CINXE.COM
Search results for: creep
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: creep</title> <meta name="description" content="Search results for: creep"> <meta name="keywords" content="creep"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="creep" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="creep"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 45</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: creep</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Determining Full Stage Creep Properties from Miniature Specimen Creep Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=W.%20Sun">W. Sun</a>, <a href="https://publications.waset.org/search?q=W.%20Wen"> W. Wen</a>, <a href="https://publications.waset.org/search?q=J.%20Lu"> J. Lu</a>, <a href="https://publications.waset.org/search?q=A.%20A.%20Becker"> A. A. Becker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Creep%20damage%20property" title="Creep damage property">Creep damage property</a>, <a href="https://publications.waset.org/search?q=analytical%20solutions" title=" analytical solutions"> analytical solutions</a>, <a href="https://publications.waset.org/search?q=inverse%20approach" title=" inverse approach"> inverse approach</a>, <a href="https://publications.waset.org/search?q=miniature%20specimen%20test." title=" miniature specimen test."> miniature specimen test.</a> </p> <a href="https://publications.waset.org/10009661/determining-full-stage-creep-properties-from-miniature-specimen-creep-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009661/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009661/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009661/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009661/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009661/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009661/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009661/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009661/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009661/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009661/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">780</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20M%C3%BCnch">M. Münch</a>, <a href="https://publications.waset.org/search?q=R.%20Brandt"> R. Brandt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Activation%20parameters" title="Activation parameters">Activation parameters</a>, <a href="https://publications.waset.org/search?q=creep%20mechanisms" title=" creep mechanisms"> creep mechanisms</a>, <a href="https://publications.waset.org/search?q=high%20strength%20steels" title=" high strength steels"> high strength steels</a>, <a href="https://publications.waset.org/search?q=low%20temperature%20creep." title=" low temperature creep. "> low temperature creep. </a> </p> <a href="https://publications.waset.org/10009438/activation-parameters-of-the-low-temperature-creep-controlling-mechanism-in-martensitic-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009438/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009438/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009438/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009438/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009438/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009438/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009438/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009438/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009438/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009438/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Impact of Scale on Rock Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Roland%20Pusch">Roland Pusch</a>, <a href="https://publications.waset.org/search?q=Richard%20Weston"> Richard Weston</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The scale dependence of the strength of virtually homogeneous rock is usually considered to be insignificant but the spectrum of discontinuities plays a very important role for the strength of differently sized rock elements and also controls the rock creep strain. Large-scale load tests comprised recording of the creep strain rate that was found to be strongly retarded and negligible for stresses lower than about 1/3 of the failure load. For higher stresses creep took place according to a log time law representing secondary creep that ultimately changed to tertiary creep and failure.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Impact%20of%20scale" title="Impact of scale">Impact of scale</a>, <a href="https://publications.waset.org/search?q=rock%20strength." title=" rock strength."> rock strength.</a> </p> <a href="https://publications.waset.org/1445/impact-of-scale-on-rock-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1445/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1445/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1445/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1445/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1445/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1445/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1445/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1445/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1445/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1445/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1713</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Holger%20Keitel">Holger Keitel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Concrete%20creep%20models" title="Concrete creep models">Concrete creep models</a>, <a href="https://publications.waset.org/search?q=time-integration%20methods" title=" time-integration methods"> time-integration methods</a>, <a href="https://publications.waset.org/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/search?q=prediction%20uncertainty." title=" prediction uncertainty."> prediction uncertainty.</a> </p> <a href="https://publications.waset.org/5824/selecting-an-advanced-creep-model-or-a-sophisticated-time-integration-a-new-approach-by-means-of-sensitivity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5824/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5824/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5824/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5824/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5824/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5824/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5824/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5824/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5824/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5824/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1538</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Creep Constitutive Equation for 2- Materials of Weldment-304L Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amir%20Hossein%20Daei%20Sorkhabi">Amir Hossein Daei Sorkhabi</a>, <a href="https://publications.waset.org/search?q=Farid%20Vakili%20Tahami"> Farid Vakili Tahami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, creep constitutive equations of base (Parent) and weld materials of the weldment for cold-drawn 304L stainless steel have been obtained experimentally. For this purpose, test samples have been generated from cold drawn bars and weld material according to the ASTM standard. The creep behavior and properties have been examined for these materials by conducting uniaxial creep tests. Constant temperatures and constant load uni-axial creep tests have been carried out at two high temperatures, 680 and 720 oC, subjected to constant loads, which produce initial stresses ranging from 240 to 360 MPa. The experimental data have been used to obtain the creep constitutive parameters using numerical optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Creep" title="Creep">Creep</a>, <a href="https://publications.waset.org/search?q=Constitutive%20equation" title=" Constitutive equation"> Constitutive equation</a>, <a href="https://publications.waset.org/search?q=Cold-drawn%20304L%0Astainless%20steel" title=" Cold-drawn 304L stainless steel"> Cold-drawn 304L stainless steel</a>, <a href="https://publications.waset.org/search?q=Weld" title=" Weld"> Weld</a>, <a href="https://publications.waset.org/search?q=Base%20material" title=" Base material"> Base material</a> </p> <a href="https://publications.waset.org/4995/creep-constitutive-equation-for-2-materials-of-weldment-304l-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4995/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4995/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4995/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4995/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4995/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4995/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4995/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4995/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4995/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4995/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2772</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Woo-Tai%20Jung">Woo-Tai Jung</a>, <a href="https://publications.waset.org/search?q=Sung-Yong%20Choi"> Sung-Yong Choi</a>, <a href="https://publications.waset.org/search?q=Young-Hwan%20Park"> Young-Hwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Creep" title="Creep">Creep</a>, <a href="https://publications.waset.org/search?q=Lean%20concrete" title=" Lean concrete"> Lean concrete</a>, <a href="https://publications.waset.org/search?q=Pavement" title=" Pavement"> Pavement</a>, <a href="https://publications.waset.org/search?q=Fiber%20reinforced%0D%0Aconcrete" title=" Fiber reinforced concrete"> Fiber reinforced concrete</a>, <a href="https://publications.waset.org/search?q=Base." title=" Base."> Base.</a> </p> <a href="https://publications.waset.org/10000891/experimental-study-on-the-creep-characteristics-of-frc-base-for-composite-pavement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000891/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000891/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000891/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000891/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000891/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000891/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000891/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000891/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000891/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000891/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1362</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Woo-tai%20Jung">Woo-tai Jung</a>, <a href="https://publications.waset.org/search?q=Sung-yong%20Choi"> Sung-yong Choi</a>, <a href="https://publications.waset.org/search?q=Young-hwan%20Park"> Young-hwan Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Creep" title="Creep">Creep</a>, <a href="https://publications.waset.org/search?q=Lean%20concrete" title=" Lean concrete"> Lean concrete</a>, <a href="https://publications.waset.org/search?q=Pavement" title=" Pavement"> Pavement</a>, <a href="https://publications.waset.org/search?q=Fiber%20reinforced%20concrete" title=" Fiber reinforced concrete"> Fiber reinforced concrete</a>, <a href="https://publications.waset.org/search?q=Base." title=" Base. "> Base. </a> </p> <a href="https://publications.waset.org/17204/experimental-study-on-the-creep-characteristics-of-frc-base-for-composite-pavement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/17204/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/17204/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/17204/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/17204/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/17204/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/17204/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/17204/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/17204/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/17204/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/17204/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/17204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2206</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tejeet%20Singh">Tejeet Singh</a>, <a href="https://publications.waset.org/search?q=Ishavneet%20Singh"> Ishavneet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Steady%20state%20creep" title="Steady state creep">Steady state creep</a>, <a href="https://publications.waset.org/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/search?q=cylinder" title=" cylinder"> cylinder</a>, <a href="https://publications.waset.org/search?q=pressure." title=" pressure. "> pressure. </a> </p> <a href="https://publications.waset.org/10004483/modeling-of-steady-state-creep-in-thick-walled-cylinders-under-internal-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004483/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004483/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004483/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004483/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004483/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004483/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004483/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004483/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004483/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004483/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1614</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Effect of Aggregate Gradation on Moisture Susceptibility and Creep in HMA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Haider%20H.%20Aodah">Haider H. Aodah</a>, <a href="https://publications.waset.org/search?q=Yassir%20Nashaat%20A.%20Kareem"> Yassir Nashaat A. Kareem</a>, <a href="https://publications.waset.org/search?q=Satish%20Chandra"> Satish Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study explains the effect of aggregate gradation on moisture damage in bituminous mixes. Three types of aggregate gradation and two types of binder; VG-30 and Polymer modified bitumen (PMB-40) are used. Moisture susceptibility tests like retained stability and tensile strength ratio (TSR) and static creep test are conducted on Marshall specimens. The creep test was also conducted for conditioned and unconditioned specimens to observe the effect of moisture on creep behaviour. The results indicate that Marshall stability value is higher in PMB-40 mix than VG-30 mixes. Moisture susceptibility of PMB-40 mixes is low when compared with mix using VG-30. The reduction in retained stability, and indirect tensile strength and increase in creep are evaluated for finer, coarser and normal gradation of aggregate to observe the effect of gradation on moisture susceptibility of mixes. The retained stability is least affected when compared with other moisture susceptibility parameters <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aggregate%20gradation" title="Aggregate gradation">Aggregate gradation</a>, <a href="https://publications.waset.org/search?q=Creep%20ratio" title=" Creep ratio"> Creep ratio</a>, <a href="https://publications.waset.org/search?q=Retained%20stability" title=" Retained stability"> Retained stability</a>, <a href="https://publications.waset.org/search?q=Stripping" title=" Stripping"> Stripping</a>, <a href="https://publications.waset.org/search?q=Tensile%20strength%20ratio." title=" Tensile strength ratio."> Tensile strength ratio.</a> </p> <a href="https://publications.waset.org/2781/effect-of-aggregate-gradation-on-moisture-susceptibility-and-creep-in-hma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2781/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2781/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2781/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2781/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2781/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2781/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2781/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2781/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2781/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2781/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3032</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Kong">K. Kong</a>, <a href="https://publications.waset.org/search?q=E.%20Ferrier"> E. Ferrier</a>, <a href="https://publications.waset.org/search?q=L.%20Michel"> L. Michel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRCCFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20fibre-reinforced%20polymer%20%28CFRP%29%20bars" title="Carbon fibre-reinforced polymer (CFRP) bars">Carbon fibre-reinforced polymer (CFRP) bars</a>, <a href="https://publications.waset.org/search?q=creep%0D%0Abehaviour" title=" creep behaviour"> creep behaviour</a>, <a href="https://publications.waset.org/search?q=glulam" title=" glulam"> glulam</a>, <a href="https://publications.waset.org/search?q=ultra-high%20performance%20fibre%20reinforced%20concrete%0D%0A%28UHPFRC%29." title=" ultra-high performance fibre reinforced concrete (UHPFRC)."> ultra-high performance fibre reinforced concrete (UHPFRC).</a> </p> <a href="https://publications.waset.org/10002487/creep-behaviour-of-heterogeneous-timber-uhpfrc-beams-assembled-by-bonding-experimental-and-analytical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002487/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002487/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002487/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002487/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002487/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002487/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002487/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002487/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002487/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002487/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2543</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Discrete Element Modeling of the Effect of Particle Shape on Creep Behavior of Rockfills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yunjia%20Wang">Yunjia Wang</a>, <a href="https://publications.waset.org/search?q=Zhihong%20Zhao"> Zhihong Zhao</a>, <a href="https://publications.waset.org/search?q=Erxiang%20Song"> Erxiang Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Rockfills are widely used in civil engineering, such as dams, railways, and airport foundations in mountain areas. A significant long-term post-construction settlement may affect the serviceability or even the safety of rockfill infrastructures. The creep behavior of rockfills is influenced by a number of factors, such as particle size, strength and shape, water condition and stress level. However, the effect of particle shape on rockfill creep still remains poorly understood, which deserves a careful investigation. Particle-based discrete element method (DEM) was used to simulate the creep behavior of rockfills under different boundary conditions. Both angular and rounded particles were considered in this numerical study, in order to investigate the influence of particle shape. The preliminary results showed that angular particles experience more breakages and larger creep strains under one-dimensional compression than rounded particles. On the contrary, larger creep strains were observed in he rounded specimens in the direct shear test. The mechanism responsible for this difference is that the possibility of the existence of key particle in rounded particles is higher than that in angular particles. The above simulations demonstrate that the influence of particle shape on the creep behavior of rockfills can be simulated by DEM properly. The method of DEM simulation may facilitate our understanding of deformation properties of rockfill materials.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Rockfills" title="Rockfills">Rockfills</a>, <a href="https://publications.waset.org/search?q=creep%20behavior" title=" creep behavior"> creep behavior</a>, <a href="https://publications.waset.org/search?q=particle%20crushing" title=" particle crushing"> particle crushing</a>, <a href="https://publications.waset.org/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/search?q=boundary%20conditions." title=" boundary conditions."> boundary conditions.</a> </p> <a href="https://publications.waset.org/10007963/discrete-element-modeling-of-the-effect-of-particle-shape-on-creep-behavior-of-rockfills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007963/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007963/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007963/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007963/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007963/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007963/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007963/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007963/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007963/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007963/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1080</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Steady State Creep Behavior of Functionally Graded Thick Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tejeet%20Singh">Tejeet Singh</a>, <a href="https://publications.waset.org/search?q=Harmanjit%20Singh"> Harmanjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Functionally%20Graded%20Material" title="Functionally Graded Material">Functionally Graded Material</a>, <a href="https://publications.waset.org/search?q=Pressure" title=" Pressure"> Pressure</a>, <a href="https://publications.waset.org/search?q=Steady%20State%20Creep" title=" Steady State Creep"> Steady State Creep</a>, <a href="https://publications.waset.org/search?q=Thick-Cylinder." title=" Thick-Cylinder. "> Thick-Cylinder. </a> </p> <a href="https://publications.waset.org/9996820/steady-state-creep-behavior-of-functionally-graded-thick-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996820/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996820/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996820/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996820/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996820/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996820/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996820/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996820/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996820/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996820/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1975</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20Zheng">Y. Zheng</a>, <a href="https://publications.waset.org/search?q=W.%20Sun"> W. Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b→0) and plane strain (b→∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bending" title="Bending">Bending</a>, <a href="https://publications.waset.org/search?q=Creep" title=" Creep"> Creep</a>, <a href="https://publications.waset.org/search?q=Miniature%20Specimen" title=" Miniature Specimen"> Miniature Specimen</a>, <a href="https://publications.waset.org/search?q=Thin%20Plate." title=" Thin Plate."> Thin Plate.</a> </p> <a href="https://publications.waset.org/10002041/an-inverse-approach-for-determining-creep-properties-from-a-miniature-thin-plate-specimen-under-bending" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002041/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002041/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002041/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002041/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002041/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002041/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002041/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002041/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002041/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002041/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1913</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Minto%20Rattan">Minto Rattan</a>, <a href="https://publications.waset.org/search?q=Tania%20Bose"> Tania Bose</a>, <a href="https://publications.waset.org/search?q=Neeraj%20Chamoli"> Neeraj Chamoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Creep" title="Creep">Creep</a>, <a href="https://publications.waset.org/search?q=isotropic" title=" isotropic"> isotropic</a>, <a href="https://publications.waset.org/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/search?q=thermal%20gradient." title=" thermal gradient."> thermal gradient.</a> </p> <a href="https://publications.waset.org/10007156/effect-of-linear-thermal-gradient-on-steady-state-creep-behavior-of-isotropic-rotating-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007156/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007156/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007156/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007156/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007156/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007156/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007156/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007156/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007156/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007156/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">846</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tania%20Bose">Tania Bose</a>, <a href="https://publications.waset.org/search?q=Minto%20Rattan"> Minto Rattan</a>, <a href="https://publications.waset.org/search?q=Neeraj%20Chamoli"> Neeraj Chamoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Creep" title="Creep">Creep</a>, <a href="https://publications.waset.org/search?q=functionally%20graded%20isotropic%20material" title=" functionally graded isotropic material"> functionally graded isotropic material</a>, <a href="https://publications.waset.org/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/search?q=thermal%20gradation." title=" thermal gradation."> thermal gradation.</a> </p> <a href="https://publications.waset.org/10007613/modeling-the-effect-of-thermal-gradation-on-steady-state-creep-behavior-of-isotropic-rotating-disc-made-of-functionally-graded-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007613/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007613/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007613/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007613/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007613/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007613/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007613/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007613/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007613/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007613/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">814</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=High-speed%20railway%20vehicle" title="High-speed railway vehicle">High-speed railway vehicle</a>, <a href="https://publications.waset.org/search?q=hunting%20motion" title=" hunting motion"> hunting motion</a>, <a href="https://publications.waset.org/search?q=wheel%20axle" title=" wheel axle"> wheel axle</a>, <a href="https://publications.waset.org/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/search?q=vibration%20model" title=" vibration model"> vibration model</a>, <a href="https://publications.waset.org/search?q=analysis." title=" analysis."> analysis.</a> </p> <a href="https://publications.waset.org/10008358/clarifications-on-the-damping-mechanism-related-to-the-hunting-motion-of-the-wheel-axle-of-a-high-speed-railway-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008358/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008358/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008358/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008358/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008358/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008358/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008358/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008358/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008358/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008358/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1254</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kourosh%20Nazarian">Kourosh Nazarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time<span dir="RTL">.</span> In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Stress" title="Stress">Stress</a>, <a href="https://publications.waset.org/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/search?q=surface%20runoff." title=" surface runoff."> surface runoff.</a> </p> <a href="https://publications.waset.org/10009036/analysis-and-modeling-of-stresses-and-creeps-resulting-from-soil-mechanics-in-southern-plains-of-kerman-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009036/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009036/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009036/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009036/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009036/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009036/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009036/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009036/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009036/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009036/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">717</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Yeghnem">R. Yeghnem</a>, <a href="https://publications.waset.org/search?q=L.%20Boulefrakh"> L. Boulefrakh</a>, <a href="https://publications.waset.org/search?q=S.%20A.%20Meftah"> S. A. Meftah</a>, <a href="https://publications.waset.org/search?q=A.%20Tounsi"> A. Tounsi</a>, <a href="https://publications.waset.org/search?q=E.%20A.%20Adda%20Bedia"> E. A. Adda Bedia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=RC%20shear%20wall%20structures" title="RC shear wall structures">RC shear wall structures</a>, <a href="https://publications.waset.org/search?q=composite%20plates" title=" composite plates"> composite plates</a>, <a href="https://publications.waset.org/search?q=creep%0D%0Aand%20shrinkage" title=" creep and shrinkage"> creep and shrinkage</a>, <a href="https://publications.waset.org/search?q=damaged%20reinforced%20concrete%20structures" title=" damaged reinforced concrete structures"> damaged reinforced concrete structures</a>, <a href="https://publications.waset.org/search?q=finite%20element%0D%0Amethod." title=" finite element method."> finite element method.</a> </p> <a href="https://publications.waset.org/10003038/time-dependent-behavior-of-damaged-reinforced-concrete-shear-walls-strengthened-with-composite-plates-having-variable-fibers-spacing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003038/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003038/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003038/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003038/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003038/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003038/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003038/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003038/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003038/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003038/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1672</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pankaj">Pankaj</a>, <a href="https://publications.waset.org/search?q=Sonia%20R.%20Bansal"> Sonia R. Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Elastic-Plastic" title="Elastic-Plastic">Elastic-Plastic</a>, <a href="https://publications.waset.org/search?q=Inclusion" title=" Inclusion"> Inclusion</a>, <a href="https://publications.waset.org/search?q=Rotating%20disc" title=" Rotating disc"> Rotating disc</a>, <a href="https://publications.waset.org/search?q=Stress" title=" Stress"> Stress</a>, <a href="https://publications.waset.org/search?q=Strain%20rates" title="Strain rates">Strain rates</a>, <a href="https://publications.waset.org/search?q=Transition" title=" Transition"> Transition</a>, <a href="https://publications.waset.org/search?q=variable%20density." title=" variable density."> variable density.</a> </p> <a href="https://publications.waset.org/2529/creep-transition-in-a-thin-rotating-disc-having-variable-density-with-inclusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2529/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2529/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2529/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2529/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2529/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2529/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2529/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2529/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2529/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2529/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1739</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Azadeh%20Ranjbar">V. Azadeh Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DSMC" title="DSMC">DSMC</a>, <a href="https://publications.waset.org/search?q=Thermal%20transpiration" title=" Thermal transpiration"> Thermal transpiration</a>, <a href="https://publications.waset.org/search?q=Thermal%20creep" title=" Thermal creep"> Thermal creep</a>, <a href="https://publications.waset.org/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/search?q=Knudsen%20Compressor." title=" Knudsen Compressor."> Knudsen Compressor.</a> </p> <a href="https://publications.waset.org/7522/particle-simulation-of-rarefied-gas-flows-witha-superimposed-wall-surface-temperature-gradient-in-microgeometries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7522/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7522/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7522/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7522/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7522/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7522/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7522/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7522/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7522/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7522/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1253</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Al-Baghli">H. Al-Baghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave<sup>®</sup>), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave<sup>®</sup> contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave<sup>®</sup> and total binder contents.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Crumb%20rubber" title="Crumb rubber">Crumb rubber</a>, <a href="https://publications.waset.org/search?q=Marshall%20mix%20design" title=" Marshall mix design"> Marshall mix design</a>, <a href="https://publications.waset.org/search?q=PG%20grading" title=" PG grading"> PG grading</a>, <a href="https://publications.waset.org/search?q=rubberized-bitumen." title=" rubberized-bitumen."> rubberized-bitumen.</a> </p> <a href="https://publications.waset.org/10011062/characterization-and-design-of-a-crumb-rubber-modified-asphalt-mix-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011062/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011062/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011062/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011062/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011062/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011062/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011062/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011062/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011062/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011062/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">706</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Durability of LDPE Geomembrane within Sealing System of MSW (Landfill)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20Menaa">L. Menaa</a>, <a href="https://publications.waset.org/search?q=A.%20Cherifi"> A. Cherifi</a>, <a href="https://publications.waset.org/search?q=K.%20Tigouirat"> K. Tigouirat</a>, <a href="https://publications.waset.org/search?q=M.%20Choura"> M. Choura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Analyse of locally manufactured Low Density Polyethylene (LDPE) durability, used within lining systems at bottom of Municipal Solid Waste (landfill), is done in the present work. For this end, short and middle time creep behavior under tension of the analyzed material is carried out. The locally manufactured material is tested and compared to the European one (LDPE-CE). Both materials was tested in 03 various mediums: ambient and two aggressive (salty water and foam water), using three specimens in each case. A testing campaign is carried out using an especially designed and achieved testing bench. Moreover, characterisation tests were carried out to evaluate the medium effect on the mechanical properties of the tested material (LDPE). Furthermore, experimental results have been used to establish a law regression which can be used to predict creep behaviour of the analyzed material. As a result, the analyzed LDPE material has showed a good stability in different ambient and aggressive mediums; as well, locally manufactured LDPE seems more flexible, compared with the European one. This makes it more useful to the desired application.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=LDPE%20membrane" title="LDPE membrane">LDPE membrane</a>, <a href="https://publications.waset.org/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/search?q=aggressive%20mediums" title=" aggressive mediums"> aggressive mediums</a>, <a href="https://publications.waset.org/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/3396/durability-of-ldpe-geomembrane-within-sealing-system-of-msw-landfill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3396/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3396/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3396/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3396/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3396/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3396/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3396/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3396/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3396/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3396/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1553</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Huei%20Chu%20Weng">Huei Chu Weng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidics" title="Microfluidics">Microfluidics</a>, <a href="https://publications.waset.org/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/search?q=thermal%20creep" title=" thermal creep"> thermal creep</a>, <a href="https://publications.waset.org/search?q=second-order%20boundary%20conditions." title=" second-order boundary conditions."> second-order boundary conditions.</a> </p> <a href="https://publications.waset.org/9999152/second-order-slip-flow-and-heat-transfer-in-a-long-isoflux-microchannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2358</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Mechanical Behaviour and Electrical Conductivity of Oxygen Separation Membrane under Uniaxial Compressive Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wakako%20Araki">Wakako Araki</a>, <a href="https://publications.waset.org/search?q=J%C3%BCrgen%20Malzbender"> Jürgen Malzbender</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The mechanical deformation and the electrical conductivity of lanthanum strontium cobalt ferrite oxide under uniaxial compression were investigated at various temperatures up to 1073 K. The material reveals a rather complex mechanical behaviour related to its ferroelasticity and completely different stress-strain curves are obtained during the 1st and 2nd loading cycles. A distinctive ferroelastic creep was observed at 293 K whilst typical ferroelastic stress-strain curve were obtained in the temperature range from 473 K to 873 K. At 1073 K, on the other hand, high-temperature creep deformation was observed instead of ferroelastic deformation. The conductivity increases with increasing compressive stress at all the temperatures. The increase in conductivity is related to both geometrical and piezoelectric effects. From 293 K to 873 K, where the material exhibits ferroelastic behaviour, the variation in the total conductivity decreases with increasing temperature. The contribution of the piezoelectric effect to the total conductivity variation also decreases with increasing temperature and the maximum in piezoconductivity has a value of about 0.75 % at 293 K for a compressive stress of 100 MPa. There is no effect of domain switching on conductivity except for the geometric effect. At 1073 K, the conductivity is simply proportional to the compressive strain.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ferroelasticity" title="Ferroelasticity">Ferroelasticity</a>, <a href="https://publications.waset.org/search?q=Piezoconductivity" title=" Piezoconductivity"> Piezoconductivity</a>, <a href="https://publications.waset.org/search?q=oxygen%20separation%20membrane" title=" oxygen separation membrane"> oxygen separation membrane</a>, <a href="https://publications.waset.org/search?q=perovskite." title=" perovskite."> perovskite.</a> </p> <a href="https://publications.waset.org/11826/mechanical-behaviour-and-electrical-conductivity-of-oxygen-separation-membrane-under-uniaxial-compressive-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11826/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11826/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11826/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11826/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11826/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11826/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11826/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11826/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11826/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11826/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1758</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Barenten%20Suciu">Barenten Suciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bullet%20train" title="Bullet train">Bullet train</a>, <a href="https://publications.waset.org/search?q=dynamical%20hunting" title=" dynamical hunting"> dynamical hunting</a>, <a href="https://publications.waset.org/search?q=cylindrical%20wheels" title=" cylindrical wheels"> cylindrical wheels</a>, <a href="https://publications.waset.org/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/search?q=vibration%20analysis." title=" vibration analysis."> vibration analysis.</a> </p> <a href="https://publications.waset.org/10009394/damping-and-stability-evaluation-for-the-dynamical-hunting-motion-of-the-bullet-train-wheel-axle-equipped-with-cylindrical-wheel-treads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009394/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009394/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009394/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009394/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009394/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009394/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009394/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009394/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009394/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009394/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">760</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Improving the Exploitation of Fluid in Elastomeric Polymeric Isolator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Haithem%20Elderrat">Haithem Elderrat</a>, <a href="https://publications.waset.org/search?q=Huw%20Davies"> Huw Davies</a>, <a href="https://publications.waset.org/search?q=Emmanuel%20Brousseau"> Emmanuel Brousseau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastomeric polymer foam has been used widely in the automotive industry, especially for isolating unwanted vibrations. Such material is able to absorb unwanted vibration due to its combination of elastic and viscous properties. However, the ‘creep effect’, poor stress distribution and susceptibility to high temperatures are the main disadvantages of such a system. In this study, improvements in the performance of elastomeric foam as a vibration isolator were investigated using the concept of Foam Filled Fluid (FFFluid). In FFFluid devices, the foam takes the form of capsule shapes, and is mixed with viscous fluid, while the mixture is contained in a closed vessel. When the FFFluid isolator is affected by vibrations, energy is absorbed, due to the elastic strain of the foam. As the foam is compressed, there is also movement of the fluid, which contributes to further energy absorption as the fluid shears. Also, and dependent on the design adopted, the packaging could also attenuate vibration through energy absorption via friction and/or elastic strain. The present study focuses on the advantages of the FFFluid concept over the dry polymeric foam in the role of vibration isolation. This comparative study between the performance of dry foam and the FFFluid was made according to experimental procedures. The paper concludes by evaluating the performance of the FFFluid isolator in the suspension system of a light vehicle. One outcome of this research is that the FFFluid may preferable over elastomer isolators in certain applications, as it enables a reduction in the effects of high temperatures and of ‘creep effects’, thereby increasing the reliability and load distribution. The stiffness coefficient of the system has increased about 60% by using an FFFluid sample. The technology represented by the FFFluid is therefore considered by this research suitable for application in the suspension system of a light vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anti-vibration%20devices" title="Anti-vibration devices">Anti-vibration devices</a>, <a href="https://publications.waset.org/search?q=dry%20foam" title=" dry foam"> dry foam</a>, <a href="https://publications.waset.org/search?q=FFFluid." title=" FFFluid."> FFFluid.</a> </p> <a href="https://publications.waset.org/10001945/improving-the-exploitation-of-fluid-in-elastomeric-polymeric-isolator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001945/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001945/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001945/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001945/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001945/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001945/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001945/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001945/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001945/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001945/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1897</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Sustainable Upgrade of Existing Heritage Infrastructure: Strengthening and Rehabilitation of the LH Ford Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vince%20Scolaro">Vince Scolaro</a>, <a href="https://publications.waset.org/search?q=Lakshman%20Prasad"> Lakshman Prasad</a>, <a href="https://publications.waset.org/search?q=Ted%20Polley"> Ted Polley</a>, <a href="https://publications.waset.org/search?q=Sanjivan%20Deshpande"> Sanjivan Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The LH Ford Bridge, built in the 1960’s, comprises 28 spans, is 800 m long and crosses the Macquarie River at Dubbo, NSW. The main bridge spans comprise three spans with a 63 m centre span (25 m drop-in section) supported by halving joints from the main cantilevers and back spans of 28 m. The main bridge spans were built using complex construction staging (first of this type in NSW). They comprise twin precast boxes, in-situ reinforced concrete infills, and cantilevered outriggers stressed both longitudinally and transversely. Since construction, this bridge has undergone significantly increased design vehicle loads and showed signs of excessive shrinkage and creep leading to significant sagging of the centre span with evidence of previous failure and remediation of the halving joints. A comprehensive load rating assessment was undertaken taking account of the original complex construction staging. Deficiencies identified included, inadequate capacity of the halving joints, failure of the bearings at the halving joints, inadequate shear capacity of the girder webs and inadequate girder flexural capacity to carry B-Double design vehicles. A strengthening system comprising two new piers (under each of the halving joints), new bearings and installation of external prestressing to the soffit of both drop-in-span and back spans was adopted. A portion of dead load had to be transferred from the superstructure to the new piers via innovative soft/stiff bearing combinations to reduce new locked in stresses resulting from the new pier supports. Significant temporary works comprised a precast concrete shell beam forming the pile cap/pier structure, addition of temporary suspended scaffold (without overstressing the existing superstructure) and installation of jacking stays for new bearing top and bottom plates. This paper presents how this existing historic and socially important bridge was strengthened and updated to increase its design life without the need for replacement. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Strengthening" title="Strengthening">Strengthening</a>, <a href="https://publications.waset.org/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/search?q=box%20girder." title=" box girder."> box girder.</a> </p> <a href="https://publications.waset.org/10013779/sustainable-upgrade-of-existing-heritage-infrastructure-strengthening-and-rehabilitation-of-the-lh-ford-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013779/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013779/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013779/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013779/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013779/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013779/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013779/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013779/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013779/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013779/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Damage of Tubular Equipment in Process Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pavel%20Losak">Pavel Losak</a>, <a href="https://publications.waset.org/search?q=Tomas%20Letal"> Tomas Letal</a>, <a href="https://publications.waset.org/search?q=Radek%20Nejezchleb"> Radek Nejezchleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tubular process equipment is often damaged in industrial processes. The damage occurs both on devices working at high temperatures and also on less exposed devices. In case of sudden damage of key equipment a shutdown of the whole production unit and resulting significant economic losses are imminent. This paper presents a solution of several types of tubular process equipment. The causes of damage and suggestions of correction actions are discussed in all cases. Very important part is the analysis of operational conditions, determination of unfavourable working states decreasing lifetime of devices and suggestions of correction actions. Lately very popular numerical methods are used for analysis of the equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/search?q=FSI" title=" FSI"> FSI</a>, <a href="https://publications.waset.org/search?q=lifetime" title=" lifetime"> lifetime</a>, <a href="https://publications.waset.org/search?q=tubular%20equipment" title=" tubular equipment"> tubular equipment</a> </p> <a href="https://publications.waset.org/14231/damage-of-tubular-equipment-in-process-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14231/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14231/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14231/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14231/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14231/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14231/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14231/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14231/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14231/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14231/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1409</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Y%C3%B6netken">A. Yönetken</a>, <a href="https://publications.waset.org/search?q=A.%20Erol"> A. Erol</a>, <a href="https://publications.waset.org/search?q=M.%20Cakmakkaya"> M. Cakmakkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni- %10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe, Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Composite" title="Composite">Composite</a>, <a href="https://publications.waset.org/search?q=Intermetallic" title=" Intermetallic"> Intermetallic</a>, <a href="https://publications.waset.org/search?q=High%20temperature" title=" High temperature"> High temperature</a>, <a href="https://publications.waset.org/search?q=Sintering." title=" Sintering."> Sintering.</a> </p> <a href="https://publications.waset.org/10001589/characterization-of-sintered-fe-cr-mn-powder-mixtures-containing-intermetallics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001589/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001589/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001589/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001589/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001589/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001589/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001589/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001589/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001589/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001589/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2474</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Durability Aspects of Recycled Aggregate Concrete: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Smitha%20Yadav">Smitha Yadav</a>, <a href="https://publications.waset.org/search?q=Snehal%20Pathak"> Snehal Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Compressive%20strength" title="Compressive strength">Compressive strength</a>, <a href="https://publications.waset.org/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/search?q=rapid%20chloride%20permeation%20test" title=" rapid chloride permeation test"> rapid chloride permeation test</a>, <a href="https://publications.waset.org/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/search?q=water%20permeability." title=" water permeability."> water permeability.</a> </p> <a href="https://publications.waset.org/10008727/durability-aspects-of-recycled-aggregate-concrete-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008727/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008727/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008727/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008727/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008727/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008727/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008727/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008727/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008727/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008727/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1510</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=creep&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=creep&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>