CINXE.COM

(PDF) A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading | Zakiah Yusoff - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="GgepaxVq5OIitVHv+5RvMKjWYk74fvZ996GDhuquu7UR/Bojx1PWpVzN0gooNeeOzQ+CF361wQI7fDmdykHNqQ==" /> <meta name="citation_title" content="A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading" /> <meta name="citation_journal_title" content="Indonesian Journal of Electrical Engineering and Computer Science" /> <meta name="citation_author" content="Zakiah Yusoff" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading" /> <meta name="twitter:title" content="A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading" /> <meta name="twitter:description" content="Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still" /> <meta name="twitter:image" content="http://a.academia-assets.com/images/twitter-card.jpeg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading" /> <meta property="og:title" content="A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still" /> <meta property="article:author" content="https://independent.academia.edu/YusoffZakiah" /> <meta name="description" content="Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still" /> <title>(PDF) A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading | Zakiah Yusoff - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732986704000); window.Aedu.timeDifference = new Date().getTime() - 1732986704000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still does not reach its standard since mostly graded by using human sensory evaluation. However, previous researchers discovered new modern techniques to present the quality of essential oils by analyse the chemical compounds. Agarwood essential oil had been chosen for the proposed integrated intelligent models with the implementation of k-nearest neighbor (k-NN) due to the high demand and an expensive natural raw world resource. k-NN with Euclidean distance metrics had better performance in terms of its confusion matrix, sensitivity, precision accuracy and specificity. This paper presents an overview of essential oils as well as their previous analysis technique. The review on k-NN is done to prove the technique is compatible for future res...","author":[{"@context":"https://schema.org","@type":"Person","name":"Zakiah Yusoff"}],"contributor":[],"dateCreated":"2022-10-18","dateModified":"2022-10-18","datePublished":null,"headline":"A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading","inLanguage":"en","keywords":["Essential Oil","Confusion","Incense","Agarwood","Euclidean Distance","Confusion Matrix"],"locationCreated":null,"publication":"Indonesian Journal of Electrical Engineering and Computer Science","publisher":{"@context":"https://schema.org","@type":"Organization","name":"Institute of Advanced Engineering and Science"},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "e5f3ef0d027885ae41487decefcdbc904a8a707c3d585d66b462a57aebba6ab9", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="upMqsIvwJXrI1xivkVfuLNtejbLW1KYSJuK4UbHFP+GxaJn4WckXPbavm0pC9maSvodt61AfkW3qPwJKkSpJ/Q==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="qO5EeNVDaPjxCJ/hankR2NJB5sKCZTx8yzqrJZuh8jSjFfcwB3pav49wHAS52Jlmt5gGmwSuCwMH5xE+u06EKA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-86832e264efa375cdd3fa5979579c95643bf6a5c1b20c95ec7a98005fcb4b9a4.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 167341124; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F88723094%2FA_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F88723094%2FA_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":92644930,"identifier":"Attachment_92644930","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":88723094,"created_at":"2022-10-18T06:10:45.503-07:00","from_world_paper_id":217755742,"updated_at":"2022-10-18T09:26:29.309-07:00","_data":{"abstract":"Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still does not reach its standard since mostly graded by using human sensory evaluation. However, previous researchers discovered new modern techniques to present the quality of essential oils by analyse the chemical compounds. Agarwood essential oil had been chosen for the proposed integrated intelligent models with the implementation of k-nearest neighbor (k-NN) due to the high demand and an expensive natural raw world resource. k-NN with Euclidean distance metrics had better performance in terms of its confusion matrix, sensitivity, precision accuracy and specificity. This paper presents an overview of essential oils as well as their previous analysis technique. The review on k-NN is done to prove the technique is compatible for future res...","publisher":"Institute of Advanced Engineering and Science","publication_name":"Indonesian Journal of Electrical Engineering and Computer Science"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [167341124]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:92644930,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/92644930/mini_magick20240803-1-y5fwes.png?1722675403" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="167341124" href="https://independent.academia.edu/YusoffZakiah"><img alt="Profile image of Zakiah Yusoff" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Zakiah Yusoff</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">Indonesian Journal of Electrical Engineering and Computer Science</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">8 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 88723094; const worksViewsPath = "/v0/works/views?subdomain_param=api&amp;work_ids%5B%5D=88723094"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still does not reach its standard since mostly graded by using human sensory evaluation. However, previous researchers discovered new modern techniques to present the quality of essential oils by analyse the chemical compounds. Agarwood essential oil had been chosen for the proposed integrated intelligent models with the implementation of k-nearest neighbor (k-NN) due to the high demand and an expensive natural raw world resource. k-NN with Euclidean distance metrics had better performance in terms of its confusion matrix, sensitivity, precision accuracy and specificity. This paper presents an overview of essential oils as well as their previous analysis technique. The review on k-NN is done to prove the technique is compatible for future res...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:92644930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:92644930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="92644930" data-landing_url="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="89850401" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89850401/A_preliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading">A preliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="245422617" href="https://independent.academia.edu/AqibFawwazMohdAmidon">Aqib Fawwaz Mohd Amidon</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184756992" href="https://independent.academia.edu/ijeecsteam">Indonesian Journal of Electrical Engineering and Computer Science</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still does not reach its standard since mostly graded by using human sensory evaluation. However, previous researchers discovered new modern techniques to present the quality of essential oils by analyse the chemical compounds. Agarwood essential oil had been chosen for the proposed integrated intelligent models with the implementation of k-nearest neighbor (k-NN) due to the high demand and an expensive natural raw world resource. k-NN with Euclidean distance metrics had better performance in terms of its confusion matrix, sensitivity, precision accuracy and specificity. This paper presents an overview of essential oils as well as their previous analysis technique. The review on k-NN is done to prove the technique is compatible for future research studies based on its performance.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A preliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading&quot;,&quot;attachmentId&quot;:93576916,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89850401/A_preliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89850401/A_preliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="97036638" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97036638/The_k_nearest_neighbor_modelling_by_varying_Mahalanobis_and_correlation_in_distance_metric_for_agarwood_oil_quality_classification">The k-nearest neighbor modelling by varying Mahalanobis and correlation in distance metric for agarwood oil quality classification</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="201854234" href="https://independent.academia.edu/ijaasjournal">IJAAS Journal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advances in Applied Sciences (IJAAS), 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood oil is well known for its unique scent and has many usages; as an incense, as ingredient in perfume, is burnt during religious ceremonies and is used in traditional medical preparation. Therefore, agarwood oil has high demand and is traded at different price based on its quality. Basically, the oil quality is classified by using physical properties (odor and color) and this technique has several problems: not consistent in term of accuracy. Thus, this study presented a new technique to classify the quality of agarwood oil based on chemical properties. The work focused on the k-nearest neighbor (k-NN) modelling by varying Mahalanobis and correlation in distance metric for agarwood oil quality classification. It involved of 96 samples of agarwood oil, data pre-processing (data randomization, data normalization, and data division to testing and training datasets) and the development of k-NN model. The training dataset is used to train the k-NN model, and the testing dataset is used to test the developed model. During the model development, Mahalanobis and correlation are varied in k-NN distance metric. The k-NN values are ranging from 1 to 10. Several performance criteria including resubstitution error (closs), cross-validation error (kloss) and accuracy were applied to measure the performance of the built k-NN model. All the analytical work was performed via MATLAB software version R2020a. The result showed that the accuracy of Mahalanobis distance metric has a better performance compared to correlation from k = 1 to k = 5 with the value of 100.00%. This finding is important as it proved the capabilities of k-NN modelling in classifying the agarwood oil quality. Not limited to that, it also contributed to the agarwood oil research area as well as its industry.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The k-nearest neighbor modelling by varying Mahalanobis and correlation in distance metric for agarwood oil quality classification&quot;,&quot;attachmentId&quot;:98768742,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/97036638/The_k_nearest_neighbor_modelling_by_varying_Mahalanobis_and_correlation_in_distance_metric_for_agarwood_oil_quality_classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/97036638/The_k_nearest_neighbor_modelling_by_varying_Mahalanobis_and_correlation_in_distance_metric_for_agarwood_oil_quality_classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="82284908" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82284908/k_nearest_neighbor_modelling_of_agarwood_oil_samples_available_in_capital_of_Malaysia_market">k-nearest neighbor modelling of agarwood oil samples available in capital of Malaysia market</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood oil is consumed during traditional ceremonies and even in medicinal purposes due to its effective therapeutic characteristic. As a part of ongoing research on agarwood oil, this paper presented a k-nearest neighbor (k-NN) modelling of agarwood oil samples available in the capital of Malaysia market. The work involved agarwood oil samples from three sources which are lab, local manufacturer and market. The inputs are the chemical compounds and the output is the oil&#39;s resources. The input-output was divided into training and testing dataset with the ratio of 80% to 20%, respectively, before they were fed to the k-NN for model development as well as model validation. During the model development, the k-value was varied from 1 to 5, and their accuracy was observed. The result showed that the k=1 and k=2 shared the similar accuracy for training and testing datasets, which are 98.63% and 100.00%, respectively. This study revealed the capabilities of the k-NN model in classifying the agarwood oil samples to the three sources: lab, local manufacturer and market. It was a significant study and contributed to further work especially those related to agarwood oil research area.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;k-nearest neighbor modelling of agarwood oil samples available in capital of Malaysia market&quot;,&quot;attachmentId&quot;:88042343,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/82284908/k_nearest_neighbor_modelling_of_agarwood_oil_samples_available_in_capital_of_Malaysia_market&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/82284908/k_nearest_neighbor_modelling_of_agarwood_oil_samples_available_in_capital_of_Malaysia_market"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="64260837" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/64260837/Design_and_Implementation_The_Learning_of_Classification_Aromatherapy_made_from_Indonesian_Spices_using_K_Nearest_Neighbor_KNN_">Design and Implementation The Learning of Classification Aromatherapy made from Indonesian Spices using K-Nearest Neighbor (KNN)</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="28589722" href="https://independent.academia.edu/MuhammadAshar14">Muhammad Ashar</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Disruptive Learning Innovation (JODLI)</p><p class="ds-related-work--abstract ds2-5-body-sm">Indonesia is country that has various plants which have many benefits for human. There are more than 31 types of medicinal plants as one of material that needed by industry as traditional medicine and spices. Traditional spiceal medicine comes from spiceal plants that used from Indonesian spices. This spices can produce aromatherapy include essential oils. Aromatherapy can help in maintaning the healthy of human body. This is necessary that aromatherapy can be classsified using K-Nearest Neighbor to classify aromatherapy from Indonesian spices. The accuracy result which shown by K-Nearest Neighbor algorithm is 97.5 percent, the accuracy data testing using confusion matrix which will be followed by front end and back end testing that shown the valid result for application design and valid using weka application with an accuracy result of 97.5 percent. This research will produce product such as android application that can be accessed by android users.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Design and Implementation The Learning of Classification Aromatherapy made from Indonesian Spices using K-Nearest Neighbor (KNN)&quot;,&quot;attachmentId&quot;:76376926,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/64260837/Design_and_Implementation_The_Learning_of_Classification_Aromatherapy_made_from_Indonesian_Spices_using_K_Nearest_Neighbor_KNN_&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/64260837/Design_and_Implementation_The_Learning_of_Classification_Aromatherapy_made_from_Indonesian_Spices_using_K_Nearest_Neighbor_KNN_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="113133188" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113133188/Preliminary_study_on_agarwood_essential_oil_and_its_classification_techniques_using_machine_learning">Preliminary study on agarwood essential oil and its classification techniques using machine learning</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250501650" href="https://independent.academia.edu/AnisHazirahIzzatiHAlHadi">Anis Hazirah ‘Izzati H. Al-Hadi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Preliminary study on agarwood essential oil and its classification techniques using machine learning&quot;,&quot;attachmentId&quot;:110173281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113133188/Preliminary_study_on_agarwood_essential_oil_and_its_classification_techniques_using_machine_learning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/113133188/Preliminary_study_on_agarwood_essential_oil_and_its_classification_techniques_using_machine_learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="89089556" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89089556/A_novel_application_of_artificial_neural_network_for_classifying_agarwood_essential_oil_quality">A novel application of artificial neural network for classifying agarwood essential oil quality</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">This work studies the agarwood oil classification into high and low quality by using two different techniques. Initially, the Forest Research Institute Malaysia (FRIM) and Universiti Malaysia Pahang (UMP) are where the sample preparation and compound extraction of agarwood oil is collected. The data collections were done from the previous researcher consists of 96 samples from seven significant agarwood oil compounds. The artificial neural network (ANN) and the proposed stepwise regression technique were used in this study. The stepwise regression was done the feature selection and successfully reduced agarwood oil compounds from seven to four. Then, the ANN technique was used to classify agarwood oil into high and low using input from seven and four compounds separately. The performance of ANN with different inputs is compared (ANN with seven inputs compared with ANN with four inputs). All the experimental work was performed using the MATLAB R2017b using the &quot;patternet&quot; implemented Levenberg Marquardt algorithm and ten hidden neurons. It was found that the ANN technique using seven compounds obtained the best performance according to high accuracy and lower mean square error (MSE) value. Finally, 1 hidden neuron in ANN with seven inputs selected as the best neuron for grading the agarwood oil compounds.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A novel application of artificial neural network for classifying agarwood essential oil quality&quot;,&quot;attachmentId&quot;:92952933,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89089556/A_novel_application_of_artificial_neural_network_for_classifying_agarwood_essential_oil_quality&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89089556/A_novel_application_of_artificial_neural_network_for_classifying_agarwood_essential_oil_quality"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="92661067" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/92661067/The_significance_of_artificial_intelligent_technique_in_classifying_various_grades_of_agarwood_oil">The significance of artificial intelligent technique in classifying various grades of agarwood oil</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250847811" href="https://independent.academia.edu/AmidonAqibFawwazMohd">Aqib Fawwaz Mohd Amidon</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184756992" href="https://independent.academia.edu/ijeecsteam">Indonesian Journal of Electrical Engineering and Computer Science</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood oil quality is often separated into two or three categories. This makes classifying agarwood oil quality using current methods difficult. Current approaches rely solely on human perception to determine the quality of agarwood, whether in raw material or oil. This technique has other undesirable implications. It can affect the human sensory system, particularly the eyes and nose. Categorization takes time, which is a considerable expense to succeed in this method. As a result, a new classification system should be devised. The chemical components in agarwood oil are used to classify it in this study. In this study, samples with preprocessing data from two to five quality levels were used. The purpose is to categorize this data based on its qualities and analyze whether this new quality group is acceptable. The K-nearest neighbours (KNN) approach was used to classify all samples and their properties for this dataset. All samples may be correctly classified by grade without any errors. This shows the chemical compound-based classification of agarwood oil can be retained. With these findings, future agarwood oil research may focus on building a new classification.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The significance of artificial intelligent technique in classifying various grades of agarwood oil&quot;,&quot;attachmentId&quot;:95610634,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/92661067/The_significance_of_artificial_intelligent_technique_in_classifying_various_grades_of_agarwood_oil&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/92661067/The_significance_of_artificial_intelligent_technique_in_classifying_various_grades_of_agarwood_oil"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="28326295" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/28326295/Performance_Comparison_of_Fuzzy_ARTMAP_and_LDA_in_Qualitative_Classification_of_Iranian_Rosa_damascena_Essential_Oils_by_an_Electronic_Nose">Performance Comparison of Fuzzy ARTMAP and LDA in Qualitative Classification of Iranian Rosa damascena Essential Oils by an Electronic Nose</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36880498" href="https://sku.academia.edu/%D9%85%D9%87%D8%AF%DB%8C%D9%82%D8%A7%D8%B3%D9%85%DB%8C%D9%88%D8%B1%D9%86%D8%A7%D9%85%D8%AE%D9%88%D8%A7%D8%B3%D8%AA%DB%8C">Mahdi Ghasemi-Varnamkhasti</a></div><p class="ds-related-work--abstract ds2-5-body-sm">Quality control of essential oils is an important topic in industrial processing of medicinal and aromatic plants. In this paper, the performance of Fuzzy Adaptive Resonant Theory Map (ARTMAP) and linear discriminant analysis (LDA) algorithms are compared in the specific task of quality classification of Rosa damascene essential oil samples (one of the most famous and valuable essential oils in the world) using an electronic nose (EN) system based on seven metal oxide semiconductor (MOS) sensors. First, with the aid of a GC-MS analysis, samples of Rosa damascene essential oils were classified into three different categories (low, middle, and high quality, classes C1, C2, and C3, respectively) based on the total percent of the most crucial qualitative compounds. An ad-hoc electronic nose (EN) system was implemented to sense the samples and acquire signals. Forty-nine features were extracted from the EN sensor matrix (seven parameters to describe each sensor curve response). The extracted features were ordered in relevance by the intra/inter variance criterion (Vr), also known as the Fisher discriminant. A leave-one-out cross validation technique was implemented for estimating the classification accuracy reached by both algorithms. Success rates were calculated using 10, 20, 30, and the entire selected features from the response of the sensor array. The results revealed a maximum classification accuracy of 99% when applying the Fuzzy ARTMAP algorithm and 82% for LDA, using the first 10 features in both cases. Further classification results explained that sub-optimal performance is likely to occur when all the response features are applied. It was found that an electronic nose system employing a Fuzzy ARTMAP classifier could become an accurate, easy, and inexpensive alternative tool for qualitative control in the production of Rosa damascene essential oil.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Performance Comparison of Fuzzy ARTMAP and LDA in Qualitative Classification of Iranian Rosa damascena Essential Oils by an Electronic Nose&quot;,&quot;attachmentId&quot;:48658767,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/28326295/Performance_Comparison_of_Fuzzy_ARTMAP_and_LDA_in_Qualitative_Classification_of_Iranian_Rosa_damascena_Essential_Oils_by_an_Electronic_Nose&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/28326295/Performance_Comparison_of_Fuzzy_ARTMAP_and_LDA_in_Qualitative_Classification_of_Iranian_Rosa_damascena_Essential_Oils_by_an_Electronic_Nose"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="116963708" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116963708/Agarwood_oil_quality_identification_using_artificial_neural_network_modelling_for_five_grades">Agarwood oil quality identification using artificial neural network modelling for five grades</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2024</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood (Aquilaria Malaccensis) oil stands out as one of the most valuable and highly sought-after oils with a hefty price tag due to its widespread use of fragrances, incense, perfumes, ceremonial practices, medicinal applications and as a symbol of luxury. However, nowadays the conventional method that rely on color alone has its limitations as it yields varying results depending on individual panelists&#39; experiences. Hence, the quality identification system of Agarwood oil using its chemical compounds had been proposed in this study to enhance the precision of the Agarwood oil grades thus addressing the shortcomings of traditional methods. This study indicates that the primary chemical compounds of Agarwood oil encompass ɤ-Eudesmol, ar-curcumene, β-dihydroagarofuran, ϒ-cadinene, α-agarofuran, allo-aromadendrene epoxide, valerianol, α-guaiene, 10-epi-ɤeudesmol, β-agarofuran and dihydrocollumellarin. This study employed artificial neural network analysis with the implementation of Levenberg-Marquardt algorithm to identify the Agarwood oil grades. The study&#39;s findings revealed that this modeling system of five grades got 100% accuracies with mean square error of 0.14338×10-08. Notably, this lowest mean square error (MSE) value falls within the best hidden neuron 3. These study outcomes play a pivotal role in highlighting the Levenberg Marquardtartificial neural network (LM-ANN) modeling that contribute to the successful of Agarwood oil quality identification using its chemical compounds.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Agarwood oil quality identification using artificial neural network modelling for five grades&quot;,&quot;attachmentId&quot;:112948170,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/116963708/Agarwood_oil_quality_identification_using_artificial_neural_network_modelling_for_five_grades&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/116963708/Agarwood_oil_quality_identification_using_artificial_neural_network_modelling_for_five_grades"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="61563195" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification">Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2021</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low quality so that both qualities can be properly differentiated. In the present study, data were obtained from the Forest Research Institute Malaysia (FRIM), Selangor Malaysia and Bioaromatic Research Centre of Excellence (BARCE), Universiti Malaysia Pahang (UMP). The work involves the data from a previous researcher. As a part of ongoing research, the stepwise linear regression and multilayer perceptron have been proposed for grading agarwood oil. The output features of the stepwise regression were the input features for modeling agarwood oil in a multilayer perceptron (MLP) network. A three layer MLP with 10 hidden neurons was used with three different training algorithms, namely resilient backpropagation (RBP), levenberg marquardt (LM) and scaled-conjugate gradient (SCG). All analytical work was performed using MATLAB software version R2017a. It was found that one hidden neuron in LM algorithm performed the most accurate result in the classification of agarwood oil with the lowest mean squared error (MSE) as compared to SCG and RBP algorithms. The findings in this research will be a benefit for future works of agarwood oil research areas, especially in terms of oil quality classification.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification&quot;,&quot;attachmentId&quot;:74558686,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:92644930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:92644930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_92644930" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="66405430" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/66405430/Classification_of_Bitter_Orange_Essential_Oils_According_to_Fruit_Ripening_Stage_by_Untargeted_Chemical_Profiling_and_Machine_Learning">Classification of Bitter Orange Essential Oils According to Fruit Ripening Stage by Untargeted Chemical Profiling and Machine Learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33661056" href="https://ub.academia.edu/SantiagoMarco">Santiago Marco</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sensors</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of Bitter Orange Essential Oils According to Fruit Ripening Stage by Untargeted Chemical Profiling and Machine Learning&quot;,&quot;attachmentId&quot;:77609200,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/66405430/Classification_of_Bitter_Orange_Essential_Oils_According_to_Fruit_Ripening_Stage_by_Untargeted_Chemical_Profiling_and_Machine_Learning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/66405430/Classification_of_Bitter_Orange_Essential_Oils_According_to_Fruit_Ripening_Stage_by_Untargeted_Chemical_Profiling_and_Machine_Learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="88723301" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/88723301/Comparison_of_ANN_Performance_Towards_Agarwood_Oil_Compounds_Pre_processing_Based_on_Principal_Component_Analysis_PCA_and_Stepwise_Regression_Selection_Method">Comparison of ANN Performance Towards Agarwood Oil Compounds Pre-processing Based on Principal Component Analysis (PCA) and Stepwise Regression Selection Method</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="167341124" href="https://independent.academia.edu/YusoffZakiah">Zakiah Yusoff</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Electrical &amp;amp; Electronic Systems Research, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Comparison of ANN Performance Towards Agarwood Oil Compounds Pre-processing Based on Principal Component Analysis (PCA) and Stepwise Regression Selection Method&quot;,&quot;attachmentId&quot;:92645119,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/88723301/Comparison_of_ANN_Performance_Towards_Agarwood_Oil_Compounds_Pre_processing_Based_on_Principal_Component_Analysis_PCA_and_Stepwise_Regression_Selection_Method&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/88723301/Comparison_of_ANN_Performance_Towards_Agarwood_Oil_Compounds_Pre_processing_Based_on_Principal_Component_Analysis_PCA_and_Stepwise_Regression_Selection_Method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="1936700" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/1936700/Classification_of_agarwood_oil_using_an_electronic_nose">Classification of agarwood oil using an electronic nose</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2503644" href="https://unimap.academia.edu/MohdNoorAhmad">Mohd Noor Ahmad</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sensors, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of agarwood oil using an electronic nose&quot;,&quot;attachmentId&quot;:27859663,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/1936700/Classification_of_agarwood_oil_using_an_electronic_nose&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/1936700/Classification_of_agarwood_oil_using_an_electronic_nose"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="48465" href="https://www.academia.edu/Documents/in/Essential_Oil">Essential Oil</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="466993" href="https://www.academia.edu/Documents/in/Confusion">Confusion</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="519511" href="https://www.academia.edu/Documents/in/Incense">Incense</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="883068" href="https://www.academia.edu/Documents/in/Agarwood">Agarwood</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1555351" href="https://www.academia.edu/Documents/in/Euclidean_Distance">Euclidean Distance</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="2735182" href="https://www.academia.edu/Documents/in/Confusion_Matrix">Confusion Matrix</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10