CINXE.COM
Search results for: lipid production
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lipid production</title> <meta name="description" content="Search results for: lipid production"> <meta name="keywords" content="lipid production"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lipid production" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lipid production"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7993</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lipid production</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7993</span> Total Lipid of Mutant Synechococcus sp. PCC 7002</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20S%20Azmi">Azlin S Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mus%E2%80%99ab%20Zainal"> Mus’ab Zainal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarina%20Sulaiman"> Sarina Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Azura%20Amid"> Azura Amid</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaki%20Zainudin"> Zaki Zainudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30°C and 1% NaNO3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyanobacteria" title="Cyanobacteria">Cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=mutant" title=" mutant"> mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20Synechococcus%20sp.%20%28PCC%207002%29" title=" marine Synechococcus sp. (PCC 7002)"> marine Synechococcus sp. (PCC 7002)</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20growth%20rate" title=" specific growth rate"> specific growth rate</a> </p> <a href="https://publications.waset.org/abstracts/8067/total-lipid-of-mutant-synechococcus-sp-pcc-7002" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7992</span> Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratanaporn%20Leesing">Ratanaporn Leesing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Papone"> Thidarat Papone</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiyaporn%20Puangbut"> Mutiyaporn Puangbut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20cultivation" title="mixotrophic cultivation">mixotrophic cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipid" title=" microalgal lipid"> microalgal lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp.%20KKU-S2" title=" Chlorella sp. KKU-S2"> Chlorella sp. KKU-S2</a> </p> <a href="https://publications.waset.org/abstracts/5171/effect-of-nitrogen-and-carbon-sources-on-growth-and-lipid-production-from-mixotrophic-growth-of-chlorella-sp-kku-s2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7991</span> Nutrient Removal and Microalgal Biomass Growth of Chlorella Vulgaris in Response to Centrate Wastewater Loadings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingfeng%20Wang">Lingfeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Chen"> Zhipeng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Qiu"> Shuang Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijian%20Ge"> Shijian Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of wastewater, with four different nutrient loadings, from synthetic centrate on biomass production of Chlorella vulgaris, nutrient removal, microalgal settling, and lipid production were investigated in photobioreactors under both batches and, subsequently, semi-continuous operations. At higher centrate concentration factors (17.2% and 36.2%), hydraulic retention time and pH adjustments could be employed to sustain acceptable microalgal growth rates and wastewater treatment. Similar nutrient removals efficiencies (>95%) and biomass production (0.42-0.51 g/L) were observed for the four centrate concentrations. Both the lipid productivity and lipid content decreased with increasing nutrient loading in the wastewater. The results also demonstrated that the mass ratio of carbohydrate to protein could provide a good indication of microalgal settling performance, rather than sole component composition or total extracellular polymeric substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20production" title="lipid production">lipid production</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/94539/nutrient-removal-and-microalgal-biomass-growth-of-chlorella-vulgaris-in-response-to-centrate-wastewater-loadings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7990</span> Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Singh">Jyoti Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Dubey"> Swati Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukta%20Singh"> Mukta Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Singh"> R. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=gene" title=" gene"> gene</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/74923/time-course-lipid-accumulation-and-transcript-analyses-of-lipid-biosynthesis-gene-of-chlorella-sp3-under-nitrogen-limited-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7989</span> Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yueh%20Chang">Hsin-Yueh Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Chen%20Liao"> Pin-Chen Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Shu%20Chang"> Jo-Shu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Yen%20Chen"> Chun-Yen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20microalga%20Thrasutochytrium%20sp.%20BM2" title="heterotrophic microalga Thrasutochytrium sp. BM2">heterotrophic microalga Thrasutochytrium sp. BM2</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipid" title=" microalgal lipid"> microalgal lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20glycerol" title=" crude glycerol"> crude glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20strategy" title=" fermentation strategy"> fermentation strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a> </p> <a href="https://publications.waset.org/abstracts/107365/using-optimal-cultivation-strategies-for-enhanced-biomass-and-lipid-production-of-an-indigenous-thraustochytrium-sp-bm2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7988</span> Cell Biomass and Lipid Productivities of Meyerella planktonica under Autotrophic and Heterotrophic Growth Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rory%20Anthony%20Hutagalung">Rory Anthony Hutagalung</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonardus%20Widjaja"> Leonardus Widjaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae Meyerella planktonica is a potential biofuel source because it can grow in bulk in either autotrophic or heterotrophic condition. However, the quantitative growth of this algal type is still low as it tends to precipitates on the bottom. Beside, the lipid concentration is still low when grown in autotrophic condition. In contrast, heterotrophic condition can enhance the lipid concentration. The combination of autotrophic condition and agitation treatment was conducted to increase the density of the culture. On the other hand, a heterotrophic condition was set up to raise the lipid production. A two-stage experiment was applied to increase the density at the first step and to increase the lipid concentration in the next step. The autotrophic condition resulted higher density but lower lipid concentration compared to heterotrophic one. The agitation treatment produced higher density in both autotrophic and heterotrophic conditions. The two-stage experiment managed to enhance the density during the autotrophic stage and the lipid concentration during the heterotrophic stage. The highest yield was performed by using 0.4% v/v glycerol as a carbon source (2.9±0.016 x 106 cells w/w) attained 7 days after the heterotrophic stage began. The lipid concentration was stable starting from day 7. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation" title="agitation">agitation</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic" title=" heterotrophic"> heterotrophic</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20productivity" title=" lipid productivity"> lipid productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Meyerella%20planktonica" title=" Meyerella planktonica"> Meyerella planktonica</a> </p> <a href="https://publications.waset.org/abstracts/29280/cell-biomass-and-lipid-productivities-of-meyerella-planktonica-under-autotrophic-and-heterotrophic-growth-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7987</span> Biomass and Lipid Enhancement by Response Surface Methodology in High Lipid Accumulating Indigenous Strain Rhodococcus opacus and Biodiesel Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kulvinder%20Bajwa">Kulvinder Bajwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Narsi%20R.%20Bishnoi"> Narsi R. Bishnoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding a sustainable alternative for today’s petrochemical industry is a major challenge facing by researchers, scientists, chemical engineers, and society at the global level. Microorganisms are considered to be sustainable feedstock for 3rd generation biofuel production. In this study, we have investigated the potential of a native bacterial strain isolated from a petrol contaminated site for the production of biodiesel. The bacterium was identified to be Rhodococcus opacus by biochemical test and 16S rRNA. Compositional analysis of bacterial biomass has been carried out by Fourier transform infrared spectroscopy (FTIR) in order to confirm lipid profile. Lipid and biomass were optimized by combination with Box Behnken design (BBD) of response surface methodology. The factors selected for the optimization of growth condition were glucose, yeast extract, and ammonium nitrate concentration. The experimental model developed through RSM in terms of effective operational factors (BBD) was found to be suitable to describe the lipid and biomass production, which indicated higher lipid and biomass with a minimum concentration of ammonium nitrate, yeast extract, and quite higher dose of glucose supplementation. Optimum results of the experiments were found to be 2.88 gL⁻¹ biomass and lipid content 38.75% at glucose 20 gL⁻¹, ammonium nitrate 0.5 gL⁻¹ and yeast extract 1.25 gL⁻¹. Furthermore, GCMS study revealed that Rhodococcus opacus has favorable fatty acid profile for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleaginious%20bacteria" title=" Oleaginious bacteria"> Oleaginious bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhodococcus%20opacus" title=" Rhodococcus opacus"> Rhodococcus opacus</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=BBD" title=" BBD"> BBD</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/138198/biomass-and-lipid-enhancement-by-response-surface-methodology-in-high-lipid-accumulating-indigenous-strain-rhodococcus-opacus-and-biodiesel-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7986</span> Lipid Nanoparticles for Spironolactone Delivery: Physicochemical Characteristics, Stability and Invitro Release</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Kelidari">H. R. Kelidari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saeedi"> M. Saeedi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Akbari"> J. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Morteza-Semnani"> K. Morteza-Semnani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Valizadeh"> H. Valizadeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spironolactoe (SP) a synthetic steroid diuretic is a poorly water-soluble drug with a low and variable oral bioavailability. Regarding to the good solubility of SP in lipid materials, SP loaded Solid lipid nanoparticles (SP-SLNs) and nanostructured lipid carrier (SP-SLNs) were thus prepared in this work for accelerating dissolution of this drug. The SP loaded NLC with stearic acid (SA) as solid lipid and different Oleic Acid (OA) as liquid lipid content and SLN without OA were prepared by probe ultrasonication method. With increasing the percentage of OA from 0 to 30 wt% in SLN/NLC, the average size and zeta potential of nanoparticles felled down and entrapment efficiency (EE %) rose dramatically. The obtained micrograph particles showed pronounced spherical shape. Differential Scanning Calorimeter (DSC) measurements indicated that the presence of OA reduced the melting temperature and melting enthalpy of solid lipid in NLC structure. The results reflected good long-term stability of the nanoparticles and the measurements show that the particle size remains lower in NLC compare to SLN formulations, 6 months after production. Dissolution of SP-SLN and SP-NLC was about 5.1 and 7.2 times faster than raw drugs in 120 min respectively. These results indicated that the SP loaded NLC containing 70:30 solid lipid to liquid lipid ratio is a suitable carrier of SP with improved drug EE and steady drug release properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20release" title="drug release">drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20nanoparticles" title=" lipid nanoparticles"> lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=spironolactone" title=" spironolactone"> spironolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/30285/lipid-nanoparticles-for-spironolactone-delivery-physicochemical-characteristics-stability-and-invitro-release" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7985</span> Extracts of Ocimum gratissimum Leaves Inhibits Fe2+ and Sodium Nitroprusside Induced Oxidative Stress in Rat Liver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwafemi%20Ojo">Oluwafemi Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Omotade%20Oloyede"> Omotade Oloyede </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to investigate the antioxidative properties and the ability of aqueous, ethanolic and ethyl acetate extracts from Ocimum gratissimum (OG) leaves to inhibit some pro-oxidants (Fe2+ and sodium nitroprusside) induced lipid peroxidation in rat’s liver homogenates in vitro. The ability of the extracts to inhibit 25 µM FeSO4 and 7.0 µM sodium nitroprusside induced lipid peroxidation in isolated rat’s liver was determined. The results of the study revealed that both pro-oxidants caused a significantly decrease in (p < 0.05) accumulation of lipid peroxides. However, aqueous extract of OG shows a high ability to inhibit lipid production in the liver induced with SNP than Fe2+. Ethanolic and ethyl acetate extract of OG which shows a high ability to inhibit lipid production more when induced with Fe2+ than SNP. However, ethyl acetate fraction of OG shows a higher inhibitory effect on both Fe2+ and SNP induced lipid peroxidation in rat’s liver. This applies to its significantly higher extractable phytochemicals. Therefore, Fe II and sodium nitroprusside induced oxidative stress could be managed by dietary intake of Ocimum gratissimum leaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidative" title="antioxidative">antioxidative</a>, <a href="https://publications.waset.org/abstracts/search?q=pro-oxidants" title=" pro-oxidants"> pro-oxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ocimum%20gratissimum" title=" Ocimum gratissimum "> Ocimum gratissimum </a> </p> <a href="https://publications.waset.org/abstracts/23636/extracts-of-ocimum-gratissimum-leaves-inhibits-fe2-and-sodium-nitroprusside-induced-oxidative-stress-in-rat-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7984</span> Response Surface Methodology to Supercritical Carbon Dioxide Extraction of Microalgal Lipids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yen-Hui%20Chen">Yen-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Walker"> Terry Walker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world experiences an energy crisis, investing in sustainable energy resources is a pressing mission for many countries. Microalgae-derived biodiesel has attracted intensive attention as an important biofuel, and microalgae Chlorella protothecoides lipid is recognized as a renewable source for microalgae-derived biodiesel production. Supercritical carbon dioxide (SC-CO₂) is a promising green solvent that may potentially substitute the use of organic solvents for lipid extraction; however, the efficiency of SC-CO₂ extraction may be affected by many variables, including temperature, pressure and extraction time individually or in combination. In this study, response surface methodology (RSM) was used to optimize the process parameters, including temperature, pressure and extraction time, on C. protothecoides lipid yield by SC-CO₂ extraction. A second order polynomial model provided a good fit (R-square value of 0.94) for the C. protothecoides lipid yield. The linear and quadratic terms of temperature, pressure and extraction time—as well as the interaction between temperature and pressure—showed significant effects on lipid yield during extraction. The optimal lipid yield from the model was predicted as the temperature of 59 °C, the pressure of 350.7 bar and the extraction time 2.8 hours. Under these conditions, the experimental lipid yield (25%) was close to the predicted value. The principal fatty acid methyl esters (FAME) of C. protothecoides lipid-derived biodiesel were oleic acid methyl ester (60.1%), linoleic acid methyl ester (18.6%) and palmitic acid methyl ester (11.4%), which made up more than 90% of the total FAMEs. In summary, this study indicated that RSM was useful to characterize the optimization the SC-CO₂ extraction process of C. protothecoides lipid yield, and the second-order polynomial model could be used for predicting and describing the lipid yield very well. In addition, C. protothecoides lipid, extracted by SC-CO₂, was suggested as a potential candidate for microalgae-derived biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20protothecoides" title="Chlorella protothecoides">Chlorella protothecoides</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipids" title=" microalgal lipids"> microalgal lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20carbon%20dioxide%20extraction" title=" supercritical carbon dioxide extraction"> supercritical carbon dioxide extraction</a> </p> <a href="https://publications.waset.org/abstracts/65325/response-surface-methodology-to-supercritical-carbon-dioxide-extraction-of-microalgal-lipids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7983</span> Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Singh">J. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Dubey"> Swati Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Singh"> R. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS" title=" LC-MS"> LC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/74880/lipidomic-profiling-of-chlorella-sp-and-scenedesmus-abundans-towards-deciphering-phospholipids-and-glycolipids-under-nitrogen-limited-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7982</span> Sustainable Energy Production from Microalgae in Queshm Island, Persian Gulf </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Moazami">N. Moazami</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ranjbar"> R. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashori"> A. Ashori </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out of hundreds of microalgal strains reported, only very few of them are capable for production of high content of lipid. Therefore, the key technical challenges include identifying the strains with the highest growth rates and oil contents with adequate composition, which were the main aims of this work. From 147 microalgae screened for high biomass and oil productivity, the Nannochloropsis sp. PTCC 6016, which attained 52% lipid content, was selected for large scale cultivation in Persian Gulf Knowledge Island. Nannochloropsis strain PTCC 6016 belongs to Eustigmatophyceae (Phylum heterokontophyta) isolated from Mangrove forest area of Qheshm Island and Persian Gulf (Iran) in 2008. The strain PTCC 6016 had an average biomass productivity of 2.83 g/L/day and 52% lipid content. The biomass productivity and the oil production potential could be projected to be more than 200 tons biomass and 100000 L oil per hectare per year, in an outdoor algal culture (300 day/year) in the Persian Gulf climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuels" title="biofuels">biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=Nannochloropsis" title=" Nannochloropsis"> Nannochloropsis</a>, <a href="https://publications.waset.org/abstracts/search?q=raceway%20open%20pond" title=" raceway open pond"> raceway open pond</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-jet" title=" bio-jet"> bio-jet</a> </p> <a href="https://publications.waset.org/abstracts/12748/sustainable-energy-production-from-microalgae-in-queshm-island-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7981</span> Lipid from Activated Sludge as a Feedstock for the Production of Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeanyichukwu%20Edeh">Ifeanyichukwu Edeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Overton"> Tim Overton</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Bowra"> Steve Bowra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is increasing interest in utilising low grade or waste biomass for the production of renewable bioenergy vectors i.e. waste to energy. In this study we have chosen to assess, activated sludge, which is a microbial biomass generated during the second stage of waste water treatment as a source of lipid for biodiesel production. To date a significant proportion of biodiesel is produced from used cooking oil and animal fats. It was reasoned that if activated sludge proved a viable feedstock it has the potential to support increase biodiesel production capacity. Activated sludge was obtained at different times of the year and from two different sewage treatment works in the UK. The biomass within the activated sludge slurry was recovered by filtration and the total weight of material calculated by combining the dry weight of the total suspended solid (TSS) and the total dissolved solid (TDS) fractions. Total lipids were extracted from the TSS and TDS using solvent extraction (Folch methods). The classes of lipids within the total lipid extract were characterised using high performance thin layer chromatography (HPTLC) by referencing known standards. The fatty acid profile and content of the lipid extract were determined using acid mediated-methanolysis to obtain fatty acid methyl esters (FAMEs) which were analysed by gas chromatography and HPTLC. The results showed that there were differences in the total biomass content in the activated sludge collected from different sewage works. Lipid yields from TSS obtained from both sewage treatment works differed according to the time of year (between 3.0 and 7.4 wt. %). The lipid yield varied slightly within the same source of biomass but more widely between the two sewage treatment works. The neutral lipid classes identified were acylglycerols, free fatty acids, sterols and wax esters while the phospholipid class included phosphatidylcholine, lysophosphatidycholine, phosphatidylethanolamine and phosphatidylinositol. The fatty acid profile revealed the presence of palmitic acid, palmitoleic acid, linoleic acid, oleic acid and stearic acid and that unsaturated fatty acids were the most abundant. Following optimisation, the FAME yield was greater than 10 wt. % which was required to have an economic advantage in biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=methanolysis" title=" methanolysis"> methanolysis</a> </p> <a href="https://publications.waset.org/abstracts/37751/lipid-from-activated-sludge-as-a-feedstock-for-the-production-of-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7980</span> Efficiency of Pre-Treatment Methods for Biodiesel Production from Mixed Culture of Microalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malith%20Premarathne">Malith Premarathne</a>, <a href="https://publications.waset.org/abstracts/search?q=Shehan%20Bandara"> Shehan Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushalya%20G.%20Batawala"> Kaushalya G. Batawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Thilini%20U.%20Ariyadasa"> Thilini U. Ariyadasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid depletion of fossil fuel supplies and the emission of carbon dioxide by their continued combustion have paved the way for increased production of carbon-neutral biodiesel from naturally occurring oil sources. The high biomass growth rate and lipid production of microalgae make it a viable source for biodiesel production compared to conventional feedstock. In Sri Lanka, the production of biodiesel by employing indigenous microalgae species is at its emerging stage. This work was an attempt to compare the various pre-treatment methods before extracting lipids such as autoclaving, microwaving and sonication. A mixed culture of microalgae predominantly consisting of Chlorella sp. was obtained from Beire Lake which is an algae rich, organically polluted water body located in Colombo, Sri Lanka. After each pre-treatment method, a standard solvent extraction using Bligh and Dyer’s method was used to compare the total lipid content in percentage dry weight (% dwt). The fatty acid profiles of the oils extracted with each pretreatment method were analyzed using gas chromatography-mass spectrometry (GC-MS). The properties of the biodiesels were predicted by Biodiesel Analyzer© Version 1.1, in order to compare with ASTM 6751-08 biodiesel standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20extraction" title=" lipid extraction"> lipid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-treatment" title=" pre-treatment"> pre-treatment</a> </p> <a href="https://publications.waset.org/abstracts/76198/efficiency-of-pre-treatment-methods-for-biodiesel-production-from-mixed-culture-of-microalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7979</span> Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20El-haj">M. El-haj</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Olama"> Z. Olama</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Holail"> H. Holail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-industrial%20waste%20products" title="agro-industrial waste products">agro-industrial waste products</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell%20oil" title=" single cell oil"> single cell oil</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebanese%20environment" title=" Lebanese environment"> Lebanese environment</a>, <a href="https://publications.waset.org/abstracts/search?q=oleaginous%20fungi" title=" oleaginous fungi"> oleaginous fungi</a> </p> <a href="https://publications.waset.org/abstracts/36122/single-cell-oil-of-oleaginous-fungi-from-lebanese-habitats-as-a-potential-feed-stock-for-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7978</span> Protein and Lipid Extraction from Microalgae with Ultrasound Assisted Osmotic Shock Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nais%20Pinta%20Adetya">Nais Pinta Adetya</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hadiyanto"> H. Hadiyanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae has a potential to be utilized as food and natural colorant. The microalgae components consists of three main parts, these are lipid, protein, and carbohydrate. Crucial step in producing lipid and protein from microalgae is extraction. Microalgae has high water level (70-90%), it causes drying process of biomass needs much more energy and also has potential to distract lipid and protein from microalgae. Extraction of lipid from wet biomass is able to take place efficiently with cell disruption of microalgae by osmotic shock method. In this study, osmotic shock method was going to be integrated with ultrasound to maximalize the extraction yield of lipid and protein from wet biomass Spirulina sp. with osmotic shock method assisted ultrasound. This study consisted of two steps, these were osmotic shock process toward wet biomass and ultrasound extraction assisted. NaCl solution was used as osmotic agent, with the variation of concentrations were 10%, 20%, and 30%. Extraction was conducted in 40°C for 20 minutes with frequency of ultrasound wave was 40kHz. The optimal yield of protein (2.7%) and (lipid 38%) were achieved at 20% osmotic agent concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=osmotic%20shock" title=" osmotic shock"> osmotic shock</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/76886/protein-and-lipid-extraction-from-microalgae-with-ultrasound-assisted-osmotic-shock-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7977</span> Enhancement of Growth and Lipid Accumulation in Microalgae with Aggregation Induced Emission-Based Photosensitiser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmin%20Ferdewsi%20Rakhi">Sharmin Ferdewsi Rakhi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20M.%20Mohsinul%20Reza"> A. H. M. Mohsinul Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Brynley%20Davies"> Brynley Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianzhong%20Wang"> Jianzhong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Youhong%20Tang"> Youhong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Qin"> Jian Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mass production of microalgae has become a focus of research owing to their promising aspects for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content with optimum algal biomass is still a challenge that must be resolved for commercial use. This research aims to determine the effects of light spectral shift and reactive oxygen species (ROS) on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. Aggregation Induced Emission (AIE)-based photosensitisers, CN-TPAQ-PF6 ([C₃₂H₂₃N₄]+) with high ROS productivity, was introduced into the algal culture media separately for effective conversion of the green-yellow-light to the red spectra. The intense photon energy and high-photon flux density in the photosystems and ROS supplementation induced photosynthesis and lipid biogenesis. In comparison to the control, maximum algal growth (0.15 g/l) was achieved at 2 µM CN-TPAQ-PF6 exposure. A significant increase in total lipid accumulation (146.87 mg/g dry biomass) with high proportion of 10-Heptadecanoic acid (C17:1) linolenic acid (C18:2), α-linolenic acid (C18:3) was observed. The elevated level of cellular NADP/NADPH triggered the Acetyl-Co-A production in lipid biogenesis cascade. Furthermore, MTT analysis suggested that this nanomaterial is highly biocompatible on HaCat cell lines with 100% cell viability. This study reveals that the AIE-based approach can strongly impact algal biofactory development for sustainable food, healthy lipids and eco-friendly biofuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitiser" title=" photosensitiser"> photosensitiser</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation-induced-emission" title=" aggregation-induced-emission"> aggregation-induced-emission</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/185488/enhancement-of-growth-and-lipid-accumulation-in-microalgae-with-aggregation-induced-emission-based-photosensitiser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7976</span> The Impact of Lipids on Lung Fibrosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Wojcik">G. Wojcik</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gindlhuber"> J. Gindlhuber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Syarif"> A. Syarif</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hoetzenecker"> K. Hoetzenecker</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bohm"> P. Bohm</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vesely"> P. Vesely</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Biasin"> V. Biasin</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kwapiszewska"> G. Kwapiszewska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulmonary fibrosis is a rare disease where uncontrolled wound healing processes damage the lung structure. Intensive changes within the extracellular matrix (ECM) and its interaction with fibroblasts have a major role in pulmonary fibrosis development. Among others, collagen is one of the main components of the ECM, and it is important for lung structure. In IPF, constant production of collagen by fibroblast, through TGFβ1-SMAD2/3 pathways, leads to an uncontrolled deposition of matrix and hence lung remodeling. Abnormal changes in lipid production, alterations in fatty acids (FAs) metabolism, enhanced oxidative stress, and lipid peroxidation in fibrotic lung and fibrotic fibroblasts have been reported; however, the interplay between the collagen and lipids is not yet established. One of the FAs influx regulators is Angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase work, decreasing the availability of FAs. We hypothesized that altered lipid composition or availability could have the capability to influence the phenotype of different fibroblast populations in the lung and hence influence lung fibrosis. To prove our hypothesis, we aim to investigate lipids and their influence on human, animal, and in vitro levels. In the bleomycin model, treatment with the well-known metabolic drugs Rosiglitazone or Metformin significantly lower collagen production. Similar results were noticed in ANGPTL4 KO animals, where the KO of ANGPTL4 leads to an increase of FAs availability and lower collagen deposition after the bleomycin challenge. Currently, we study the treatment of different FAs on human lung para fibroblasts (hPF) isolated from donors. To understand the lipid composition, we are collecting human lung tissue from donors and pulmonary fibrosis patients for Liquid chromatography-mass spectrometry. In conclusion, our results suggest the lipid influence on collagen deposition during lung fibrosis, but further research needs to be conducted to understand the matter of this relationship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=fibroblasts" title=" fibroblasts"> fibroblasts</a>, <a href="https://publications.waset.org/abstracts/search?q=lipidomics" title=" lipidomics"> lipidomics</a>, <a href="https://publications.waset.org/abstracts/search?q=lung" title=" lung"> lung</a>, <a href="https://publications.waset.org/abstracts/search?q=pulmonary%20fibrosis" title=" pulmonary fibrosis"> pulmonary fibrosis</a> </p> <a href="https://publications.waset.org/abstracts/167033/the-impact-of-lipids-on-lung-fibrosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7975</span> Papaya Leaf in Broiler Chicken Feed Reducing Lipid Peroxidation of Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebrahimi">M. Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Maroufyan"> E. Maroufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shakeri"> M. Shakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Oskoueian"> E. Oskoueian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Soleimani"> A. F Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Goh"> Y. M. Goh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipid peroxidation is a main reason of low quality in meat and meat products. The free radical chain reaction is the major process of lipid peroxidation and reactive oxygen species (ROS) such as hydroxyl radical and hydroperoxyl radical are the main starter of the chain reaction. Papaya leaf contains several secondary metabolites which can be used as a potential antioxidant in broiler feed. Hence, this research was carried out to evaluate the potential of papaya leaf to prevent lipid peroxidation and enhance the antioxidant activity of breast meat of broiler chicken. The results showed that supplementation of papaya leaf at 5%, significantly (p < 0.05) reduced the lipid peroxidation compared to control group. The supplementation of papaya leaf prevented from lipid peroxidation and enhanced the antioxidant activity of the broiler breast meat significantly (p < 0.05) after different storage periods. Papaya leaf reduced the lipid oxidation of meat during storage with strong free radical-scavenging ability. In conclusion, supplementation of papaya leaf in broiler diet to have high quality meat is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya%20leaf" title=" papaya leaf"> papaya leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20meat" title=" breast meat"> breast meat</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/17709/papaya-leaf-in-broiler-chicken-feed-reducing-lipid-peroxidation-of-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7974</span> Topical Delivery of Griseofulvin via Lipid Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yann%20Jean%20Tan">Yann Jean Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Meng%20Er"> Hui Meng Er</a>, <a href="https://publications.waset.org/abstracts/search?q=Choy%20Sin%20Lee"> Choy Sin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shew%20Fung%20Wong"> Shew Fung Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Huei%20Lim"> Wen Huei Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20nanoparticles" title="lipid nanoparticles">lipid nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=griseofulvin" title=" griseofulvin"> griseofulvin</a>, <a href="https://publications.waset.org/abstracts/search?q=topical" title=" topical"> topical</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophytosis" title=" dermatophytosis"> dermatophytosis</a> </p> <a href="https://publications.waset.org/abstracts/18028/topical-delivery-of-griseofulvin-via-lipid-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7973</span> Spinach Lipid Extract as an Alternative Flow Aid for Fat Suspensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nizaha%20Juhaida%20Mohamad">Nizaha Juhaida Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Gray"> David Gray</a>, <a href="https://publications.waset.org/abstracts/search?q=Bettina%20Wolf"> Bettina Wolf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chocolate is a material composite with a high fraction of solid particles dispersed in a fat phase largely composed of cocoa butter. Viscosity properties of chocolate can be manipulated by the amount of fat - increased levels of fat lead to lower viscosity. However, a high content of cocoa butter can increase the cost of the chocolate and instead surfactants are used to manipulate viscosity behaviour. Most commonly, lecithin and polyglycerol polyricinoleate (PGPR) are used. Lecithin is a natural lipid emulsifier which is based on phospholipids while PGPR is a chemically produced emulsifier which based on the long continuous chain of ricinoleic acid. Lecithin and PGPR act to lower the viscosity and yield stress, respectively. Recently, natural lipid emulsifiers based on galactolipid as the functional ingredient have become of interest. Spinach lipid is found to have a high amount of galactolipid, specifically MGDG and DGDG. The aim of this research is to explore the influence of spinach lipid in comparison with PGPR and lecithin on the rheological properties of sugar/oil suspensions which serve as chocolate model system. For that purpose, icing sugar was dispersed from 40%, 45% and 50% (w/w) in oil which has spinach lipid at concentrations from 0.1 – 0.7% (w/w). Based on viscosity at 40 s-1 and yield value reported as shear stress measured at 5 s-1, it was found that spinach lipid shows viscosity reducing and yield stress lowering effects comparable to lecithin and PGPR, respectively. This characteristic of spinach lipid demonstrates great potential for it to act as single natural lipid emulsifier in chocolate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chocolate%20viscosity" title="chocolate viscosity">chocolate viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=lecithin" title=" lecithin"> lecithin</a>, <a href="https://publications.waset.org/abstracts/search?q=polyglycerol%20polyricinoleate%20%28PGPR%29" title=" polyglycerol polyricinoleate (PGPR)"> polyglycerol polyricinoleate (PGPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=spinach%20lipid" title=" spinach lipid"> spinach lipid</a> </p> <a href="https://publications.waset.org/abstracts/46928/spinach-lipid-extract-as-an-alternative-flow-aid-for-fat-suspensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7972</span> Reducing Phytic Acid in Rice Grain by Targeted Mutagenesis of a Phospholipase D Gene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saad%20Shoaib%20Khan">Muhammad Saad Shoaib Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasbin%20Basnet"> Rasbin Basnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingyao%20Shu"> Qingyao Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phospholipids are one of the major classes of lipid comprising 10% of total grain lipid in rice. Phospholipids are the main phosphorus containing lipid in the rice endosperm, contributing to rice palatability and seed storage property. However, in the rice grain, the majority of phosphorus occur in the form of phytic acid and are highly abundant in the bran. Phytic acid, also known as hexaphosphorylated inositol (IP6), are strong chelating agents which reduces the bioavailability of essential dietary nutrients and are therefore less desirable by rice breeders. We used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (PLDα1), which is responsible for the degradation of phospholipids into phosphatidic acid (PA). In the mutants, we found a significant reduction in the concentration of phytic acid in the grain as compared to the wild-type. The biochemical analysis of the PLDα1 mutants showed that the decrease in production of phosphatidic acid is due to reduced accumulation of CDP-diacylglycerolderived phosphatidylinositol (PI), ultimately leading to lower accumulation of phytic acid in mutants. These results showed that loss of function of PLD in rice leads to lower production of phytic acid, suggesting the potential application of Ospldα1 in breeding rice with less phytic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title="CRISPR/Cas9">CRISPR/Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20D" title=" phospholipase D"> phospholipase D</a>, <a href="https://publications.waset.org/abstracts/search?q=phytic%20acid" title=" phytic acid"> phytic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/99067/reducing-phytic-acid-in-rice-grain-by-targeted-mutagenesis-of-a-phospholipase-d-gene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7971</span> Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Lin">C. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kan"> S. C. Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Yeh"> C. W. Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20I%20Chen"> C. I Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Shieh"> C. J. Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Liu"> Y. C. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid-deprived%20residuals%20of%20microalgae" title="lipid-deprived residuals of microalgae">lipid-deprived residuals of microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosome" title=" cellulosome"> cellulosome</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20sugars" title=" reducing sugars"> reducing sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/30811/kinetics-study-for-the-recombinant-cellulosome-to-the-degradation-of-chlorella-cell-residuals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7970</span> Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20C.%20Ngerem">Emmanuel C. Ngerem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20cultivation" title="wastewater cultivation">wastewater cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20design" title=" mixture design"> mixture design</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorococcum" title=" Chlorococcum"> Chlorococcum</a>, <a href="https://publications.waset.org/abstracts/search?q=raceway%20pond" title=" raceway pond"> raceway pond</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentable%20sugar" title=" fermentable sugar"> fermentable sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/189025/optimization-of-biomass-production-and-lipid-formation-from-chlorococcum-sp-cultivation-on-dairy-and-paper-pulp-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7969</span> An Analytical Study on the Effect of Chronic Liver Disease Severity and Etiology on Lipid Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thinakar%20Mani%20Balusamy">Thinakar Mani Balusamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkateswaran%20A.%20R."> Venkateswaran A. R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Narasimhan"> Bharat Narasimhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnakar%20Kini%20S."> Ratnakar Kini S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kani%20Sheikh%20M."> Kani Sheikh M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20Kumar%20K."> Prem Kumar K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pugazhendi%20Thangavelu"> Pugazhendi Thangavelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Murugan"> Arun Murugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibi%20Thooran%20Karmegam"> Sibi Thooran Karmegam</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhakrishnan%20N."> Radhakrishnan N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Noufal"> Mohammed Noufal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Soni"> Amit Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: The liver is integral to lipid metabolism, and a compromise in its function leads to perturbations in these pathways. In this study, we hope to determine the correlation between CLD severity and its effect on lipid parameters. We also look at the etiology-specific effects on lipid levels. Materials and Methods: This is a retrospective cross-sectional analysis of 250 patients with cirrhosis compared to 250 healthy age and sex-matched controls. Severity assessment of CLD using MELD and Child-Pugh scores was performed and etiological details collected. A questionnaire was used to obtain patient demographic details and lastly, a fasting lipid profile (Total, LDL, HDL cholesterol, Triglycerides and VLDL) was obtained. Results: All components of the lipid profile declined linearly with increasing severity of CLD as determined by MELD and Child-Pugh scores. Lipid levels were clearly lower in CLD patients as compared to healthy controls. Interestingly, preliminary analysis indicated that CLD of different etiologies had differential effects on Lipid profiles. This aspect is under further analysis. Conclusion: All components of the lipid profile were definitely lower in CLD patients as compared to controls and demonstrated an inverse correlation with increasing severity. The utilization of this parameter as a prognosticating aid requires further study. Additionally, preliminary analysis indicates that various CLD etiologies appear to have specific effects on the lipid profile – a finding under further analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CLD" title="CLD">CLD</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=HDL" title=" HDL"> HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=LDL" title=" LDL"> LDL</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20profile" title=" lipid profile"> lipid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=triglycerides" title=" triglycerides"> triglycerides</a>, <a href="https://publications.waset.org/abstracts/search?q=VLDL" title=" VLDL"> VLDL</a> </p> <a href="https://publications.waset.org/abstracts/81615/an-analytical-study-on-the-effect-of-chronic-liver-disease-severity-and-etiology-on-lipid-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7968</span> Critical Role of Lipid Rafts in Influenza a Virus Binding to Host Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dileep%20Kumar%20Verma">Dileep Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Lal"> Sunil Kumar Lal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Influenza A Virus (IAV) surface protein hemagglutinin is known to play an important role in viral attachment to the host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Selective nature of Influenza A virus to utilize rafts micro-domain for efficient virus assembly and budding has been explored in depth. However, the detailed mechanism of IAV binding to host cell membrane and entry into the host remains elusive. In the present study we investigated the role of lipid rafts in early life cycle events of IAV. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol by Methyl-β-Cyclodextrin. Using GM1, a well-known lipid raft marker, we were able to observe co-localization of IAV on lipid rafts on the host cell membrane. This experiment suggests a direct involvement of lipid rafts in the initiation of the IAV life cycle. Upon disruption of lipid rafts by Methyl-b-cyclodextrin, we observed a significant reduction in IAV binding on the host cell surface indicating a significant decrease in virus attachment to coherent membrane rafts. Our results provide proof that host lipid rafts and their constituents play an important role in the adsorption of IAV. This study opens a new avenues in IAV virus-host interactions to combat infection at a very early steps of the viral lifecycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20raft" title="lipid raft">lipid raft</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl-%CE%B2-cyclodextrin" title=" methyl-β-cyclodextrin"> methyl-β-cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=GM1" title=" GM1"> GM1</a> </p> <a href="https://publications.waset.org/abstracts/43068/critical-role-of-lipid-rafts-in-influenza-a-virus-binding-to-host-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7967</span> Blood Lipid Profile and Liver Lipid Peroxidation in Normal Rat Fed with Different Concentrations of Acacia senegal and Acacia seyal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eqbal%20M.%20A.%20Dauqan">Eqbal M. A. Dauqan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminah"> A. Aminah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to evaluate the blood lipid profile and liver lipid peroxidation in normal rat fed with different concentrations of <em>Acacia senegal</em> and <em>Acacia seyal</em>. Thirty six Sprague Dawley male rats each weighing between 180-200g were randomly divided into two groups. Each group contains eighteen rats and were divided into three groups of 6 rats per group. The rats were fed <em>ad libitum</em> with commercial rat’s feed and tap water containing different concentrations of <em>Acacia senegal</em> and <em>A</em><em>cacia seyal </em>(3<em><span dir="RTL">%</span></em> and 6%) for 4 weeks. The results at 4 weeks showed that there was no significant difference (p≤0.05) in the total cholesterol (TC) and triglycerides (TG) between the control group and treated groups while the results for the high density lipoprotein (HDL-C) showed a significant decrease (P≥0.05) at the 3% and 6% of gum arabic treated groups compared to control group. There was a significant increase (P≥0.05) in low density lipoprotein (LDL-C) with 3% and 6% of gum Arabic (GA) groups compared to the control group. The study indicated that there was no significant (p≤0.05) effect on TC and TG but there was significant effect (P≥0.05) on HDL-C and LDL-C in blood lipid profile of normal rat. The results showed that after 4 weeks of treatment the malondialdehyde (MDA) value in rat fed with 6% of <em>A. seyal</em> group was significantly higher (P≥0.05) than control or other treated groups of <em>A. seyal and A. senegal</em> studied. Thus, the two species of gum arabic did not have beneficial effect on blood lipid profile and lipid peroxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acacia%20senegal" title="Acacia senegal">Acacia senegal</a>, <a href="https://publications.waset.org/abstracts/search?q=acacia%20seyal" title=" acacia seyal"> acacia seyal</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20profile" title=" lipid profile"> lipid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde%20%28MDA%29" title=" malondialdehyde (MDA)"> malondialdehyde (MDA)</a> </p> <a href="https://publications.waset.org/abstracts/12382/blood-lipid-profile-and-liver-lipid-peroxidation-in-normal-rat-fed-with-different-concentrations-of-acacia-senegal-and-acacia-seyal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7966</span> Promotion of Lipid Syntheses of Microalgae by Microfluidic-Assisted Membrane Distortion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seul%20Ki%20Min">Seul Ki Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwang%20Heum%20Yoon"> Gwang Heum Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20Joo"> Jung Hyun Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwa%20Sung%20Shin"> Hwa Sung Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellular membrane distortion is known as a factor to change intracellular signaling. However, progress of relevant studies is difficult because there are no facilities that can control membrane distortion finely. In this study, we developed microfluidic device which can inflict mechanical stress on cell membrane of Chlamydomonas reinhardtii using regular height of the channels. And cellular physiological changes were analyzed from cells cultured in the device. Excessive calcium ion influx through into cytoplasm was induced from mechanical stress. The results revealed that compressed cells had up-regulated Mat3 mRNA which regulates cell size and cell cycle from a prolonged G1 phase. Additionally, TAG used for the production of biodiesel was raised rapidly from 4 h after compression. Taken together, membrane distortion can be considered as an attractive inducer for biofuel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20stress" title="mechanical stress">mechanical stress</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20distortion" title=" membrane distortion"> membrane distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlamydomonas%20reinhardtii" title=" Chlamydomonas reinhardtii"> Chlamydomonas reinhardtii</a>, <a href="https://publications.waset.org/abstracts/search?q=deflagellation" title=" deflagellation"> deflagellation</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20metabolism" title=" lipid metabolism"> lipid metabolism</a> </p> <a href="https://publications.waset.org/abstracts/7818/promotion-of-lipid-syntheses-of-microalgae-by-microfluidic-assisted-membrane-distortion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7965</span> Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melba%20D.%20Horton">Melba D. Horton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatoms" title="diatoms">diatoms</a>, <a href="https://publications.waset.org/abstracts/search?q=algae" title=" algae"> algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=photobioreactor" title=" photobioreactor"> photobioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=frustule" title=" frustule"> frustule</a> </p> <a href="https://publications.waset.org/abstracts/141873/mass-production-of-endemic-diatoms-in-polk-county-florida-concomitant-with-biofuel-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7964</span> Catalytic Hydrothermal Decarboxylation of Lipid from Activated Sludge for Renewable Diesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeanyichukwu%20Edeh">Ifeanyichukwu Edeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Overton"> Tim Overton</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Bowra"> Steve Bowra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently biodiesel is produced from plant oils or animal’s fats by a liquid-phase catalysed transesterification process at low temperature. Although biodiesel is renewable and to a large extent sustainable, inherent properties such as poor cold flow, low oxidation stability, low cetane value restrict application to blends with fossil fuels. An alternative to biodiesel is renewable diesel produced by catalytic hydrotreating of oils and fats and is considered a drop in fuel because its properties are similar to petroleum diesel. In addition to developing alternative productions routes there is continued interest in reducing the cost of the feed stock, waste cooking oils and fats are increasingly used as the feedstocks due to low cost. However, use of oils and fat are highly adulterated resulting in high free fatty acid content which turn impacts on the efficiency of FAME production. Therefore, in light of the need to develop, alternative lipid feed stocks and related efficient catalysis the present study investigates the potential of producing renewable diesel from the lipids-extracted from activated sludge, a waste water treatment by-product, through catalytic hydrothermal decarboxylation. The microbial lipids were first extracted from the activated sludge using the Folch et al method before hydrothermal decarboxylation reactions were carried out using palladium (Pd/C) and platinum (Pt/C) on activated carbon as the catalysts in a batch reactor. The impact of three temperatures 290, 300, 330 °C and residence time between 30 min and 4hrs was assessed. At the end of the reaction, the products were recovered using organic solvents and characterized using gas chromatography (GC). The principle products of the reaction were pentadecane and heptadecane. The highest yields of pentadecane and heptadecane from lipid-extract were 23.23% and 15.21%, respectively. These yields were obtained at 290 °C and residence time 1h using Pt/C. To the best of our knowledge, the current work is the first investigation on the hydrothermal decarboxylation of lipid-extract from activated sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20decarboxylation" title=" hydrothermal decarboxylation"> hydrothermal decarboxylation</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20diesel" title=" renewable diesel"> renewable diesel</a> </p> <a href="https://publications.waset.org/abstracts/41566/catalytic-hydrothermal-decarboxylation-of-lipid-from-activated-sludge-for-renewable-diesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=266">266</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=267">267</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lipid%20production&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>