CINXE.COM

Search results for: condensed mattter

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: condensed mattter</title> <meta name="description" content="Search results for: condensed mattter"> <meta name="keywords" content="condensed mattter"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="condensed mattter" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="condensed mattter"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 105</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: condensed mattter</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Berry Phase and Quantum Skyrmions: A Loop Tour in Physics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinuh%C3%A9%20Perea%20Puente">Sinuhé Perea Puente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In several physics systems the whole can be obtained as an exact copy of each of its parts, which facilitates the study of a complex system by looking carefully at its elements, separately. Reducionism offers simplified models which makes the problems easier, but “there’s plenty of room...at the mesoscopic scale”. Here we present a tour for two of its representants: Berry phase and skyrmions, studying some of its basic definitions and properties, and two cases in which both arise together, to finish constraining the scale for our mesoscopic system in the quest of quantum skyrmions, discovering which properties are conserved and which others may be destroyed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed%20mattter" title="condensed mattter">condensed mattter</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20physics" title=" quantum physics"> quantum physics</a>, <a href="https://publications.waset.org/abstracts/search?q=skyrmions" title=" skyrmions"> skyrmions</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20defects" title=" topological defects"> topological defects</a> </p> <a href="https://publications.waset.org/abstracts/148910/berry-phase-and-quantum-skyrmions-a-loop-tour-in-physics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Effect of Antioxidants Addition in Combination with Milk Re Pasteurization on the Physical, Chemical and Sensory Properties of Condensed Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Abu-Ghoush">Mahmoud Abu-Ghoush</a>, <a href="https://publications.waset.org/abstracts/search?q=Murad%20Al%20Holy"> Murad Al Holy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our main goal in this project is to study the causes and finding solutions for both the hydrolytic and the oxidative rancidity that can be produced during condensed yoghurt production. The re pasteurization of the pasteurized milk and the addition of different types of antioxidants (ascorbic acid and propyl gallate) were used to achieve this goal. Chemical, physical, microbial and sensory tests were done to evaluate the product. It was found that there were significant differences between the different treatments and the control regarding the peroxide value. This means that the addition of both types of antioxidants have a positive effect in decreasing the rancidity value. However, it was found that there were some samples have hydrolytic rancidity flavour without any type of oxidative rancidity (low peroxide value). To overcome this problem the re pasteurization step was used to destroy all the vegetative form of microbes. It was found that this treatment was very useful in controlling the rancidity flavour according to the sensory evaluation of the condensed yoghurt products for several batches. The best condensed yoghurt which contains 0.25% ascorbic acid exhibited the highest sensory properties values. Also, it has the ability in lowering the oxidative rancidity in the combination with the re pasteurization step of the pasteurized milk. This suggests that a higher quality and stable condensed yoghurt can be obtained upon using this combination. These results may help producers in selecting the best treatment methods to overcome the rancidity flavor in this type of condensed yoghurt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20yoghurt" title=" condensed yoghurt"> condensed yoghurt</a>, <a href="https://publications.waset.org/abstracts/search?q=repasturization" title=" repasturization"> repasturization</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20milk" title=" condensed milk"> condensed milk</a> </p> <a href="https://publications.waset.org/abstracts/19672/effect-of-antioxidants-addition-in-combination-with-milk-re-pasteurization-on-the-physical-chemical-and-sensory-properties-of-condensed-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Assessment of Hemostatic Activity of the Aqueous Extract of Leaves of Marrubium vulgare L.: A Mediterranean Lamiaceae Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Ghedadba">Nabil Ghedadba</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessemed%20Samira"> Abdessemed Samira</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Hambaba"> Leila Hambaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohamed%20Ould%20Mokhtar"> Sidi Mohamed Ould Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Fercha"> Nassima Fercha</a>, <a href="https://publications.waset.org/abstracts/search?q=Houas%20Bousselsela"> Houas Bousselsela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The overall objective of this study was to evaluate in vitro the hemostatic activity of secondary metabolites (polyphenols, flavonoids, and tannins) of Marrubium vulgare leaves, aromatic plant widely used in traditional medicine for the treatment of asthma, cough, diabetes (by its effect on the pancreas to secrete insulin), heart disease, fever has a high efficiency as against inflammation. Qualitative analysis of the aqueous extract (AQE) by thin layer chromatography revealed the presence of quercetin, kaempferol and rutin. Quantification of total phenols by Folin Ciocalteu method and flavonoids by AlCl3 method gave high values with AQE: 175±0.80 mg GAE per 100g of the dry matter, 23.86±0.36 mg QE per 100g of dry matter. Moreover, the assay of condensed tannins by the vanillin method showed that AQE contains the highest value: 16.55±0.03 mg e-catechin per 100 g of dry matter. Assessment of hemostatic activity by the plasma recalcification method (time of Howell) has allowed us to discover the surprising dose dependent anticoagulant effect of AQE lyophilized from leaves of M. vulgare. A positive linear correlation between the two parameters studied: the content of condensed tannins and hemostatic activity (r=0.96) were used to highlight a possible role of these compounds that are potent vasoconstrictor activity in hemostatic. From these results we can see that Marrubium vulgre could be used for the treatment of health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marrubium%20vulgare%20L." title="Marrubium vulgare L.">Marrubium vulgare L.</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20extract" title=" aqueous extract"> aqueous extract</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds%20dosing" title=" phenolic compounds dosing"> phenolic compounds dosing</a>, <a href="https://publications.waset.org/abstracts/search?q=hemostatic%20activity" title=" hemostatic activity"> hemostatic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20tannins" title=" condensed tannins"> condensed tannins</a> </p> <a href="https://publications.waset.org/abstracts/10562/assessment-of-hemostatic-activity-of-the-aqueous-extract-of-leaves-of-marrubium-vulgare-l-a-mediterranean-lamiaceae-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Experimental Investigation of Energy Performance of Split Type Air Conditioning for Building under Various Indoor Set Point Temperatures and Different Air Flowrates through Cooling Coil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niran%20Watchrodom">Niran Watchrodom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was carried out to investigate the energy performance of a 1.5 Tr commercial split type air conditioner operating at different indoor set points and different air flowrate circulating through the cooling coil. The refrigerant R-22 was used as working fluid. In this paper, the test conditions considered were varied as follows: The room temperature varied from 23, 24, 25, 26, and 27 C, the air velocity passing through the evaporator was varied from 1.9, 2.1 and 2.4 m/s. The air velocity passing through the condenser was kept constant at 5 m/s. The results showed that when the indoor temperature was high, 27 C, and air velocity was 1.9 m/s, the coefficient of performance (COP) of the system was 3.74. The electrical power consumption of compressor was 1.64 kW, the rate of heat transfer in the condenser and evaporator were 7.79 and 6.10 kW, respectively. The amount corresponding amount of condensed water coming out of evaporator was 8.20 liter. The system can applied to commercial building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed%20water" title="condensed water">condensed water</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20performance" title=" coefficient of performance"> coefficient of performance</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20velocity" title=" air velocity"> air velocity</a> </p> <a href="https://publications.waset.org/abstracts/16762/experimental-investigation-of-energy-performance-of-split-type-air-conditioning-for-building-under-various-indoor-set-point-temperatures-and-different-air-flowrates-through-cooling-coil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> Exploring Structure of Human Chromosomes Using Fluorescence Lifetime Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhartiya">A. Bhartiya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Botchway"> S. Botchway</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf"> M. Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Robinson"> I. Robinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromatin condensation is maintained by DNA-based proteins and some divalent cations (Mg²⁺, Ca²⁺, etc.). Condensation process during cell division maintains structural and functional organizations of chromosomes by transferring genetic information correctly to daughter cells. Fluorescence Lifetime Imaging (FLIM) technique measures the fluorescence decay of fixed human chromosomes by calculating the lifetime of fluorophores at a pixel x of the arrival of each photon as a function of time delay t, following excitation with a laser pulse. Fixed metaphase human chromosomes were labelled with DNA-binding dye, DAPI and later DAPI fluorescence lifetime measured using multiphoton microscopy. 5 out of 23 pairs of human chromosomes shown shorter lifetime at the centromere region, differentiating proportion of compaction along the length of chromosomes. Different lifetime was observed in a condensed and de-condensed chromosome. It clearly indicates the involvement of divalent cations in the process of condensation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=divalent%20cations" title="divalent cations">divalent cations</a>, <a href="https://publications.waset.org/abstracts/search?q=FLIM%20%28Fluorescence%20Lifetime%20Imaging%29" title=" FLIM (Fluorescence Lifetime Imaging)"> FLIM (Fluorescence Lifetime Imaging)</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20chromosomes" title=" human chromosomes"> human chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphoton%20microscopy" title=" multiphoton microscopy"> multiphoton microscopy</a> </p> <a href="https://publications.waset.org/abstracts/81519/exploring-structure-of-human-chromosomes-using-fluorescence-lifetime-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Si">Lu Si</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yu"> Jie Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shasha%20Li"> Shasha Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Ma"> Jun Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Luo"> Lei Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingbo%20Wu"> Qingbo Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqi%20Ma"> Yongqi Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengji%20Liu"> Zhengji Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=instance%20selection" title="instance selection">instance selection</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20reduction" title=" data reduction"> data reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=kNN" title=" kNN"> kNN</a> </p> <a href="https://publications.waset.org/abstracts/71156/fcnn-mr-a-parallel-instance-selection-method-based-on-fast-condensed-nearest-neighbor-rule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Total Phenols, Total Flavonoids Contents and Free Radical Scavenging Activity of Seeds Extracts of Lawsonia alba (henna) from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rekia.%20Cherbi">Rekia. Cherbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mokhtar.%20Saidi"> Mokhtar. Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed.%20Yousfi"> Mohamed. Yousfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhor.%20Rahmani"> Zhor. Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lawsonia alba (Henna) is widely used in folkloric medicinal for a treatment of various skin diseases such as Eczema (atopic dermatitis), boils and sores. The aim of the present study is to determine the antioxidant activity, total phenolics, flavonoids, and condensed tannins content of extracts from the seeds of Lawsonia. alba grown in Algeria and selected from three different regions (Adrar, Biskra, and Ouargla). Total phenolics content ranged from 68,42 ± 0,54 to 88,31 ± 0,78mg gallic acid equivalents (GAE)/g dry weight, the flavonoids content varied from 1,13 ± 0,0035 to 1,367 ± 0,002mg quercetin equivalents (Q)/ g dry weight and condensed tannins (14,47 ± 0,138 to 25,50 ± 0,076 mg catechin equivalents (CE)/g dry weight). The antioxidant activities of the extracts were evaluated by DPPH assay. The results showed that all extracts from the seeds of Lawsonia. alba seem to be good trappers of radicals, the IC50 values of the extracts ranged between 0,00826 and 0,01 g/l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawsonia.%20alba" title=" Lawsonia. alba"> Lawsonia. alba</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=seeds" title=" seeds"> seeds</a> </p> <a href="https://publications.waset.org/abstracts/40390/total-phenols-total-flavonoids-contents-and-free-radical-scavenging-activity-of-seeds-extracts-of-lawsonia-alba-henna-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Mechanical Contribution of Silica Fume and Hydrated Lime Addition in Mortars Assessed by Ultrasonic Pulse Velocity Tests </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nacim%20Khelil">Nacim Khelil</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Kahil"> Amar Kahil</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Boukais"> Said Boukais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is to investigate the changes in the mechanical properties of mortars including additions of Condensed Silica Fume (CSF), Hydrated Lime (CH) or both at various amounts (5% to 15% of cement replacement) and high water ratios (w/b) (0.4 to 0.7). The physical and mechanical changes in the mixes were evaluated using non-destructive tests (Ultrasonic Pulse Velocity (UPV)) and destructive tests (crushing tests) on 28 day-long specimens consecutively, in order to assess CSF and CH replacement rate influence on the mechanical and physical properties of the mortars, as well as CSF-CH pre-mixing on the improvement of these properties. A significant improvement of the mechanical properties of the CSF, CSF-CH mortars, has been noted. CSF-CH mixes showed the best improvements exceeding 50% improvement, showing the sizable pozzolanic reaction contribution to the specimen strength development. UPV tests have shown increased velocities for CSF and CSH mixes, however no proportional evolution with compressive strengths could be noted. The results of the study show that CSF-CH addition could represent a suitable solution to significantly increase the mechanical properties of mortars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20silica%20fume" title=" condensed silica fume"> condensed silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrated%20lime" title=" hydrated lime"> hydrated lime</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20reaction" title=" pozzolanic reaction"> pozzolanic reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=UPV%20testing" title=" UPV testing"> UPV testing</a> </p> <a href="https://publications.waset.org/abstracts/110109/mechanical-contribution-of-silica-fume-and-hydrated-lime-addition-in-mortars-assessed-by-ultrasonic-pulse-velocity-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Antioxidant Activity of Aristolochia longa L. Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merouani%20Nawel">Merouani Nawel</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhattab%20Rachid"> Belhattab Rachid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aristolochia longa L. (Aristolochiacea) is a native plant of Algeria used in traditional medicine. This study was devoted to the determination of polyphenols, flavonoids, and condensed tannins contents of Aristolochia longa L. after their extraction by using various solvents with different polarities (methanol, acetone and distilled water). These extracts were prepared from stem, leaves, fruits and rhizome. The antioxidant activity was determined using three in vitro assays methods: scavenging effect on DPPH, the reducing power assay and ẞ-carotene bleaching inhibition (CBI). The results obtained indicate that the acetone extracts from the aerial parts presented the highest contents of polyphenols. The results of The antioxidant activity showed that all extracts of Aristolochia longa L., prepared using different solvent, have diverse antioxidant capacities. However, the aerial parts methanol extract exhibited the highest antioxidant capacity of DPPH and reducing power (Respectively 55,04ug/ml±1,29 and 0,2 mg/ml±0,019 ). Nevertheless, the aerial parts acetone extract showed the highest antioxidant capacity in the test of ẞ-carotene bleaching inhibition with 57%. These preliminary results could be used to justify the traditional use of this plant and their bioactive substances could be exploited for therapeutic purposes such as antioxidant and antimicrobial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aristolochia%20longa%20l." title="aristolochia longa l.">aristolochia longa l.</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20tannins" title=" condensed tannins"> condensed tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/41824/antioxidant-activity-of-aristolochia-longa-l-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ionela-Daniela%20Carja">Ionela-Daniela Carja</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Serbezeanu"> Diana Serbezeanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tachita%20Vlad-Bubulac"> Tachita Vlad-Bubulac</a>, <a href="https://publications.waset.org/abstracts/search?q=Corneliu%20Hamciuc"> Corneliu Hamciuc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensed-phase%20mechanism" title="condensed-phase mechanism">condensed-phase mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20phosphorus%20flame%20retardant" title=" eco-friendly phosphorus flame retardant"> eco-friendly phosphorus flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/31068/advanced-phosphorus-containing-polymer-materials-towards-eco-friendly-flame-retardant-epoxy-thermosets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Arc Plasma Application for Solid Waste Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Messerle">Vladimir Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Mosse"> Alfred Mosse</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Ustimenko"> Alexandr Ustimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Lavrichshev"> Oleg Lavrichshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal" title="coal">coal</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-fuel%20system" title=" plasma-fuel system"> plasma-fuel system</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20generator" title=" plasma generator"> plasma generator</a> </p> <a href="https://publications.waset.org/abstracts/57398/arc-plasma-application-for-solid-waste-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> The Effect of Season, Fire and Slope Position on Seriphium plumosum L. Forage Quality in South African Grassland Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosia%20T.%20Pule">Hosia T. Pule</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20T.%20Tjelele"> Julius T. Tjelele</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20J.%20Tedder"> Michelle J. Tedder</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawood%20Hattas"> Dawood Hattas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acceptability of plant material to herbivores is influenced by, among other factors; nutrients, plant secondary metabolites and growth stage of the plants. However, the effect of these factors on Seriphium plumosum L. acceptability to livestock is still not clearly understood, despite its importance in managing its encroachment in grassland communities. The study used 2 x 2 x 2 factorial analysis of variance to investigate the effect of season (wet and dry), fire, slope position (top and bottom) and their interaction on Seriphium plumosum chemistry. We tested the hypothesis that S. plumosum chemistry varies temporally, spatially and pre- and post-fire treatment. Seriphium plumosum edible material was collected during the wet and dry season from burned and unburned areas on both top and bottom slopes before being analysed for protein (CP) content, neutral detergent fibre (NDF), total phenolics (TP) and condensed tannins (CT). Season had a significant effect on S. plumosum protein content, neutral detergent fibre, total phenolics and condensed tannins. Fire had a significant effect on CP. Interaction of season x fire had a significant effect on NDF and CP (p < 0.05). Seriphium plumosum in the wet season (6.69% ± 0.20 (SE)) had significantly higher CP than in the dry season (5.22% ± 0.13). NDF was significantly higher (58.01% ± 0.41) in the dry season than in the wet season (53.17% ± 0.34), while TP were significantly higher in the dry season (14.44 mg/gDw ± 1.03) than in the wet season (11.08 mg/gDw ± 1.07). CT in the wet season were significantly higher (1.56 mg/gDw ± 0.13) than in the dry season (1 mg/gDw ± 0.03). CP was significantly higher in burned (6. 31 % ± 0.22) than in unburned S. plumosum edible material (5.60 % ± 0.15). Seriphium plumosum CP was significantly higher in wet season x burned (7.34 % ± 0.31) than wet season x unburned (6.08 % ± 0.20) material and dry season x burned (5.34 % ± 0.18) and unburned (5.09 % ± 0.18) material were similar. NDF was similar in dry season x burned (58.31% ± 0.54) and dry season x unburned (57.69 % ± 0.62) material and significantly higher than similar wet season x burned (52.43% ± 0.45) and wet season x post-unburned (53.88% ± 0.47) material. This study suggests integrating fire, browsers, and supplements as encroacher S. plumosum control agents, especially in the wet season, following fire due to high S. plumosum CP content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acceptability" title="acceptability">acceptability</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20material" title=" edible material"> edible material</a>, <a href="https://publications.waset.org/abstracts/search?q=encroachment" title=" encroachment"> encroachment</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a> </p> <a href="https://publications.waset.org/abstracts/94218/the-effect-of-season-fire-and-slope-position-on-seriphium-plumosum-l-forage-quality-in-south-african-grassland-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salam">Ahmed Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haithem%20Benkahla"> Haithem Benkahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20implicit%20QR%20algorithm" title="block implicit QR algorithm">block implicit QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=preservation%20of%20a%20double%20structure" title=" preservation of a double structure"> preservation of a double structure</a>, <a href="https://publications.waset.org/abstracts/search?q=QR%20algorithm" title=" QR algorithm"> QR algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20and%20Hamiltonian%20structures" title=" symmetric and Hamiltonian structures"> symmetric and Hamiltonian structures</a> </p> <a href="https://publications.waset.org/abstracts/61018/a-variant-of-a-double-structure-preserving-qr-algorithm-for-symmetric-and-hamiltonian-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thabiso%20M.%20Sebolai">Thabiso M. Sebolai</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Mlambo"> Victor Mlambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Tefera"> Solomon Tefera</a>, <a href="https://publications.waset.org/abstracts/search?q=Othusitse%20R.%20Madibela"> Othusitse R. Madibela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=browse%20plants" title="browse plants">browse plants</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20heights" title=" harvesting heights"> harvesting heights</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics "> phenolics </a> </p> <a href="https://publications.waset.org/abstracts/122770/influence-of-species-and-harvesting-height-on-chemical-composition-buffer-nitrogen-solubility-and-in-vitro-ruminal-fermentation-of-browse-tree-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> A Reduced Distributed Sate Space for Modular Petri Nets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsen%20Khlifa">Sawsen Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiheb%20AMeur%20Abid"> Chiheb AMeur Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhassan%20Zouari"> Belhassan Zouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular verification approaches have been widely attempted to cope with the well known state explosion problem. This paper deals with the modular verification of modular Petri nets. We propose a reduced version for the modular state space of a given modular Petri net. The new structure allows the creation of smaller modular graphs. Each one draws the behavior of the corresponding module and outlines some global information. Hence, this version helps to overcome the explosion problem and to use less memory space. In this condensed structure, the verification of some generic properties concerning one module is limited to the exploration of its associated graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20systems" title="distributed systems">distributed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=modular%20verification" title=" modular verification"> modular verification</a>, <a href="https://publications.waset.org/abstracts/search?q=petri%20nets" title=" petri nets"> petri nets</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20space%20explosition" title=" state space explosition"> state space explosition</a> </p> <a href="https://publications.waset.org/abstracts/148880/a-reduced-distributed-sate-space-for-modular-petri-nets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> A Measurement Device of Condensing Flow Rate, an Order of MilliGrams per Second</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Joon%20Lee">Hee Joon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many difficulties in measuring a small flow rate of an order of milli grams per minute (LPM) or less using a conventional flowmeter. Therefore, a flow meter with minimal loss and based on a new concept was designed as part of this paper. A chamber was manufactured with a level transmitter and an on-off control valve. When the level of the collected condensed water reaches the top of the chamber, the valve opens to allow the collected water to drain back into the tank. To allow the water to continue to drain when the signal is lost, the valve is held open for a few seconds by a time delay switch and then closed. After an examination, the condensing flow rate was successfully measured with the uncertainty of ±5.7% of the full scale for the chamber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chamber" title="chamber">chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation" title=" condensation"> condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20meter" title=" flow meter"> flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-grams" title=" milli-grams"> milli-grams</a> </p> <a href="https://publications.waset.org/abstracts/48842/a-measurement-device-of-condensing-flow-rate-an-order-of-milligrams-per-second" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Condensed Benzo, Pyrido, Pyrimidino-Imidazole Derivatives as Antidiabetic Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Doganc">Fatima Doganc</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakan%20Goker"> Hakan Goker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzimidazole moiety is an important pharmacophore and privileged structure for the medicinal chemists, since it exhibits various important biological activities. Some clinically used drugs have benzimidazole moiety, such as omeprazole, astemizole, albendazole and domperidone. 2-(4-tert-Butylphenyl)benzimidazole, is a PGC-1α transcriptional regulator shown to have beneficial effects in diabetic mice. We planned to modify the structure of this compound for developing new antidiabetic drug candidates. Hence, a series of guanidino or amidino, benzo/pyrido/pyrimidino-imidazole derivatives were freshly prepared. Mass, 1H-NMR, 13C-NMR, 2D-NMR spectroscopy techniques were used for the new derivatives to clarify their structures and their purity was controlled through the elemental analysis. Antidiabetic activity studies of the synthesized compounds are under the investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidiabetic%20agents" title="antidiabetic agents">antidiabetic agents</a>, <a href="https://publications.waset.org/abstracts/search?q=benzimidazole" title=" benzimidazole"> benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=imidazopyridine" title=" imidazopyridine"> imidazopyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=imidazopyrimidine" title=" imidazopyrimidine"> imidazopyrimidine</a> </p> <a href="https://publications.waset.org/abstracts/70668/condensed-benzo-pyrido-pyrimidino-imidazole-derivatives-as-antidiabetic-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Influence of Silica Fume on Ultrahigh Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitoldas%20Vaitkevi%C4%8Dius">Vitoldas Vaitkevičius</a>, <a href="https://publications.waset.org/abstracts/search?q=Evaldas%20%C5%A0erelis"> Evaldas Šerelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrahigh%20performance%20concrete" title=" ultrahigh performance concrete"> ultrahigh performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/4262/influence-of-silica-fume-on-ultrahigh-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Effects of Adding Condensed Tannin from Shrub and Tree Leaves in Concentrate on Sheep Production Fed on Elephant Grass as a Basal Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kusmartono">Kusmartono</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Chuzaemi"> Siti Chuzaemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hartutik%20dan%20Mashudi"> Hartutik dan Mashudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two studies were conducted involving an in vitro (Expt 1) and in vivo (Expt 2) measurements. Expt 1. aimed to evaluate effects of adding CT extracts on gas production and efficiency of microbial protein synthesis (EMPS), Expt 2 aimed to evaluate effects of supplementing shrub/tree leaves as CT source on feed consumption, digestibility, N retention, body weight gain and dressing percentage of growing sheep fed on elephant grass (EG) as a basal diet.Ten shrub and tree leaves used as CT sources were wild sunflower (Tithonia diversifolia), mulberry (Morus macroura), cassava (Manihot utilissima), avicienna (Avicennia marina), calliandra (Calliandra calothyrsus), sesbania (Sesbania grandiflora), acacia (acacia vilosa), glyricidia (Glyricidia sepium), jackfruit (Artocarpus heterophyllus), moringa (Moringa oleifera). The treatments applied in Expt 1 were: T1=Elephant grass (60%)+concentrate (40%); T2 = T1 + CT (3% DM); T3= T2 + PEG; T4 = T1 + CT (3.5% DM); T5 = T4 + PEG; T6 = T1 + CT (4% DM) and T7 = T6 + PEG. Data obtained were analysed using Randomized Block Design. Statistical analyses showed that treatments significanty affected (P<0.05) total gas production and EMPS. The lowest values of total gas production (45.9 ml/500 mg DM) and highest value of EMPS (64.6 g/kg BOTR) were observed in the treatment T4 (3.5% CT from cassava leave extract). Based on this result it was concluded that this treatment was the best and was chosen for further investigation using in vivo method. The treatmets applied for in vivo trial were: T1 = EG (60%) + concentrate (40%); T2 = T1 + dried cassava leave (equivalent to 3.5% CT); T3 = T2 + PEG. 18 growing sheep aging of 8-9 months and weighing of 23.67kg ± 1.23 were used in Expt 2. Results of in vivo study showed that treatments significanty affected (P<0.05) nutrients intake and digestibility (DM, OM and CP). N retention for sheep receiving treatment T2 were significantly higher (P<0.05; 15.6 g/d) than T1 (9.1 g/d) and T3 (8.53 g/d). Similar results were obtained for daily weight gain where T2 were the highest (62.79 g/d), followed by T1 (51.9 g/d) and T3 (52.85 g/d). Dressing percentage of T2 was the highest (51.54%) followed by T1 (49.61%) and T3 (49.32%). It can be concluded that adding adding dried cassava leaves did not reduce palatability due to CT, but rather increased OM digestibility and hence feed consumption was improved. N retention was increased due to the action of CT in the cassava leaves and this may have explained a higher input of N into duodenum which was further led to higer daily weight gain and dressing percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20gas%20production" title="in vitro gas production">in vitro gas production</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep" title=" sheep"> sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=shrub%20and%20tree%20leaves" title=" shrub and tree leaves"> shrub and tree leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed%20tannin" title=" condensed tannin"> condensed tannin</a> </p> <a href="https://publications.waset.org/abstracts/39683/effects-of-adding-condensed-tannin-from-shrub-and-tree-leaves-in-concentrate-on-sheep-production-fed-on-elephant-grass-as-a-basal-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Removal of Metals from Heavy Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Noorian">Ali Noorian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude oil contains various compounds of hydrocarbons but low concentrations of inorganic compounds or metals. Vanadium and Nickel are the most common metals in crude oil. These metals usually exist in solution in the oil and residual fuel oil in the refining process is condensed. Deleterious effects of metals in petroleum have been known for some time. These metals do not only contaminate the product but also cause intoxication and loss of catalyst and corrosion to equipment. In this study, removal of heavy metals and petroleum residues were investigated. These methods include physical, chemical and biological treatment processes. For example, processes such as solvent extraction and hydro-catalytic and catalytic methods are effective and practical methods, but typically often have high costs and cause environmental pollution. Furthermore, biological methods that do not cause environmental pollution have been discussed in recent years, but these methods have not yet been industrialized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=removal" title="removal">removal</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil" title=" heavy oil"> heavy oil</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium" title=" vanadium"> vanadium</a> </p> <a href="https://publications.waset.org/abstracts/6915/removal-of-metals-from-heavy-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Plasma Systems Application in Treating Automobile Exhaust Gases for a Clean Environment (Case Study)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahsen%20Abdalwahab%20Ibraheem%20Albehege">Tahsen Abdalwahab Ibraheem Albehege</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust fuel purification is of great importance to prevent the emission of major pollutants into the atmosphere such as diesel particulates and nitrogen oxides and meet environmental regulations, so environmental impacts are a primary concern of Diesel Exhaust Gas (DEG) which contains hazardous substances harmful to the environment as well as human health.We can not plasma formed through directing electrical energy to create free electrons, which in turn can react with gaseous species, but we can by used to treat engine exhaust gases. . By NO that has been reportedly oxidized to HNO3 and then into ammonium nitrate, and then condensed and removed. In general, thermal plasmas are formed by heating a system to high temperatures 2,000 degrees C, however this can be inefficient and can require extensive thermal management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20system%20application" title="plasma system application">plasma system application</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20physics" title=" project physics"> project physics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidizing%20environment" title=" oxidizing environment"> oxidizing environment</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetically" title=" electromagnetically"> electromagnetically</a> </p> <a href="https://publications.waset.org/abstracts/150340/plasma-systems-application-in-treating-automobile-exhaust-gases-for-a-clean-environment-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20Snustad">Ingrid Snustad</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmund%20Ervik"> Asmund Ervik</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Austegard"> Anders Austegard</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20Brunsvold"> Amy Brunsvold</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianying%20He"> Jianying He</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiliang%20Zhang"> Zhiliang Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CCS" title="CCS">CCS</a>, <a href="https://publications.waset.org/abstracts/search?q=dropwise%20condensation" title=" dropwise condensation"> dropwise condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20surface%20tension%20liquid" title=" low surface tension liquid"> low surface tension liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=superlyophobic%20surfaces" title=" superlyophobic surfaces"> superlyophobic surfaces</a> </p> <a href="https://publications.waset.org/abstracts/83040/superlyophobic-surfaces-for-increased-heat-transfer-during-condensation-of-co2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Pair Interaction in Transition-Metal Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20E.%20Dubinin">Nikolay E. Dubinin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pair-interaction approximations allow to consider a different states of condensed matter from a single position. At the same time, description of an effective pair interaction in transition metal is a hard task since the d-electron contribution to the potential energy in this case is non-pairwise in principle. There are a number of models for transition-metal effective pair potentials. Here we use the Wills-Harrison (WH) approach to calculate pair potentials for Fe, Co, and Ni in crystalline, liquid, and nano states. Last is especially interesting since nano particles of pure transition metals immobilized on the dielectric matrices are widely used in different fields of advanced technologies: as carriers and transmitters of information, as an effective catalytic materials, etc. It is found that the minimum of the pair potential is deeper and oscillations are stronger in nano crystalline state in comparison with the liquid and crystalline states for all metals under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20pair%20potential" title="effective pair potential">effective pair potential</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystalline%20state" title=" nanocrystalline state"> nanocrystalline state</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wills-Harrison%20approach" title=" Wills-Harrison approach "> Wills-Harrison approach </a> </p> <a href="https://publications.waset.org/abstracts/14984/pair-interaction-in-transition-metal-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> 2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Bielewicz">T. Bielewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dogan"> S. Dogan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Klinke"> C. Klinke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets’ height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20sciences" title="physical sciences">physical sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=colloids" title=" colloids"> colloids</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=condensed-matter%20physics" title=" condensed-matter physics"> condensed-matter physics</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20materials" title=" two-dimensional materials"> two-dimensional materials</a> </p> <a href="https://publications.waset.org/abstracts/10371/2d-pbs-nanosheets-synthesis-and-their-applications-as-field-effect-transistors-or-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Text Similarity in Vector Space Models: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Shahmirzadi">Omid Shahmirzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Lugowski"> Adam Lugowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Younge"> Kenneth Younge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=patent" title=" patent"> patent</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20embedding" title=" text embedding"> text embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20similarity" title=" text similarity"> text similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20space%20model" title=" vector space model"> vector space model</a> </p> <a href="https://publications.waset.org/abstracts/102930/text-similarity-in-vector-space-models-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Developing Elusive Frame for Creativity, ICT and Teacher Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Malhotra">Rahul Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Anu%20Malhotra"> Anu Malhotra</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Bana"> Veena Bana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information and Communication Technology (ICT) plays an imperative part in enhancing the quality of life, together with education. This research work is an important consequence to endow with substantiation for the effective use of Information and Communication Technology (ICT) tools for educational rationale. Perspective teachers and students of technical education from various regions of Rajasthan participated in the survey based research work. Condensed from the analysis and interpretations of the data collected from Perspective teachers and students of technical education from various regions of Rajasthan, it is inevitable that use of Information and Communication Technology (ICT) for educational purpose can augment student’s creativity and achievement ability. The Chi-Square statistics produce the evidence of the effective use of Information and Communication Technology (ICT) in enhancing the creativity and achievement ability of the perspective teachers and students of technical education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICT" title="ICT">ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=elusive%20frame" title=" elusive frame "> elusive frame </a> </p> <a href="https://publications.waset.org/abstracts/35101/developing-elusive-frame-for-creativity-ict-and-teacher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Gradient Complex Protective Coatings for Single Crystal Nickel Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeniya%20Popova">Evgeniya Popova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Lesnikov"> Vladimir Lesnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Popov"> Nikolay Popov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High yield complex coatings have been designed for thermally stressed cooled HP turbine blades from single crystal alloys ZHS32-VI-VI and ZHS36 with crystallographic orientation [001]. These coatings provide long-term protection of single crystal blades during operation. The three-layer coatings were prepared as follows: the diffusion barrier layer formation on the alloy surface, the subsequent deposition of the condensed bilayer coatings consisting of an inner layer based on Ni-Cr-Al-Y systems and an outer layer based on the alloyed β-phase. The structure, phase composition of complex coatings and reaction zone interaction with the single-crystal alloys ZHS32-VI and ZHS36-VI were investigated using scanning electron microscope (SEM). The effect of complex protective coatings on the properties of heat-resistant nickel alloys was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20crystal%20nickel%20alloys" title="single crystal nickel alloys">single crystal nickel alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20heat-resistant%20coatings" title=" complex heat-resistant coatings"> complex heat-resistant coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20composition" title=" phase composition"> phase composition</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/63315/the-gradient-complex-protective-coatings-for-single-crystal-nickel-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Synthesis and Antibacterial Evaluation of Natural Bioactive 3,4-DihydroisocoumarinAnalogues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hummera%20Rafique">Hummera Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamer%20Saeed"> Aamer Saeed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of structural analogues of various well known bioactive natural 3,4-dihydroisocoumarins viz. Scorzocreticin, Annulatomarin, Montroumarin, and Thunberginol B, have been carried out starting from 3,5-dimethoxy-4-methylphenyl acetic acid. 3,5-Dimethoxy-4-methylphenyl acetic acid was then condensed with various aryl acid chlorides (a-e) to afford the corresponding 6,8-dimethoxy-7-methyl-3-aryl isocoumarins (5a-e). The alkaline hydrolysis of isocoumarins yields keto-acids (3a-e), which were then reduced to hydroxyacids, followed by cyclodehydration with acetic anhydride furnish corresponding 3,4-dihydroisocoumarins (7a-e). Finally, demethylation of 3,4-dihydroisocoumarins was carried out to afford 6,8-dihydroxy-7-methyl-3-aryl-3,4-dihydroisocoumarins (7a-e). Antibacterial evaluation of all the synthesized compounds were carried out against ten bacterial strains, it was concluded that isocoumarins (5a-e) and 3,4-dihydroisocoumarins (7a-e) are more active against gram positive bacteria then gram negative. However, the 6,8-dihydroxy-3,4-dihydroisocoumarin derivatives (8a-e) are more active against gram negative then gram positive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3" title="3">3</a>, <a href="https://publications.waset.org/abstracts/search?q=5-Dimethoxy-4-methylhomophthalic%20acid" title="5-Dimethoxy-4-methylhomophthalic acid">5-Dimethoxy-4-methylhomophthalic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%203" title=" natural 3"> natural 3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-Dihydroisocoumarin%20analogues" title="4-Dihydroisocoumarin analogues">4-Dihydroisocoumarin analogues</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=isocoumarins" title=" isocoumarins"> isocoumarins</a>, <a href="https://publications.waset.org/abstracts/search?q=demethylation" title=" demethylation "> demethylation </a> </p> <a href="https://publications.waset.org/abstracts/30511/synthesis-and-antibacterial-evaluation-of-natural-bioactive-34-dihydroisocoumarinanalogues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Industrial Relations as Communication: The Strange Case of the FCA-UAW Agreement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Nespoli">Francesco Nespoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After having posed a theoretical framework combining framing theory and new rhetoric, the paper analyze the shift in communication both adopted by UAW and FCA during the negotiations in fall 2015. The paper argues that mistakes and adjustments played a determinant role respectively in the rejection of the first tentative agreement and in the ratification of the contract. The purpose of the paper is to set a new theoretical framework for the analysis of communication in industrial relations, by describing a narrative construction of reality from the perspective of the new rhetoric. The paper thus analyze all public text, speeches, tweets and Facebook posts by the union reading them as part of the narrative set by the organization condensed by the slogan 'it’s our time'. That narrative tried to gain consensus from the members matching the expectations due to the industry recovery after more than five years of workers' sacrifices. In doing so, the analysis points out a shift in the communication strategy of the union after the first rejection of a tentative agreement in 15 years. The findings suggest that, from the communication point of view, consultation in industrial relations can be conceived as a particular kind of political communication where identification with the audience through deliberate narrative may not be effective if it is not preceded by a listening campaign. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication" title="communication">communication</a>, <a href="https://publications.waset.org/abstracts/search?q=consultation" title=" consultation"> consultation</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=FCA" title=" FCA "> FCA </a> </p> <a href="https://publications.waset.org/abstracts/86169/industrial-relations-as-communication-the-strange-case-of-the-fca-uaw-agreement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gloria%20James">Gloria James</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nema"> S. K. Nema</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Anantha%20Singh"> T. S. Anantha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vadivel%20Murugan"> P. Vadivel Murugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=tyre%20waste" title=" tyre waste"> tyre waste</a> </p> <a href="https://publications.waset.org/abstracts/103318/plasma-gasification-as-a-sustainable-way-for-energy-recovery-from-scrap-tyre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=condensed%20mattter&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=condensed%20mattter&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=condensed%20mattter&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=condensed%20mattter&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10