CINXE.COM
Search results for: technology in agriculture
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: technology in agriculture</title> <meta name="description" content="Search results for: technology in agriculture"> <meta name="keywords" content="technology in agriculture"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="technology in agriculture" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="technology in agriculture"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9055</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: technology in agriculture</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9055</span> Identifying the Phases of Indian Agriculture Towards Desertification: An Introspect of Karnataka State, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Das">Arun Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian agriculture is acclaimed from the dates of Indus civilization (2500 BC). Since this time until the day, there were tremendous expansion in terms of space and technology has taken place. Abrupt growth in technology took place past one and half century. Consequent to this development, the land which was brought under agriculture in the initial stages of introducing agriculture for the first time, that land is not possessing the same physical condition. Either it has lost the productive capacity or modified into semi agriculture land. On the grounds of its capacity and interwoven characteristics seven phases of agriculture scenario has been identified. Most of the land is on the march of desertification. Identifying the stages and the phase of the agriculture scenario is most relevant from the point of view of food security at regional, national and at global level. Secondly decisive measure can put back the degenerating environmental condition into arrest. GIS and Remote sensing applications have been used to identify the phases of agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20phases" title="agriculture phases">agriculture phases</a>, <a href="https://publications.waset.org/abstracts/search?q=desertification" title=" desertification"> desertification</a>, <a href="https://publications.waset.org/abstracts/search?q=deforestation" title=" deforestation"> deforestation</a>, <a href="https://publications.waset.org/abstracts/search?q=foods%20security" title=" foods security"> foods security</a>, <a href="https://publications.waset.org/abstracts/search?q=transmigration" title=" transmigration "> transmigration </a> </p> <a href="https://publications.waset.org/abstracts/25346/identifying-the-phases-of-indian-agriculture-towards-desertification-an-introspect-of-karnataka-state-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9054</span> A Survey on Ambient Intelligence in Agricultural Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Angel">C. Angel</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Asha"> S. Asha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds, and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20intelligence" title="ambient intelligence">ambient intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20technology" title=" agricultural technology"> agricultural technology</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20agriculture" title=" smart agriculture"> smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20farming" title=" precise farming"> precise farming</a> </p> <a href="https://publications.waset.org/abstracts/19359/a-survey-on-ambient-intelligence-in-agricultural-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9053</span> Application of Drones in Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Taherlouei%20Safa">Reza Taherlouei Safa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aboonajmi"> Mohammad Aboonajmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone" title="drone">drone</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20income" title=" farmer income"> farmer income</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/170574/application-of-drones-in-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9052</span> The Role of ICT in Engaging Youth in Agricultural Transformation of Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Adedugbe">Adebola Adedugbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the mainstay of most countries in Africa. It employs up to 90 percent of the rural workforce, who are mostly youth and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. This paper identifies the role of ICT as a tool for attracting youths to agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=youth" title=" youth"> youth</a> </p> <a href="https://publications.waset.org/abstracts/16076/the-role-of-ict-in-engaging-youth-in-agricultural-transformation-of-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9051</span> The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Makram%20Ibrahim%20Salib">Ibrahim Makram Ibrahim Salib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land" title="agriculture land">agriculture land</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land%20loss" title=" agriculture land loss"> agriculture land loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul%20city" title=" Kabul city"> Kabul city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20land%20expansion" title=" urban land expansion"> urban land expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization%20agriculture%20yield%20growth" title=" urbanization agriculture yield growth"> urbanization agriculture yield growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20prediction" title=" agriculture yield prediction"> agriculture yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=explorative%20data%20analysis" title=" explorative data analysis"> explorative data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models%20drone" title=" regression models drone"> regression models drone</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20income" title=" farmer income"> farmer income</a> </p> <a href="https://publications.waset.org/abstracts/183735/the-effect-of-artificial-intelligence-on-the-production-of-agricultural-lands-and-labor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9050</span> Engaging African Youth in Agribusiness through ICT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Adedugbe">Adebola Adedugbe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the mainstay of most countries in Africa. It employs up to 90 per cent of the rural workforce, who are mostly youths and women. Engaging youths in Information and Communications Technology (ICT) in agriculture is critical to economic and agricultural development of the African continent. The objective of this paper is to identify and mobilize the potentials of young Africans in agriculture through ICT and recognize their role as the dominant driver for sustainable agricultural development in Africa. The youth is vibrant, energetic, creative, and innovative and has the potential to play a significant role sustainable agriculture. This paper identifies the role of ICT as a tool for attracting youths in agriculture. The development of ICT is important in stimulating youths in SME’s to compete favorably and effectively as a way to fight poverty through job and wealth creation. It is one of the strategies for promoting entrepreneurship by increasing the availability and diversity of online information. ICT has become a key factor in economic development in most developing countries. The exchange of information is essential for stakeholders in the agricultural sector, as it is the tool to establish, develop and manage efforts to improve performance, productivity and economic competitiveness in local and international markets. In this regard, Information and Communications Technology (ICT) is a powerful tool, fast and innovative to facilitate the exchange of information among all stakeholders in the agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT" title=" ICT"> ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=youth" title=" youth"> youth</a> </p> <a href="https://publications.waset.org/abstracts/16318/engaging-african-youth-in-agribusiness-through-ict" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9049</span> Nanotechnology: A New Revolution to Increase Agricultural Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshu%20Chaudhary">Reshu Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Sengar"> R. S. Sengar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To increase the agricultural production Indian farmer needs to aware of the latest technology i.e. precision farming to maximize the crop yield and minimize the input (fertilizer, pesticide etc.) through monitoring the environmental factors. Biotechnology and information technology have provided lots of opportunities for the development of agriculture. But, still we have to do much more for increasing our agricultural production in order to achieve the target growth of agriculture to secure food, to eliminate poverty and improve living style, to enhance agricultural exports and national income and to improve quality of agricultural products. Nanotechnology can be a great element to satisfy these requirements and to boost the multi-dimensional development of agriculture in order to fulfill the dream of Indian farmers. Nanotechnology is the most rapidly growing area of science and technology with its application in physical science, chemical science, life science, material science and earth science. Nanotechnology is a part of any nation’s future. Research in nanotechnology has extremely high potential to benefit society through application in agricultural sciences. Nanotechnology has greater potential to bring revolution in the agricultural sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yield" title=" crop yield"> crop yield</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/24021/nanotechnology-a-new-revolution-to-increase-agricultural-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9048</span> A Literature Study on IoT Based Monitoring System for Smart Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonu%20Rana">Sonu Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Verma"> Jyoti Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Gautam"> A. K. Gautam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most developing countries like India, the majority of the population heavily relies on agriculture for their livelihood. The yield of agriculture is heavily dependent on uncertain weather conditions like a monsoon, soil fertility, availability of irrigation facilities and fertilizers as well as support from the government. The agricultural yield is quite less compared to the effort put in due to inefficient agricultural facilities and obsolete farming practices on the one hand and lack of knowledge on the other hand, and ultimately agricultural community does not prosper. It is therefore essential for the farmers to improve their harvest yield by the acquisition of related data such as soil condition, temperature, humidity, availability of irrigation facilities, availability of, manure, etc., and adopt smart farming techniques using modern agricultural equipment. Nowadays, using IOT technology in agriculture is the best solution to improve the yield with fewer efforts and economic costs. The primary focus of this work-related is IoT technology in the agriculture field. By using IoT all the parameters would be monitored by mounting sensors in an agriculture field held at different places, will collect real-time data, and could be transmitted by a transmitting device like an antenna. To improve the system, IoT will interact with other useful systems like Wireless Sensor Networks. IoT is exploring every aspect, so the radio frequency spectrum is getting crowded due to the increasing demand for wireless applications. Therefore, Federal Communications Commission is reallocating the spectrum for various wireless applications. An antenna is also an integral part of the newly designed IoT devices. The main aim is to propose a new antenna structure used for IoT agricultural applications and compatible with this new unlicensed frequency band. The main focus of this paper is to present work related to these technologies in the agriculture field. This also presented their challenges & benefits. It can help in understanding the job of data by using IoT and correspondence advancements in the horticulture division. This will help to motivate and educate the unskilled farmers to comprehend the best bits of knowledge given by the huge information investigation utilizing smart technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20agriculture" title="smart agriculture">smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20technology" title=" agriculture technology"> agriculture technology</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analytics" title=" data analytics"> data analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20technology" title=" smart technology"> smart technology</a> </p> <a href="https://publications.waset.org/abstracts/150099/a-literature-study-on-iot-based-monitoring-system-for-smart-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9047</span> The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Ghatrehsamani">Shirin Ghatrehsamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farming" title=" smart farming"> smart farming</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20agriculture" title=" digital agriculture"> digital agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20adoption" title=" technology adoption"> technology adoption</a> </p> <a href="https://publications.waset.org/abstracts/150169/the-status-of-precision-agricultural-technology-adoption-on-row-crop-farms-vs-specialty-crop-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9046</span> Advancing Agriculture through Technology: An Abstract of Research Findings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Aninagyei-Bonsu">Eugene Aninagyei-Bonsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Agriculture has been a cornerstone of human civilization, ensuring food security and livelihoods for billions of people worldwide. In recent decades, rapid advancements in technology have revolutionized the agricultural sector, offering innovative solutions to enhance productivity, sustainability, and efficiency. This abstract summarizes key findings from a research study that explores the impacts of technology in modern agriculture and its implications for future food production systems. Methodologies: The research study employed a mixed-methods approach, combining quantitative data analysis with qualitative interviews and surveys to gain a comprehensive understanding of the role of technology in agriculture. Data was collected from various stakeholders, including farmers, agricultural technicians, and industry experts, to capture diverse perspectives on the adoption and utilization of agricultural technologies. The study also utilized case studies and literature reviews to contextualize the findings within the broader agricultural landscape. Major Findings: The research findings reveal that technology plays a pivotal role in transforming traditional farming practices and driving innovation in agriculture. Advanced technologies such as precision agriculture, drone technology, genetic engineering, and smart irrigation systems have significantly improved crop yields, reduced environmental impact, and optimized resource utilization. Farmers who have embraced these technologies have reported increased productivity, enhanced profitability, and improved resilience to environmental challenges. Furthermore, the study highlights the importance of accessible and affordable technology solutions for smallholder farmers in developing countries. Mobile applications, sensor technologies, and digital platforms have enabled small-scale farmers to access market information, weather forecasts, and agricultural best practices, empowering them to make informed decisions and improve their livelihoods. The research emphasizes the need for targeted policies and investments to bridge the digital divide and promote equitable technology adoption in agriculture. Conclusion: In conclusion, this research underscores the transformative potential of technology in agriculture and its critical role in advancing sustainable food production systems. The findings suggest that harnessing technology can address key challenges facing the agricultural sector, including climate change, resource scarcity, and food insecurity. By embracing innovation and leveraging technology, farmers can enhance their productivity, profitability, and resilience in a rapidly evolving global food system. Moving forward, policymakers, researchers, and industry stakeholders must collaborate to facilitate the adoption of appropriate technologies, support capacity building, and promote sustainable agricultural practices for a more resilient and food-secure future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=technology%20development%20in%20modern%20agriculture" title="technology development in modern agriculture">technology development in modern agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20influence%20of%20information%20technology%20access%20in%20agriculture" title=" the influence of information technology access in agriculture"> the influence of information technology access in agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=analyzing%20agricultural%20technology%20development" title=" analyzing agricultural technology development"> analyzing agricultural technology development</a>, <a href="https://publications.waset.org/abstracts/search?q=analyzing%20of%20the%20frontier%20technology%20of%20agriculture%20loT" title=" analyzing of the frontier technology of agriculture loT"> analyzing of the frontier technology of agriculture loT</a> </p> <a href="https://publications.waset.org/abstracts/188979/advancing-agriculture-through-technology-an-abstract-of-research-findings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9045</span> Urban Land Expansion Impact Assessment on Agriculture Land in Kabul City, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Sharif%20Ahmadi">Ahmad Sharif Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Kajita"> Yoshitaka Kajita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kabul city is experiencing urban land expansion in an unprecedented scale, especially since the last decade. With massive population expansion and fast economic development, urban land has increasingly expanded and encroached upon agriculture land during the urbanization history of the city. This paper evaluates the integrated urban land expansion impact on agriculture land in Kabul city since the formation of the basic structure of the city between 1962-1964. The paper studies the temporal and spatial characteristic of agriculture land and agriculture land loss in Kabul city using geographic information system (GIS) and remote sensing till 2008. Many temporal Landsat Thematic Mapper (TM) imageries were interpreted to detect the temporal and spatial characteristics of agriculture land loss. Different interval study periods, however, had vast difference in the agriculture land loss which is due to the urban land expansion trends in the city. the high number of Agriculture land adjacent to the city center and urban fringe have been converted into urban land during the study period in the city, as the agriculture land is highly correlated with the urban land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land" title="agriculture land">agriculture land</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land%20loss" title=" agriculture land loss"> agriculture land loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul%20city" title=" Kabul city"> Kabul city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20land%20expansion" title=" urban land expansion"> urban land expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/63212/urban-land-expansion-impact-assessment-on-agriculture-land-in-kabul-city-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9044</span> Monitoring and Evaluation of the Distributed Agricultural Machinery of the Department of Agriculture Using a Web-Based Information System with a Short Messaging Service Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20L.%20Caldoza">Jimmy L. Caldoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Erlito%20M.%20Albina"> Erlito M. Albina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information Systems are increasingly being used to monitor and assess government projects as well as improve transparency and combat corruption. With reference to existing information systems relevant to monitoring and evaluation systems adopted by various government agencies from other countries, this research paper aims to help the Philippine government, particularly the Department of Agriculture, in assessing the impact of their programs and projects on their target beneficiaries through the development of the web-based Monitoring and Evaluation Information System with the application of a short messaging system (sms) technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monitoring%20and%20evaluation%20system" title="monitoring and evaluation system">monitoring and evaluation system</a>, <a href="https://publications.waset.org/abstracts/search?q=web-based%20information%20system" title=" web-based information system"> web-based information system</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20messaging%20system%20technology" title=" short messaging system technology"> short messaging system technology</a>, <a href="https://publications.waset.org/abstracts/search?q=database%20structure%20and%20management" title=" database structure and management"> database structure and management</a> </p> <a href="https://publications.waset.org/abstracts/150629/monitoring-and-evaluation-of-the-distributed-agricultural-machinery-of-the-department-of-agriculture-using-a-web-based-information-system-with-a-short-messaging-service-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9043</span> Agriculture Yield Prediction Using Predictive Analytic Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagini%20Sabbineni">Nagini Sabbineni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajini%20T.%20V.%20Kanth"> Rajini T. V. Kanth</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Kiranmayee"> B. V. Kiranmayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20growth" title="agriculture yield growth">agriculture yield growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20prediction" title=" agriculture yield prediction"> agriculture yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=explorative%20data%20analysis" title=" explorative data analysis"> explorative data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models" title=" regression models"> regression models</a> </p> <a href="https://publications.waset.org/abstracts/54159/agriculture-yield-prediction-using-predictive-analytic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9042</span> Technology Use by African Smallholder Farmers and the Significant Mediating Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enobong%20Akpan-Etuk">Enobong Akpan-Etuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The willingness of smallholder farmers in Africa to adopt new agricultural technologies has been low, despite the technological advancement in agriculture. Although technology is seen as the main route out of the traditional methods of food production and poverty, the rate of adoption of agricultural technology remains low among farmers in Africa. Factors affecting the adoption of agricultural technologies include the acquisition of information, characteristics of the technology, education of farmers, social capital, farm size, and household size. This paper explored the literature on the influence of the factors that determine the adoption of technology by smallholder farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smallholder" title="smallholder">smallholder</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a>, <a href="https://publications.waset.org/abstracts/search?q=adoption" title=" adoption"> adoption</a> </p> <a href="https://publications.waset.org/abstracts/151721/technology-use-by-african-smallholder-farmers-and-the-significant-mediating-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9041</span> Ways of Innovative Sustainable Agriculture in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shailja%20Thakur">Shailja Thakur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper it is shown that how farmers are suffering from all sides including vagaries of weather then price fluctuations, demand supply constraints, poor soil health etc. Also the ICT can prove to be of great help if incorporated rightly into Indian agriculture. Some innovative ways to reward farmers and distribution of subsidies to them can improve the current scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20of%20farming" title="cost of farming">cost of farming</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20and%20communication%20technology" title=" information and communication technology"> information and communication technology</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20steps" title=" innovative steps"> innovative steps</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20gardening" title=" roof gardening"> roof gardening</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicomposting" title=" vermicomposting"> vermicomposting</a> </p> <a href="https://publications.waset.org/abstracts/18488/ways-of-innovative-sustainable-agriculture-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9040</span> ePLANETe Idea and Functionalities: Agricultural Sustainability Assessment, Biodiversity, and Stakeholder Involvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Ashiquer%20Rahman">S. K. Ashiquer Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cutting-edge online knowledge mediation system called "ePLANETe" provides a framework for building knowledge, tools and methods for all education, research and sustainable practices and elsewhere, as well as the deliberative assessment support of sustainability, biodiversity, and stakeholder involvement issues of the territorial development sector, e.g., agriculture.The purpose is to present, as sectorial and institutional perception, the 'ePLANETe' concept and functionalities as an experimental online platform for contributing the sustainability assessment, biodiversity, and stakeholder involvement. In the upshot, the concept of 'ePLANETe'isan investigation of the challenges of "online things, technology and application". The new digital technologies are exploited to facilitate collaborative technology and application to territorial development issues, e.g., agriculture. In order to investigate the dealing capacity (Qualitative and Quantitative) of sustainability, biodiversity, and stakeholder involvement of the agriculture sector through the stakeholder-based integrated assessment "Deliberation Support Tools (DST) and INTEGRAAL method" of collective resources. Specifically, this paper focuses on integrating system methodologies with deliberation tools for collective assessment and decision-making in implementing regional plans of agriculture. The aim of this report is to identify effective knowledge and tools and to enable deliberation methodologies regarding practices on the sustainability of agriculture and biodiversity issues, societal responsibilities, and regional planning that will create the scope for qualitative and quantitative assessments of sustainability as a new landmark of the agriculture sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=stakeholder" title=" stakeholder"> stakeholder</a>, <a href="https://publications.waset.org/abstracts/search?q=dst" title=" dst"> dst</a>, <a href="https://publications.waset.org/abstracts/search?q=integraal" title=" integraal"> integraal</a> </p> <a href="https://publications.waset.org/abstracts/164961/eplanete-idea-and-functionalities-agricultural-sustainability-assessment-biodiversity-and-stakeholder-involvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9039</span> A Review Paper on Data Security in Precision Agriculture Using Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tonderai%20Muchenje">Tonderai Muchenje</a>, <a href="https://publications.waset.org/abstracts/search?q=Xolani%20Mkhwanazi"> Xolani Mkhwanazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=EIDE" title=" EIDE"> EIDE</a> </p> <a href="https://publications.waset.org/abstracts/153861/a-review-paper-on-data-security-in-precision-agriculture-using-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9038</span> Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ejoh%20Nonso%20Francis">Ejoh Nonso Francis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> : Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20scheduling" title="irrigation scheduling">irrigation scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20sensors" title=" soil moisture sensors"> soil moisture sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20data" title=" weather data"> weather data</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=onitsha" title=" onitsha"> onitsha</a>, <a href="https://publications.waset.org/abstracts/search?q=anambra%20state" title=" anambra state"> anambra state</a>, <a href="https://publications.waset.org/abstracts/search?q=technology-based%20irrigation%20scheduling" title=" technology-based irrigation scheduling"> technology-based irrigation scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20degradation" title=" environmental degradation"> environmental degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20water%20requirements" title=" crop water requirements"> crop water requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=overwatering" title=" overwatering"> overwatering</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20waste" title=" water waste"> water waste</a>, <a href="https://publications.waset.org/abstracts/search?q=farming%20systems" title=" farming systems"> farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a> </p> <a href="https://publications.waset.org/abstracts/165989/optimizing-irrigation-scheduling-for-sustainable-agriculture-a-case-study-of-a-farm-in-onitsha-anambra-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9037</span> Application of Space Technology at Cadestral Level and Land Resources Management with Special Reference to Bhoomi Sena Project of Uttar Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Srivastava">A. K. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20K.%20Singh"> Sandeep K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Kulshetra"> A. K. Kulshetra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of developing countries of Asian sub-continent like India. Uttar Pradesh is the most populous and fifth largest State of India. Total population of the state is 19.95 crore, which is 16.49% of the country that is more than that of many other countries of the world. Uttar Pradesh occupies only 7.36% of the total area of India. It is a well-established fact that agriculture has virtually been the lifeline of the State’s economy in the past for long and its predominance is likely to continue for a fairly long time in future. The total geographical area of the state is 242.01 lakh hectares, out of which 120.44 lakh hectares is facing various land degradation problems. This needs to be put under various conservation and reclamation measures at much faster pace in order to enhance agriculture productivity in the State. Keeping in view the above scenario Department of Agriculture, Government of Uttar Pradesh has formulated a multi-purpose project namely Bhoomi Sena for the entire state. The main objective of the project is to improve the land degradation using low cost technology available at village level. The total outlay of the project is Rs. 39643.75 Lakhs for an area of about 226000 ha included in the 12th Five Year Plan (2012-13 to 2016-17). It is expected that the total man days would be 310.60 lakh. An attempt has been made to use the space technology like remote sensing, geographical information system, at cadastral level for the overall management of agriculture engineering work which is required for the treatment of degradation of the land. After integration of thematic maps a proposed action plan map has been prepared for the future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPS" title="GPS">GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20survey" title=" topographic survey"> topographic survey</a>, <a href="https://publications.waset.org/abstracts/search?q=cadestral%20mapping" title=" cadestral mapping"> cadestral mapping</a> </p> <a href="https://publications.waset.org/abstracts/5567/application-of-space-technology-at-cadestral-level-and-land-resources-management-with-special-reference-to-bhoomi-sena-project-of-uttar-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9036</span> The Application of Nuclear Energy for Sustainable Agriculture and Food Security: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Farrokhi">Gholamreza Farrokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Sani"> Behzad Sani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of sustainable agricultural are development, improved nutrition, and food security. Sustainable agriculture must be developed that will meet today’s needs for food and other products, as well as preserving the vital natural resource base that will allow future generations to meet their needs. Sustainable development requires international cooperation and the effective use of technology. Access to sustainable sources of food will remain a preeminent challenge in the decades to come. Based upon current practice and consumption, agricultural production will have to increase by about 70% by 2050 to meet demand. Nuclear techniques are used in developing countries to increase production sustainably by breeding improved crops, enhancing livestock reproduction and nutrition, as well as controlling animal and plant pests and diseases. Post-harvest losses can be reduced and safety increased with nuclear technology. Soil can be evaluated with nuclear techniques to conserve and improve soil productivity and water management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20techniques" title=" nuclear techniques"> nuclear techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20future" title=" sustainable future"> sustainable future</a> </p> <a href="https://publications.waset.org/abstracts/35259/the-application-of-nuclear-energy-for-sustainable-agriculture-and-food-security-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9035</span> Relationship between ICTs Application with Production and Protection Technology: Lesson from Rural Punjab-Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Munir%20Butt">Tahir Munir Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Qijie"> Gao Qijie</a>, <a href="https://publications.waset.org/abstracts/search?q=Babar%20Shahbaz"> Babar Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zakaria%20Yousaf%20Hassan"> Muhammad Zakaria Yousaf Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhnag%20Chuanhong"> Zhnag Chuanhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this paper is to identify the relationship between Information Communication Technology (ICTs) applications with Agricultural development in the process of communication at rural Punjab-Pakistan. The authors analyzed the relationship of ICTs applications with the most prominent factor for the Agricultural Information Services (AIS) in the Agricultural Extension Approaches (AEA). The data collection procedure was started from Jan. 2015 and completed in July 2015. It is the one of the part in PhD studies at China Agriculture, University Hadian-Beijng China. It was observed that on major constraint in the AIS disseminated was the limited number of farmers especially and unknown the farmers about new ICTs technology for Agriculture at rural areas. Majority of ICTs application e.g. Toll free number; Robo Calls; Text message was highly significances in the AIS approach. The recommendation is communication and capacity building one of the indispensable elements for sustainable and agricultural development and Agricultural extension should be provided training to farmer about new ICTs technologies to access and use of it for Sustainable Agriculture Development (SAD) and update the scenario of flow of information also with try to established ICTs hub at the village level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICTs" title="ICTs">ICTs</a>, <a href="https://publications.waset.org/abstracts/search?q=AEA" title=" AEA"> AEA</a>, <a href="https://publications.waset.org/abstracts/search?q=AIS" title=" AIS"> AIS</a>, <a href="https://publications.waset.org/abstracts/search?q=SAD" title=" SAD"> SAD</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20farmers" title=" rural farmers"> rural farmers</a> </p> <a href="https://publications.waset.org/abstracts/42646/relationship-between-icts-application-with-production-and-protection-technology-lesson-from-rural-punjab-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9034</span> Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halimatu%20S.%20Abdullahi">Halimatu S. Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ray%20E.%20Sheriff"> Ray E. Sheriff</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Mahieddine"> Fatima Mahieddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution" title="convolution">convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a> </p> <a href="https://publications.waset.org/abstracts/70564/advances-of-image-processing-in-precision-agriculture-using-deep-learning-convolution-neural-network-for-soil-nutrient-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9033</span> A Framework for Vacant City-Owned Land to Be Utilised for Urban Agriculture: The Case of Cape Town, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Van%20Staden">P. S. Van Staden</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Campbell"> M. M. Campbell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vacant City of Cape Town-owned land lying un-utilized and -productive could be developed for land uses such as urban agriculture that may improve the livelihoods of low income families. The new City of Cape Town zoning scheme includes an Urban Agriculture zoning for the first time. Unstructured qualitative interviews among town planners revealed their optimism about this inclusion as it will provide low-income residents with opportunities to generate an income. An existing farming community at Philippi, located within the municipal boundary of the city, was approached and empirical data obtained through questionnaires provided proof that urban agriculture could be viable in a coastal metropolitan city such as Cape Town even if farmers only produce for their own households. The lease method proposed for urban agriculture is a usufruct agreement conferring the right to another party, other than the legal owner, to enjoy the use and advantages of the property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20uses" title="land uses">land uses</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20engineering" title=" food engineering"> food engineering</a> </p> <a href="https://publications.waset.org/abstracts/1494/a-framework-for-vacant-city-owned-land-to-be-utilised-for-urban-agriculture-the-case-of-cape-town-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9032</span> Sustainable Agriculture of Tribal Farmers: An Analysis in Koraput and Malkangiri Districts of Odisha, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrita%20Mishra">Amrita Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tushar%20Kanti%20Das"> Tushar Kanti Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of the economy of Odisha. Sustainability of agriculture holds the key for the development of Odisha. The Sustainable Development Goals are a framework of 17 goals and 169 targets across social, economical and environmental areas of sustainable development. Among all the seventeen goals the second goal is focusing on the promotion of Sustainable Agriculture. In this research our main aim is also to contribute an understanding of effectiveness of sustainable agriculture as a tool for rural development in the selected tribal district (i.e. Koraput and Malkangiri) of Odisha. These two districts are comes under KBK districts of Odisha which are identified as most backward districts of Odisha. The objectives of our study are to investigate the effect of sustainable agriculture on the lives of tribal farmers, to study whether the farmers are empowered by their participation in sustainable agriculture initiatives to move towards their own vision of development and to study the investment and profit ratio in sustainable agriculture. This research will help in filling the major gaps in sociological studies of sustainable agriculture. This information will helpful for farmers, development organisations, donors and policy makers in formulating the development of effective initiatives and policies to support the development of sustainable agriculture. In this study, we have taken 210 respondents and used various statistical techniques like chi-square test, one-way ANOVA and percentage analysis. This research shows that sustainable agriculture is an effective development strategy that benefits the tribal farmers to move towards their own vision of Good Fortune. The poor farmers who struggle to feed their families and maintain viable livelihoods on shrinking land for them sustainable agriculture are really benefited. The farmers are using homemade pesticides, manure and also getting the seeds from different development organisations and Government. So the investment in Sustainable Agriculture is very less. All farmers said their lives are now better than before. The creation of farmers groups for training and marketing for the produces was shown to be very important for empowerment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=tribal%20farmers" title=" tribal farmers"> tribal farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a>, <a href="https://publications.waset.org/abstracts/search?q=empowerment" title=" empowerment"> empowerment</a> </p> <a href="https://publications.waset.org/abstracts/104576/sustainable-agriculture-of-tribal-farmers-an-analysis-in-koraput-and-malkangiri-districts-of-odisha-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9031</span> Organic Agriculture Harmony in Nutrition, Environment and Health: Case Study in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Jelodarian">Sara Jelodarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic agriculture is a kind of living and dynamic agriculture that was introduced in the early 20<sup>th</sup> century. The fundamental basis for organic agriculture is in harmony with nature. This version of farming emphasizes removing growth hormones, chemical fertilizers, toxins, radiation, genetic manipulation and instead, integration of modern scientific techniques (such as biologic and microbial control) that leads to the production of healthy food and the preservation of the environment and use of agricultural products such as forage and manure. Supports from governments for the markets producing organic products and taking advantage of the experiences from other successful societies in this field can help progress the positive and effective aspects of this technology, especially in developing countries. This research proves that till 2030, 25% of the global agricultural lands would be covered by organic farming. Consequently Iran, due to its rich genetic resources and various climates, can be a pioneer in promoting organic products. In addition, for sustainable farming, blend of organic and other innovative systems is needed. Important limitations exist to accept these systems, also a diversity of policy instruments will be required to comfort their development and implementation. The paper was conducted to results of compilation of reports, issues, books, articles related to the subject with library studies and research. Likewise we combined experimental and survey to get data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=develop" title="develop">develop</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20markets" title=" production markets"> production markets</a>, <a href="https://publications.waset.org/abstracts/search?q=progress" title=" progress"> progress</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20role" title=" strategic role"> strategic role</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/129976/organic-agriculture-harmony-in-nutrition-environment-and-health-case-study-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9030</span> A Review on Climate Change and Sustainable Agriculture in Southeast Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jane%20O.%20Munonye">Jane O. Munonye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change has both negative and positive effects in agricultural production. For agriculture to be sustainable in adverse climate change condition, some natural measures are needed. The issue is to produce more food with available natural resources and reduce the contribution of agriculture to climate change. The study reviewed climate change and sustainable agriculture in southeast Nigeria. Data from the study were from secondary sources. Ten scientific papers were consulted and data for the review were collected from three. The objectives of the paper were as follows: to review the effect of climate change on one major arable crop in southeast Nigeria (yam; <em>Dioscorea rotundata</em>); evident of climate change impact and methods for sustainable agricultural production in adverse weather condition. Some climatic parameter as sunshine, relative humidity and rainfall have negative relationship with yam production and significant at 10% probability. Crop production was predicted to decline by 25% per hectare by 2060 while livestock production has increased the incidence of diseases and pathogens as the major effect to agriculture. Methods for sustainable agriculture and damage of natural resources by climate change were highlighted. Agriculture needs to be transformed as climate changes to enable the sector to be sustainable. There should be a policy in place to facilitate the integration of sustainability in Nigeria agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=yam" title=" yam"> yam</a> </p> <a href="https://publications.waset.org/abstracts/61103/a-review-on-climate-change-and-sustainable-agriculture-in-southeast-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9029</span> The Construction Technology of Dryer Silo Materials to Grains Made from Webbing Bamboo: A Drying Technology Solutions to Empowerment Farmers in Yogyakarta, Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nursigit%20%20Bintoro">Nursigit Bintoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Abadi%20Barus"> Abadi Barus</a>, <a href="https://publications.waset.org/abstracts/search?q=Catur%20Setyo%20Dedi%20%20Pamungkas"> Catur Setyo Dedi Pamungkas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia is an agrarian country have almost population work as farmers. One of the popular agriculture commodity in Indonesia is paddy and corn. Production of paddy and corn are increased, but not balanced to the development of appropriate technology to farmers. Methods of drying applied with farmers still using sunshine. Drying by this method has some drawbacks, such as differences moisture content of corn grains, time used to dry around 3 days, and less quality of the products obtained. Beside it, the method of drying by using sunshine can’t do when the rainy season arrives. On this season the product obtained has less quality. One solution to the above problems is to create a dryer with simple technology. That technology is made silo dryer from webbing bamboo and wood. This technology is applicable to be applied to farmers' groups as well as the creation technology is quite cheap. The experiment material used in this research will be obtained from the corn grains. The equipment used are woven bamboo with a height of 3 meters and have capacity of up to 900 kgs as a silo, gas, burner, blower, bucket elevators, thermocouple, Arduino microcontroller 2560. This tools automatically records all the data of temperature and relative humidity. During on drying, each 30 minutes take 9 sample for measuring moisture content with moisture meter. By using this technology, farmers can save time, energy, and cost to the drying their agriculture product. In addition, by using this technology have good quality moisture content of grains and have a longer shelf life because the temperature when the heating process is controlled. Therefore, this technology is applicable to be applied to the public because the materials used to make the dryer easier to find, cheaper, and manufacture of the dryer made simple with good quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grains" title="grains">grains</a>, <a href="https://publications.waset.org/abstracts/search?q=dryer" title=" dryer"> dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title=" moisture content"> moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=appropriate%20technology" title=" appropriate technology"> appropriate technology</a> </p> <a href="https://publications.waset.org/abstracts/63217/the-construction-technology-of-dryer-silo-materials-to-grains-made-from-webbing-bamboo-a-drying-technology-solutions-to-empowerment-farmers-in-yogyakarta-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9028</span> Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongqin%20Zhang">Yongqin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Lett"> John Lett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drone%20images" title="drone images">drone images</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=geospatial%20analysis" title=" geospatial analysis"> geospatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photogrammetric%20measurements" title=" photogrammetric measurements"> photogrammetric measurements</a> </p> <a href="https://publications.waset.org/abstracts/162153/designing-agricultural-irrigation-systems-using-drone-technology-and-geospatial-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9027</span> Community That Supports Agriculture: A Strategy to Help Family Farmers by Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feguens%20Pierre">Feguens Pierre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a long time, Latin American countries have been introduced to numerous programs and public policies focused on improving the agricultural sector in terms of sustainability, as well as in terms of the relationship between producers and consumers, aimed at improve farmers' income and allow consumers to have access to quality products, encouraging alternative agriculture. Therefore, in Brazil, among the programs, that is, the public policies that have encompassed alternative agriculture, in other words organic, we have the Community that Supports Agriculture (CSA) which ensures a relationship between producers and consumers focused on a solidarity economy, also protecting the environment. This work aims to understand the importance of the Community Supporting Agriculture (CSA), as well as the challenges it has faced over time. Particularly in the case of Brazil. A bibliographic methodology was used to theoretically analyze through several books and articles the performance of (CSA) in Brazil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20supporting%20agriculture" title="community supporting agriculture">community supporting agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=importance" title=" importance"> importance</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges" title=" challenges"> challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=producer" title=" producer"> producer</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer" title=" consumer"> consumer</a> </p> <a href="https://publications.waset.org/abstracts/182117/community-that-supports-agriculture-a-strategy-to-help-family-farmers-by-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9026</span> Web-GIS Technology: A Tool for Farm-to-Market Road Project Profiling and Proposal Prioritization of the Philippines’ Department of Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elbert%20S.%20Moyon">Elbert S. Moyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Edsel%20Matt%20O.%20Morales"> Edsel Matt O. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaymer%20M.%20Jayoma"> Jaymer M. Jayoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Kent%20C.%20Espejon"> Kent C. Espejon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayson%20C.%20Dollete"> Jayson C. Dollete</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Phil%20B.%20Pacot"> Mark Phil B. Pacot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper focuses on the potential of using Web-GIS technology in prioritizing farm-to-market road projects by the Philippines’ Department of Agriculture (DA). The study aimed to explore the benefits of Web-GIS in addressing the limitations faced by the DA in terms of Farm to Market Road profiling and project prioritization, which include a lack of access to updated data, limited spatial analysis capabilities, and difficulties in sharing information between stakeholders. The research methodology involves a comprehensive literature review and a case study of a Web-GIS application developed for the DA, which was used to profile and prioritize farm-to-market road projects in the Philippines. The results showed that the Web-GIS technology provides the DA with an effective tool for analyzing and visualizing data, which can help in profiling and prioritizing road projects based on various criteria such as economic, social, and environmental impacts. The study also showed that Web-GIS technology could help in reducing the time and effort required for road project prioritization and improve communication between stakeholders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20application" title=" web application"> web application</a>, <a href="https://publications.waset.org/abstracts/search?q=farm-to-market%20road" title=" farm-to-market road"> farm-to-market road</a>, <a href="https://publications.waset.org/abstracts/search?q=FMR%20prioritization" title=" FMR prioritization"> FMR prioritization</a>, <a href="https://publications.waset.org/abstracts/search?q=Django" title=" Django"> Django</a>, <a href="https://publications.waset.org/abstracts/search?q=GeoServer" title=" GeoServer"> GeoServer</a> </p> <a href="https://publications.waset.org/abstracts/163890/web-gis-technology-a-tool-for-farm-to-market-road-project-profiling-and-proposal-prioritization-of-the-philippines-department-of-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=301">301</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=302">302</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=technology%20in%20agriculture&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>