CINXE.COM

Search results for: earthquake mitigation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: earthquake mitigation</title> <meta name="description" content="Search results for: earthquake mitigation"> <meta name="keywords" content="earthquake mitigation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="earthquake mitigation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="earthquake mitigation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1523</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: earthquake mitigation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation" title="earthquake mitigation">earthquake mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20recordings" title=" seismic recordings"> seismic recordings</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20measurements" title=" GPS measurements"> GPS measurements</a> </p> <a href="https://publications.waset.org/abstracts/168985/applications-of-out-of-sequence-thrust-movement-for-earthquake-mitigation-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Android-Based Edugame Application for Earthquakes Disaster Mitigation Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endina%20P.%20Purwandari">Endina P. Purwandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolanda%20Hervianti"> Yolanda Hervianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Feri%20Noperman"> Feri Noperman</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20W.%20Winarni"> Endang W. Winarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthquakes disaster is an event that can threaten at any moment and cause damage and loss of life. Game earthquake disaster mitigation is a useful educational game to enhance children insight, knowledge, and understanding in the response to the impact of the earthquake. This study aims to build an educational games application on the Android platform as a learning media for earthquake mitigation education and to determine the effect of the application toward children understanding of the earthquake disaster mitigation. The methods were research and development. The development was to develop edugame application for earthquakes mitigation education. The research involved elementary students as a research sample to test the developed application. The research results were valid android-based edugame application, and its the effect of application toward children understanding. The application contains an earthquake simulation video, an earthquake mitigation video, and a game consisting three stages, namely before the earthquake, when the earthquake occur, and after the earthquake. The results of the feasibility test application showed that this application was included in the category of 'Excellent' which the average percentage of the operation of applications by 76%, view application by 67% and contents of application by 74%. The test results of students' responses were 80% that showed that a positive their responses toward the application. The student understanding test results show that the average score of children understanding pretest was 71,33, and post-test was 97,00. T-test result showed that t value by 8,02 more than table t by 2,001. This indicated that the earthquakes disaster mitigation edugame application based on Android platform affects the children understanding about disaster earthquake mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=edugame" title=" edugame"> edugame</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a> </p> <a href="https://publications.waset.org/abstracts/72800/android-based-edugame-application-for-earthquakes-disaster-mitigation-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Measures for Earthquake Risk Reduction in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farah%20Lazzali">Farah Lazzali</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamina%20Ait%20Meziane"> Yamina Ait Meziane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent earthquakes in Algeria have demonstrated the need for seismic risk reduction. In fact, the latest major earthquake that affected the Algiers-Boumerdes region in 2003 caused excessive levels of loss of life and property. Economic, social and environmental damage were also experienced. During the three days following the event, a relatively weak coordination of public authority was noted. Many localities did not receive any relief due to lack of information from concerned authorities and delay in connecting damaged roads. Following this event, Algerian government and civil society has recognized the urgent need for an appropriate and immediate seismic risk mitigation strategy. This paper describes procedures for emergency response following past earthquakes in Algeria and provides a brief review of risk mitigation activities since 1980. The paper also aims to provide measures to reduce earthquake risk through general strategy and practical implementation of the mitigation actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction" title=" risk reduction"> risk reduction</a> </p> <a href="https://publications.waset.org/abstracts/29675/measures-for-earthquake-risk-reduction-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asgary">Ali Asgary</a>, <a href="https://publications.waset.org/abstracts/search?q=Haopeng%20Zhou"> Haopeng Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghassem%20Tofighi"> Ghassem Tofighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title="virtual reality">virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20damage" title=" earthquake damage"> earthquake damage</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20content" title=" building content"> building content</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20risks" title=" indoor risks"> indoor risks</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20risk%20mitigation" title=" earthquake risk mitigation"> earthquake risk mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20design" title=" interior design"> interior design</a>, <a href="https://publications.waset.org/abstracts/search?q=unity%20game%20engine" title=" unity game engine"> unity game engine</a>, <a href="https://publications.waset.org/abstracts/search?q=oculus" title=" oculus"> oculus</a> </p> <a href="https://publications.waset.org/abstracts/166448/a-virtual-reality-simulation-tool-for-reducing-the-risk-of-building-content-during-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Effects of Viscoelastic and Viscous Links on Seismic Pounding Mitigation in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mirzagoltabar%20Roshan">Ali Reza Mirzagoltabar Roshan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmadi%20Taleshian"> H. Ahmadi Taleshian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Eliasi"> A. Eliasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of viscous and viscoelastic dampers as an efficient technique for seismic pounding mitigation. To aim that, 15 steel frame models with different numbers of stories and bays and also with different types of ductility were analyzed under 10 different earthquake records for assigned values of link damping and stiffness and the most suitable values of damper parameters (damping and stiffness) are presented. Moreover, it is demonstrated that viscous dampers can perform as efficiently as viscoelastic alternative with a more economical aspect for pounding mitigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacent%20buildings" title="adjacent buildings">adjacent buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20distance" title=" separation distance"> separation distance</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20pounding%20mitigation" title=" seismic pounding mitigation"> seismic pounding mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20link" title=" viscoelastic link"> viscoelastic link</a> </p> <a href="https://publications.waset.org/abstracts/68289/effects-of-viscoelastic-and-viscous-links-on-seismic-pounding-mitigation-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20life" title=" human life"> human life</a> </p> <a href="https://publications.waset.org/abstracts/169037/earthquake-risk-assessment-using-out-of-sequence-thrust-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation" title="earthquake mitigation">earthquake mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a> </p> <a href="https://publications.waset.org/abstracts/169831/understanding-the-impact-of-out-of-sequence-thrust-dynamics-on-earthquake-mitigation-implications-for-hazard-assessment-and-disaster-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> Designing a Learning Table and Game Cards for Preschoolers for Disaster Risk Reduction (DRR) on Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Mirzaei">Mehrnoosh Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are among the most vulnerable at the occurrence of natural disasters such as earthquakes. Most of the management and measures which are considered for both before and during an earthquake are neither suitable nor efficient for this age group and cannot be applied. On the other hand, due to their age, it is hard to educate and train children to learn and understand the concept of earthquake risk mitigation as matters like earthquake prevention and safe places during an earthquake are not easily perceived. To our knowledge, children’s awareness of such concepts via their own world with the help of games is the best training method in this case. In this article, the researcher has tried to consider the child an active element before and during the earthquake. With training, provided by adults before the incidence of an earthquake, the child has the ability to learn disaster risk reduction (DRR). The focus of this research is on learning risk reduction behavior and regarding children as an individual element. The information of this article has been gathered from library resources, observations and the drawings of 10 children aged 5 whose subject was their conceptual definition of an earthquake who were asked to illustrate their conceptual definition of an earthquake; the results of 20 questionnaires filled in by preschoolers along with information gathered by interviewing them. The design of the suitable educational game, appropriate for the needs of this age group, has been made based on the theory of design with help of the user and the priority of children’s learning needs. The final result is a package of a game which is comprised of a learning table and matching cards showing sign marks for safe and unsafe places which introduce the safe behaviors and safe locations before and during the earthquake. These educational games can be used both in group contexts in kindergartens and on an individual basis at home, and they help in earthquake risk reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20education" title="disaster education">disaster education</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20sign%20marks" title=" earthquake sign marks"> earthquake sign marks</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20table" title=" learning table"> learning table</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20card" title=" matching card"> matching card</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20reduction%20behavior" title=" risk reduction behavior"> risk reduction behavior</a> </p> <a href="https://publications.waset.org/abstracts/98228/designing-a-learning-table-and-game-cards-for-preschoolers-for-disaster-risk-reduction-drr-on-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Aris%20Burhanudin">Muhamad Aris Burhanudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Angga%20Firmansyas"> Angga Firmansyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bagus%20Jaya%20Santosa"> Bagus Jaya Santosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20TOPSIS" title=" fuzzy TOPSIS"> fuzzy TOPSIS</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami" title=" tsunami"> tsunami</a> </p> <a href="https://publications.waset.org/abstracts/29246/earthquake-identification-to-predict-tsunami-in-andalas-island-indonesia-using-back-propagation-method-and-fuzzy-topsis-decision-seconder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Dynamics of Understanding Earthquake Precursors-A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarada%20Nivedita%20Bhuyan">Sarada Nivedita Bhuyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake is the sudden, rapid movement of the earth’s crust and is the natural means of releasing stress. Tectonic plates play a major role for earthquakes as tectonic plates are the crust of the planet. The boundary lines of tectonic plates are usually known as fault lines. To understand an earthquake before its occurrence, different types of earthquake precursors are studied by different researchers. Surface temperature, strange cloud cover, earth’s electric field, geomagnetic phenomena, ground water level, active faults, ionospheric anomalies, tectonic movements are taken as parameters for earthquake study by different researchers. In this paper we tried to gather complete and helpful information of earthquake precursors which have been studied until now. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20precursors" title="earthquake precursors">earthquake precursors</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20plates" title=" tectonic plates"> tectonic plates</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a> </p> <a href="https://publications.waset.org/abstracts/37407/dynamics-of-understanding-earthquake-precursors-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Surveying Earthquake Vulnerabilities of District 13 of Kabul City, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mohammadi">Mohsen Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Fujimi"> Toshio Fujimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High population and irregular urban development in Kabul city, Afghanistan's capital, are among factors that increase its vulnerability to earthquake disasters (on top of its location in a high seismic region); this can lead to widespread economic loss and casualties. This study aims to evaluate earthquake risks in Kabul's 13th district based on scientific data. The research data, which include hazard curves of Kabul, vulnerability curves, and a questionnaire survey through sampling in district 13, have been incorporated to develop risk curves. To estimate potential casualties, we used a set of M parameters in a model developed by Coburn and Spence. The results indicate that in the worst case scenario, more than 90% of district 13, which comprises mostly residential buildings, is exposed to high risk; this may lead to nearly 1000 million USD economic loss and 120 thousand casualties (equal to 25.88% of the 13th district's population) for a nighttime earthquake. To reduce risks, we present the reconstruction of the most vulnerable buildings, which are primarily adobe and masonry buildings. A comparison of risk reduction between reconstructing adobe and masonry buildings indicates that rebuilding adobe buildings would be more effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20risk%20evaluation" title="earthquake risk evaluation">earthquake risk evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul" title=" Kabul"> Kabul</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/47163/surveying-earthquake-vulnerabilities-of-district-13-of-kabul-city-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> On the Development of a Homogenized Earthquake Catalogue for Northern Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Grigoratos">I. Grigoratos</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Monteiro"> R. Monteiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project &lsquo;Improved Tools for Disaster Risk Mitigation in Algeria&rsquo; (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for M<sub>c</sub>, due to the sparse network, and a nonlinear trend between M<sub>w</sub> and body wave (m<sub>b</sub>) or local magnitude (M<sub>L</sub>), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conversion%20equation" title="conversion equation">conversion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnitude%20of%20completeness" title=" magnitude of completeness"> magnitude of completeness</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20events" title=" seismic events"> seismic events</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a> </p> <a href="https://publications.waset.org/abstracts/92965/on-the-development-of-a-homogenized-earthquake-catalogue-for-northern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> A Brief Overview of Seven Churches in Van Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20Guler"> Soner Guler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gulen"> Mustafa Gulen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20structures" title=" historical structures"> historical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20province" title=" Van province"> Van province</a>, <a href="https://publications.waset.org/abstracts/search?q=church" title=" church"> church</a> </p> <a href="https://publications.waset.org/abstracts/21338/a-brief-overview-of-seven-churches-in-van-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> Homelessness and Disaster Mitigation: An Exploratory Study into How Casualties Can Be Reduced with the Homeless</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blythe%20Maltby">Blythe Maltby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homeless populations are one of the sections of society most vulnerable to the effects of natural disasters. Channels of communication to these populations are limited as they lack access to mainstream modes of emergency notification, often being the last to know about state emergencies. This study aims to answer if there is a way that cities and policies be designed to help reduce casualty rates to the homeless during state emergencies, such as earthquake and tsunami preparations. The study used a qualitative research approach, namely by speaking to levels of government, homelessness charities and workers and others about preparations and their experiences with the response of state emergencies. The proposed paper may help countries identify the gaps in their preparations to help facilitate better resources to look after these vulnerable populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20mitigation" title=" disaster mitigation"> disaster mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=homeless" title=" homeless"> homeless</a>, <a href="https://publications.waset.org/abstracts/search?q=Vancouver" title=" Vancouver"> Vancouver</a> </p> <a href="https://publications.waset.org/abstracts/51302/homelessness-and-disaster-mitigation-an-exploratory-study-into-how-casualties-can-be-reduced-with-the-homeless" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Lu">Ming Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Li"> Xiaojun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bodi%20Lu"> Bodi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Juehui%20Xing"> Juehui Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attribute%20index" title="attribute index">attribute index</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20method" title=" classification method"> classification method</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20damage%20picture" title=" earthquake damage picture"> earthquake damage picture</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20structure" title=" engineering structure"> engineering structure</a> </p> <a href="https://publications.waset.org/abstracts/66126/attribute-index-and-classification-method-of-earthquake-damage-photographs-of-engineering-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">765</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1508</span> Verification of a Simple Model for Rolling Isolation System Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aarthi%20Sridhar">Aarthi Sridhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20Gavin"> Henri Gavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Karah%20Kelly"> Karah Kelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20hazard%20mitigation" title="earthquake hazard mitigation">earthquake hazard mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20isolation" title=" earthquake isolation"> earthquake isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss%E2%80%99s%20Principle%20of%20Least%20Constraint" title=" Gauss’s Principle of Least Constraint"> Gauss’s Principle of Least Constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20isolation%20system" title=" rolling isolation system"> rolling isolation system</a> </p> <a href="https://publications.waset.org/abstracts/81063/verification-of-a-simple-model-for-rolling-isolation-system-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1507</span> Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Winston%20Oreta">Andres Winston Oreta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title="earthquake engineering">earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=experiential%20learning" title=" experiential learning"> experiential learning</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table" title=" shake table"> shake table</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title=" civil engineering"> civil engineering</a> </p> <a href="https://publications.waset.org/abstracts/189318/experiential-learning-in-an-earthquake-engineering-course-using-online-tools-and-shake-table-exercises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1506</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1505</span> Seismic Vulnerability Mitigation of Non-Engineered Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tariq%20A.%20Chaudhary">Muhammad Tariq A. Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tremendous loss of life that resulted in the aftermath of recent earthquakes in developing countries is mostly due to the collapse of non-engineered and semi-engineered building structures. Such structures are used as houses, schools, primary healthcare centres and government offices. These building are classified structurally into two categories viz. non-engineered and semi-engineered. Non-engineered structures include: adobe, Unreinforced Masonry (URM) and wood buildings. Semi-engineered buildings are mostly low-rise (up to 3 story) light concrete frame structures or masonry bearing walls with reinforced concrete slab. This paper presents an overview of the typical damage observed in non-engineered structures and their most likely causes in the past earthquakes with specific emphasis on the performance of such structures in the 2005 Kashmir earthquake. It is demonstrated that seismic performance of these structures can be improved from life-safety viewpoint by adopting simple low-cost modifications to the existing construction practices. Incorporation of some of these practices in the reconstruction efforts after the 2005 Kashmir earthquake are examined in the last section for mitigating seismic risk hazard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashmir%20earthquake" title="Kashmir earthquake">Kashmir earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=non-engineered%20buildings" title=" non-engineered buildings"> non-engineered buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20details" title=" structural details"> structural details</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20strengthening" title=" structural strengthening"> structural strengthening</a> </p> <a href="https://publications.waset.org/abstracts/7382/seismic-vulnerability-mitigation-of-non-engineered-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1504</span> Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akk%C3%B6se">Mehmet Akköse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motion" title="near-fault ground motion">near-fault ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=pounding%20analysis" title=" pounding analysis"> pounding analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP2000" title=" SAP2000"> SAP2000</a> </p> <a href="https://publications.waset.org/abstracts/37307/effects-of-near-fault-ground-motions-on-earthquake-induced-pounding-response-of-rc-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1503</span> A Safety-Door for Earthquake Disaster Prevention - Part II</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safety of door has not given much attention. The main problem of doors during and after earthquake is that they are unable to be opened because deviation from its original position by the lateral load. The aim of this research is to develop and evaluate a safety door that keeps the door frame in its original position or keeps its edge angles perpendicular during and post-earthquake. Nonlinear finite element analysis was conducted in order to evaluate the structural performance and behavior of the proposed door under both monotonic and cyclic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety-door" title="safety-door">safety-door</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title=" earthquake disaster"> earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20yield%20point%20steel" title=" low yield point steel"> low yield point steel</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20energy%20dissipating%20device" title=" passive energy dissipating device"> passive energy dissipating device</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/44036/a-safety-door-for-earthquake-disaster-prevention-part-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1502</span> Statistical Physics Model of Seismic Activation Preceding a Major Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20S.%20Brox">Daniel S. Brox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20activation" title="seismic activation">seismic activation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20physics" title=" statistical physics"> statistical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=geodynamics" title=" geodynamics"> geodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/192295/statistical-physics-model-of-seismic-activation-preceding-a-major-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1501</span> Lessons Learnt from Moment Magnitude 7.8 Gorkha, Nepal Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Gurung">Narayan Gurung</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawu%20Wang"> Fawu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Kumar%20Dahal"> Ranjan Kumar Dahal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nepal is highly prone to earthquakes and has witnessed at least one major earthquake in 80 to 90 years interval. The Gorkha earthquake, that measured 7.8 RS in magnitude and struck Nepal on 25th April 2015, after 81 years since Mw 8.3 Nepal Bihar earthquake in 1934, was the largest earthquake after Mw 8.3 Nepal Bihar earthquake. In this paper, an attempt has been made to highlight the lessons learnt from the MwW 7.8 Gorkha (Nepal) earthquake. Several types of damage patterns in buildings were observed for reinforced concrete buildings, as well as for unreinforced masonry and adobe houses in the earthquake of 25 April 2015. Many field visits in the affected areas were conducted, and thus, associated failure and damage patterns were identified and analyzed. Damage patterns in non-engineered buildings, middle and high-rise buildings, commercial complexes, administrative buildings, schools and other critical facilities are also included from the affected districts. For most buildings, the construction and structural deficiencies have been identified as the major causes of failure; however, topography, local soil amplification, foundation settlement, liquefaction associated damages and buildings built in hazard-prone areas were also significantly observed for the failure or damages to buildings and hence are reported. Finally, the lessons learnt from Mw 7.8 Gorkha (Nepal) earthquake are presented in order to mitigate impacts of future earthquakes in Nepal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorkha%20earthquake" title="Gorkha earthquake">Gorkha earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structure" title=" reinforced concrete structure"> reinforced concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Nepal" title=" Nepal"> Nepal</a>, <a href="https://publications.waset.org/abstracts/search?q=lesson%20learnt" title=" lesson learnt"> lesson learnt</a> </p> <a href="https://publications.waset.org/abstracts/88548/lessons-learnt-from-moment-magnitude-78-gorkha-nepal-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1500</span> Development of Quasi Real-Time Comprehensive System for Earthquake Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Liu">Zhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Jiang"> Hui Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Li"> Jin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunhao%20Chen"> Kunhao Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Langfang%20Zhang"> Langfang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast acquisition of the seismic information and accurate assessment of the earthquake disaster is the key problem for emergency rescue after a destructive earthquake. In order to meet the requirements of the earthquake emergency response and rescue for the cities and counties, a quasi real-time comprehensive evaluation system for earthquake disaster is developed. Based on monitoring data of Micro-Electro-Mechanical Systems (MEMS) strong motion network, structure database of a county area and the real-time disaster information by the mobile terminal after an earthquake, fragility analysis method and dynamic correction algorithm are synthetically obtained in the developed system. Real-time evaluation of the seismic disaster in the county region is finally realized to provide scientific basis for seismic emergency command, rescue and assistant decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quasi%20real-time" title="quasi real-time">quasi real-time</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster%20data%20collection" title=" earthquake disaster data collection"> earthquake disaster data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS%20accelerometer" title=" MEMS accelerometer"> MEMS accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20correction" title=" dynamic correction"> dynamic correction</a>, <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20evaluation" title=" comprehensive evaluation"> comprehensive evaluation</a> </p> <a href="https://publications.waset.org/abstracts/84492/development-of-quasi-real-time-comprehensive-system-for-earthquake-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1499</span> Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20Hsueh-Sheng">Chang Hsueh-Sheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Tzu-Ling"> Chen Tzu-Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20disaster" title="earthquake disaster">earthquake disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20growth" title=" urban growth"> urban growth</a>, <a href="https://publications.waset.org/abstracts/search?q=carrying%20capacity" title=" carrying capacity"> carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=%2Fgeographical%20weighted%20principle%20components%20%28GWPCA%29" title=" /geographical weighted principle components (GWPCA)"> /geographical weighted principle components (GWPCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=bivariate%20spatial%20association%20statistic" title=" bivariate spatial association statistic"> bivariate spatial association statistic</a> </p> <a href="https://publications.waset.org/abstracts/45659/exploring-coexisting-opportunity-of-earthquake-risk-and-urban-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1498</span> Pre-Primary Schools’ Earthquake Safety Initiative in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kourou">A. Kourou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ioakeimidou"> A. Ioakeimidou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gakou"> A. Gakou </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greece due to its location in the Eastern Mediterranean region is characterized by a high degree of seismicity and occurrence of severe earthquakes. It is generally accepted that preventive planning is vital in mitigating impacts, protecting those who are the most vulnerable namely children and increasing the degree of resilience of local communities. Worldwide, States have highlighted the need to ensure the safety of early childhood environments in case of disaster. A great number of children are enrolled in daycare facilities, so building and improving the preparedness of pre-primary schools to prevent injuries and fatalities in case of an earthquake becomes an important policy issue. It is more than evident that preparedness in early preschool level will be increased through awareness and education of the people who work to pre-primary classes and provide early childhood care. The aim of the present study is to assess the level of awareness and preparedness of the Greek pre-primary schools staff concerning earthquake protection issues, as well as their risk mitigation behaviors and earthquake management in case of a strong event. In this framework, specific questionnaire was developed and filled by the abovementioned target group at 30 different municipalities of Greece (2014-2016). Also in the framework of this study it is presented the Pre-Primary Schools’ Earthquake Safety Initiative that has been undertaken by Earthquake Planning and Protection Organization (EPPO) the last years. This initiative aims to develop disaster-resilient day care centers through awareness, self-help, cooperation and education. Recognizing the necessity of integration of the disaster safety concept at pre-primary environments, EPPO published practical guidelines that focused on earthquake planning of these workspaces. Furthermore, dozens of seminars are implemented in municipality or prefecture-level every year by EPPO, in order the early childhood schools’ staff to be appropriately educated and adequately trained to face the earthquake risk. Great progress has been made towards building awareness and increasing preschool preparedness in Greece but significant gaps still remain. Anyway, it is extremely important that the implementation of effective programs and practices and the broad collaboration of all involved parties have been recognized as essential in order to develop a comprehensive disaster management system at preschool environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20plans" title=" emergency plans"> emergency plans</a>, <a href="https://publications.waset.org/abstracts/search?q=preparedness" title=" preparedness"> preparedness</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-primary%20schools" title=" pre-primary schools"> pre-primary schools</a> </p> <a href="https://publications.waset.org/abstracts/75606/pre-primary-schools-earthquake-safety-initiative-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1497</span> Preserving Heritage in the Face of Natural Disasters: Lessons from the Bam Experience in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Seddighi">Mohammad Javad Seddighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Avar%20Almukhtar"> Avar Almukhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of natural disasters, such as floods and earthquakes, can cause significant damage to heritage sites and surrounding areas. In Iran, the city of Bam was devastated by an earthquake in 2003, which had a major impact on the rivers and watercourses around the city. This study aims to investigate the environmental design techniques and sustainable hazard mitigation strategies that can be employed to preserve heritage sites in the face of natural disasters, using the Bam experience as a case study. The research employs a mixed-methods approach, combining both qualitative and quantitative data collection and analysis methods. The study begins with a comprehensive literature review of recent publications on environmental design techniques and sustainable hazard mitigation strategies in heritage conservation. This is followed by a field study of the rivers and watercourses around Bam, including the Adoori River (Talangoo) and other watercourses, to assess the current conditions and identify potential hazards. The data collected from the field study is analysed using statistical methods and GIS mapping techniques. The findings of this study reveal the importance of sustainable hazard mitigation strategies and environmental design techniques in preserving heritage sites during natural disasters. The study suggests that these techniques can be used to prevent the outbreak of another natural disaster in Bam and the surrounding areas. Specifically, the study recommends the establishment of a comprehensive early warning system, the creation of flood-resistant landscapes, and the use of eco-friendly building materials in the reconstruction of heritage sites. These findings contribute to the current knowledge of sustainable hazard mitigation and environmental design in heritage conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20disasters" title="natural disasters">natural disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20conservation" title=" heritage conservation"> heritage conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20hazard%20mitigation" title=" sustainable hazard mitigation"> sustainable hazard mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20design" title=" environmental design"> environmental design</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape%20architecture" title=" landscape architecture"> landscape architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title=" flood management"> flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20resilience" title=" disaster resilience"> disaster resilience</a> </p> <a href="https://publications.waset.org/abstracts/165658/preserving-heritage-in-the-face-of-natural-disasters-lessons-from-the-bam-experience-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1496</span> High School Students’ Seismic Risk Perception and Preparedness in Shavar, Dhaka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Lutfur%20Rahman">Mohammad Lutfur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> School students of Dhaka are in extreme risk of natural disasters. However, the study on assessment of the real scenario of high school students about perceptions of earthquake is very little. The purpose of this cross-sectional study is to assess the seismic risk perception and preparedness levels about earthquake among high school students in Shavar, Dhaka. A questionnaire was developed, and data collection was done about a group of high school students in seven classrooms. The author uses a method of surveying high school students to identify and describe the factors that influence their knowledge and perceptions about earthquake. This study examines gender and grade differences in perceived risk and communication behavior in response to the earthquake. Female students’ preparation, participation, and communication with family are more frequent than that of male students. Female students have been found to be more likely to learn about a disaster than male students. Higher grade students have more awareness but less preparedness about earthquake than that of the younger one. This research concludes that irrespective of grades, high school students are vulnerable to earthquake due to the lack of a seismic education program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20perception" title=" risk perception"> risk perception</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/100942/high-school-students-seismic-risk-perception-and-preparedness-in-shavar-dhaka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1495</span> Characteristics of Neonates and Child Health Outcomes after the Mamuju Earthquake Disaster</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimas%20Tri%20Anantyo">Dimas Tri Anantyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsa-Zsa%20Ayu%20Laksmi"> Zsa-Zsa Ayu Laksmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhie%20Nur%20Radityo"> Adhie Nur Radityo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsita%20Eka%20Rini"> Arsita Eka Rini</a>, <a href="https://publications.waset.org/abstracts/search?q=Gatot%20Irawan%20Sarosa"> Gatot Irawan Sarosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A six-point-two-magnitude earthquake rocked Mamuju District, West Sulawesi Province, Indonesia, on 15 January 2021, causing significant health issues for the affected community, particularly among vulnerable populations such as neonates and children. The aim of this study is to examine and describe the diseases diagnosed in the pediatric population in Mamuju 14 days after the earthquake. This study uses a prospective observational study of the pediatric population presenting at West Sulawesi Regional Hospital, Mamuju Regional Public Hospital, and Bhayangkara Hospital for the period of 14 days after the earthquake. Demographic and clinical information were recorded. One hundred and fifty-three children were admitted to the health center. Children younger than six years old were the highest proportion (78%). Out of 153 children, 82 of them were male (54%). The most frequently diagnosed disease during the first and second weeks after the earthquake was respiratory problems, followed by gastrointestinal problems that showed an increase in incidence in the second week. This study found that age has a correlation with frequent disease in children after an earthquake. Respiratory and gastrointestinal problems were found to be the most common diseases among the pediatric population in Mamuju after the earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20outcomes" title="health outcomes">health outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric%20population" title=" pediatric population"> pediatric population</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamuju" title=" Mamuju"> Mamuju</a> </p> <a href="https://publications.waset.org/abstracts/171174/characteristics-of-neonates-and-child-health-outcomes-after-the-mamuju-earthquake-disaster" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1494</span> Estimation of Maximum Earthquake for Gujarat Region, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Saxena">Ashutosh Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Pallav"> Kumar Pallav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramji%20Dwivedi"> Ramji Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study estimates the seismicity parameter 'b' and maximum possible magnitude of an earthquake (Mmax) for Gujarat region with three well-established methods viz. Kijiko parametric model (KP), Kijiko-Sellevol-Bayern (KSB) and Tapered Gutenberg-Richter (TGR), as a combined seismic source regime. The earthquake catalogue is prepared for a period of 1330 to 2013 in the region Latitudes 20o N to 250 N and Longitudinally extending from 680 to 750 E for earthquake moment magnitude (Mw) ≥4.0. The ’a’ and 'b' value estimated for the region as 4.68 and 0.58. Further, Mmax estimated as 8.54 (± 0.29), 8.69 (± 0.48), and 8.12 with KP, KSB, and TGR, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mmax" title="Mmax">Mmax</a>, <a href="https://publications.waset.org/abstracts/search?q=seismicity%20parameter" title=" seismicity parameter"> seismicity parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=Gujarat" title=" Gujarat"> Gujarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapered%20Gutenberg-Richter" title=" Tapered Gutenberg-Richter "> Tapered Gutenberg-Richter </a> </p> <a href="https://publications.waset.org/abstracts/18662/estimation-of-maximum-earthquake-for-gujarat-region-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10