp;rft.aufirst=S.+C.&amp;rft.au=Luo%2C+L.&amp;rft.au=Ho%2C+K.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Katsaggelos-94"><span class="mw-cite-backlink">^ <a href="#cite_ref-Katsaggelos_94-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Katsaggelos_94-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatsaggelosBabacanChun-Jen2009" class="citation book cs1">Katsaggelos, Aggelos K.; Babacan, S. Derin; Chun-Jen, Tsai (2009). "Chapter 15 - Iterative Image Restoration". <i>The Essential Guide to Image Processing</i>. <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>. pp.&#160;349–383. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780123744579" title="Special:BookSources/9780123744579"><bdi>9780123744579</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+15+-+Iterative+Image+Restoration&amp;rft.btitle=The+Essential+Guide+to+Image+Processing&amp;rft.pages=349-383&amp;rft.pub=Academic+Press&amp;rft.date=2009&amp;rft.isbn=9780123744579&amp;rft.aulast=Katsaggelos&amp;rft.aufirst=Aggelos+K.&amp;rft.au=Babacan%2C+S.+Derin&amp;rft.au=Chun-Jen%2C+Tsai&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.pcmag.com/encyclopedia/term/55914/mosquito-noise">"Mosquito noise"</a>. <i><a href="/wiki/PC_Magazine" class="mw-redirect" title="PC Magazine">PC Magazine</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=PC+Magazine&amp;rft.atitle=Mosquito+noise&amp;rft_id=https%3A%2F%2Fwww.pcmag.com%2Fencyclopedia%2Fterm%2F55914%2Fmosquito-noise&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-Menkman-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-Menkman_96-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMenkman2011" class="citation book cs1">Menkman, Rosa (October 2011). <a rel="nofollow" class="external text" href="https://networkcultures.org/_uploads/NN%234_RosaMenkman.pdf"><i>The Glitch Moment(um)</i></a> <span class="cs1-format">(PDF)</span>. Institute of Network Cultures. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-90-816021-6-7" title="Special:BookSources/978-90-816021-6-7"><bdi>978-90-816021-6-7</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Glitch+Moment%28um%29&amp;rft.pub=Institute+of+Network+Cultures&amp;rft.date=2011-10&amp;rft.isbn=978-90-816021-6-7&amp;rft.aulast=Menkman&amp;rft.aufirst=Rosa&amp;rft_id=https%3A%2F%2Fnetworkcultures.org%2F_uploads%2FNN%25234_RosaMenkman.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuff2009" class="citation book cs1">Ruff, Thomas (May 31, 2009). "jpegs". <i>Aperture</i>. Aperture. p.&#160;132. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781597110938" title="Special:BookSources/9781597110938"><bdi>9781597110938</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=jpegs&amp;rft.btitle=Aperture&amp;rft.pages=132&amp;rft.pub=Aperture&amp;rft.date=2009-05-31&amp;rft.isbn=9781597110938&amp;rft.aulast=Ruff&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColberg2009" class="citation web cs1">Colberg, Jörg (April 17, 2009). <a rel="nofollow" class="external text" href="http://jmcolberg.com/weblog/2009/04/review_jpegs_by_thomas_ruff/">"Review: jpegs by Thomas Ruff"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Review%3A+jpegs+by+Thomas+Ruff&amp;rft.date=2009-04-17&amp;rft.aulast=Colberg&amp;rft.aufirst=J%C3%B6rg&amp;rft_id=http%3A%2F%2Fjmcolberg.com%2Fweblog%2F2009%2F04%2Freview_jpegs_by_thomas_ruff%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathworks.com/help/signal/ref/dct.html">"Discrete cosine transform - MATLAB dct"</a>. <i>www.mathworks.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-07-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathworks.com&amp;rft.atitle=Discrete+cosine+transform+-+MATLAB+dct&amp;rft_id=https%3A%2F%2Fwww.mathworks.com%2Fhelp%2Fsignal%2Fref%2Fdct.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPennebakerMitchell1992" class="citation book cs1">Pennebaker, William B.; Mitchell, Joan L. (31 December 1992). <i>JPEG: Still Image Data Compression Standard</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780442012724" title="Special:BookSources/9780442012724"><bdi>9780442012724</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=JPEG%3A+Still+Image+Data+Compression+Standard&amp;rft.pub=Springer&amp;rft.date=1992-12-31&amp;rft.isbn=9780442012724&amp;rft.aulast=Pennebaker&amp;rft.aufirst=William+B.&amp;rft.au=Mitchell%2C+Joan+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAraiAguiNakajima1988" class="citation journal cs1">Arai, Y.; Agui, T.; Nakajima, M. (1988). <a rel="nofollow" class="external text" href="https://search.ieice.org/bin/summary.php?id=e71-e_11_1095">"A fast DCT-SQ scheme for images"</a>. <i>IEICE Transactions</i>. <b>71</b> (11): 1095–1097.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEICE+Transactions&amp;rft.atitle=A+fast+DCT-SQ+scheme+for+images&amp;rft.volume=71&amp;rft.issue=11&amp;rft.pages=1095-1097&amp;rft.date=1988&amp;rft.aulast=Arai&amp;rft.aufirst=Y.&amp;rft.au=Agui%2C+T.&amp;rft.au=Nakajima%2C+M.&amp;rft_id=https%3A%2F%2Fsearch.ieice.org%2Fbin%2Fsummary.php%3Fid%3De71-e_11_1095&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShaoJohnson2008" class="citation journal cs1">Shao, Xuancheng; Johnson, Steven G. (2008). "Type-II/III DCT/DST algorithms with reduced number of arithmetic operations". <i>Signal Processing</i>. <b>88</b> (6): 1553–1564. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cs/0703150">cs/0703150</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008SigPr..88.1553S">2008SigPr..88.1553S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.sigpro.2008.01.004">10.1016/j.sigpro.2008.01.004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:986733">986733</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Signal+Processing&amp;rft.atitle=Type-II%2FIII+DCT%2FDST+algorithms+with+reduced+number+of+arithmetic+operations&amp;rft.volume=88&amp;rft.issue=6&amp;rft.pages=1553-1564&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2Fcs%2F0703150&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A986733%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.sigpro.2008.01.004&amp;rft_id=info%3Abibcode%2F2008SigPr..88.1553S&amp;rft.aulast=Shao&amp;rft.aufirst=Xuancheng&amp;rft.au=Johnson%2C+Steven+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><a href="#CITEREFMalvar1992">Malvar 1992</a></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text"><a href="#CITEREFMartucci1994">Martucci 1994</a></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChanHo1990" class="citation journal cs1">Chan, S.C.; Ho, K.L. (1990). "Direct methods for computing discrete sinusoidal transforms". <i>IEE Proceedings F - Radar and Signal Processing</i>. <b>137</b> (6): 433. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1049%2Fip-f-2.1990.0063">10.1049/ip-f-2.1990.0063</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEE+Proceedings+F+-+Radar+and+Signal+Processing&amp;rft.atitle=Direct+methods+for+computing+discrete+sinusoidal+transforms&amp;rft.volume=137&amp;rft.issue=6&amp;rft.pages=433&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1049%2Fip-f-2.1990.0063&amp;rft.aulast=Chan&amp;rft.aufirst=S.C.&amp;rft.au=Ho%2C+K.L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-:0-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_106-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlshibamiBoussakta2001" class="citation journal cs1">Alshibami, O.; Boussakta, S. (July 2001). "Three-dimensional algorithm for the 3-D DCT-III". <i>Proc. Sixth Int. Symp. Commun., Theory Applications</i>: 104–107.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+Sixth+Int.+Symp.+Commun.%2C+Theory+Applications&amp;rft.atitle=Three-dimensional+algorithm+for+the+3-D+DCT-III&amp;rft.pages=104-107&amp;rft.date=2001-07&amp;rft.aulast=Alshibami&amp;rft.aufirst=O.&amp;rft.au=Boussakta%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuoan_BiGang_LiKai-Kuang_MaTan2000" class="citation journal cs1">Guoan Bi; Gang Li; Kai-Kuang Ma; Tan, T.C. (2000). "On the computation of two-dimensional DCT". <i>IEEE Transactions on Signal Processing</i>. <b>48</b> (4): 1171–1183. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000ITSP...48.1171B">2000ITSP...48.1171B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F78.827550">10.1109/78.827550</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Signal+Processing&amp;rft.atitle=On+the+computation+of+two-dimensional+DCT&amp;rft.volume=48&amp;rft.issue=4&amp;rft.pages=1171-1183&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1109%2F78.827550&amp;rft_id=info%3Abibcode%2F2000ITSP...48.1171B&amp;rft.au=Guoan+Bi&amp;rft.au=Gang+Li&amp;rft.au=Kai-Kuang+Ma&amp;rft.au=Tan%2C+T.C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeigWinograd1992a" class="citation journal cs1">Feig, E.; Winograd, S. (July 1992a). "On the multiplicative complexity of discrete cosine transforms". <i>IEEE Transactions on Information Theory</i>. <b>38</b> (4): 1387–1391. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F18.144722">10.1109/18.144722</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Information+Theory&amp;rft.atitle=On+the+multiplicative+complexity+of+discrete+cosine+transforms&amp;rft.volume=38&amp;rft.issue=4&amp;rft.pages=1387-1391&amp;rft.date=1992-07&amp;rft_id=info%3Adoi%2F10.1109%2F18.144722&amp;rft.aulast=Feig&amp;rft.aufirst=E.&amp;rft.au=Winograd%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNussbaumer1981" class="citation book cs1">Nussbaumer, H.J. (1981). <i>Fast Fourier transform and convolution algorithms</i> (1st&#160;ed.). New York: Springer-Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fast+Fourier+transform+and+convolution+algorithms&amp;rft.place=New+York&amp;rft.edition=1st&amp;rft.pub=Springer-Verlag&amp;rft.date=1981&amp;rft.aulast=Nussbaumer&amp;rft.aufirst=H.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShaoJohnson2008" class="citation journal cs1">Shao, Xuancheng; Johnson, Steven G. (2008). "Type-II/III DCT/DST algorithms with reduced number of arithmetic operations". <i>Signal Processing</i>. <b>88</b> (6): 1553–1564. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cs/0703150">cs/0703150</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008SigPr..88.1553S">2008SigPr..88.1553S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.sigpro.2008.01.004">10.1016/j.sigpro.2008.01.004</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:986733">986733</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Signal+Processing&amp;rft.atitle=Type-II%2FIII+DCT%2FDST+algorithms+with+reduced+number+of+arithmetic+operations&amp;rft.volume=88&amp;rft.issue=6&amp;rft.pages=1553-1564&amp;rft.date=2008&amp;rft_id=info%3Aarxiv%2Fcs%2F0703150&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A986733%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.sigpro.2008.01.004&amp;rft_id=info%3Abibcode%2F2008SigPr..88.1553S&amp;rft.aulast=Shao&amp;rft.aufirst=Xuancheng&amp;rft.au=Johnson%2C+Steven+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=31" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNarasimhaPeterson1978" class="citation journal cs1">Narasimha, M.; Peterson, A. (June 1978). "On the Computation of the Discrete Cosine Transform". <i>IEEE Transactions on Communications</i>. <b>26</b> (6): 934–936. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCOM.1978.1094144">10.1109/TCOM.1978.1094144</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Communications&amp;rft.atitle=On+the+Computation+of+the+Discrete+Cosine+Transform&amp;rft.volume=26&amp;rft.issue=6&amp;rft.pages=934-936&amp;rft.date=1978-06&amp;rft_id=info%3Adoi%2F10.1109%2FTCOM.1978.1094144&amp;rft.aulast=Narasimha&amp;rft.aufirst=M.&amp;rft.au=Peterson%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMakhoul1980" class="citation journal cs1">Makhoul, J. (February 1980). "A fast cosine transform in one and two dimensions". <i>IEEE Transactions on Acoustics, Speech, and Signal Processing</i>. <b>28</b> (1): 27–34. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTASSP.1980.1163351">10.1109/TASSP.1980.1163351</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Acoustics%2C+Speech%2C+and+Signal+Processing&amp;rft.atitle=A+fast+cosine+transform+in+one+and+two+dimensions&amp;rft.volume=28&amp;rft.issue=1&amp;rft.pages=27-34&amp;rft.date=1980-02&amp;rft_id=info%3Adoi%2F10.1109%2FTASSP.1980.1163351&amp;rft.aulast=Makhoul&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSorensenJonesHeidemanBurrus1987" class="citation journal cs1">Sorensen, H.; Jones, D.; Heideman, M.; Burrus, C. (June 1987). "Real-valued fast Fourier transform algorithms". <i>IEEE Transactions on Acoustics, Speech, and Signal Processing</i>. <b>35</b> (6): 849–863. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.205.4523">10.1.1.205.4523</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTASSP.1987.1165220">10.1109/TASSP.1987.1165220</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Acoustics%2C+Speech%2C+and+Signal+Processing&amp;rft.atitle=Real-valued+fast+Fourier+transform+algorithms&amp;rft.volume=35&amp;rft.issue=6&amp;rft.pages=849-863&amp;rft.date=1987-06&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.205.4523%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1109%2FTASSP.1987.1165220&amp;rft.aulast=Sorensen&amp;rft.aufirst=H.&amp;rft.au=Jones%2C+D.&amp;rft.au=Heideman%2C+M.&amp;rft.au=Burrus%2C+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlonkaTasche2005" class="citation journal cs1"><a href="/wiki/Gerlind_Plonka" title="Gerlind Plonka">Plonka, G.</a>; Tasche, M. (January 2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.laa.2004.07.015">"Fast and numerically stable algorithms for discrete cosine transforms"</a>. <i>Linear Algebra and Its Applications</i>. <b>394</b> (1): 309–345. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.laa.2004.07.015">10.1016/j.laa.2004.07.015</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Linear+Algebra+and+Its+Applications&amp;rft.atitle=Fast+and+numerically+stable+algorithms+for+discrete+cosine+transforms&amp;rft.volume=394&amp;rft.issue=1&amp;rft.pages=309-345&amp;rft.date=2005-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.laa.2004.07.015&amp;rft.aulast=Plonka&amp;rft.aufirst=G.&amp;rft.au=Tasche%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.laa.2004.07.015&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDuhamelVetterli1990" class="citation journal cs1">Duhamel, P.; Vetterli, M. (April 1990). <a rel="nofollow" class="external text" href="http://infoscience.epfl.ch/record/59946">"Fast fourier transforms: A tutorial review and a state of the art"</a>. <i>Signal Processing</i> (Submitted manuscript). <b>19</b> (4): 259–299. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990SigPr..19..259D">1990SigPr..19..259D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0165-1684%2890%2990158-U">10.1016/0165-1684(90)90158-U</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Signal+Processing&amp;rft.atitle=Fast+fourier+transforms%3A+A+tutorial+review+and+a+state+of+the+art&amp;rft.volume=19&amp;rft.issue=4&amp;rft.pages=259-299&amp;rft.date=1990-04&amp;rft_id=info%3Adoi%2F10.1016%2F0165-1684%2890%2990158-U&amp;rft_id=info%3Abibcode%2F1990SigPr..19..259D&amp;rft.aulast=Duhamel&amp;rft.aufirst=P.&amp;rft.au=Vetterli%2C+M.&amp;rft_id=http%3A%2F%2Finfoscience.epfl.ch%2Frecord%2F59946&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhmed1991" class="citation journal cs1"><a href="/wiki/N._Ahmed" class="mw-redirect" title="N. Ahmed">Ahmed, N.</a> (January 1991). <a rel="nofollow" class="external text" href="https://www.scribd.com/doc/52879771/DCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform">"How I came up with the discrete cosine transform"</a>. <i>Digital Signal Processing</i>. <b>1</b> (1): 4–9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1991DSP.....1....4A">1991DSP.....1....4A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F1051-2004%2891%2990086-Z">10.1016/1051-2004(91)90086-Z</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Digital+Signal+Processing&amp;rft.atitle=How+I+came+up+with+the+discrete+cosine+transform&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=4-9&amp;rft.date=1991-01&amp;rft_id=info%3Adoi%2F10.1016%2F1051-2004%2891%2990086-Z&amp;rft_id=info%3Abibcode%2F1991DSP.....1....4A&amp;rft.aulast=Ahmed&amp;rft.aufirst=N.&amp;rft_id=https%3A%2F%2Fwww.scribd.com%2Fdoc%2F52879771%2FDCT-History-How-I-Came-Up-with-the-Discrete-Cosine-Transform&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeigWinograd1992b" class="citation journal cs1">Feig, E.; Winograd, S. (September 1992b). "Fast algorithms for the discrete cosine transform". <i>IEEE Transactions on Signal Processing</i>. <b>40</b> (9): 2174–2193. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992ITSP...40.2174F">1992ITSP...40.2174F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F78.157218">10.1109/78.157218</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Signal+Processing&amp;rft.atitle=Fast+algorithms+for+the+discrete+cosine+transform&amp;rft.volume=40&amp;rft.issue=9&amp;rft.pages=2174-2193&amp;rft.date=1992-09&amp;rft_id=info%3Adoi%2F10.1109%2F78.157218&amp;rft_id=info%3Abibcode%2F1992ITSP...40.2174F&amp;rft.aulast=Feig&amp;rft.aufirst=E.&amp;rft.au=Winograd%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalvar1992" class="citation cs2">Malvar, Henrique (1992), <i>Signal Processing with Lapped Transforms</i>, Boston: Artech House, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-89006-467-2" title="Special:BookSources/978-0-89006-467-2"><bdi>978-0-89006-467-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Signal+Processing+with+Lapped+Transforms&amp;rft.place=Boston&amp;rft.pub=Artech+House&amp;rft.date=1992&amp;rft.isbn=978-0-89006-467-2&amp;rft.aulast=Malvar&amp;rft.aufirst=Henrique&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartucci1994" class="citation journal cs1">Martucci, S. A. (May 1994). "Symmetric convolution and the discrete sine and cosine transforms". <i>IEEE Transactions on Signal Processing</i>. <b>42</b> (5): 1038–1051. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994ITSP...42.1038M">1994ITSP...42.1038M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F78.295213">10.1109/78.295213</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Signal+Processing&amp;rft.atitle=Symmetric+convolution+and+the+discrete+sine+and+cosine+transforms&amp;rft.volume=42&amp;rft.issue=5&amp;rft.pages=1038-1051&amp;rft.date=1994-05&amp;rft_id=info%3Adoi%2F10.1109%2F78.295213&amp;rft_id=info%3Abibcode%2F1994ITSP...42.1038M&amp;rft.aulast=Martucci&amp;rft.aufirst=S.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOppenheimSchaferBuck1999" class="citation cs2">Oppenheim, Alan; Schafer, Ronald; Buck, John (1999), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/discretetimesign00alan"><i>Discrete-Time Signal Processing</i></a></span> (2nd&#160;ed.), Upper Saddle River, N.J: Prentice Hall, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-754920-7" title="Special:BookSources/978-0-13-754920-7"><bdi>978-0-13-754920-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Discrete-Time+Signal+Processing&amp;rft.place=Upper+Saddle+River%2C+N.J&amp;rft.edition=2nd&amp;rft.pub=Prentice+Hall&amp;rft.date=1999&amp;rft.isbn=978-0-13-754920-7&amp;rft.aulast=Oppenheim&amp;rft.aufirst=Alan&amp;rft.au=Schafer%2C+Ronald&amp;rft.au=Buck%2C+John&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fdiscretetimesign00alan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrigoJohnson2005" class="citation journal cs1">Frigo, M.; Johnson, S. G. (February 2005). <a rel="nofollow" class="external text" href="http://fftw.org/fftw-paper-ieee.pdf">"The Design and Implementation of FFTW3"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the IEEE</i>. <b>93</b> (2): 216–231. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005IEEEP..93..216F">2005IEEEP..93..216F</a>. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.3097">10.1.1.66.3097</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FJPROC.2004.840301">10.1109/JPROC.2004.840301</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6644892">6644892</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+IEEE&amp;rft.atitle=The+Design+and+Implementation+of+FFTW3&amp;rft.volume=93&amp;rft.issue=2&amp;rft.pages=216-231&amp;rft.date=2005-02&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.66.3097%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6644892%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FJPROC.2004.840301&amp;rft_id=info%3Abibcode%2F2005IEEEP..93..216F&amp;rft.aulast=Frigo&amp;rft.aufirst=M.&amp;rft.au=Johnson%2C+S.+G.&amp;rft_id=http%3A%2F%2Ffftw.org%2Ffftw-paper-ieee.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoussaktaAlshibami2004" class="citation journal cs1">Boussakta, Said.; Alshibami, Hamoud O. (April 2004). <a rel="nofollow" class="external text" href="http://eprints.whiterose.ac.uk/708/1/boussaktas2.pdf">"Fast Algorithm for the 3-D DCT-II"</a> <span class="cs1-format">(PDF)</span>. <i>IEEE Transactions on Signal Processing</i>. <b>52</b> (4): 992–1000. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2004ITSP...52..992B">2004ITSP...52..992B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTSP.2004.823472">10.1109/TSP.2004.823472</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:3385296">3385296</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Signal+Processing&amp;rft.atitle=Fast+Algorithm+for+the+3-D+DCT-II&amp;rft.volume=52&amp;rft.issue=4&amp;rft.pages=992-1000&amp;rft.date=2004-04&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A3385296%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FTSP.2004.823472&amp;rft_id=info%3Abibcode%2F2004ITSP...52..992B&amp;rft.aulast=Boussakta&amp;rft.aufirst=Said.&amp;rft.au=Alshibami%2C+Hamoud+O.&amp;rft_id=http%3A%2F%2Feprints.whiterose.ac.uk%2F708%2F1%2Fboussaktas2.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChengZeng2003" class="citation journal cs1">Cheng, L. Z.; Zeng, Y. H. (2003). "New fast algorithm for multidimensional type-IV DCT". <i>IEEE Transactions on Signal Processing</i>. <b>51</b> (1): 213–220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTSP.2002.806558">10.1109/TSP.2002.806558</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Signal+Processing&amp;rft.atitle=New+fast+algorithm+for+multidimensional+type-IV+DCT&amp;rft.volume=51&amp;rft.issue=1&amp;rft.pages=213-220&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1109%2FTSP.2002.806558&amp;rft.aulast=Cheng&amp;rft.aufirst=L.+Z.&amp;rft.au=Zeng%2C+Y.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWen-Hsiung_ChenSmithFralick1977" class="citation journal cs1">Wen-Hsiung Chen; Smith, C.; Fralick, S. (September 1977). "A Fast Computational Algorithm for the Discrete Cosine Transform". <i>IEEE Transactions on Communications</i>. <b>25</b> (9): 1004–1009. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTCOM.1977.1093941">10.1109/TCOM.1977.1093941</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Communications&amp;rft.atitle=A+Fast+Computational+Algorithm+for+the+Discrete+Cosine+Transform&amp;rft.volume=25&amp;rft.issue=9&amp;rft.pages=1004-1009&amp;rft.date=1977-09&amp;rft_id=info%3Adoi%2F10.1109%2FTCOM.1977.1093941&amp;rft.au=Wen-Hsiung+Chen&amp;rft.au=Smith%2C+C.&amp;rft.au=Fralick%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=624">"Section 12.4.2. Cosine Transform"</a>, <i>Numerical Recipes: The Art of Scientific Computing</i> (3rd&#160;ed.), New York: Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-88068-8" title="Special:BookSources/978-0-521-88068-8"><bdi>978-0-521-88068-8</bdi></a>, archived from <a rel="nofollow" class="external text" href="http://apps.nrbook.com/empanel/index.html#pg=624">the original</a> on 2011-08-11<span class="reference-accessdate">, retrieved <span class="nowrap">2011-08-13</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Section+12.4.2.+Cosine+Transform&amp;rft.btitle=Numerical+Recipes%3A+The+Art+of+Scientific+Computing&amp;rft.place=New+York&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-521-88068-8&amp;rft.aulast=Press&amp;rft.aufirst=WH&amp;rft.au=Teukolsky%2C+SA&amp;rft.au=Vetterling%2C+WT&amp;rft.au=Flannery%2C+BP&amp;rft_id=http%3A%2F%2Fapps.nrbook.com%2Fempanel%2Findex.html%23pg%3D624&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ADiscrete+cosine+transform" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Discrete_cosine_transform&amp;action=edit&amp;section=32" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Discrete_cosine_transform" class="extiw" title="commons:Category:Discrete cosine transform">Discrete cosine transform</a></span>.</div></div> </div> <ul><li>Syed Ali Khayam: <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150711105353/http://wisnet.seecs.nust.edu.pk/publications/tech_reports/DCT_TR802.pdf">The Discrete Cosine Transform (DCT): Theory and Application</a></li> <li><a rel="nofollow" class="external text" href="http://www.reznik.org/software.html#IDCT">Implementation of MPEG integer approximation of 8x8 IDCT (ISO/IEC 23002-2)</a></li> <li>Matteo Frigo and <a href="/wiki/Steven_G._Johnson" title="Steven G. Johnson">Steven G. Johnson</a>: <i>FFTW</i>, <a rel="nofollow" class="external text" href="http://www.fftw.org/">FFTW Home Page</a>. A free (<a href="/wiki/GNU_General_Public_License" title="GNU General Public License">GPL</a>) C library that can compute fast DCTs (types I-IV) in one or more dimensions, of arbitrary size.</li> <li>Takuya Ooura: General Purpose FFT Package, <a rel="nofollow" class="external text" href="http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html">FFT Package 1-dim / 2-dim</a>. Free C &amp; FORTRAN libraries for computing fast DCTs (types II–III) in one, two or three dimensions, power of 2 sizes.</li> <li>Tim Kientzle: Fast algorithms for computing the 8-point DCT and IDCT, <a rel="nofollow" class="external text" href="http://drdobbs.com/parallel/184410889">Algorithm Alley</a>.</li> <li><a rel="nofollow" class="external text" href="http://ltfat.sourceforge.net/">LTFAT</a> is a free Matlab/Octave toolbox with interfaces to the FFTW implementation of the DCTs and DSTs of type I-IV.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Data_compression_methods" style="padding:3px"><table class="nowraplinks hlist mw-collapsible expanded navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Compression_methods" title="Template:Compression methods"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Compression_methods" title="Template talk:Compression methods"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Compression_methods" title="Special:EditPage/Template:Compression methods"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Data_compression_methods" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_compression" title="Data compression">Data compression</a> methods</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lossless_compression" title="Lossless compression">Lossless</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Entropy_coding" title="Entropy coding">Entropy type</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_coding" title="Adaptive coding">Adaptive coding</a></li> <li><a href="/wiki/Arithmetic_coding" title="Arithmetic coding">Arithmetic</a></li> <li><a href="/wiki/Asymmetric_numeral_systems" title="Asymmetric numeral systems">Asymmetric numeral systems</a></li> <li><a href="/wiki/Golomb_coding" title="Golomb coding">Golomb</a></li> <li><a href="/wiki/Huffman_coding" title="Huffman coding">Huffman</a> <ul><li><a href="/wiki/Adaptive_Huffman_coding" title="Adaptive Huffman coding">Adaptive</a></li> <li><a href="/wiki/Canonical_Huffman_code" title="Canonical Huffman code">Canonical</a></li> <li><a href="/wiki/Modified_Huffman_coding" title="Modified Huffman coding">Modified</a></li></ul></li> <li><a href="/wiki/Range_coding" title="Range coding">Range</a></li> <li><a href="/wiki/Shannon_coding" title="Shannon coding">Shannon</a></li> <li><a href="/wiki/Shannon%E2%80%93Fano_coding" title="Shannon–Fano coding">Shannon–Fano</a></li> <li><a href="/wiki/Shannon%E2%80%93Fano%E2%80%93Elias_coding" title="Shannon–Fano–Elias coding">Shannon–Fano–Elias</a></li> <li><a href="/wiki/Tunstall_coding" title="Tunstall coding">Tunstall</a></li> <li><a href="/wiki/Unary_coding" title="Unary coding">Unary</a></li> <li><a href="/wiki/Universal_code_(data_compression)" title="Universal code (data compression)">Universal</a> <ul><li><a href="/wiki/Exponential-Golomb_coding" title="Exponential-Golomb coding">Exp-Golomb</a></li> <li><a href="/wiki/Fibonacci_coding" title="Fibonacci coding">Fibonacci</a></li> <li><a href="/wiki/Elias_gamma_coding" title="Elias gamma coding">Gamma</a></li> <li><a href="/wiki/Levenshtein_coding" title="Levenshtein coding">Levenshtein</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Dictionary_coder" title="Dictionary coder">Dictionary type</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Byte_pair_encoding" title="Byte pair encoding">Byte pair encoding</a></li> <li><a href="/wiki/LZ77_and_LZ78" title="LZ77 and LZ78">Lempel–Ziv</a> <ul><li><a href="/wiki/842_(compression_algorithm)" title="842 (compression algorithm)">842</a></li> <li><a href="/wiki/LZ4_(compression_algorithm)" title="LZ4 (compression algorithm)">LZ4</a></li> <li><a href="/wiki/LZJB" class="mw-redirect" title="LZJB">LZJB</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer" title="Lempel–Ziv–Oberhumer">LZO</a></li> <li><a href="/wiki/LZRW" title="LZRW">LZRW</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Storer%E2%80%93Szymanski" title="Lempel–Ziv–Storer–Szymanski">LZSS</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch" title="Lempel–Ziv–Welch">LZW</a></li> <li><a href="/wiki/LZWL" title="LZWL">LZWL</a></li> <li><a href="/wiki/Snappy_(compression)" title="Snappy (compression)">Snappy</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Other types</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Burrows%E2%80%93Wheeler_transform" title="Burrows–Wheeler transform">BWT</a></li> <li><a href="/wiki/Context_tree_weighting" title="Context tree weighting">CTW</a></li> <li><a href="/wiki/Context_mixing" title="Context mixing">CM</a></li> <li><a href="/wiki/Delta_encoding" title="Delta encoding">Delta</a> <ul><li><a href="/wiki/Incremental_encoding" title="Incremental encoding">Incremental</a></li></ul></li> <li><a href="/wiki/Dynamic_Markov_compression" title="Dynamic Markov compression">DMC</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li> <li><a href="/wiki/Grammar-based_code" title="Grammar-based code">Grammar</a> <ul><li><a href="/wiki/Re-Pair" title="Re-Pair">Re-Pair</a></li> <li><a href="/wiki/Sequitur_algorithm" title="Sequitur algorithm">Sequitur</a></li></ul></li> <li><a class="mw-selflink selflink">LDCT</a></li> <li><a href="/wiki/Move-to-front_transform" title="Move-to-front transform">MTF</a></li> <li><a href="/wiki/PAQ" title="PAQ">PAQ</a></li> <li><a href="/wiki/Prediction_by_partial_matching" title="Prediction by partial matching">PPM</a></li> <li><a href="/wiki/Run-length_encoding" title="Run-length encoding">RLE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Hybrid</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li>LZ77 + Huffman <ul><li><a href="/wiki/Deflate" title="Deflate">Deflate</a></li> <li><a href="/wiki/LZX" title="LZX">LZX</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Stac" title="Lempel–Ziv–Stac">LZS</a></li></ul></li> <li>LZ77 + ANS <ul><li><a href="/wiki/LZFSE" title="LZFSE">LZFSE</a></li></ul></li> <li>LZ77 + Huffman + ANS <ul><li><a href="/wiki/Zstd" title="Zstd">Zstandard</a></li></ul></li> <li>LZ77 + Huffman + context <ul><li><a href="/wiki/Brotli" title="Brotli">Brotli</a></li></ul></li> <li>LZSS + Huffman <ul><li><a href="/wiki/LHA_(file_format)" title="LHA (file format)">LHA/LZH</a></li></ul></li> <li>LZ77 + Range <ul><li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm" title="Lempel–Ziv–Markov chain algorithm">LZMA</a></li> <li>LZHAM</li></ul></li> <li>RLE + BWT + MTF + Huffman <ul><li><a href="/wiki/Bzip2" title="Bzip2">bzip2</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Lossy_compression" title="Lossy compression">Lossy</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Transform_coding" title="Transform coding">Transform type</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Discrete cosine transform</a> <ul><li><a class="mw-selflink selflink">DCT</a></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li></ul></li> <li><a href="/wiki/Discrete_sine_transform" title="Discrete sine transform">DST</a></li> <li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li> <li><a href="/wiki/Set_partitioning_in_hierarchical_trees" title="Set partitioning in hierarchical trees">SPIHT</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Predictive type</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a> <ul><li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Log_area_ratio" title="Log area ratio">LAR</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li>Motion <ul><li><a href="/wiki/Motion_compensation" title="Motion compensation">Compensation</a></li> <li><a href="/wiki/Motion_estimation" title="Motion estimation">Estimation</a></li> <li><a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">Vector</a></li></ul></li> <li><a href="/wiki/Psychoacoustics" title="Psychoacoustics">Psychoacoustic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression#Audio" title="Data compression">Audio</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit_rate" title="Bit rate">Bit rate</a> <ul><li><a href="/wiki/Average_bitrate" title="Average bitrate">ABR</a></li> <li><a href="/wiki/Constant_bitrate" title="Constant bitrate">CBR</a></li> <li><a href="/wiki/Variable_bitrate" title="Variable bitrate">VBR</a></li></ul></li> <li><a href="/wiki/Companding" title="Companding">Companding</a></li> <li><a href="/wiki/Convolution" title="Convolution">Convolution</a></li> <li><a href="/wiki/Dynamic_range" title="Dynamic range">Dynamic range</a></li> <li><a href="/wiki/Latency_(audio)" title="Latency (audio)">Latency</a></li> <li><a href="/wiki/Nyquist%E2%80%93Shannon_sampling_theorem" title="Nyquist–Shannon sampling theorem">Nyquist–Shannon theorem</a></li> <li><a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">Sampling</a></li> <li><a href="/wiki/Silence_compression" title="Silence compression">Silence compression</a></li> <li><a href="/wiki/Sound_quality" title="Sound quality">Sound quality</a></li> <li><a href="/wiki/Speech_coding" title="Speech coding">Speech coding</a></li> <li><a href="/wiki/Sub-band_coding" title="Sub-band coding">Sub-band coding</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Audio_codec" title="Audio codec">Codec</a> parts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/A-law_algorithm" title="A-law algorithm">A-law</a></li> <li><a href="/wiki/%CE%9C-law_algorithm" title="Μ-law algorithm">μ-law</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a> <ul><li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li> <li><a href="/wiki/Delta_modulation" title="Delta modulation">DM</a></li></ul></li> <li><a href="/wiki/Fourier_transform" title="Fourier transform">FT</a> <ul><li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Log_area_ratio" title="Log area ratio">LAR</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li> <li><a href="/wiki/Psychoacoustics" title="Psychoacoustics">Psychoacoustic model</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Image_compression" title="Image compression">Image</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chroma_subsampling" title="Chroma subsampling">Chroma subsampling</a></li> <li><a href="/wiki/Coding_tree_unit" title="Coding tree unit">Coding tree unit</a></li> <li><a href="/wiki/Color_space" title="Color space">Color space</a></li> <li><a href="/wiki/Compression_artifact" title="Compression artifact">Compression artifact</a></li> <li><a href="/wiki/Image_resolution" title="Image resolution">Image resolution</a></li> <li><a href="/wiki/Macroblock" title="Macroblock">Macroblock</a></li> <li><a href="/wiki/Pixel" title="Pixel">Pixel</a></li> <li><a href="/wiki/Peak_signal-to-noise_ratio" title="Peak signal-to-noise ratio">PSNR</a></li> <li><a href="/wiki/Quantization_(image_processing)" title="Quantization (image processing)">Quantization</a></li> <li><a href="/wiki/Standard_test_image" title="Standard test image">Standard test image</a></li> <li><a href="/wiki/Texture_compression" title="Texture compression">Texture compression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Methods</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chain_code" title="Chain code">Chain code</a></li> <li><a class="mw-selflink selflink">DCT</a></li> <li><a href="/wiki/Deflate" title="Deflate">Deflate</a></li> <li><a href="/wiki/Fractal_compression" title="Fractal compression">Fractal</a></li> <li><a href="/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem" class="mw-redirect" title="Karhunen–Loève theorem">KLT</a></li> <li><a href="/wiki/Pyramid_(image_processing)" title="Pyramid (image processing)">LP</a></li> <li><a href="/wiki/Run-length_encoding" title="Run-length encoding">RLE</a></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li> <li><a href="/wiki/Embedded_zerotrees_of_wavelet_transforms" title="Embedded zerotrees of wavelet transforms">EZW</a></li> <li><a href="/wiki/Set_partitioning_in_hierarchical_trees" title="Set partitioning in hierarchical trees">SPIHT</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression#Video" title="Data compression">Video</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bit_rate" title="Bit rate">Bit rate</a> <ul><li><a href="/wiki/Average_bitrate" title="Average bitrate">ABR</a></li> <li><a href="/wiki/Constant_bitrate" title="Constant bitrate">CBR</a></li> <li><a href="/wiki/Variable_bitrate" title="Variable bitrate">VBR</a></li></ul></li> <li><a href="/wiki/Display_resolution" title="Display resolution">Display resolution</a></li> <li><a href="/wiki/Film_frame" title="Film frame">Frame</a></li> <li><a href="/wiki/Frame_rate" title="Frame rate">Frame rate</a></li> <li><a href="/wiki/Video_compression_picture_types" title="Video compression picture types">Frame types</a></li> <li><a href="/wiki/Interlaced_video" title="Interlaced video">Interlace</a></li> <li><a href="/wiki/Video#Characteristics_of_video_streams" title="Video">Video characteristics</a></li> <li><a href="/wiki/Video_quality" title="Video quality">Video quality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:7.0em;font-weight:normal;"><a href="/wiki/Video_codec" title="Video codec">Codec</a> parts</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">DCT</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li> <li><a href="/wiki/Deblocking_filter" title="Deblocking filter">Deblocking filter</a></li> <li><a href="/wiki/Lapped_transform" title="Lapped transform">Lapped transform</a></li> <li>Motion <ul><li><a href="/wiki/Motion_compensation" title="Motion compensation">Compensation</a></li> <li><a href="/wiki/Motion_estimation" title="Motion estimation">Estimation</a></li> <li><a href="/wiki/Motion_vector" class="mw-redirect" title="Motion vector">Vector</a></li></ul></li> <li><a href="/wiki/Wavelet_transform" title="Wavelet transform">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Information_theory" title="Information theory">Theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Compressed_data_structure" title="Compressed data structure">Compressed data structures</a> <ul><li><a href="/wiki/Compressed_suffix_array" title="Compressed suffix array">Compressed suffix array</a></li> <li><a href="/wiki/FM-index" title="FM-index">FM-index</a></li></ul></li> <li><a href="/wiki/Entropy_(information_theory)" title="Entropy (information theory)">Entropy</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a> <ul><li><a href="/wiki/Timeline_of_information_theory" title="Timeline of information theory">Timeline</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Prefix_code" title="Prefix code">Prefix code</a></li> <li><a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">Quantization</a></li> <li><a href="/wiki/Rate%E2%80%93distortion_theory" title="Rate–distortion theory">Rate–distortion</a></li> <li><a href="/wiki/Redundancy_(information_theory)" title="Redundancy (information theory)">Redundancy</a></li> <li><a href="/wiki/Data_compression_symmetry" title="Data compression symmetry">Symmetry</a></li> <li><a href="/wiki/Smallest_grammar_problem" title="Smallest grammar problem">Smallest grammar problem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Community</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hutter_Prize" title="Hutter Prize">Hutter Prize</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">People</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mark_Adler" title="Mark Adler">Mark Adler</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Compression_formats" title="Template:Compression formats">Compression formats</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Compression_software" title="Template:Compression software">Compression software</a> (<a href="/wiki/Codec" title="Codec">codecs</a>)</li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Multimedia_compression_and_container_formats" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Compression_formats" title="Template:Compression formats"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Compression_formats" title="Template talk:Compression formats"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Compression_formats" title="Special:EditPage/Template:Compression formats"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Multimedia_compression_and_container_formats" style="font-size:114%;margin:0 4em"><a href="/wiki/Multimedia" title="Multimedia">Multimedia</a> <a href="/wiki/Data_compression" title="Data compression">compression</a> and <a href="/wiki/Container_format_(computing)" class="mw-redirect" title="Container format (computing)">container</a> formats</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Video_coding_format" title="Video coding format">Video<br />compression</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">ISO</a>, <a href="/wiki/International_Electrotechnical_Commission" title="International Electrotechnical Commission">IEC</a>, <br /><a href="/wiki/Moving_Picture_Experts_Group" title="Moving Picture Experts Group">MPEG</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DV_(video_format)" title="DV (video format)">DV</a></li> <li><a href="/wiki/Motion_JPEG" title="Motion JPEG">MJPEG</a></li> <li><a href="/wiki/Motion_JPEG_2000" title="Motion JPEG 2000">Motion JPEG 2000</a></li> <li><a href="/wiki/MPEG-1" title="MPEG-1">MPEG-1</a></li> <li><a href="/wiki/MPEG-2" title="MPEG-2">MPEG-2</a> <ul><li><a href="/wiki/H.262/MPEG-2_Part_2" title="H.262/MPEG-2 Part 2">Part 2</a></li></ul></li> <li><a href="/wiki/MPEG-4" title="MPEG-4">MPEG-4</a> <ul><li><a href="/wiki/MPEG-4_Part_2" title="MPEG-4 Part 2">Part 2 / ASP</a></li> <li><a href="/wiki/H.264/MPEG-4_AVC" class="mw-redirect" title="H.264/MPEG-4 AVC">Part 10 / AVC</a></li> <li><a href="/wiki/MPEG-4_IVC" class="mw-redirect" title="MPEG-4 IVC">Part 33 / IVC</a></li></ul></li> <li><a href="/wiki/MPEG-H" title="MPEG-H">MPEG-H</a> <ul><li><a href="/wiki/High_Efficiency_Video_Coding" title="High Efficiency Video Coding">Part 2 / HEVC</a></li></ul></li> <li><a href="/w/index.php?title=MPEG-I&amp;action=edit&amp;redlink=1" class="new" title="MPEG-I (page does not exist)">MPEG-I</a> <ul><li><a href="/wiki/Versatile_Video_Coding" title="Versatile Video Coding">Part 3 / VVC</a></li></ul></li> <li><a href="/wiki/MPEG-5" class="mw-redirect" title="MPEG-5">MPEG-5</a> <ul><li><a href="/wiki/Essential_Video_Coding" title="Essential Video Coding">Part 1 / EVC</a></li> <li><a href="/wiki/LCEVC" title="LCEVC">Part 2 / LCEVC</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/ITU-T" title="ITU-T">ITU-T</a>, <a href="/wiki/Video_Coding_Experts_Group" title="Video Coding Experts Group">VCEG</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/H.120" title="H.120">H.120</a></li> <li><a href="/wiki/H.261" title="H.261">H.261</a></li> <li><a href="/wiki/H.262/MPEG-2_Part_2" title="H.262/MPEG-2 Part 2">H.262</a></li> <li><a href="/wiki/H.263" title="H.263">H.263</a></li> <li><a href="/wiki/Advanced_Video_Coding" title="Advanced Video Coding">H.264 / AVC</a></li> <li><a href="/wiki/High_Efficiency_Video_Coding" title="High Efficiency Video Coding">H.265 / HEVC</a></li> <li><a href="/wiki/Versatile_Video_Coding" title="Versatile Video Coding">H.266 / VVC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/Society_of_Motion_Picture_and_Television_Engineers" title="Society of Motion Picture and Television Engineers">SMPTE</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/VC-1" title="VC-1">VC-1</a></li> <li><a href="/wiki/Dirac_(video_compression_format)" title="Dirac (video compression format)">VC-2</a></li> <li><a href="/wiki/Avid_DNxHD" title="Avid DNxHD">VC-3</a></li> <li><a href="/wiki/CineForm" title="CineForm">VC-5</a></li> <li><a href="/wiki/VC-6" title="VC-6">VC-6</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/On2_Technologies" title="On2 Technologies">TrueMotion</a> and AOMedia</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/On2_Technologies#TrueMotion_S" title="On2 Technologies">TrueMotion S</a></li> <li><a href="/wiki/VP3" title="VP3">VP3</a></li> <li><a href="/wiki/VP6" title="VP6">VP6</a></li> <li><a href="/wiki/VP7" class="mw-redirect" title="VP7">VP7</a></li> <li><a href="/wiki/VP8" title="VP8">VP8</a></li> <li><a href="/wiki/VP9" title="VP9">VP9</a></li> <li><a href="/wiki/AV1" title="AV1">AV1</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Chinese Standard</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Audio_Video_Standard#First_generation" title="Audio Video Standard">AVS1 P2/AVS+</a>(GB/T 20090.2/16)</li> <li><a href="/wiki/Audio_Video_Standard#Second_generation" title="Audio Video Standard">AVS2 P2</a>(GB/T 33475.2,GY/T 299.1) <ul><li>HDR Vivid(GY/T 358)</li></ul></li> <li>AVS3 P2(GY/T 368)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Apple_Video" title="Apple Video">Apple Video</a></li> <li><a href="/wiki/Audio_Video_Standard" title="Audio Video Standard">AVS</a></li> <li><a href="/wiki/Bink_Video" title="Bink Video">Bink</a></li> <li><a href="/wiki/Cinepak" title="Cinepak">Cinepak</a></li> <li><a href="/wiki/Daala" title="Daala">Daala</a></li> <li><a href="/wiki/Digital_Video_Interactive" title="Digital Video Interactive">DVI</a></li> <li><a href="/wiki/FFV1" title="FFV1">FFV1</a></li> <li><a href="/wiki/Huffyuv" title="Huffyuv">Huffyuv</a></li> <li><a href="/wiki/Indeo" title="Indeo">Indeo</a></li> <li><a href="/wiki/Lagarith" title="Lagarith">Lagarith</a></li> <li><a href="/wiki/Microsoft_Video_1" title="Microsoft Video 1">Microsoft Video 1</a></li> <li><a href="/wiki/MSU_Lossless_Video_Codec" title="MSU Lossless Video Codec">MSU Lossless</a></li> <li><a href="/wiki/OMS_Video" title="OMS Video">OMS Video</a></li> <li><a href="/wiki/Pixlet" title="Pixlet">Pixlet</a></li> <li><a href="/wiki/Apple_ProRes" title="Apple ProRes">ProRes</a> <ul><li><a href="/wiki/ProRes_422" class="mw-redirect" title="ProRes 422">422</a></li> <li><a href="/wiki/ProRes_4444" class="mw-redirect" title="ProRes 4444">4444</a></li></ul></li> <li>QuickTime <ul><li><a href="/wiki/QuickTime_Animation" title="QuickTime Animation">Animation</a></li> <li><a href="/wiki/QuickTime_Graphics" title="QuickTime Graphics">Graphics</a></li></ul></li> <li><a href="/wiki/RealVideo" title="RealVideo">RealVideo</a></li> <li><a href="/wiki/RTVideo" title="RTVideo">RTVideo</a></li> <li><a href="/wiki/SheerVideo" title="SheerVideo">SheerVideo</a></li> <li><a href="/wiki/Smacker_video" title="Smacker video">Smacker</a></li> <li><a href="/wiki/Sorenson_Media" title="Sorenson Media">Sorenson Video/Spark</a></li> <li><a href="/wiki/Theora" title="Theora">Theora</a></li> <li><a href="/wiki/Thor_(video_codec)" title="Thor (video codec)">Thor</a></li> <li><a href="/wiki/Ut_Video_Codec_Suite" title="Ut Video Codec Suite">Ut</a></li> <li><a href="/wiki/Windows_Media_Video" title="Windows Media Video">WMV</a></li> <li><a href="/wiki/RatDVD" title="RatDVD">XEB</a></li> <li><a href="/wiki/YULS" title="YULS">YULS</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Audio_coding_format" title="Audio coding format">Audio<br />compression</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">ISO</a>, <a href="/wiki/International_Electrotechnical_Commission" title="International Electrotechnical Commission">IEC</a>,<br /> <a href="/wiki/Moving_Picture_Experts_Group" title="Moving Picture Experts Group">MPEG</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/MPEG-1_Audio_Layer_II" title="MPEG-1 Audio Layer II">MPEG-1 Layer II</a> <ul><li><a href="/wiki/MPEG_Multichannel" title="MPEG Multichannel">Multichannel</a></li></ul></li> <li><a href="/wiki/MPEG-1_Audio_Layer_I" title="MPEG-1 Audio Layer I">MPEG-1 Layer I</a></li> <li><a href="/wiki/MP3" title="MP3">MPEG-1 Layer III (MP3)</a></li> <li><a href="/wiki/Advanced_Audio_Coding" title="Advanced Audio Coding">AAC</a> <ul><li><a href="/wiki/High-Efficiency_Advanced_Audio_Coding" title="High-Efficiency Advanced Audio Coding">HE-AAC</a></li> <li><a href="/wiki/AAC-LD" title="AAC-LD">AAC-LD</a></li></ul></li> <li><a href="/wiki/MPEG_Surround" title="MPEG Surround">MPEG Surround</a></li> <li><a href="/wiki/Audio_Lossless_Coding" title="Audio Lossless Coding">MPEG-4 ALS</a></li> <li><a href="/wiki/MPEG-4_SLS" title="MPEG-4 SLS">MPEG-4 SLS</a></li> <li><a href="/wiki/Super_Audio_CD#DST" title="Super Audio CD">MPEG-4 DST</a></li> <li><a href="/wiki/Harmonic_Vector_Excitation_Coding" title="Harmonic Vector Excitation Coding">MPEG-4 HVXC</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">MPEG-4 CELP</a></li> <li><a href="/wiki/Unified_Speech_and_Audio_Coding" title="Unified Speech and Audio Coding">MPEG-D USAC</a></li> <li><a href="/wiki/MPEG-H_3D_Audio" title="MPEG-H 3D Audio">MPEG-H 3D Audio</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/ITU-T" title="ITU-T">ITU-T</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/G.711" title="G.711">G.711</a> <ul><li><a href="/wiki/A-law_algorithm" title="A-law algorithm">A-law</a></li> <li><a href="/wiki/%CE%9C-law_algorithm" title="Μ-law algorithm">µ-law</a></li></ul></li> <li><a href="/wiki/G.718" title="G.718">G.718</a></li> <li><a href="/wiki/G.719" title="G.719">G.719</a></li> <li><a href="/wiki/G.722" title="G.722">G.722</a></li> <li><a href="/wiki/G.722.1" title="G.722.1">G.722.1</a></li> <li><a href="/wiki/Adaptive_Multi-Rate_Wideband" title="Adaptive Multi-Rate Wideband">G.722.2</a></li> <li><a href="/wiki/G.723" title="G.723">G.723</a></li> <li><a href="/wiki/G.723.1" title="G.723.1">G.723.1</a></li> <li><a href="/wiki/G.726" title="G.726">G.726</a></li> <li><a href="/wiki/G.728" title="G.728">G.728</a></li> <li><a href="/wiki/G.729" title="G.729">G.729</a></li> <li><a href="/wiki/G.729.1" title="G.729.1">G.729.1</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/Internet_Engineering_Task_Force" title="Internet Engineering Task Force">IETF</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Opus_(audio_format)" title="Opus (audio format)">Opus</a></li> <li><a href="/wiki/Internet_Low_Bitrate_Codec" title="Internet Low Bitrate Codec">iLBC</a></li> <li><a href="/wiki/Speex" title="Speex">Speex</a></li> <li><a href="/wiki/Vorbis" title="Vorbis">Vorbis</a></li> <li><a href="/wiki/FLAC" title="FLAC">FLAC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/3GPP" title="3GPP">3GPP</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_Multi-Rate_audio_codec" title="Adaptive Multi-Rate audio codec">AMR</a></li> <li><a href="/wiki/Adaptive_Multi-Rate_Wideband" title="Adaptive Multi-Rate Wideband">AMR-WB</a></li> <li><a href="/wiki/Extended_Adaptive_Multi-Rate_%E2%80%93_Wideband" title="Extended Adaptive Multi-Rate – Wideband">AMR-WB+</a></li> <li><a href="/wiki/Enhanced_Variable_Rate_Codec" title="Enhanced Variable Rate Codec">EVRC</a></li> <li><a href="/wiki/Enhanced_Variable_Rate_Codec_B" title="Enhanced Variable Rate Codec B">EVRC-B</a></li> <li><a href="/wiki/Enhanced_Voice_Services" title="Enhanced Voice Services">EVS</a></li> <li><a href="/wiki/Half_Rate" title="Half Rate">GSM-HR</a></li> <li><a href="/wiki/Full_Rate" title="Full Rate">GSM-FR</a></li> <li><a href="/wiki/Enhanced_full_rate" title="Enhanced full rate">GSM-EFR</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/ETSI" class="mw-redirect" title="ETSI">ETSI</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dolby_Digital" title="Dolby Digital">AC-3</a></li> <li><a href="/wiki/Dolby_AC-4" title="Dolby AC-4">AC-4</a></li> <li><a href="/wiki/DTS_(sound_system)" class="mw-redirect" title="DTS (sound system)">DTS</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/Bluetooth_Special_Interest_Group" title="Bluetooth Special Interest Group">Bluetooth SIG</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/SBC_(codec)" title="SBC (codec)">SBC</a></li> <li><a href="/wiki/LC3_(codec)" title="LC3 (codec)">LC3</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Chinese Standard</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Audio_Video_Standard#First_generation" title="Audio Video Standard">AVS1 P10</a>(GB/T 20090.10)</li> <li><a href="/wiki/Audio_Video_Standard#Second_generation" title="Audio Video Standard">AVS2 P3</a>(GB/T 33475.3) <ul><li><a href="/w/index.php?title=Audio_Vivid&amp;action=edit&amp;redlink=1" class="new" title="Audio Vivid (page does not exist)">Audio Vivid</a>(GY/T 363)</li></ul></li> <li><a href="/wiki/Dynamic_Resolution_Adaptation" title="Dynamic Resolution Adaptation">DRA</a>(GB/T 22726)</li> <li><a href="/wiki/L2HC" title="L2HC">L2HC</a></li> <li>ExAC(SJ/T 11299.4)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Apple_Lossless_Audio_Codec" title="Apple Lossless Audio Codec">ALAC</a></li> <li><a href="/wiki/Asao_(codec)" title="Asao (codec)">Asao</a></li> <li><a href="/wiki/Adaptive_Transform_Acoustic_Coding" class="mw-redirect" title="Adaptive Transform Acoustic Coding">ATRAC</a></li> <li><a href="/wiki/CELT" title="CELT">CELT</a></li> <li><a href="/wiki/Codec_2" title="Codec 2">Codec 2</a></li> <li><a href="/wiki/Internet_Speech_Audio_Codec" title="Internet Speech Audio Codec">iSAC</a></li> <li><a href="/wiki/Lyra_(codec)" title="Lyra (codec)">Lyra</a></li> <li><a href="/wiki/Mixed-excitation_linear_prediction" title="Mixed-excitation linear prediction">MELP</a></li> <li><a href="/wiki/Monkey%27s_Audio" title="Monkey&#39;s Audio">Monkey's Audio</a></li> <li><a href="/wiki/MT9" title="MT9">MT9</a></li> <li><a href="/wiki/Musepack" title="Musepack">Musepack</a></li> <li><a href="/wiki/OptimFROG" title="OptimFROG">OptimFROG</a></li> <li><a href="/wiki/Original_Sound_Quality" title="Original Sound Quality">OSQ</a></li> <li><a href="/wiki/Qualcomm_code-excited_linear_prediction" title="Qualcomm code-excited linear prediction">QCELP</a></li> <li><a href="/wiki/Relaxed_code-excited_linear_prediction" title="Relaxed code-excited linear prediction">RCELP</a></li> <li><a href="/wiki/RealAudio" title="RealAudio">RealAudio</a></li> <li><a href="/wiki/RTAudio" title="RTAudio">RTAudio</a></li> <li><a href="/wiki/Avid_Audio#Sound_Designer_file_formats" title="Avid Audio">SD2</a></li> <li><a href="/wiki/Shorten_file_format" class="mw-redirect" title="Shorten file format">SHN</a></li> <li><a href="/wiki/SILK" title="SILK">SILK</a></li> <li><a href="/wiki/Siren_(codec)" title="Siren (codec)">Siren</a></li> <li><a href="/wiki/Selectable_Mode_Vocoder" title="Selectable Mode Vocoder">SMV</a></li> <li><a href="/wiki/SVOPC" title="SVOPC">SVOPC</a></li> <li>TTA <ul><li>True Audio</li></ul></li> <li><a href="/wiki/TwinVQ" title="TwinVQ">TwinVQ</a></li> <li><a href="/wiki/Variable-Rate_Multimode_Wideband" title="Variable-Rate Multimode Wideband">VMR-WB</a></li> <li><a href="/wiki/Vector_sum_excited_linear_prediction" title="Vector sum excited linear prediction">VSELP</a></li> <li><a href="/wiki/WavPack" title="WavPack">WavPack</a></li> <li><a href="/wiki/Windows_Media_Audio" title="Windows Media Audio">WMA</a></li> <li><a href="/wiki/Master_Quality_Authenticated" title="Master Quality Authenticated">MQA</a></li> <li><a href="/wiki/AptX" title="AptX">aptX</a></li> <li><a href="/wiki/AptX#aptX_HD" title="AptX">aptX HD</a></li> <li><a href="/wiki/AptX#aptX_Low_Latency" title="AptX">aptX Low Latency</a></li> <li><a href="/wiki/AptX#aptX_Adaptive" title="AptX">aptX Adaptive</a></li> <li><a href="/wiki/LDAC_(codec)" title="LDAC (codec)">LDAC</a></li> <li><a href="/wiki/LHDC_(codec)" title="LHDC (codec)">LHDC</a></li> <li><a href="/wiki/LHDC_(codec)#LLAC" title="LHDC (codec)">LLAC</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Image_compression" title="Image compression">Image<br />compression</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/International_Electrotechnical_Commission" title="International Electrotechnical Commission">IEC</a>, <a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">ISO</a>, <a href="/wiki/Internet_Engineering_Task_Force" title="Internet Engineering Task Force">IETF</a>, <br /><a href="/wiki/World_Wide_Web_Consortium" title="World Wide Web Consortium">W3C</a>, <a href="/wiki/ITU-T" title="ITU-T">ITU-T</a>, <a href="/wiki/Joint_Photographic_Experts_Group" title="Joint Photographic Experts Group">JPEG</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Group_4_compression" title="Group 4 compression">CCITT Group 4</a></li> <li><a href="/wiki/GIF" title="GIF">GIF</a></li> <li><a href="/wiki/High_Efficiency_Image_File_Format#HEIC:_HEVC_in_HEIF" title="High Efficiency Image File Format">HEIC / HEIF</a></li> <li><a href="/wiki/High_Efficiency_Video_Coding#Main_Still_Picture" title="High Efficiency Video Coding">HEVC</a></li> <li><a href="/wiki/JBIG" title="JBIG">JBIG</a></li> <li><a href="/wiki/JBIG2" title="JBIG2">JBIG2</a></li> <li><a href="/wiki/JPEG" title="JPEG">JPEG</a></li> <li><a href="/wiki/JPEG_2000" title="JPEG 2000">JPEG 2000</a></li> <li><a href="/wiki/JPEG-LS" class="mw-redirect" title="JPEG-LS">JPEG-LS</a></li> <li><a href="/wiki/JPEG_XL" title="JPEG XL">JPEG XL</a></li> <li><a href="/wiki/JPEG_XR" title="JPEG XR">JPEG XR</a></li> <li><a href="/wiki/JPEG_XS" title="JPEG XS">JPEG XS</a></li> <li><a href="/wiki/JPEG_XT" title="JPEG XT">JPEG XT</a></li> <li><a href="/wiki/Portable_Network_Graphics" class="mw-redirect" title="Portable Network Graphics">PNG</a></li> <li><a href="/wiki/TIFF" title="TIFF">TIFF</a></li> <li><a href="/wiki/TIFF/EP" title="TIFF/EP">TIFF/EP</a></li> <li><a href="/wiki/TIFF/IT" class="mw-redirect" title="TIFF/IT">TIFF/IT</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/APNG" title="APNG">APNG</a></li> <li><a href="/wiki/AV1" title="AV1">AV1</a></li> <li><a href="/wiki/AVIF" title="AVIF">AVIF</a></li> <li><a href="/wiki/Better_Portable_Graphics" title="Better Portable Graphics">BPG</a></li> <li><a href="/wiki/DjVu" title="DjVu">DjVu</a></li> <li><a href="/wiki/OpenEXR" title="OpenEXR">EXR</a></li> <li><a href="/wiki/Free_Lossless_Image_Format" title="Free Lossless Image Format">FLIF</a></li> <li><a href="/wiki/ICER_(file_format)" title="ICER (file format)">ICER</a></li> <li><a href="/wiki/Multiple-image_Network_Graphics" title="Multiple-image Network Graphics">MNG</a></li> <li><a href="/wiki/Progressive_Graphics_File" title="Progressive Graphics File">PGF</a></li> <li><a href="/wiki/QOI_(image_format)" title="QOI (image format)">QOI</a></li> <li><a href="/wiki/QuickTime_VR" title="QuickTime VR">QTVR</a></li> <li><a href="/wiki/Wireless_Application_Protocol_Bitmap_Format" title="Wireless Application Protocol Bitmap Format">WBMP</a></li> <li><a href="/wiki/WebP" title="WebP">WebP</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Digital_container_format" class="mw-redirect" title="Digital container format">Containers</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/International_Organization_for_Standardization" title="International Organization for Standardization">ISO</a>, <a href="/wiki/International_Electrotechnical_Commission" title="International Electrotechnical Commission">IEC</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/MPEG_elementary_stream" title="MPEG elementary stream">MPEG-ES</a> <ul><li><a href="/wiki/Packetized_elementary_stream" title="Packetized elementary stream">MPEG-PES</a></li></ul></li> <li><a href="/wiki/MPEG_program_stream" title="MPEG program stream">MPEG-PS</a></li> <li><a href="/wiki/MPEG_transport_stream" title="MPEG transport stream">MPEG-TS</a></li> <li><a href="/wiki/ISO/IEC_base_media_file_format" class="mw-redirect" title="ISO/IEC base media file format">ISO/IEC base media file format</a></li> <li><a href="/wiki/MPEG-4_Part_14" class="mw-redirect" title="MPEG-4 Part 14">MPEG-4 Part 14</a> (MP4)</li> <li><a href="/wiki/Motion_JPEG_2000" title="Motion JPEG 2000">Motion JPEG 2000</a></li> <li><a href="/wiki/MPEG-21" title="MPEG-21">MPEG-21 Part 9</a></li> <li><a href="/wiki/MPEG_media_transport" title="MPEG media transport">MPEG media transport</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/ITU-T" title="ITU-T">ITU-T</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/MPEG-2#Systems" title="MPEG-2">H.222.0</a></li> <li><a href="/wiki/Motion_JPEG_2000" title="Motion JPEG 2000">T.802</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/Internet_Engineering_Task_Force" title="Internet Engineering Task Force">IETF</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Real-time_Transport_Protocol" title="Real-time Transport Protocol">RTP</a></li> <li><a href="/wiki/Ogg" title="Ogg">Ogg</a></li> <li><a href="/wiki/Matroska" title="Matroska">Matroska</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em"><a href="/wiki/Society_of_Motion_Picture_and_Television_Engineers" title="Society of Motion Picture and Television Engineers">SMPTE</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_Exchange_Format" title="General Exchange Format">GXF</a></li> <li><a href="/wiki/Material_Exchange_Format" title="Material Exchange Format">MXF</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:5em">Others</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/3GP_and_3G2" title="3GP and 3G2">3GP and 3G2</a></li> <li><a href="/wiki/AMV_video_format" title="AMV video format">AMV</a></li> <li><a href="/wiki/Advanced_Systems_Format" title="Advanced Systems Format">ASF</a></li> <li><a href="/wiki/Audio_Interchange_File_Format" title="Audio Interchange File Format">AIFF</a></li> <li><a href="/wiki/Audio_Video_Interleave" title="Audio Video Interleave">AVI</a></li> <li><a href="/wiki/Au_file_format" title="Au file format">AU</a></li> <li><a href="/wiki/Better_Portable_Graphics" title="Better Portable Graphics">BPG</a></li> <li><a href="/wiki/Bink_Video" title="Bink Video">Bink</a> <ul><li><a href="/wiki/Smacker_video" title="Smacker video">Smacker</a></li></ul></li> <li><a href="/wiki/BMP_file_format" title="BMP file format">BMP</a></li> <li><a href="/wiki/DivX#DivX_Media_Format_(DMF)" title="DivX">DivX Media Format</a></li> <li><a href="/wiki/Enhanced_VOB" title="Enhanced VOB">EVO</a></li> <li><a href="/wiki/Flash_Video" title="Flash Video">Flash Video</a></li> <li><a href="/wiki/High_Efficiency_Image_File_Format" title="High Efficiency Image File Format">HEIF</a></li> <li><a href="/wiki/Interchange_File_Format" title="Interchange File Format">IFF</a></li> <li><a href="/wiki/.m2ts" title=".m2ts">M2TS</a></li> <li><a href="/wiki/Matroska" title="Matroska">Matroska</a> <ul><li><a href="/wiki/WebM" title="WebM">WebM</a></li></ul></li> <li><a href="/wiki/QuickTime_File_Format" title="QuickTime File Format">QuickTime File Format</a></li> <li><a href="/wiki/RatDVD" title="RatDVD">RatDVD</a></li> <li><a href="/wiki/RealMedia" title="RealMedia">RealMedia</a></li> <li><a href="/wiki/Resource_Interchange_File_Format" title="Resource Interchange File Format">RIFF</a> <ul><li><a href="/wiki/WAV" title="WAV">WAV</a></li></ul></li> <li><a href="/wiki/MOD_and_TOD" title="MOD and TOD">MOD and TOD</a></li> <li><a href="/wiki/VOB" title="VOB">VOB, IFO and BUP</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Collaborations</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/NETVC" title="NETVC">NETVC</a></li> <li><a href="/wiki/MPEG_LA" title="MPEG LA">MPEG LA</a></li> <li><a href="/wiki/Alliance_for_Open_Media" title="Alliance for Open Media">Alliance for Open Media</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Data_compression" title="Data compression">Methods</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Entropy_encoding" class="mw-redirect" title="Entropy encoding">Entropy</a> <ul><li><a href="/wiki/Arithmetic_coding" title="Arithmetic coding">Arithmetic</a></li> <li><a href="/wiki/Huffman_coding" title="Huffman coding">Huffman</a></li> <li><a href="/wiki/Modified_Huffman_coding" title="Modified Huffman coding">Modified</a></li></ul></li> <li><a href="/wiki/Linear_predictive_coding" title="Linear predictive coding">LPC</a> <ul><li><a href="/wiki/Algebraic_code-excited_linear_prediction" title="Algebraic code-excited linear prediction">ACELP</a></li> <li><a href="/wiki/Code-excited_linear_prediction" title="Code-excited linear prediction">CELP</a></li> <li><a href="/wiki/Line_spectral_pairs" title="Line spectral pairs">LSP</a></li> <li><a href="/wiki/Warped_linear_predictive_coding" title="Warped linear predictive coding">WLPC</a></li></ul></li> <li><a href="/wiki/Lossless_compression" title="Lossless compression">Lossless</a></li> <li><a href="/wiki/Lossy_compression" title="Lossy compression">Lossy</a></li> <li><a href="/wiki/LZ77_and_LZ78" title="LZ77 and LZ78">LZ</a> <ul><li><a href="/wiki/DEFLATE" class="mw-redirect" title="DEFLATE">DEFLATE</a></li> <li><a href="/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch" title="Lempel–Ziv–Welch">LZW</a></li></ul></li> <li><a href="/wiki/Pulse-code_modulation" title="Pulse-code modulation">PCM</a> <ul><li><a href="/wiki/A-law_algorithm" title="A-law algorithm">A-law</a></li> <li><a href="/wiki/%CE%9C-law_algorithm" title="Μ-law algorithm">µ-law</a></li> <li><a href="/wiki/Adaptive_differential_pulse-code_modulation" title="Adaptive differential pulse-code modulation">ADPCM</a></li> <li><a href="/wiki/Differential_pulse-code_modulation" title="Differential pulse-code modulation">DPCM</a></li></ul></li> <li><a href="/wiki/Transform_coding" title="Transform coding">Transforms</a> <ul><li><a class="mw-selflink selflink">DCT</a></li> <li><a href="/wiki/Fast_Fourier_transform" title="Fast Fourier transform">FFT</a></li> <li><a href="/wiki/Modified_discrete_cosine_transform" title="Modified discrete cosine transform">MDCT</a></li> <li><a href="/wiki/Wavelet" title="Wavelet">Wavelet</a> <ul><li><a href="/wiki/Daubechies_wavelet" title="Daubechies wavelet">Daubechies</a></li> <li><a href="/wiki/Discrete_wavelet_transform" title="Discrete wavelet transform">DWT</a></li></ul></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Comparison_of_audio_coding_formats" title="Comparison of audio coding formats">Comparison of audio coding formats</a></li> <li><a href="/wiki/Comparison_of_video_codecs" title="Comparison of video codecs">Comparison of video codecs</a></li> <li><a href="/wiki/List_of_codecs" title="List of codecs">List of codecs</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div>See <a href="/wiki/Template:Compression_methods" title="Template:Compression methods">Compression methods</a> for techniques and <a href="/wiki/Template:Compression_software" title="Template:Compression software">Compression software</a> for codecs</div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Digital_signal_processing" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Digital_signal_processing" title="Template:Digital signal processing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Digital_signal_processing" title="Template talk:Digital signal processing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Digital_signal_processing" title="Special:EditPage/Template:Digital signal processing"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Digital_signal_processing" style="font-size:114%;margin:0 4em"><a href="/wiki/Digital_signal_processing" title="Digital signal processing">Digital signal processing</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theory</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Detection_theory" title="Detection theory">Detection theory</a></li> <li><a href="/wiki/Discrete_time_and_continuous_time" title="Discrete time and continuous time">Discrete signal</a></li> <li><a href="/wiki/Estimation_theory" title="Estimation theory">Estimation theory</a></li> <li><a href="/wiki/Nyquist%E2%80%93Shannon_sampling_theorem" title="Nyquist–Shannon sampling theorem">Nyquist–Shannon sampling theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sub-fields</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Audio_signal_processing" title="Audio signal processing">Audio signal processing</a></li> <li><a href="/wiki/Digital_image_processing" title="Digital image processing">Digital image processing</a></li> <li><a href="/wiki/Speech_processing" title="Speech processing">Speech processing</a></li> <li><a href="/wiki/Statistical_signal_processing" class="mw-redirect" title="Statistical signal processing">Statistical signal processing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Techniques</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Z-transform" title="Z-transform">Z-transform</a> <ul><li><a href="/wiki/Advanced_z-transform" title="Advanced z-transform">Advanced z-transform</a></li> <li><a href="/wiki/Matched_Z-transform_method" title="Matched Z-transform method">Matched Z-transform method</a></li></ul></li> <li><a href="/wiki/Bilinear_transform" title="Bilinear transform">Bilinear transform</a></li> <li><a href="/wiki/Constant-Q_transform" title="Constant-Q transform">Constant-Q transform</a></li> <li><a class="mw-selflink selflink">Discrete cosine transform</a> (DCT)</li> <li><a href="/wiki/Discrete_Fourier_transform" title="Discrete Fourier transform">Discrete Fourier transform</a> (DFT)</li> <li><a href="/wiki/Discrete-time_Fourier_transform" title="Discrete-time Fourier transform">Discrete-time Fourier transform</a> (DTFT)</li> <li><a href="/wiki/Impulse_invariance" title="Impulse invariance">Impulse invariance</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a></li> <li><a href="/wiki/Post%27s_inversion_formula" class="mw-redirect" title="Post&#39;s inversion formula">Post's inversion formula</a></li> <li><a href="/wiki/Starred_transform" title="Starred transform">Starred transform</a></li> <li><a href="/wiki/Zak_transform" title="Zak transform">Zak transform</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Sampling_(signal_processing)" title="Sampling (signal processing)">Sampling</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aliasing" title="Aliasing">Aliasing</a></li> <li><a href="/wiki/Anti-aliasing_filter" title="Anti-aliasing filter">Anti-aliasing filter</a></li> <li><a href="/wiki/Downsampling_(signal_processing)" title="Downsampling (signal processing)">Downsampling</a></li> <li><a href="/wiki/Nyquist_rate" title="Nyquist rate">Nyquist rate</a> / <a href="/wiki/Nyquist_frequency" title="Nyquist frequency">frequency</a></li> <li><a href="/wiki/Oversampling" title="Oversampling">Oversampling</a></li> <li><a href="/wiki/Quantization_(signal_processing)" title="Quantization (signal processing)">Quantization</a></li> <li><a href="/wiki/Sampling_rate" class="mw-redirect" title="Sampling rate">Sampling rate</a></li> <li><a href="/wiki/Undersampling" title="Undersampling">Undersampling</a></li> <li><a href="/wiki/Upsampling" title="Upsampling">Upsampling</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Telecommunications" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Telecommunications" title="Template:Telecommunications"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Telecommunications" title="Template talk:Telecommunications"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Telecommunications" title="Special:EditPage/Template:Telecommunications"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Telecommunications" style="font-size:114%;margin:0 4em"><a href="/wiki/Telecommunications" title="Telecommunications">Telecommunications</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_telecommunication" title="History of telecommunication">History</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beacon#For_defensive_communications" title="Beacon">Beacon</a></li> <li><a href="/wiki/History_of_broadcasting" title="History of broadcasting">Broadcasting</a></li> <li><a href="/wiki/Cable_protection_system" title="Cable protection system">Cable protection system</a></li> <li><a href="/wiki/Cable_television" title="Cable television">Cable TV</a></li> <li><a href="/wiki/Communications_satellite#History" title="Communications satellite">Communications satellite</a></li> <li><a href="/wiki/Computer_network#History" title="Computer network">Computer network</a></li> <li><a href="/wiki/Data_compression" title="Data compression">Data compression</a> <ul><li><a href="/wiki/Audio_coding_format" title="Audio coding format">audio</a></li> <li><a class="mw-selflink selflink">DCT</a></li> <li><a href="/wiki/Image_compression" title="Image compression">image</a></li> <li><a href="/wiki/Video_coding_format" title="Video coding format">video</a></li></ul></li> <li><a href="/wiki/Digital_media" title="Digital media">Digital media</a> <ul><li><a href="/wiki/Internet_video" title="Internet video">Internet video</a></li> <li><a href="/wiki/Online_video_platform" title="Online video platform">online video platform</a></li> <li><a href="/wiki/Social_media" title="Social media">social media</a></li> <li><a href="/wiki/Streaming_media" title="Streaming media">streaming</a></li></ul></li> <li><a href="/wiki/Drums_in_communication" title="Drums in communication">Drums</a></li> <li><a href="/wiki/Edholm%27s_law" title="Edholm&#39;s law">Edholm's law</a></li> <li><a href="/wiki/Electrical_telegraph#History" title="Electrical telegraph">Electrical telegraph</a></li> <li><a href="/wiki/Fax#History" title="Fax">Fax</a></li> <li><a href="/wiki/Heliograph#History" title="Heliograph">Heliographs</a></li> <li><a href="/wiki/Hydraulic_telegraph#Greek_hydraulic_semaphore_system" title="Hydraulic telegraph">Hydraulic telegraph</a></li> <li><a href="/wiki/Information_Age" title="Information Age">Information Age</a></li> <li><a href="/wiki/Information_revolution" class="mw-redirect" title="Information revolution">Information revolution</a></li> <li><a href="/wiki/History_of_the_Internet" title="History of the Internet">Internet</a></li> <li><a href="/wiki/Mass_media#History" title="Mass media">Mass media</a></li> <li><a href="/wiki/History_of_mobile_phones" title="History of mobile phones">Mobile phone</a> <ul><li><a href="/wiki/Smartphone" title="Smartphone">Smartphone</a></li></ul></li> <li><a href="/wiki/Optical_communication" title="Optical communication">Optical telecommunication</a></li> <li><a href="/wiki/Optical_telegraph" title="Optical telegraph">Optical telegraphy</a></li> <li><a href="/wiki/Pager" title="Pager">Pager</a></li> <li><a href="/wiki/Photophone" title="Photophone">Photophone</a></li> <li><a href="/wiki/History_of_prepaid_mobile_phones" title="History of prepaid mobile phones">Prepaid mobile phone</a></li> <li><a href="/wiki/History_of_radio" title="History of radio">Radio</a></li> <li><a href="/wiki/Radiotelephone" title="Radiotelephone">Radiotelephone</a></li> <li><a href="/wiki/Communications_satellite" title="Communications satellite">Satellite communications</a></li> <li><a href="/wiki/Semaphore" title="Semaphore">Semaphore</a> <ul><li><a href="/wiki/Phryctoria" title="Phryctoria">Phryctoria</a></li></ul></li> <li><a href="/wiki/Semiconductor" title="Semiconductor">Semiconductor</a> <ul><li><a href="/wiki/Semiconductor_device" title="Semiconductor device">device</a></li> <li><a href="/wiki/MOSFET" title="MOSFET">MOSFET</a></li> <li><a href="/wiki/History_of_the_transistor" title="History of the transistor">transistor</a></li></ul></li> <li><a href="/wiki/Smoke_signal" title="Smoke signal">Smoke signals</a></li> <li><a href="/wiki/History_of_telecommunication" title="History of telecommunication">Telecommunications history</a></li> <li><a href="/wiki/Telautograph" title="Telautograph">Telautograph</a></li> <li><a href="/wiki/Telegraphy" title="Telegraphy">Telegraphy</a></li> <li><a href="/wiki/Teleprinter" title="Teleprinter">Teleprinter</a> (teletype)</li> <li><a href="/wiki/History_of_the_telephone" title="History of the telephone">Telephone</a></li> <li><i><a href="/wiki/The_Telephone_Cases" title="The Telephone Cases">The Telephone Cases</a></i></li> <li><a href="/wiki/History_of_television" title="History of television">Television</a> <ul><li><a href="/wiki/Digital_television" title="Digital television">digital</a></li> <li><a href="/wiki/Streaming_television" title="Streaming television">streaming</a></li></ul></li> <li><a href="/wiki/Submarine_communications_cable#Early_history:_telegraph_and_coaxial_cables" title="Submarine communications cable">Undersea telegraph line</a></li> <li><a href="/wiki/History_of_videotelephony" title="History of videotelephony">Videotelephony</a></li> <li><a href="/wiki/Whistled_language" title="Whistled language">Whistled language</a></li> <li><a href="/wiki/Wireless_revolution" class="mw-redirect" title="Wireless revolution">Wireless revolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Pioneers</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nasir_Ahmed_(engineer)" title="Nasir Ahmed (engineer)">Nasir Ahmed</a></li> <li><a href="/wiki/Edwin_Howard_Armstrong" title="Edwin Howard Armstrong">Edwin Howard Armstrong</a></li> <li><a href="/wiki/Mohamed_M._Atalla" title="Mohamed M. Atalla">Mohamed M. Atalla</a></li> <li><a href="/wiki/John_Logie_Baird" title="John Logie Baird">John Logie Baird</a></li> <li><a href="/wiki/Paul_Baran" title="Paul Baran">Paul Baran</a></li> <li><a href="/wiki/John_Bardeen" title="John Bardeen">John Bardeen</a></li> <li><a href="/wiki/Alexander_Graham_Bell" title="Alexander Graham Bell">Alexander Graham Bell</a></li> <li><a href="/wiki/Emile_Berliner" title="Emile Berliner">Emile Berliner</a></li> <li><a href="/wiki/Tim_Berners-Lee" title="Tim Berners-Lee">Tim Berners-Lee</a></li> <li><a href="/wiki/Francis_Blake_(inventor)" title="Francis Blake (inventor)">Francis Blake</a></li> <li><a href="/wiki/Jagadish_Chandra_Bose" title="Jagadish Chandra Bose">Jagadish Chandra Bose</a></li> <li><a href="/wiki/Charles_Bourseul" title="Charles Bourseul">Charles Bourseul</a></li> <li><a href="/wiki/Walter_Houser_Brattain" title="Walter Houser Brattain">Walter Houser Brattain</a></li> <li><a href="/wiki/Vint_Cerf" title="Vint Cerf">Vint Cerf</a></li> <li><a href="/wiki/Claude_Chappe" title="Claude Chappe">Claude Chappe</a></li> <li><a href="/wiki/Yogen_Dalal" class="mw-redirect" title="Yogen Dalal">Yogen Dalal</a></li> <li><a href="/wiki/Daniel_Davis_Jr." title="Daniel Davis Jr.">Daniel Davis Jr.</a></li> <li><a href="/wiki/Donald_Davies" title="Donald Davies">Donald Davies</a></li> <li><a href="/wiki/Amos_Dolbear" title="Amos Dolbear">Amos Dolbear</a></li> <li><a href="/wiki/Thomas_Edison" title="Thomas Edison">Thomas Edison</a></li> <li><a href="/wiki/Lee_de_Forest" title="Lee de Forest">Lee de Forest</a></li> <li><a href="/wiki/Philo_Farnsworth" title="Philo Farnsworth">Philo Farnsworth</a></li> <li><a href="/wiki/Reginald_Fessenden" title="Reginald Fessenden">Reginald Fessenden</a></li> <li><a href="/wiki/Elisha_Gray" title="Elisha Gray">Elisha Gray</a></li> <li><a href="/wiki/Oliver_Heaviside" title="Oliver Heaviside">Oliver Heaviside</a></li> <li><a href="/wiki/Robert_Hooke" title="Robert Hooke">Robert Hooke</a></li> <li><a href="/wiki/Erna_Schneider_Hoover" title="Erna Schneider Hoover">Erna Schneider Hoover</a></li> <li><a href="/wiki/Harold_Hopkins_(physicist)" title="Harold Hopkins (physicist)">Harold Hopkins</a></li> <li><a href="/wiki/Gardiner_Greene_Hubbard" title="Gardiner Greene Hubbard">Gardiner Greene Hubbard</a></li> <li><a href="/wiki/List_of_Internet_pioneers" title="List of Internet pioneers">Internet pioneers</a></li> <li><a href="/wiki/Bob_Kahn" class="mw-redirect" title="Bob Kahn">Bob Kahn</a></li> <li><a href="/wiki/Dawon_Kahng" title="Dawon Kahng">Dawon Kahng</a></li> <li><a href="/wiki/Charles_K._Kao" title="Charles K. Kao">Charles K. Kao</a></li> <li><a href="/wiki/Narinder_Singh_Kapany" title="Narinder Singh Kapany">Narinder Singh Kapany</a></li> <li><a href="/wiki/Hedy_Lamarr" title="Hedy Lamarr">Hedy Lamarr</a></li> <li><a href="/wiki/Roberto_Landell_de_Moura" title="Roberto Landell de Moura">Roberto Landell de Moura</a></li> <li><a href="/wiki/Innocenzo_Manzetti" title="Innocenzo Manzetti">Innocenzo Manzetti</a></li> <li><a href="/wiki/Guglielmo_Marconi" title="Guglielmo Marconi">Guglielmo Marconi</a></li> <li><a href="/wiki/Robert_Metcalfe" title="Robert Metcalfe">Robert Metcalfe</a></li> <li><a href="/wiki/Antonio_Meucci" title="Antonio Meucci">Antonio Meucci</a></li> <li><a href="/wiki/Samuel_Morse" title="Samuel Morse">Samuel Morse</a></li> <li><a href="/wiki/Jun-ichi_Nishizawa" title="Jun-ichi Nishizawa">Jun-ichi Nishizawa</a></li> <li><a href="/wiki/Charles_Grafton_Page" title="Charles Grafton Page">Charles Grafton Page</a></li> <li><a href="/wiki/Radia_Perlman" title="Radia Perlman">Radia Perlman</a></li> <li><a href="/wiki/Alexander_Stepanovich_Popov" class="mw-redirect" title="Alexander Stepanovich Popov">Alexander Stepanovich Popov</a></li> <li><a href="/wiki/Tivadar_Pusk%C3%A1s" title="Tivadar Puskás">Tivadar Puskás</a></li> <li><a href="/wiki/Johann_Philipp_Reis" title="Johann Philipp Reis">Johann Philipp Reis</a></li> <li><a href="/wiki/Claude_Shannon" title="Claude Shannon">Claude Shannon</a></li> <li><a href="/wiki/Almon_Brown_Strowger" title="Almon Brown Strowger">Almon Brown Strowger</a></li> <li><a href="/wiki/Henry_Sutton_(inventor)" title="Henry Sutton (inventor)">Henry Sutton</a></li> <li><a href="/wiki/Charles_Sumner_Tainter" title="Charles Sumner Tainter">Charles Sumner Tainter</a></li> <li><a href="/wiki/Nikola_Tesla" title="Nikola Tesla">Nikola Tesla</a></li> <li><a href="/wiki/Camille_Tissot" title="Camille Tissot">Camille Tissot</a></li> <li><a href="/wiki/Alfred_Vail" title="Alfred Vail">Alfred Vail</a></li> <li><a href="/wiki/Thomas_A._Watson" title="Thomas A. Watson">Thomas A. Watson</a></li> <li><a href="/wiki/Charles_Wheatstone" title="Charles Wheatstone">Charles Wheatstone</a></li> <li><a href="/wiki/Vladimir_K._Zworykin" title="Vladimir K. Zworykin">Vladimir K. Zworykin</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Transmission_medium" title="Transmission medium">Transmission<br />media</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coaxial_cable" title="Coaxial cable">Coaxial cable</a></li> <li><a href="/wiki/Fiber-optic_communication" title="Fiber-optic communication">Fiber-optic communication</a> <ul><li><a href="/wiki/Optical_fiber" title="Optical fiber">optical fiber</a></li></ul></li> <li><a href="/wiki/Free-space_optical_communication" title="Free-space optical communication">Free-space optical communication</a></li> <li><a href="/wiki/Molecular_communication" title="Molecular communication">Molecular communication</a></li> <li><a href="/wiki/Radio_wave" title="Radio wave">Radio waves</a> <ul><li><a href="/wiki/Wireless" title="Wireless">wireless</a></li></ul></li> <li><a href="/wiki/Transmission_line" title="Transmission line">Transmission line</a> <ul><li><a href="/wiki/Telecommunication_circuit" title="Telecommunication circuit">telecommunication circuit</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Network_topology" title="Network topology">Network topology</a><br />and switching</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bandwidth_(computing)" title="Bandwidth (computing)">Bandwidth</a></li> <li><a href="/wiki/Telecommunications_link" title="Telecommunications link">Links</a></li> <li><a href="/wiki/Node_(networking)" title="Node (networking)">Nodes</a> <ul><li><a href="/wiki/Terminal_(telecommunication)" title="Terminal (telecommunication)">terminal</a></li></ul></li> <li><a href="/wiki/Network_switch" title="Network switch">Network switching</a> <ul><li><a href="/wiki/Circuit_switching" title="Circuit switching">circuit</a></li> <li><a href="/wiki/Packet_switching" title="Packet switching">packet</a></li></ul></li> <li><a href="/wiki/Telephone_exchange" title="Telephone exchange">Telephone exchange</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multiplexing" title="Multiplexing">Multiplexing</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Space-division_multiple_access" title="Space-division multiple access">Space-division</a></li> <li><a href="/wiki/Frequency-division_multiplexing" title="Frequency-division multiplexing">Frequency-division</a></li> <li><a href="/wiki/Time-division_multiplexing" title="Time-division multiplexing">Time-division</a></li> <li><a href="/wiki/Polarization-division_multiplexing" title="Polarization-division multiplexing">Polarization-division</a></li> <li><a href="/wiki/Orbital_angular_momentum_multiplexing" title="Orbital angular momentum multiplexing">Orbital angular-momentum</a></li> <li><a href="/wiki/Code-division_multiple_access" title="Code-division multiple access">Code-division</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Communication_protocol" title="Communication protocol">Communication protocol</a></li> <li><a href="/wiki/Computer_network" title="Computer network">Computer network</a></li> <li><a href="/wiki/Data_communication" title="Data communication">Data transmission</a></li> <li><a href="/wiki/Store_and_forward" title="Store and forward">Store and forward</a></li> <li><a href="/wiki/Telecommunications_equipment" title="Telecommunications equipment">Telecommunications equipment</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Telecommunications_network" title="Telecommunications network">Types of network</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cellular_network" title="Cellular network">Cellular network</a></li> <li><a href="/wiki/Ethernet" title="Ethernet">Ethernet</a></li> <li><a href="/wiki/Integrated_Services_Digital_Network" class="mw-redirect" title="Integrated Services Digital Network">ISDN</a></li> <li><a href="/wiki/Local_area_network" title="Local area network">LAN</a></li> <li><a href="/wiki/Mobile_telephony" title="Mobile telephony">Mobile</a></li> <li><a href="/wiki/Next-generation_network" title="Next-generation network">NGN</a></li> <li><a href="/wiki/Public_switched_telephone_network" title="Public switched telephone network">Public Switched Telephone</a></li> <li><a href="/wiki/Radio_network" title="Radio network">Radio</a></li> <li><a href="/wiki/Television_broadcasting" class="mw-redirect" title="Television broadcasting">Television</a></li> <li><a href="/wiki/Telex" title="Telex">Telex</a></li> <li><a href="/wiki/UUCP" title="UUCP">UUCP</a></li> <li><a href="/wiki/Wide_area_network" title="Wide area network">WAN</a></li> <li><a href="/wiki/Wireless_network" title="Wireless network">Wireless network</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Telecommunications_network" title="Telecommunications network">Notable networks</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/ARPANET" title="ARPANET">ARPANET</a></li> <li><a href="/wiki/BITNET" title="BITNET">BITNET</a></li> <li><a href="/wiki/CYCLADES" title="CYCLADES">CYCLADES</a></li> <li><a href="/wiki/FidoNet" title="FidoNet">FidoNet</a></li> <li><a href="/wiki/Internet" title="Internet">Internet</a></li> <li><a href="/wiki/Internet2" title="Internet2">Internet2</a></li> <li><a href="/wiki/JANET" title="JANET">JANET</a></li> <li><a href="/wiki/NPL_network" title="NPL network">NPL network</a></li> <li><a href="/wiki/Toasternet" title="Toasternet">Toasternet</a></li> <li><a href="/wiki/Usenet" title="Usenet">Usenet</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Locations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Category:Telecommunications_in_Africa" title="Category:Telecommunications in Africa">Africa</a></li> <li>Americas <ul><li><a href="/wiki/Category:Telecommunications_in_North_America" title="Category:Telecommunications in North America">North</a></li> <li><a href="/wiki/Category:Telecommunications_in_South_America" title="Category:Telecommunications in South America">South</a></li></ul></li> <li><a href="/wiki/Category:Communications_in_Antarctica" title="Category:Communications in Antarctica">Antarctica</a></li> <li><a href="/wiki/Category:Telecommunications_in_Asia" title="Category:Telecommunications in Asia">Asia</a></li> <li><a href="/wiki/Category:Telecommunications_in_Europe" title="Category:Telecommunications in Europe">Europe</a></li> <li><a href="/wiki/Category:Telecommunications_in_Oceania" title="Category:Telecommunications in Oceania">Oceania</a></li> <li>(<a href="/wiki/List_of_telecommunications_regulatory_bodies" title="List of telecommunications regulatory bodies">Global telecommunications regulation bodies</a>)</li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Telecom-icon.svg/16px-Telecom-icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Telecom-icon.svg/24px-Telecom-icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Telecom-icon.svg/32px-Telecom-icon.svg.png 2x" data-file-width="500" data-file-height="500" /></span></span> </span><a href="/wiki/Portal:Telecommunication" title="Portal:Telecommunication">Telecommunication&#32;portal</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Telecommunications" title="Category:Telecommunications">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Outline_of_telecommunication" title="Outline of telecommunication">Outline</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Telecommunications" class="extiw" title="commons:Category:Telecommunications">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐fpshg Cached time: 20241125134500 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.203 seconds Real time usage: 2.530 seconds Preprocessor visited node count: 11114/1000000 Post‐expand include size: 452480/2097152 bytes Template argument size: 32399/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 506100/5000000 bytes Lua time usage: 1.249/10.000 seconds Lua memory usage: 8682985/52428800 bytes Lua Profile: ? 280 ms 22.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 180 ms 14.3% dataWrapper <mw.lua:672> 180 ms 14.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 100 ms 7.9% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 60 ms 4.8% gsub 40 ms 3.2% type 40 ms 3.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 40 ms 3.2% <Module:Citation/CS1:813> 40 ms 3.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 40 ms 3.2% [others] 260 ms 20.6% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1886.920 1 -total 50.31% 949.311 2 Template:Reflist 23.05% 434.846 39 Template:Cite_journal 11.13% 210.096 35 Template:Cite_book 9.83% 185.442 13 Template:Navbox 8.08% 152.373 32 Template:Cite_web 7.12% 134.416 1 Template:Short_description 6.41% 120.914 1 Template:Compression_Methods 5.98% 112.906 1 Template:Sfn 5.26% 99.183 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:59962-0!canonical and timestamp 20241125134500 and revision id 1257176998. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Discrete_cosine_transform&amp;oldid=1257176998">https://en.wikipedia.org/w/index.php?title=Discrete_cosine_transform&amp;oldid=1257176998</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Data_compression" title="Category:Data compression">Data compression</a></li><li><a href="/wiki/Category:Digital_signal_processing" title="Category:Digital signal processing">Digital signal processing</a></li><li><a href="/wiki/Category:Fourier_analysis" title="Category:Fourier analysis">Fourier analysis</a></li><li><a href="/wiki/Category:Discrete_transforms" title="Category:Discrete transforms">Discrete transforms</a></li><li><a href="/wiki/Category:Image_compression" title="Category:Image compression">Image compression</a></li><li><a href="/wiki/Category:Indian_inventions" title="Category:Indian inventions">Indian inventions</a></li><li><a href="/wiki/Category:H.26x" title="Category:H.26x">H.26x</a></li><li><a href="/wiki/Category:JPEG" title="Category:JPEG">JPEG</a></li><li><a href="/wiki/Category:Lossy_compression_algorithms" title="Category:Lossy compression algorithms">Lossy compression algorithms</a></li><li><a href="/wiki/Category:Video_compression" title="Category:Video compression">Video compression</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Accuracy_disputes_from_July_2022" title="Category:Accuracy disputes from July 2022">Accuracy disputes from July 2022</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2019" title="Category:Articles containing potentially dated statements from 2019">Articles containing potentially dated statements from 2019</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 November 2024, at 16:54<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Discrete_cosine_transform&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-qtmrx","wgBackendResponseTime":180,"wgPageParseReport":{"limitreport":{"cputime":"2.203","walltime":"2.530","ppvisitednodes":{"value":11114,"limit":1000000},"postexpandincludesize":{"value":452480,"limit":2097152},"templateargumentsize":{"value":32399,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":506100,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1886.920 1 -total"," 50.31% 949.311 2 Template:Reflist"," 23.05% 434.846 39 Template:Cite_journal"," 11.13% 210.096 35 Template:Cite_book"," 9.83% 185.442 13 Template:Navbox"," 8.08% 152.373 32 Template:Cite_web"," 7.12% 134.416 1 Template:Short_description"," 6.41% 120.914 1 Template:Compression_Methods"," 5.98% 112.906 1 Template:Sfn"," 5.26% 99.183 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"1.249","limit":"10.000"},"limitreport-memusage":{"value":8682985,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbouslemanMarcellinHunt1995\"] = 1,\n [\"CITEREFAhmed1991\"] = 2,\n [\"CITEREFAhmedNatarajanRao1974\"] = 1,\n [\"CITEREFAlakuijalaSneyersVersariWassenberg2021\"] = 1,\n [\"CITEREFAlikhani2015\"] = 1,\n [\"CITEREFAlshibamiBoussakta2001\"] = 1,\n [\"CITEREFAraiAguiNakajima1988\"] = 1,\n [\"CITEREFAscherPincus2012\"] = 1,\n [\"CITEREFBaraniuk2015\"] = 1,\n [\"CITEREFBarberoHofmannWells1991\"] = 1,\n [\"CITEREFBertalmio2014\"] = 1,\n [\"CITEREFBleidtSenNiedermeierCzelhan2017\"] = 1,\n [\"CITEREFBoussaktaAlshibami2004\"] = 1,\n [\"CITEREFBrandenburg1999\"] = 1,\n [\"CITEREFBrinkmann2018\"] = 1,\n [\"CITEREFBritanak2011\"] = 1,\n [\"CITEREFBritanakRao2017\"] = 1,\n [\"CITEREFBritanakYipRao2006\"] = 1,\n [\"CITEREFChanHo1990\"] = 1,\n [\"CITEREFChanLiuHo2000\"] = 1,\n [\"CITEREFChanLuoHo1998\"] = 1,\n [\"CITEREFChanSiu1997\"] = 1,\n [\"CITEREFChen2004\"] = 1,\n [\"CITEREFChenSmithFralick1977\"] = 1,\n [\"CITEREFChengZeng2003\"] = 1,\n [\"CITEREFCianci2014\"] = 1,\n [\"CITEREFColberg2009\"] = 1,\n [\"CITEREFDaniel_Eran_Dilger2010\"] = 1,\n [\"CITEREFDavis1997\"] = 1,\n [\"CITEREFDhamijaJain2011\"] = 1,\n [\"CITEREFDuhamelVetterli1990\"] = 1,\n [\"CITEREFFeigWinograd1992a\"] = 1,\n [\"CITEREFFeigWinograd1992b\"] = 1,\n [\"CITEREFFrigoJohnson2005\"] = 1,\n [\"CITEREFGhanbari2003\"] = 1,\n [\"CITEREFGuckert2012\"] = 1,\n [\"CITEREFGuoan_BiGang_LiKai-Kuang_MaTan2000\"] = 1,\n [\"CITEREFHazraMateti2017\"] = 1,\n [\"CITEREFHerreDietz2008\"] = 1,\n [\"CITEREFHersentPetitGurle2005\"] = 1,\n [\"CITEREFHoffman2012\"] = 1,\n [\"CITEREFHuang1981\"] = 1,\n [\"CITEREFHudsonLégerNissSebestyén2018\"] = 1,\n [\"CITEREFJonesLayerOsenkowsky2013\"] = 1,\n [\"CITEREFKatsaggelosBabacanChun-Jen2009\"] = 1,\n [\"CITEREFKomatsuSezaki1998\"] = 1,\n [\"CITEREFLea1994\"] = 1,\n [\"CITEREFLee2005\"] = 1,\n [\"CITEREFLeeBeckLambSeverson1995\"] = 1,\n [\"CITEREFLeyden2015\"] = 1,\n [\"CITEREFLi2006\"] = 1,\n [\"CITEREFLuo2008\"] = 1,\n [\"CITEREFLutzkySchullerGayerKrämer2004\"] = 1,\n [\"CITEREFMakhoul1980\"] = 1,\n [\"CITEREFMalvar1992\"] = 1,\n [\"CITEREFMandyamAhmedMagotra1995\"] = 1,\n [\"CITEREFMartucci1994\"] = 1,\n [\"CITEREFMcKernan2005\"] = 1,\n [\"CITEREFMenkman2011\"] = 1,\n [\"CITEREFMuchaharyMondalParmarBorah2015\"] = 1,\n [\"CITEREFNagireddi2008\"] = 1,\n [\"CITEREFNarasimhaPeterson1978\"] = 1,\n [\"CITEREFNetflix_Technology_Blog2017\"] = 1,\n [\"CITEREFNetflix_Technology_Blog2020\"] = 1,\n [\"CITEREFNetflix_Technology_Blog2021\"] = 1,\n [\"CITEREFNussbaumer1981\"] = 1,\n [\"CITEREFOchoa-DominguezRao2019\"] = 3,\n [\"CITEREFOppenheimSchaferBuck1999\"] = 1,\n [\"CITEREFPennebakerMitchell1992\"] = 1,\n [\"CITEREFPessina2014\"] = 1,\n [\"CITEREFPeter_de_RivazJack_Haughton2018\"] = 1,\n [\"CITEREFPlonkaTasche2005\"] = 1,\n [\"CITEREFPotluriMadanayakeCintraBayer2012\"] = 1,\n [\"CITEREFPrincenBradley1986\"] = 1,\n [\"CITEREFPrincenJohnsonBradley1987\"] = 1,\n [\"CITEREFQueirozNguyen1996\"] = 1,\n [\"CITEREFRaoHwang1996\"] = 1,\n [\"CITEREFRaoYip1990\"] = 1,\n [\"CITEREFRoeseRobinson1975\"] = 1,\n [\"CITEREFRuff2009\"] = 1,\n [\"CITEREFSchnellSchmidtJanderAlbert2008\"] = 1,\n [\"CITEREFShaoJohnson2008\"] = 2,\n [\"CITEREFShishikuiNakanishiImaizumi1993\"] = 1,\n [\"CITEREFSmithFralick1977\"] = 1,\n [\"CITEREFSongSXiongLiuLiu\"] = 1,\n [\"CITEREFSorensenJonesHeidemanBurrus1987\"] = 1,\n [\"CITEREFSrivastavaDubeShrivastayaSharma2019\"] = 1,\n [\"CITEREFStankovićAstola2012\"] = 1,\n [\"CITEREFTaiGiLin2000\"] = 1,\n [\"CITEREFTerriberry\"] = 1,\n [\"CITEREFThomsonShah2017\"] = 1,\n [\"CITEREFValinMaxwellTerriberryVos2013\"] = 1,\n [\"CITEREFWang2006\"] = 2,\n [\"CITEREFWangKwongKok2006\"] = 1,\n [\"CITEREFWen-Hsiung_ChenSmithFralick1977\"] = 1,\n [\"CITEREFXiph.Org_Foundation2009\"] = 1,\n [\"CITEREFYeoLiu1995\"] = 1,\n [\"CITEREFYouTube_Developers2018\"] = 1,\n [\"CITEREFZhang1998\"] = 1,\n}\ntemplate_list = table#1 {\n [\"2\"] = 1,\n [\"As of\"] = 1,\n [\"Citation\"] = 8,\n [\"Cite AV media\"] = 1,\n [\"Cite book\"] = 35,\n [\"Cite conference\"] = 3,\n [\"Cite journal\"] = 39,\n [\"Cite news\"] = 5,\n [\"Cite web\"] = 32,\n [\"Columns-list\"] = 1,\n [\"Commons category\"] = 1,\n [\"Compression Methods\"] = 1,\n [\"Compression formats\"] = 1,\n [\"DEFAULTSORT:Discrete Cosine Transform\"] = 1,\n [\"DSP\"] = 1,\n [\"Efn\"] = 3,\n [\"Further\"] = 1,\n [\"Harv\"] = 3,\n [\"Harvnb\"] = 2,\n [\"Harvtxt\"] = 4,\n [\"Hyphen\"] = 4,\n [\"Jagged 85 cleanup\"] = 1,\n [\"Mvar\"] = 8,\n [\"Nbsp\"] = 6,\n [\"Nobr\"] = 3,\n [\"Not a typo\"] = 1,\n [\"Nowrap\"] = 12,\n [\"Reflist\"] = 2,\n [\"Rp\"] = 5,\n [\"See also\"] = 1,\n [\"Sfn\"] = 1,\n [\"Short description\"] = 1,\n [\"Sqrt\"] = 1,\n [\"Telecommunications\"] = 1,\n}\narticle_whitelist = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n","limitreport-profile":[["?","280","22.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","180","14.3"],["dataWrapper \u003Cmw.lua:672\u003E","180","14.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","100","7.9"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","60","4.8"],["gsub","40","3.2"],["type","40","3.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","40","3.2"],["\u003CModule:Citation/CS1:813\u003E","40","3.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","40","3.2"],["[others]","260","20.6"]]},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-fpshg","timestamp":"20241125134500","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Discrete cosine transform","url":"https:\/\/en.wikipedia.org\/wiki\/Discrete_cosine_transform","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2877","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2877","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-04-25T16:34:38Z","dateModified":"2024-11-13T16:54:37Z","headline":"technique representing data as sums of cosine functions"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10