CINXE.COM

Total internal reflection - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Total internal reflection - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"9d2fa495-bc95-43f9-b0b5-26bb22a1f07d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Total_internal_reflection","wgTitle":"Total internal reflection","wgCurRevisionId":1253361997,"wgRevisionId":1253361997,"wgArticleId":30426,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with dead external links","Articles with dead external links from August 2023","Articles with permanently dead external links","Articles with short description","Short description is different from Wikidata","Use dmy dates from December 2021","Commons link is on Wikidata","Light","Waves","Physical phenomena","Optical phenomena","Physical optics","Geometrical optics","Glass physics","History of physics","Lighthouses","Dimensionless numbers"], "wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Total_internal_reflection","wgRelevantArticleId":30426,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false, "wgWikibaseItemId":"Q234943","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.gallery","mediawiki.page.media","site", "mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Total_internal_reflection_by_fluorescence.jpg/1200px-Total_internal_reflection_by_fluorescence.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="864"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Total_internal_reflection_by_fluorescence.jpg/800px-Total_internal_reflection_by_fluorescence.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="576"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Total_internal_reflection_by_fluorescence.jpg/640px-Total_internal_reflection_by_fluorescence.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="461"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Total internal reflection - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Total_internal_reflection"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Total_internal_reflection&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Total_internal_reflection"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Total_internal_reflection rootpage-Total_internal_reflection skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Total+internal+reflection" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Total+internal+reflection" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Total+internal+reflection" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Total+internal+reflection" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Optical_description" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Optical_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Optical description</span> </div> </a> <ul id="toc-Optical_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Critical_angle" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Critical_angle"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Critical angle</span> </div> </a> <ul id="toc-Critical_angle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Everyday_examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Everyday_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Everyday examples</span> </div> </a> <ul id="toc-Everyday_examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Evanescent_wave" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Evanescent_wave"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Evanescent wave</span> </div> </a> <button aria-controls="toc-Evanescent_wave-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Evanescent wave subsection</span> </button> <ul id="toc-Evanescent_wave-sublist" class="vector-toc-list"> <li id="toc-Frustrated_total_internal_reflection_(FTIR)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Frustrated_total_internal_reflection_(FTIR)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Frustrated total internal reflection (FTIR)</span> </div> </a> <ul id="toc-Frustrated_total_internal_reflection_(FTIR)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Derivation_of_evanescent_wave" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Derivation_of_evanescent_wave"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Derivation of evanescent wave</span> </div> </a> <ul id="toc-Derivation_of_evanescent_wave-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Phase_shifts" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Phase_shifts"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Phase shifts</span> </div> </a> <ul id="toc-Phase_shifts-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Discovery" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discovery"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Discovery</span> </div> </a> <ul id="toc-Discovery-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Huygens_and_Newton:_Rival_explanations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Huygens_and_Newton:_Rival_explanations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Huygens and Newton: Rival explanations</span> </div> </a> <ul id="toc-Huygens_and_Newton:_Rival_explanations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laplace,_Malus,_and_attenuated_total_reflectance_(ATR)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laplace,_Malus,_and_attenuated_total_reflectance_(ATR)"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Laplace, Malus, and attenuated total reflectance (ATR)</span> </div> </a> <ul id="toc-Laplace,_Malus,_and_attenuated_total_reflectance_(ATR)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fresnel_and_the_phase_shift" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fresnel_and_the_phase_shift"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Fresnel and the phase shift</span> </div> </a> <ul id="toc-Fresnel_and_the_phase_shift-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gallery" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gallery"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Gallery</span> </div> </a> <ul id="toc-Gallery-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Total internal reflection</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 45 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-45" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">45 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%86%D8%B9%D9%83%D8%A7%D8%B3_%D8%AA%D8%A7%D9%85" title="انعكاس تام – Arabic" lang="ar" hreflang="ar" data-title="انعكاس تام" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AA%E0%A7%82%E0%A6%B0%E0%A7%8D%E0%A6%A3_%E0%A6%85%E0%A6%AD%E0%A7%8D%E0%A6%AF%E0%A6%A8%E0%A7%8D%E0%A6%A4%E0%A6%B0%E0%A7%80%E0%A6%A3_%E0%A6%AA%E0%A7%8D%E0%A6%B0%E0%A6%A4%E0%A6%BF%E0%A6%AB%E0%A6%B2%E0%A6%A8" title="পূর্ণ অভ্যন্তরীণ প্রতিফলন – Bangla" lang="bn" hreflang="bn" data-title="পূর্ণ অভ্যন্তরীণ প্রতিফলন" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%8A%D0%BB%D0%BD%D0%BE_%D0%B2%D1%8A%D1%82%D1%80%D0%B5%D1%88%D0%BD%D0%BE_%D0%BE%D1%82%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Пълно вътрешно отражение – Bulgarian" lang="bg" hreflang="bg" data-title="Пълно вътрешно отражение" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Reflexi%C3%B3_total" title="Reflexió total – Catalan" lang="ca" hreflang="ca" data-title="Reflexió total" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Totalrefleksion" title="Totalrefleksion – Danish" lang="da" hreflang="da" data-title="Totalrefleksion" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Totalreflexion" title="Totalreflexion – German" lang="de" hreflang="de" data-title="Totalreflexion" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-dty mw-list-item"><a href="https://dty.wikipedia.org/wiki/%E0%A4%AA%E0%A5%82%E0%A4%B0%E0%A5%8D%E0%A4%A3_%E0%A4%86%E0%A4%A8%E0%A5%8D%E0%A4%A4%E0%A4%B0%E0%A4%BF%E0%A4%95_%E0%A4%AA%E0%A4%B0%E0%A4%BE%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%A8" title="पूर्ण आन्तरिक परावर्तन – Doteli" lang="dty" hreflang="dty" data-title="पूर्ण आन्तरिक परावर्तन" data-language-autonym="डोटेली" data-language-local-name="Doteli" class="interlanguage-link-target"><span>डोटेली</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/T%C3%A4ielik_sisepeegeldus" title="Täielik sisepeegeldus – Estonian" lang="et" hreflang="et" data-title="Täielik sisepeegeldus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9F%CE%BB%CE%B9%CE%BA%CE%AE_%CE%B1%CE%BD%CE%AC%CE%BA%CE%BB%CE%B1%CF%83%CE%B7" title="Ολική ανάκλαση – Greek" lang="el" hreflang="el" data-title="Ολική ανάκλαση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Reflexi%C3%B3n_interna_total" title="Reflexión interna total – Spanish" lang="es" hreflang="es" data-title="Reflexión interna total" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Tuteca_ena_reflekto" title="Tuteca ena reflekto – Esperanto" lang="eo" hreflang="eo" data-title="Tuteca ena reflekto" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Barne_islapen_oso" title="Barne islapen oso – Basque" lang="eu" hreflang="eu" data-title="Barne islapen oso" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A8%D8%A7%D8%B2%D8%AA%D8%A7%D8%A8_%D8%AF%D8%A7%D8%AE%D9%84%DB%8C_%DA%A9%D9%84%DB%8C" title="بازتاب داخلی کلی – Persian" lang="fa" hreflang="fa" data-title="بازتاب داخلی کلی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/R%C3%A9flexion_totale" title="Réflexion totale – French" lang="fr" hreflang="fr" data-title="Réflexion totale" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A0%84%EB%B0%98%EC%82%AC" title="전반사 – Korean" lang="ko" hreflang="ko" data-title="전반사" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%86%D5%A5%D6%80%D6%84%D5%AB%D5%B6_%D5%A1%D5%B6%D5%A4%D6%80%D5%A1%D5%A4%D5%A1%D6%80%D5%B1%D5%B8%D6%82%D5%B4" title="Ներքին անդրադարձում – Armenian" lang="hy" hreflang="hy" data-title="Ներքին անդրադարձում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A5%82%E0%A4%B0%E0%A5%8D%E0%A4%A3_%E0%A4%86%E0%A4%A8%E0%A5%8D%E0%A4%A4%E0%A4%B0%E0%A4%BF%E0%A4%95_%E0%A4%AA%E0%A4%B0%E0%A4%BE%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%A8" title="पूर्ण आन्तरिक परावर्तन – Hindi" lang="hi" hreflang="hi" data-title="पूर्ण आन्तरिक परावर्तन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Totalna_refleksija" title="Totalna refleksija – Croatian" lang="hr" hreflang="hr" data-title="Totalna refleksija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Riflessione_interna_totale" title="Riflessione interna totale – Italian" lang="it" hreflang="it" data-title="Riflessione interna totale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%97%D7%96%D7%A8%D7%94_%D7%92%D7%9E%D7%95%D7%A8%D7%94" title="החזרה גמורה – Hebrew" lang="he" hreflang="he" data-title="החזרה גמורה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%B8%E0%B2%82%E0%B2%AA%E0%B3%82%E0%B2%B0%E0%B3%8D%E0%B2%A3_%E0%B2%86%E0%B2%82%E0%B2%A4%E0%B2%B0%E0%B2%BF%E0%B2%95_%E0%B2%AA%E0%B3%8D%E0%B2%B0%E0%B2%A4%E0%B2%BF%E0%B2%AB%E0%B2%B2%E0%B2%A8" title="ಸಂಪೂರ್ಣ ಆಂತರಿಕ ಪ್ರತಿಫಲನ – Kannada" lang="kn" hreflang="kn" data-title="ಸಂಪೂರ್ಣ ಆಂತರಿಕ ಪ್ರತಿಫಲನ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Ang_kritik" title="Ang kritik – Haitian Creole" lang="ht" hreflang="ht" data-title="Ang kritik" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Visi%C5%A1kas_vidaus_atspindys" title="Visiškas vidaus atspindys – Lithuanian" lang="lt" hreflang="lt" data-title="Visiškas vidaus atspindys" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s" title="Teljes fényvisszaverődés – Hungarian" lang="hu" hreflang="hu" data-title="Teljes fényvisszaverődés" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AA%E0%B5%82%E0%B5%BC%E0%B4%A3%E0%B5%8D%E0%B4%A3_%E0%B4%86%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B4%B0%E0%B4%BF%E0%B4%95_%E0%B4%AA%E0%B5%8D%E0%B4%B0%E0%B4%A4%E0%B4%BF%E0%B4%AB%E0%B4%B2%E0%B4%A8%E0%B4%82" title="പൂർണ്ണ ആന്തരിക പ്രതിഫലനം – Malayalam" lang="ml" hreflang="ml" data-title="പൂർണ്ണ ആന്തരിക പ്രതിഫലനം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Totale_interne_reflectie" title="Totale interne reflectie – Dutch" lang="nl" hreflang="nl" data-title="Totale interne reflectie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%85%A8%E5%8F%8D%E5%B0%84" title="全反射 – Japanese" lang="ja" hreflang="ja" data-title="全反射" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Totalrefleksjon" title="Totalrefleksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Totalrefleksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Totalrefleksjon" title="Totalrefleksjon – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Totalrefleksjon" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Ichki_qaytish" title="Ichki qaytish – Uzbek" lang="uz" hreflang="uz" data-title="Ichki qaytish" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%A9%D9%84%DB%8C_%D8%AF%D8%A7%D8%AE%D9%84%DB%8C_%D8%A7%D9%86%D8%B9%DA%A9%D8%A7%D8%B3" title="کلی داخلی انعکاس – Western Punjabi" lang="pnb" hreflang="pnb" data-title="کلی داخلی انعکاس" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Ca%C5%82kowite_wewn%C4%99trzne_odbicie" title="Całkowite wewnętrzne odbicie – Polish" lang="pl" hreflang="pl" data-title="Całkowite wewnętrzne odbicie" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Reflex%C3%A3o_total" title="Reflexão total – Portuguese" lang="pt" hreflang="pt" data-title="Reflexão total" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Reflexie_total%C4%83" title="Reflexie totală – Romanian" lang="ro" hreflang="ro" data-title="Reflexie totală" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%BD%D1%83%D1%82%D1%80%D0%B5%D0%BD%D0%BD%D0%B5%D0%B5_%D0%BE%D1%82%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Внутреннее отражение – Russian" lang="ru" hreflang="ru" data-title="Внутреннее отражение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Popolni_odboj" title="Popolni odboj – Slovenian" lang="sl" hreflang="sl" data-title="Popolni odboj" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kokonaisheijastuminen" title="Kokonaisheijastuminen – Finnish" lang="fi" hreflang="fi" data-title="Kokonaisheijastuminen" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Totalreflektion" title="Totalreflektion – Swedish" lang="sv" hreflang="sv" data-title="Totalreflektion" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%81%E0%AE%B4%E0%AF%81_%E0%AE%85%E0%AE%95_%E0%AE%8E%E0%AE%A4%E0%AE%BF%E0%AE%B0%E0%AF%8A%E0%AE%B3%E0%AE%BF%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81" title="முழு அக எதிரொளிப்பு – Tamil" lang="ta" hreflang="ta" data-title="முழு அக எதிரொளிப்பு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B0%E0%B8%97%E0%B9%89%E0%B8%AD%E0%B8%99%E0%B8%81%E0%B8%A5%E0%B8%B1%E0%B8%9A%E0%B8%97%E0%B8%B1%E0%B9%89%E0%B8%87%E0%B8%AB%E0%B8%A1%E0%B8%94" title="การสะท้อนกลับทั้งหมด – Thai" lang="th" hreflang="th" data-title="การสะท้อนกลับทั้งหมด" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Tam_yans%C4%B1ma" title="Tam yansıma – Turkish" lang="tr" hreflang="tr" data-title="Tam yansıma" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D0%BD%D0%B5_%D0%B2%D0%BD%D1%83%D1%82%D1%80%D1%96%D1%88%D0%BD%D1%94_%D0%B2%D1%96%D0%B4%D0%B1%D0%B8%D1%82%D1%82%D1%8F" title="Повне внутрішнє відбиття – Ukrainian" lang="uk" hreflang="uk" data-title="Повне внутрішнє відбиття" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%A9%D9%84%DB%8C_%D8%AF%D8%A7%D8%AE%D9%84%DB%8C_%D8%A7%D9%86%D8%B9%DA%A9%D8%A7%D8%B3" title="کلی داخلی انعکاس – Urdu" lang="ur" hreflang="ur" data-title="کلی داخلی انعکاس" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%E1%BA%A3n_x%E1%BA%A1_to%C3%A0n_ph%E1%BA%A7n" title="Phản xạ toàn phần – Vietnamese" lang="vi" hreflang="vi" data-title="Phản xạ toàn phần" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%85%A8%E5%8F%8D%E5%B0%84" title="全反射 – Chinese" lang="zh" hreflang="zh" data-title="全反射" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q234943#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Total_internal_reflection" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Total_internal_reflection" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Total_internal_reflection"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Total_internal_reflection"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Total_internal_reflection" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Total_internal_reflection" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;oldid=1253361997" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Total_internal_reflection&amp;id=1253361997&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTotal_internal_reflection"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FTotal_internal_reflection"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Total_internal_reflection&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Total_internal_reflection&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Total_internal_reflection" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q234943" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Complete reflection of a wave</div> <p class="mw-empty-elt"> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Aquarium_total_internal_reflection.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Aquarium_total_internal_reflection.jpg/170px-Aquarium_total_internal_reflection.jpg" decoding="async" width="170" height="313" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/a/a0/Aquarium_total_internal_reflection.jpg 1.5x" data-file-width="250" data-file-height="460" /></a><figcaption><b>Fig.&#8239;1</b>:<span style="font-size:120%">&#160;</span>Underwater plants in a fish tank, and their <a href="/wiki/Mirror_image" title="Mirror image">inverted images</a> (top) formed by total internal reflection in the water–air surface</figcaption></figure> <p>In <a href="/wiki/Physics" title="Physics">physics</a>, <b>total internal reflection</b> (<b>TIR</b>) is the phenomenon in which <a href="/wiki/Wave" title="Wave">waves</a> arriving at the <a href="/wiki/Interface_(matter)" title="Interface (matter)">interface</a> (boundary) from one <a href="/wiki/Transmission_medium" title="Transmission medium">medium</a> to another (e.g., from water to air) are not <a href="/wiki/Refraction" title="Refraction">refracted</a> into the second ("external") medium, but completely <a href="/wiki/Reflection_(physics)" title="Reflection (physics)">reflected</a> back into the first ("internal") medium. It occurs when the second medium has a higher wave speed (i.e., lower <a href="/wiki/Refractive_index" title="Refractive index">refractive index</a>) than the first, and the waves are incident at a sufficiently oblique angle on the interface. For example, the water-to-air surface in a typical fish tank, when viewed obliquely from below, reflects the underwater scene like a <a href="/wiki/Mirror" title="Mirror">mirror</a> with no loss of brightness (Fig.&#8239;1). </p><p>TIR occurs not only with <a href="/wiki/Electromagnetic_waves" class="mw-redirect" title="Electromagnetic waves">electromagnetic waves</a> such as <a href="/wiki/Light" title="Light">light</a> and <a href="/wiki/Microwave" title="Microwave">microwaves</a>, but also with other types of waves, including <a href="/wiki/Sound" title="Sound">sound</a> and <a href="/wiki/Water_waves" class="mw-redirect" title="Water waves">water waves</a>. If the waves are capable of forming a narrow beam (Fig.&#8239;2), the reflection tends to be described in terms of "<a href="/wiki/Ray_(optics)" title="Ray (optics)">rays</a>" rather than waves; in a medium whose properties are independent of direction, such as air, water or <a href="/wiki/Glass" title="Glass">glass</a>, the "rays" are perpendicular to associated <a href="/wiki/Wavefront" title="Wavefront">wavefronts</a>.The total internal reflection occurs when critical angle is exceeded. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Total_internal_reflection_by_fluorescence.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Total_internal_reflection_by_fluorescence.jpg/220px-Total_internal_reflection_by_fluorescence.jpg" decoding="async" width="220" height="158" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Total_internal_reflection_by_fluorescence.jpg/330px-Total_internal_reflection_by_fluorescence.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/Total_internal_reflection_by_fluorescence.jpg/440px-Total_internal_reflection_by_fluorescence.jpg 2x" data-file-width="1500" data-file-height="1080" /></a><figcaption><b>Fig.&#8239;2</b>:<span style="font-size:120%">&#160;</span>Repeated total internal reflection of a <a href="/wiki/Blue_laser" title="Blue laser">405&#8239;nm&#160;laser</a> beam between the front and back surfaces of a glass pane. The color of the laser light itself is deep violet; but its <a href="/wiki/Wavelength" title="Wavelength">wavelength</a> is short enough to cause <a href="/wiki/Fluorescence" title="Fluorescence">fluorescence</a> in the glass, which re-radiates greenish light in all directions, rendering the zigzag beam visible.</figcaption></figure> <p><a href="/wiki/Refraction" title="Refraction">Refraction</a> is generally accompanied by <i>partial</i> reflection. When waves are refracted from a medium of lower propagation speed (higher <a href="/wiki/Refractive_index" title="Refractive index">refractive index</a>) to a medium of higher propagation speed (lower refractive index)—e.g., from water to air—the <i><a href="/wiki/Angle_of_refraction" class="mw-redirect" title="Angle of refraction">angle of refraction</a></i> (between the outgoing ray and the surface <a href="/wiki/Normal_(geometry)" title="Normal (geometry)">normal</a>) is greater than the <i><a href="/wiki/Angle_of_incidence_(optics)" title="Angle of incidence (optics)">angle of incidence</a></i> (between the incoming ray and the normal). As the angle of incidence approaches a certain threshold, called the <i><a href="#Critical_angle">critical angle</a></i>, the angle of refraction approaches 90°, at which the refracted ray becomes parallel to the boundary surface. As the angle of incidence increases beyond the critical angle, the conditions of refraction can no longer be satisfied, so there is no refracted ray, and the partial reflection becomes total. For <a href="/wiki/Visible_light" class="mw-redirect" title="Visible light">visible light</a>, the critical angle is about 49° for incidence from water to air, and about 42° for incidence from common glass to air. </p><p>Details of the mechanism of TIR give rise to more subtle phenomena. While total reflection, by definition, involves no continuing flow of power <i>across</i> the interface between the two media, the external medium carries a so-called <i><a href="/wiki/Evanescent_wave" class="mw-redirect" title="Evanescent wave">evanescent wave</a></i>, which travels <i>along</i> the interface with an amplitude that falls off exponentially with distance from the interface. The "total" reflection is indeed total if the external medium is lossless (perfectly transparent), continuous, and of infinite extent, but can be conspicuously <i>less</i> than total if the evanescent wave is absorbed by a lossy external medium ("<a href="/wiki/Attenuated_total_reflectance" title="Attenuated total reflectance">attenuated total reflectance</a>"), or diverted by the outer boundary of the external medium or by objects embedded in that medium ("frustrated"&#160;TIR). Unlike <i>partial</i> reflection between transparent media, total internal reflection is accompanied by a non-trivial <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase shift</a> (not just zero or 180°) for each component of <a href="/wiki/Polarization_(waves)" title="Polarization (waves)">polarization</a> (perpendicular or parallel to the <a href="/wiki/Plane_of_incidence" title="Plane of incidence">plane of incidence</a>), and the shifts vary with the angle of incidence. The explanation of this effect by <a href="/wiki/Augustin-Jean_Fresnel" title="Augustin-Jean Fresnel">Augustin-Jean Fresnel</a>, in 1823, added to the evidence in favor of the <a href="/wiki/Wave_theory_of_light" class="mw-redirect" title="Wave theory of light">wave theory of light</a>. </p><p>The phase shifts are used by Fresnel's invention, the <a href="/wiki/Fresnel_rhomb" title="Fresnel rhomb">Fresnel rhomb</a>, to modify polarization. The efficiency of the total internal reflection is exploited by <a href="/wiki/Optical_fiber" title="Optical fiber">optical fibers</a> (used in <a href="/wiki/Telecommunications_cable" title="Telecommunications cable">telecommunications cables</a> and in image-forming <a href="/wiki/Fiberscope" title="Fiberscope">fiberscopes</a>), and by <a href="/wiki/Prism_(optics)" title="Prism (optics)">reflective prisms</a>, such as <a href="/wiki/Erect_image" title="Erect image">image-erecting</a> <a href="/wiki/Porro_prism" title="Porro prism">Porro</a>/<a href="/wiki/Roof_prism" title="Roof prism">roof prisms</a> for <a href="/wiki/Monocular" title="Monocular">monoculars</a> and <a href="/wiki/Binoculars" title="Binoculars">binoculars</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Optical_description">Optical description</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=1" title="Edit section: Optical description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg/220px-Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg/330px-Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg/440px-Teljes_f%C3%A9nyvisszaver%C5%91d%C3%A9s.jpg 2x" data-file-width="1712" data-file-height="1368" /></a><figcaption><b>Fig.&#8239;3</b>:<span style="font-size:120%">&#160;</span>Total internal reflection of light in a semicircular acrylic block</figcaption></figure> <p>Although total internal reflection can occur with any kind of wave that can be said to have oblique incidence, including (e.g.) <a href="/wiki/Microwave" title="Microwave">microwaves</a><sup id="cite_ref-feynman-1963_1-0" class="reference"><a href="#cite_note-feynman-1963-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Sound" title="Sound">sound</a> waves,<sup id="cite_ref-antich-et-al-1991_2-0" class="reference"><a href="#cite_note-antich-et-al-1991-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> it is most familiar in the case of <a href="/wiki/Light" title="Light">light</a> waves. </p><p>Total internal reflection of light can be demonstrated using a semicircular-cylindrical block of common glass or <a href="/wiki/Poly(methyl_methacrylate)" title="Poly(methyl methacrylate)">acrylic</a> glass. In&#160;Fig.&#8239;3, a "ray box" projects a narrow beam of light (a&#160;"<a href="/wiki/Ray_(optics)" title="Ray (optics)">ray</a>") radially inward. The semicircular cross-section of the glass allows the incoming ray to remain perpendicular to the curved portion of the air/glass surface, and then hence to continue in a straight line towards the flat part of the surface, although its angle with the flat part varies. </p><p>Where the ray meets the flat glass-to-air interface, the angle between the ray and the <a href="/wiki/Normal_(geometry)" title="Normal (geometry)">normal</a> (perpendicular) to the interface is called the <i><a href="/wiki/Angle_of_incidence_(optics)" title="Angle of incidence (optics)">angle of incidence</a></i>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> If this angle is sufficiently small, the ray is <i>partly</i> reflected but mostly transmitted, and the transmitted portion is refracted away from the normal, so that the <i>angle of refraction</i> (between the refracted ray and the normal to the interface) is greater than the angle of incidence. For the moment, let us call the angle of incidence <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> and the angle of refraction <i>θ</i><sub>t</sub> (where <i>t</i> is for <i>transmitted</i>, reserving <i>r</i> for <i>reflected</i>). As <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> increases and approaches a certain "critical angle", denoted by <i>θ</i><sub>c</sub> (or sometimes <i>θ</i><sub>cr</sub>), the angle of refraction approaches 90° (that is, the refracted ray approaches a tangent to the interface), and the refracted ray becomes fainter while the reflected ray becomes brighter.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> As <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> increases beyond <i>θ</i><sub>c</sub>, the refracted ray disappears and only the reflected ray remains, so that all of the energy of the incident ray is reflected; this is total internal reflection (TIR). In&#160;brief: </p> <ul><li>If<span style="white-space: nowrap;">&#8201;</span> <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> &lt; <i>θ</i><sub>c</sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> the incident ray is split, being <i>partly</i> reflected and partly refracted;</li> <li>If<span style="white-space: nowrap;">&#8201;</span> <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> &gt; <i>θ</i><sub>c</sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> the incident ray suffers total internal reflection (TIR); none of it is transmitted.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Critical_angle">Critical angle</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=2" title="Edit section: Critical angle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The critical angle is the smallest angle of incidence that yields total reflection, or equivalently the largest angle for which a refracted ray exists.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> For light waves incident from an "internal" medium with a single <a href="/wiki/Refractive_index" title="Refractive index">refractive&#160;index</a> <span class="texhtml"><i>n</i><sub>1</sub>&#8202;</span>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> to an "external" medium with a single refractive index <span class="texhtml"><i>n</i><sub>2</sub>&#8202;</span>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> the critical angle is given by<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{{\text{c}}\!}=\arcsin(n_{2}/n_{1})\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> <mspace width="negativethinmathspace" /> </mrow> </msub> <mo>=</mo> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{{\text{c}}\!}=\arcsin(n_{2}/n_{1})\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2f7024b45c73b361696578eb0695419cc7ead38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.63ex; height:2.843ex;" alt="{\displaystyle \theta _{{\text{c}}\!}=\arcsin(n_{2}/n_{1})\,,}"></span> and is defined if<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>n</i><sub>2</sub> &#8804; <i>n</i><sub>1</sub></span>.<span style="white-space: nowrap;">&#8201;</span> For some other types of waves, it is more convenient to think in terms of propagation velocities rather than refractive indices. The explanation of the critical angle in terms of velocities is more general and will therefore be discussed first。 </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Wavefront_refraction_slow_to_fast.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Wavefront_refraction_slow_to_fast.svg/220px-Wavefront_refraction_slow_to_fast.svg.png" decoding="async" width="220" height="162" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Wavefront_refraction_slow_to_fast.svg/330px-Wavefront_refraction_slow_to_fast.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Wavefront_refraction_slow_to_fast.svg/440px-Wavefront_refraction_slow_to_fast.svg.png 2x" data-file-width="531" data-file-height="390" /></a><figcaption><b>Fig.&#8239;4</b>:<span style="font-size:120%">&#160;</span>Refraction of a <i>wavefront</i> (red) from medium 1, with lower normal velocity <i>v</i><sub>1</sub>, to medium 2, with higher normal velocity <i>v</i><sub>2</sub>. The incident and refracted segments of the wavefront meet in a common line <i>L</i> (seen "end-on"), which travels along the interface at velocity <i>u</i>.</figcaption></figure> <p>When a <a href="/wiki/Wavefront" title="Wavefront">wavefront</a> is refracted from one medium to another, the incident (incoming) and refracted (outgoing) portions of the wavefront meet at a common line on the refracting surface (interface). Let this line, denoted by <i>L</i>, move at velocity <span class="texhtml mvar" style="font-style:italic;">u</span> across the surface,<sup id="cite_ref-young-1814_6-0" class="reference"><a href="#cite_note-young-1814-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> where <span class="texhtml mvar" style="font-style:italic;">u</span> is measured normal to&#160;<i>L</i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> (Fig.&#8239;4). Let the incident and refracted wavefronts propagate with normal velocities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb04c423c2cb809c30cac725befa14ffbf4c85f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{2}}"></span> (respectively), and let them make the <a href="/wiki/Dihedral_angle" title="Dihedral angle">dihedral&#160;angles</a> <i>θ</i><sub>1</sub> and <i>θ</i><sub>2</sub> (respectively) with the interface. From the geometry,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> is the component of <span class="texhtml mvar" style="font-style:italic;">u</span> in the direction normal to the incident wave, so that<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1\!}=u\sin \theta _{1}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mspace width="negativethinmathspace" /> </mrow> </msub> <mo>=</mo> <mi>u</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1\!}=u\sin \theta _{1}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/553bf4a796785ebcacfd4c52e53a0fad87469db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.031ex; height:2.509ex;" alt="{\displaystyle v_{1\!}=u\sin \theta _{1}\,.}"></span> Similarly,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{2}=u\sin \theta _{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>u</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{2}=u\sin \theta _{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ead926492184ffb07dbe4257aeef454e6f67fc20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.418ex; height:2.509ex;" alt="{\displaystyle v_{2}=u\sin \theta _{2}\,.}"></span> Solving each equation for <span class="texhtml">1/<i>u</i></span> and equating the results, we obtain the general law of refraction for waves: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sin \theta _{1}}{v_{1}}}={\frac {\sin \theta _{2}}{v_{2}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sin \theta _{1}}{v_{1}}}={\frac {\sin \theta _{2}}{v_{2}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c9214d1f9f2d17fa5bdc57d4c71830fdf4b5f20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:16.579ex; height:5.676ex;" alt="{\displaystyle {\frac {\sin \theta _{1}}{v_{1}}}={\frac {\sin \theta _{2}}{v_{2}}}\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>But the dihedral angle between two planes is also the angle between their normals. So <i>θ</i><sub>1</sub> is the angle between the normal to the incident wavefront and the normal to the interface, while <i>θ</i><sub>2</sub> is the angle between the normal to the refracted wavefront and the normal to the interface; and Eq.&#8239;(<b><a href="#math_1">1</a></b>) tells us that the sines of these angles are in the same ratio as the respective velocities.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>This result has the form of "<a href="/wiki/Snell%27s_law" title="Snell&#39;s law">Snell's law</a>", except that we have not yet said that the ratio of velocities is constant, nor identified <i>θ</i><sub>1</sub> and <i>θ</i><sub>2</sub> with the angles of incidence and refraction (called <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> and <i>θ</i><sub>t</sub> above). However, if we now suppose that the properties of the media are <i><a href="/wiki/Isotropy" title="Isotropy">isotropic</a></i> (independent of direction), two further conclusions follow: first, the two velocities, and hence their ratio, are independent of their directions; and second, the wave-normal directions coincide with the <i>ray</i> directions, so that <i>θ</i><sub>1</sub> and <i>θ</i><sub>2</sub> coincide with the angles of incidence and refraction as defined above.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>Note 1<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:ReflexionTotal_en.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/ReflexionTotal_en.svg/220px-ReflexionTotal_en.svg.png" decoding="async" width="220" height="146" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/ReflexionTotal_en.svg/330px-ReflexionTotal_en.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/ReflexionTotal_en.svg/440px-ReflexionTotal_en.svg.png 2x" data-file-width="420" data-file-height="278" /></a><figcaption><b>Fig.&#8239;5</b>:<span style="font-size:120%">&#160;</span>Behavior of a ray incident from a medium of higher refractive index <i>n</i><sub>1</sub> to a medium of lower refractive index <i>n</i><sub>2&#8239;</sub>,<span style="white-space: nowrap;">&#8201;</span> at increasing angles of incidence<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>Note 2<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Total_Internal_Refraction_diver.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Total_Internal_Refraction_diver.svg/220px-Total_Internal_Refraction_diver.svg.png" decoding="async" width="220" height="123" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Total_Internal_Refraction_diver.svg/330px-Total_Internal_Refraction_diver.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Total_Internal_Refraction_diver.svg/440px-Total_Internal_Refraction_diver.svg.png 2x" data-file-width="862" data-file-height="481" /></a><figcaption><b>Fig.&#8239;6</b>:<span style="font-size:120%">&#160;</span>The angle of refraction for grazing incidence from air to water&#8202; is the critical angle for incidence from water to air.</figcaption></figure> <p>Obviously the angle of refraction cannot exceed 90°. In the limiting case, we put<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>2</sub> = 90°</span> and<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>1</sub><span style="white-space: nowrap;">&#8201;</span>= <i>θ</i><sub>c</sub></span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> in Eq.&#8239;(<b><a href="#math_1">1</a></b>), and solve for the critical angle: </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{\text{c}}=\arcsin(v_{1}/v_{2})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msub> <mo>=</mo> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{\text{c}}=\arcsin(v_{1}/v_{2})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eaf5034cc784629714bfc1cfbfe06e738ec585f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.483ex; height:2.843ex;" alt="{\displaystyle \theta _{\text{c}}=\arcsin(v_{1}/v_{2})\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>In deriving this result, we retain the assumption of isotropic media in order to identify <i>θ</i><sub>1</sub> and <i>θ</i><sub>2</sub> with the angles of incidence and refraction.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>Note 3<span class="cite-bracket">&#93;</span></a></sup> </p><p>For <a href="/wiki/Electromagnetic_waves" class="mw-redirect" title="Electromagnetic waves">electromagnetic waves</a>, and especially for light, it is customary to express the above results in terms of <i>refractive indices</i>. The refractive index of a medium with normal velocity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> is defined as<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1\!}=c/v_{1}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mspace width="negativethinmathspace" /> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1\!}=c/v_{1}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d43b8aa4d98caed50de30042c02e8042b00fe20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:2.843ex;" alt="{\displaystyle n_{1\!}=c/v_{1}\,,}"></span> where <i>c</i> is the speed of light in vacuum.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> Hence<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1\!}=c/n_{1}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mspace width="negativethinmathspace" /> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1\!}=c/n_{1}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4339cf104fdbd85046580d3b84d33efaca4805ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.545ex; height:2.843ex;" alt="{\displaystyle v_{1\!}=c/n_{1}\,.}"></span><span style="white-space: nowrap;">&#8201;</span> Similarly,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{2}=c/n_{2}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{2}=c/n_{2}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0fe8703a30108acf8f5cb95c720dd96ce8f06dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.933ex; height:2.843ex;" alt="{\displaystyle v_{2}=c/n_{2}\,.}"></span><span style="white-space: nowrap;">&#8201;</span> Making these substitutions in Eqs.&#8239;(<b><a href="#math_1">1</a></b>)<span style="white-space: nowrap;">&#8201;</span>and<span style="white-space: nowrap;">&#8201;</span>(<b><a href="#math_2">2</a></b>), we obtain </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6b2a5ea2d5d1fdf92e3b13e58bd3f91a48236ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.545ex; height:2.509ex;" alt="{\displaystyle n_{1}\sin \theta _{1}=n_{2}\sin \theta _{2}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span>)</b></td></tr></tbody></table> <p>and </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta _{\text{c}}=\arcsin(n_{2}/n_{1})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>c</mtext> </mrow> </msub> <mo>=</mo> <mi>arcsin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta _{\text{c}}=\arcsin(n_{2}/n_{1})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc7932fa630bc2d3141051b246c16386ba3eb850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.017ex; height:2.843ex;" alt="{\displaystyle \theta _{\text{c}}=\arcsin(n_{2}/n_{1})\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span>)</b></td></tr></tbody></table> <p>Eq.&#8239;(<b><a href="#math_3">3</a></b>) is the law of refraction for general media, in terms of refractive indices, provided that <i>θ</i><sub>1</sub> and <i>θ</i><sub>2</sub> are taken as the dihedral angles; but if the media are <i>isotropic</i>, then <span class="texhtml"><i>n</i><sub>1</sub></span> and <span class="texhtml"><i>n</i><sub>2</sub></span> become independent of direction while <i>θ</i><sub>1</sub> and <i>θ</i><sub>2</sub> may be taken as the angles of incidence and refraction for the rays, and Eq.&#8239;(<b><a href="#math_4">4</a></b>) follows. So, for isotropic media, Eqs.&#8239;(<b><a href="#math_3">3</a></b>)<span style="white-space: nowrap;">&#8201;</span>and<span style="white-space: nowrap;">&#8201;</span>(<b><a href="#math_4">4</a></b>) together describe the behavior in Fig.&#8239;5. </p><p>According to Eq.&#8239;(<b><a href="#math_4">4</a></b>), for incidence from water (<span class="texhtml"><i>n</i><sub>1</sub> ≈ 1.333</span>)<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> to air (<span class="texhtml"><i>n</i><sub>2</sub> ≈ 1</span>),<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> we have<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>c</sub> ≈ 48.6°</span>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> whereas for incidence from common glass or acrylic (<span class="texhtml"><i>n</i><sub>1</sub> ≈ 1.50</span>)<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> to air (<span class="texhtml"><i>n</i><sub>2</sub> ≈ 1</span>),<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> we have<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>c</sub> ≈ 41.8°</span>. </p><p>The arcsin function yielding <i>θ</i><sub>c</sub> is defined only if<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>n</i><sub>2</sub> &#8804; <i>n</i><sub>1</sub></span><span style="white-space: nowrap;">&#8201;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (v_{2}\geq v_{1})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (v_{2}\geq v_{1})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e3d31242d4e8343066db4f8d32de2d11ef3afb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.305ex; height:2.843ex;" alt="{\displaystyle (v_{2}\geq v_{1})\,.}"></span><span style="white-space: nowrap;">&#8201;</span> Hence, for isotropic media, total internal reflection cannot occur if the second medium has a higher refractive index (lower normal velocity) than the first. For example, there cannot be TIR for incidence from air to water; rather, the critical angle for incidence from water to air<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> is the angle of refraction at grazing incidence from air to water (Fig.&#8239;6).<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>The medium with the higher refractive index is commonly described as optically <i>denser</i>, and the one with the lower refractive index as optically <i>rarer</i>.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> Hence it is said that total internal reflection is possible for "dense-to-rare" incidence, but not for "rare-to-dense" incidence. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Everyday_examples"><span class="anchor" id="Examples_in_everyday_life"></span>Everyday examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=3" title="Edit section: Everyday examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Internal_reflection,_Anna.jpg" class="mw-file-description"><img alt="Underwater view of an underwater swimmer launching off the end of a pool." src="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Internal_reflection%2C_Anna.jpg/220px-Internal_reflection%2C_Anna.jpg" decoding="async" width="220" height="278" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/80/Internal_reflection%2C_Anna.jpg/330px-Internal_reflection%2C_Anna.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/80/Internal_reflection%2C_Anna.jpg/440px-Internal_reflection%2C_Anna.jpg 2x" data-file-width="1772" data-file-height="2236" /></a><figcaption><b>Fig.&#8239;7</b>:<span style="font-size:120%">&#160;</span>Total internal reflection by the water's surface at the shallow end of a swimming pool. The broad bubble-like apparition between the swimmer and her reflection&#8202; is merely a disturbance of the reflecting surface. Some of the space above the water level can be seen through "<a href="/wiki/Snell%27s_window" title="Snell&#39;s window">Snell's window</a>" at the top of the frame.</figcaption></figure> <p>When standing beside an <a href="/wiki/Aquarium" title="Aquarium">aquarium</a> with one's eyes below the water level, one is likely to see fish or submerged objects reflected in the water-air surface (Fig.&#8239;1). The brightness of the reflected image – just as bright as the "direct" view – can be startling. </p><p>A similar effect can be observed by opening one's eyes while swimming just below the water's surface. If the water is calm, the surface outside the critical angle (measured from the vertical) appears mirror-like, reflecting objects below. The region above the water cannot be seen except overhead, where the hemispherical field of view is compressed into a conical field known as <i><a href="/wiki/Snell%27s_window" title="Snell&#39;s window">Snell's&#160;window</a></i>, whose angular diameter is twice the critical angle (cf.&#160;Fig.&#8239;6).<sup id="cite_ref-lynch-2015_15-0" class="reference"><a href="#cite_note-lynch-2015-15"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> The field of view above the water is theoretically 180° across, but seems less because as we look closer to the horizon, the vertical dimension is more strongly compressed by the refraction; e.g., by Eq.&#8239;(<b><a href="#math_3">3</a></b>), for air-to-water incident angles of 90°, 80°, and 70°, the corresponding angles of refraction are 48.6° (<i>θ<sub>cr</sub></i> in Fig.&#8239;6), 47.6°, and 44.8°, indicating that the image of a point 20° above the horizon is 3.8° from the edge of Snell's window<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> while the image of a point 10° above the horizon is only 1° from the edge.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>Fig.&#8239;7, for example, is a photograph taken near the bottom of the shallow end of a swimming pool. What looks like a broad horizontal stripe on the right-hand wall<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> consists of the lower edges of a row of orange tiles, and their reflections; this marks the water level, which can then be traced across the other wall. The swimmer has disturbed the surface above her, scrambling the lower half of her reflection, and distorting the reflection of the ladder (to the right). But most of the surface is still calm, giving a clear reflection of the tiled bottom of the pool. The space above the water is not visible except at the top of the frame, where the handles of the ladder are just discernible above the edge of Snell's window – within which the reflection of the bottom of the pool is only partial, but still noticeable in the photograph. One can even discern the color-fringing of the edge of Snell's window, due to variation of the refractive index, hence of the critical angle, with wavelength (see <i><a href="/wiki/Dispersion_(optics)" title="Dispersion (optics)">Dispersion</a></i>). </p> <figure class="mw-halign-left" typeof="mw:File/Frame"><a href="/wiki/File:Diamond.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/3/36/Diamond.jpg" decoding="async" width="200" height="200" class="mw-file-element" data-file-width="200" data-file-height="200" /></a><figcaption><b>Fig.&#8239;8</b>:<span style="font-size:120%">&#160;</span>A round "brilliant"-&#8202;cut <a href="/wiki/Diamond_(gemstone)" title="Diamond (gemstone)">diamond</a></figcaption></figure> <p>The critical angle influences the angles at which <a href="/wiki/Gemstone" title="Gemstone">gemstones</a> are cut. The round "<a href="/wiki/Brilliant_(diamond_cut)" title="Brilliant (diamond cut)">brilliant</a>" cut, for example, is designed to refract light incident on the front facets, reflect it twice by TIR off the back facets, and transmit it out again through the front facets, so that the stone looks bright. <a href="/wiki/Diamond" title="Diamond">Diamond</a> (Fig.&#8239;8) is especially suitable for this treatment, because its high refractive index (about 2.42) and consequently small critical angle (about 24.5°) yield the desired behavior over a wide range of viewing angles.<sup id="cite_ref-graham-tilt_17-0" class="reference"><a href="#cite_note-graham-tilt-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Cheaper materials that are similarly amenable to this treatment include <a href="/wiki/Cubic_zirconia" title="Cubic zirconia">cubic&#160;zirconia</a> (index&#8239;≈&#8239;2.15) and <a href="/wiki/Moissanite" title="Moissanite">moissanite</a> (non-isotropic, hence <a href="/wiki/Birefringence" title="Birefringence">doubly&#160;refractive</a>, with an index ranging from about 2.65 to 2.69,<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>Note 4<span class="cite-bracket">&#93;</span></a></sup> depending on direction and polarization); both of these are therefore popular as <a href="/wiki/Diamond_simulant" title="Diamond simulant">diamond&#160;simulants</a>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Evanescent_wave">Evanescent wave</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=4" title="Edit section: Evanescent wave"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Evanescent_wave#Total_internal_reflection_of_light" class="mw-redirect" title="Evanescent wave">Evanescent wave §&#160;Total internal reflection of light</a></div> <p>Mathematically, waves are described in terms of time-varying <a href="/wiki/Field_(physics)" title="Field (physics)">fields</a>, a "field" being a function of location in space. A propagating wave requires an "effort" field and a "flow" field, the latter being a <a href="/wiki/Vector_field" title="Vector field">vector</a> (if we are working in two or three dimensions). The product of effort and flow is related to <a href="/wiki/Power_(physics)" title="Power (physics)">power</a> (see <i><a href="/wiki/System_equivalence" title="System equivalence">System equivalence</a></i>). For example, for sound waves in a <a href="/wiki/Viscosity" title="Viscosity">non-viscous</a> fluid, we might take the effort field as the pressure (a&#160;scalar), and the flow field as the fluid velocity (a&#160;vector). The product of these two is <a href="/wiki/Intensity_(physics)" title="Intensity (physics)">intensity</a> (power per unit area).<sup id="cite_ref-pjs_19-0" class="reference"><a href="#cite_note-pjs-19"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>Note 5<span class="cite-bracket">&#93;</span></a></sup> For electromagnetic waves, we shall take the effort field as the <a href="/wiki/Electric_field" title="Electric field">electric&#160;field</a>&#8202; <span class="texhtml"><b>E</b>&#8202;,</span> and the flow field as the <a href="/wiki/Magnetic_field#The_H-field" title="Magnetic field">magnetizing field</a>&#8202; <span class="texhtml"><b>H</b></span>. Both of these are vectors, and their <a href="/wiki/Cross_product" title="Cross product">vector&#160;product</a> is again the intensity (see <i><a href="/wiki/Poynting_vector" title="Poynting vector">Poynting&#160;vector</a></i>).<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>When a wave in (say) medium&#160;1 is reflected off the interface between medium&#160;1 and medium&#160;2, the flow field in medium&#160;1 is the vector sum of the flow fields due to the incident and reflected waves.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>Note 6<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> If the reflection is oblique, the incident and reflected fields are not in opposite directions and therefore cannot cancel out at the interface; even if the reflection is total, either the normal component or the tangential component of the combined field (as a function of location and time) must be non-zero adjacent to the interface. Furthermore, the physical laws governing the fields will generally imply that one of the two components is <i><a href="/wiki/Continuous_function" title="Continuous function">continuous</a></i> across the interface (that is, it does not suddenly change as we cross the interface); for example, for electromagnetic waves, one of the <a href="/wiki/Interface_conditions_for_electromagnetic_fields" title="Interface conditions for electromagnetic fields">interface conditions</a> is that the tangential component of <span class="texhtml"><b>H</b></span> is continuous if there is no surface current.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Hence, even if the reflection is total, there must be some penetration of the flow field into medium&#160;2; and this, in combination with the laws relating the effort and flow fields, implies that there will also be some penetration of the effort field. The same continuity condition implies that the variation ("waviness") of the field in medium&#160;2 will be synchronized with that of the incident and reflected waves in medium&#160;1. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Evanescent_wave_cropped.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Evanescent_wave_cropped.jpg/220px-Evanescent_wave_cropped.jpg" decoding="async" width="220" height="284" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/58/Evanescent_wave_cropped.jpg/330px-Evanescent_wave_cropped.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/58/Evanescent_wave_cropped.jpg/440px-Evanescent_wave_cropped.jpg 2x" data-file-width="496" data-file-height="640" /></a><figcaption><b>Fig.&#8239;9</b>:<span style="font-size:120%">&#160;</span>Depiction of an incident sinusoidal plane wave (bottom) and the associated evanescent wave (top), under conditions of total internal reflection. The reflected wave is not shown.</figcaption></figure> <p>But, if the reflection is total, the spatial penetration of the fields into medium&#160;2 must be limited somehow, or else the total extent and hence the total energy of those fields would continue to increase, draining power from medium&#160;1. Total reflection of a continuing wavetrain permits some energy to be stored in medium&#160;2, but does not permit a <i>continuing</i> transfer of power from medium&#160;1 to medium&#160;2. </p><p>Thus, using mostly qualitative reasoning, we can conclude that total internal reflection must be accompanied by a wavelike field in the "external" medium, traveling along the interface in synchronism with the incident and reflected waves, but with some sort of limited spatial penetration into the "external" medium; such a field may be called an <i><a href="/wiki/Evanescent_wave" class="mw-redirect" title="Evanescent wave">evanescent&#160;wave</a></i>. </p><p>Fig.&#8239;9 shows the basic idea. The incident wave is assumed to be <a href="/wiki/Plane_wave" title="Plane wave">plane</a> and <a href="/wiki/Sine_wave" title="Sine wave">sinusoidal</a>. The reflected wave, for simplicity, is not shown. The evanescent wave travels to the right in lock-step with the incident and reflected waves, but its amplitude falls off with increasing distance from the interface. </p><p>(Two features of the evanescent wave in Fig.&#8239;9 are to be explained later: first, that the evanescent wave crests are perpendicular to the interface; and second, that the evanescent wave is slightly ahead of the incident wave.) </p> <div class="mw-heading mw-heading3"><h3 id="Frustrated_total_internal_reflection_(FTIR)"><span id="Frustrated_total_internal_reflection_.28FTIR.29"></span><span class="anchor" id="Frustrated_total_internal_reflection"></span><span class="anchor" id="Frustrated_TIR"></span>Frustrated total internal reflection (FTIR)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=5" title="Edit section: Frustrated total internal reflection (FTIR)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the internal reflection is to be total, there must be no diversion of the evanescent wave. Suppose, for example, that electromagnetic waves incident from glass (with a higher refractive index) to air (with a lower refractive index) at a certain angle of incidence are subject to TIR. And suppose that we have a third medium (often identical to the first) whose refractive index is sufficiently high that, if the third medium were to replace the second, we would get a standard transmitted wavetrain for the same angle of incidence. Then, if the third medium is brought within a distance of a few wavelengths from the surface of the first medium, where the evanescent wave has significant amplitude in the second medium, then the evanescent wave is effectively refracted into the third medium, giving non-zero transmission into the third medium, and therefore less than total reflection back into the first medium.<sup id="cite_ref-harvard-ftir_24-0" class="reference"><a href="#cite_note-harvard-ftir-24"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> As the amplitude of the evanescent wave decays across the air gap, the transmitted waves are <a href="/wiki/Attenuation" title="Attenuation">attenuated</a>, so that there is less transmission, and therefore more reflection, than there would be with no gap; but as long as there is <i>some</i> transmission, the reflection is less than total. This phenomenon is called <i>frustrated total internal reflection</i> (where "frustrated" negates "total"), abbreviated "frustrated TIR" or "FTIR". </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Drinking_glass_fingerprint_FTIR.jpg" class="mw-file-description"><img alt="A hand holding a glass of water with fingerprints visible from the inside." src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Drinking_glass_fingerprint_FTIR.jpg/220px-Drinking_glass_fingerprint_FTIR.jpg" decoding="async" width="220" height="236" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Drinking_glass_fingerprint_FTIR.jpg/330px-Drinking_glass_fingerprint_FTIR.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Drinking_glass_fingerprint_FTIR.jpg/440px-Drinking_glass_fingerprint_FTIR.jpg 2x" data-file-width="2479" data-file-height="2659" /></a><figcaption><b>Fig.&#8239;10</b>:<span style="font-size:120%">&#160;</span>Disembodied fingerprints visible from the inside of a glass of water, due to frustrated total internal reflection. The observed fingerprints are surrounded by white areas where total internal reflection occurs.</figcaption></figure> <p>Frustrated TIR can be observed by looking into the top of a glass of water held in one's hand (Fig.&#8239;10). If&#160;the glass is held loosely, contact may not be sufficiently close and widespread to produce a noticeable effect. But if it is held more tightly, the ridges of one's <a href="/wiki/Fingerprint" title="Fingerprint">fingerprints</a> interact strongly with the evanescent waves, allowing the ridges to be seen through the otherwise totally reflecting glass-air surface.<sup id="cite_ref-ehrlich-1997_25-0" class="reference"><a href="#cite_note-ehrlich-1997-25"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>The same effect can be demonstrated with microwaves, using <a href="/wiki/Paraffin_wax" title="Paraffin wax">paraffin&#160;wax</a> as the "internal" medium (where the incident and reflected waves exist). In this case the permitted gap width might be (e.g.) 1&#8239;cm or several cm, which is easily observable and adjustable.<sup id="cite_ref-feynman-1963_1-1" class="reference"><a href="#cite_note-feynman-1963-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-bowley-2009_26-0" class="reference"><a href="#cite_note-bowley-2009-26"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>The term <i>frustrated TIR</i> also applies to the case in which the evanescent wave is <a href="/wiki/Scattering" title="Scattering">scattered</a> by an object sufficiently close to the reflecting interface. This effect, together with the strong dependence of the amount of scattered light on the distance from the interface, is exploited in <i><a href="/wiki/Total_internal_reflection_microscopy" title="Total internal reflection microscopy">total internal reflection microscopy</a></i>.<sup id="cite_ref-ambrose-1956_27-0" class="reference"><a href="#cite_note-ambrose-1956-27"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p><p>The mechanism of FTIR is called <i><a href="/wiki/Evanescent-wave_coupling" class="mw-redirect" title="Evanescent-wave coupling">evanescent-wave coupling</a></i>, and is a good analog to visualize <a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">quantum tunneling</a>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Due to the wave nature of matter, an electron has a non-zero probability of "tunneling" through a barrier, even if <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> would say that its energy is insufficient.<sup id="cite_ref-harvard-ftir_24-1" class="reference"><a href="#cite_note-harvard-ftir-24"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ehrlich-1997_25-1" class="reference"><a href="#cite_note-ehrlich-1997-25"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Similarly, due to the wave nature of light, a <a href="/wiki/Photon" title="Photon">photon</a> has a non-zero probability of crossing a gap, even if <a href="/wiki/Geometrical_optics" title="Geometrical optics">ray&#160;optics</a> would say that its approach is too oblique. </p><p>Another reason why internal reflection may be less than total, even beyond the critical angle, is that the external medium may be "lossy" (less than perfectly transparent), in which case the external medium will absorb energy from the evanescent wave, so that the maintenance of the evanescent wave will draw power from the incident wave. The consequent less-than-total reflection is called <i>attenuated total reflectance</i> (ATR). This effect, and especially the frequency-dependence of the absorption, can be used to study the composition of an unknown external medium.<sup id="cite_ref-thermo-fisher_29-0" class="reference"><a href="#cite_note-thermo-fisher-29"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Derivation_of_evanescent_wave">Derivation of evanescent wave</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=6" title="Edit section: Derivation of evanescent wave"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a uniform plane sinusoidal electromagnetic wave, the electric field&#8202; <span class="texhtml"><b>E</b></span> has the form </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E_{k}} e^{i(\mathbf {k\cdot r} -\omega t)},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </msub> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E_{k}} e^{i(\mathbf {k\cdot r} -\omega t)},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ccecaf5afab28018fb9980127f43449a34cdd76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.925ex; height:3.176ex;" alt="{\displaystyle \mathbf {E_{k}} e^{i(\mathbf {k\cdot r} -\omega t)},}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span>)</b></td></tr></tbody></table> <p>where <span class="texhtml"><b>E<sub>k</sub></b></span> is the (constant) <a href="/wiki/Complex_number" title="Complex number">complex</a> amplitude vector,&#160; <span class="texhtml"><i>i</i></span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>,&#160; <span class="texhtml"><b>k</b></span> is the <a href="/wiki/Wave_vector" title="Wave vector">wave vector</a> (whose magnitude <span class="texhtml"><i>k</i></span> is the angular <a href="/wiki/Wavenumber" title="Wavenumber">wavenumber</a>),&#160; <span class="texhtml"><b>r</b></span> is the <a href="/wiki/Position_(vector)" class="mw-redirect" title="Position (vector)">position vector</a>,&#160; <i>ω</i> is the <a href="/wiki/Angular_frequency" title="Angular frequency">angular frequency</a>,&#160; <span class="texhtml"><i>t</i></span> is time, and it is understood that the <i>real part</i> of the expression is the physical field.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>Note 7<span class="cite-bracket">&#93;</span></a></sup> The magnetizing field&#8202; <span class="texhtml"><b>H</b></span> has the same form with the same <span class="texhtml"><b>k</b></span> and <i>ω</i>. The value of the expression is unchanged if the position <span class="texhtml"><b>r</b></span> varies in a direction normal to <span class="texhtml"><b>k</b></span>; hence <span class="texhtml"><b>k</b></span> <i>is normal to the wavefronts</i>. </p><p>If <i>ℓ</i> is the component of <span class="texhtml"><b>r</b></span> in the direction of <span class="texhtml"><b>k</b><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> the field (<b><a href="#math_5">5</a></b>) can be written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E_{k}} e^{i(k\ell -\omega t)}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </msub> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mi>&#x2113;<!-- ℓ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E_{k}} e^{i(k\ell -\omega t)}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0efd67196dc861b3bb9dd7fdf6d50a6b7b77f70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.62ex; height:3.176ex;" alt="{\displaystyle \mathbf {E_{k}} e^{i(k\ell -\omega t)}\,.}"></span>&#160; If the <a href="/wiki/Argument_(complex_analysis)" title="Argument (complex analysis)">argument</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i(\cdots )}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i(\cdots )}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51b5adf25f2298ee8cd791232d5f2d3d5ef88787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.088ex; height:2.843ex;" alt="{\displaystyle e^{i(\cdots )}}"></span> is to be constant,&#160; <i>ℓ</i>&#160;must increase at the velocity<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega /k\,,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega /k\,,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35176e39599032510d49b927ac927d4b64785401" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.241ex; height:2.843ex;" alt="{\displaystyle \omega /k\,,\,}"></span> known as the <i><a href="/wiki/Phase_velocity" title="Phase velocity">phase velocity</a></i>.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> This in turn is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c/n\,,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c/n\,,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db35418b530bed4ef1625c15429ffbf231616078" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.985ex; height:2.843ex;" alt="{\displaystyle c/n\,,\,}"></span> where <span class="texhtml"><i>c</i></span> is the phase velocity in the reference medium (taken as vacuum) and <span class="texhtml"><i>n</i></span> is the local refractive index w.r.t.&#160;the reference medium. Solving for <span class="texhtml"><i>k</i></span> gives<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=n\omega /c\,,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>n</mi> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=n\omega /c\,,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d249c63c9114ad3980746224a35fa579014d500" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.741ex; height:2.843ex;" alt="{\displaystyle k=n\omega /c\,,\,}"></span> i.e. </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=nk_{0}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mi>n</mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=nk_{0}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8ef6fa376be394bbc35c60c8bc6bcaa7ed96440" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.004ex; height:2.509ex;" alt="{\displaystyle k=nk_{0}\,,}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_6" class="reference nourlexpansion" style="font-weight:bold;">6</span>)</b></td></tr></tbody></table> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,k_{0}=\omega /c\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,k_{0}=\omega /c\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0052ac3d80e64170df90bb4dbd9459e44e0207f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.753ex; height:2.843ex;" alt="{\displaystyle \,k_{0}=\omega /c\,}"></span> is the wavenumber in vacuum.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>Note 8<span class="cite-bracket">&#93;</span></a></sup> </p><p>From (<b><a href="#math_5">5</a></b>), the electric field in the "external" medium has the form </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}}e^{i(\mathbf {k_{\text{t}}\cdot r} -\omega t)}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="bold">t</mtext> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}}e^{i(\mathbf {k_{\text{t}}\cdot r} -\omega t)}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/179e29bf9ab8577f67102686598973b0a3a7acec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.44ex; height:3.176ex;" alt="{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}}e^{i(\mathbf {k_{\text{t}}\cdot r} -\omega t)}\,,}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_7" class="reference nourlexpansion" style="font-weight:bold;">7</span>)</b></td></tr></tbody></table> <p>where <span class="texhtml"><b>k</b><sub>t</sub></span> is the wave vector for the transmitted wave (we assume isotropic media, but the transmitted wave is not <i>yet</i> assumed to be evanescent). </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Wave_vectors_dense_to_rare_n1_to_n2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Wave_vectors_dense_to_rare_n1_to_n2.svg/220px-Wave_vectors_dense_to_rare_n1_to_n2.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Wave_vectors_dense_to_rare_n1_to_n2.svg/330px-Wave_vectors_dense_to_rare_n1_to_n2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Wave_vectors_dense_to_rare_n1_to_n2.svg/440px-Wave_vectors_dense_to_rare_n1_to_n2.svg.png 2x" data-file-width="531" data-file-height="531" /></a><figcaption><b>Fig.&#8239;11</b>:<span style="font-size:120%">&#160;</span>Incident, reflected, and transmitted wave vectors (<span class="texhtml"><b>k</b><sub><i>i</i></sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>, <b>k</b><sub><i>r</i></sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,</span> and <span class="texhtml"><b>k</b><sub><i>t</i></sub>&#8202;</span>), for incidence from a medium with higher refractive index <span class="texhtml"><i>n</i><sub>1</sub></span> to a medium with lower refractive index <span class="texhtml"><i>n</i><sub>2</sub></span>. The red arrows are perpendicular to the wave vectors and therefore parallel to the respective wavefronts.</figcaption></figure> <p>In Cartesian coordinates <span class="texhtml">(<i>x</i>,&#8202;<i>y</i>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><i>z</i>)</span>, let the region<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>y</i> &lt; 0</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> have refractive index <span class="texhtml"><i>n</i><sub>1</sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> and let the region<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>y</i> &gt; 0</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> have refractive index <span class="texhtml"><i>n</i><sub>2</sub></span>. Then the <span class="texhtml"><i>xz</i></span> plane is the interface, and the <span class="texhtml"><i>y</i></span> axis is normal to the interface (Fig.&#8239;11). Let <span class="texhtml"><b>i</b></span> and <span class="texhtml"><b>j</b></span> (in bold <a href="/wiki/Roman_type" title="Roman type">roman type</a>) be the unit vectors in the <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> directions, respectively. Let the <a href="/wiki/Plane_of_incidence" title="Plane of incidence">plane of incidence</a> (containing the incident wave-normal and the normal to the interface) be the <span class="texhtml"><i>xy</i></span> plane (the plane of the page), with the angle of incidence <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> measured from <span class="texhtml"><b>j</b></span> towards <span class="texhtml"><b>i</b></span>. Let the angle of refraction, measured in the same sense, be <i>θ</i><sub>t</sub><span style="white-space: nowrap;">&#8201;</span> (<i>t</i> for <i>transmitted</i>, reserving <i>r</i> for <i>reflected</i>). </p><p>From (<b><a href="#math_6">6</a></b>), the transmitted wave vector <span class="texhtml"><b>k</b><sub>t</sub></span> has magnitude <span class="texhtml"><i>n</i><sub>2</sub><i>k</i><sub>0</sub></span>. Hence, from the geometry, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} _{\text{t}}=n_{2}k_{0}(\mathbf {i} \sin \theta _{\text{t}}+\mathbf {j} \cos \theta _{\text{t}})=k_{0}(\mathbf {i} \,n_{1}\sin \theta _{\text{i}}+\mathbf {j} \,n_{2}\cos \theta _{\text{t}})\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mspace width="thinmathspace" /> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mspace width="thinmathspace" /> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} _{\text{t}}=n_{2}k_{0}(\mathbf {i} \sin \theta _{\text{t}}+\mathbf {j} \cos \theta _{\text{t}})=k_{0}(\mathbf {i} \,n_{1}\sin \theta _{\text{i}}+\mathbf {j} \,n_{2}\cos \theta _{\text{t}})\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee7cd21b3e576951cec690dce1b38f4e5743d6d5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:57.28ex; height:2.843ex;" alt="{\displaystyle \mathbf {k} _{\text{t}}=n_{2}k_{0}(\mathbf {i} \sin \theta _{\text{t}}+\mathbf {j} \cos \theta _{\text{t}})=k_{0}(\mathbf {i} \,n_{1}\sin \theta _{\text{i}}+\mathbf {j} \,n_{2}\cos \theta _{\text{t}})\,,}"></span> where the last step uses Snell's law. Taking the <a href="/wiki/Dot_product" title="Dot product">dot product</a> with the position vector, we get <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {k} _{\text{t}}\mathbf {\cdot r} =k_{0}(n_{1}x\sin \theta _{\text{i}}+n_{2}y\cos \theta _{\text{t}})\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>y</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {k} _{\text{t}}\mathbf {\cdot r} =k_{0}(n_{1}x\sin \theta _{\text{i}}+n_{2}y\cos \theta _{\text{t}})\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e60a2d34eaf96ac16c53dc928efe15c28d1c728" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.72ex; height:2.843ex;" alt="{\displaystyle \mathbf {k} _{\text{t}}\mathbf {\cdot r} =k_{0}(n_{1}x\sin \theta _{\text{i}}+n_{2}y\cos \theta _{\text{t}})\,,}"></span> so that Eq.&#8239;(<b><a href="#math_7">7</a></b>) becomes </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}\,}e^{i(n_{1}k_{0}x\sin \theta _{\text{i}}+n_{2}k_{0}y\cos \theta _{\text{t}}-\omega t)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> <mspace width="thinmathspace" /> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>y</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}\,}e^{i(n_{1}k_{0}x\sin \theta _{\text{i}}+n_{2}k_{0}y\cos \theta _{\text{t}}-\omega t)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6d6251a18c3cd29d9035c50769ddfe6fa3952ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.021ex; height:3.176ex;" alt="{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}\,}e^{i(n_{1}k_{0}x\sin \theta _{\text{i}}+n_{2}k_{0}y\cos \theta _{\text{t}}-\omega t)}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_8" class="reference nourlexpansion" style="font-weight:bold;">8</span>)</b></td></tr></tbody></table> <p>In the case of TIR, the angle <i>θ</i><sub>t</sub> does not exist in the usual sense. But we can still interpret (<b><a href="#math_8">8</a></b>) for the transmitted (evanescent) wave, by allowing <span class="texhtml">cos<span style="white-space: nowrap;">&#8201;</span><i>θ</i><sub>t</sub></span> to be <i>complex</i>. This becomes necessary when we write <span class="texhtml">cos<span style="white-space: nowrap;">&#8201;</span><i>θ</i><sub>t</sub></span> in terms of <span class="texhtml">sin<span style="white-space: nowrap;">&#8201;</span><i>θ</i><sub>t</sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> and thence in terms of <span class="texhtml">sin<span style="white-space: nowrap;">&#8201;</span><i>θ</i><sub>i</sub></span> using Snell's law: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta _{\text{t}}={\sqrt {1-\sin ^{2}\theta _{\text{t}}}}={\sqrt {1-(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta _{\text{t}}={\sqrt {1-\sin ^{2}\theta _{\text{t}}}}={\sqrt {1-(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e0288fa010402bfb690e1342bc100033e9fc141" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:46.992ex; height:5.009ex;" alt="{\displaystyle \cos \theta _{\text{t}}={\sqrt {1-\sin ^{2}\theta _{\text{t}}}}={\sqrt {1-(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}}}\,.}"></span> For <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> greater than the critical angle, the value under the square-root symbol is negative, so that<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta _{\text{t}}=\pm i\,{\sqrt {(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}-1}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mi>i</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta _{\text{t}}=\pm i\,{\sqrt {(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}-1}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/973044cb235a08b0cc2f84cc4e1f17c029450461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:34.305ex; height:4.843ex;" alt="{\displaystyle \cos \theta _{\text{t}}=\pm i\,{\sqrt {(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}-1}}\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_9" class="reference nourlexpansion" style="font-weight:bold;">9</span>)</b></td></tr></tbody></table> <p>To determine which sign is applicable, we substitute (<b><a href="#math_9">9</a></b>) into (<b><a href="#math_8">8</a></b>), obtaining </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}\,}e^{\mp {\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}\;k_{0}y}\;e^{i{\big (}(n_{1}k_{0}\sin \theta _{\text{i}})x-\omega t{\big )}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> <mspace width="thinmathspace" /> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2213;<!-- ∓ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mspace width="thickmathspace" /> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>y</mi> </mrow> </msup> <mspace width="thickmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo stretchy="false">)</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}\,}e^{\mp {\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}\;k_{0}y}\;e^{i{\big (}(n_{1}k_{0}\sin \theta _{\text{i}})x-\omega t{\big )}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afbd9fb7fdd16673c001ca0e362f221229591a34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:45.994ex; height:4.176ex;" alt="{\displaystyle \mathbf {E} _{\text{t}}=\mathbf {E} _{\mathbf {k} {\text{t}}\,}e^{\mp {\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}\;k_{0}y}\;e^{i{\big (}(n_{1}k_{0}\sin \theta _{\text{i}})x-\omega t{\big )}}\,,}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_10" class="reference nourlexpansion" style="font-weight:bold;">10</span>)</b></td></tr></tbody></table> <p>where the undetermined sign is the opposite of that in (<b><a href="#math_9">9</a></b>). For an <i>evanescent</i> transmitted wave – that is, one whose amplitude decays as <span class="texhtml"><i>y</i></span> increases – the undetermined sign in (<b><a href="#math_10">10</a></b>) must be <i>minus</i>, so the undetermined sign in (<b><a href="#math_9">9</a></b>) must be <i>plus</i>.<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>Note 9<span class="cite-bracket">&#93;</span></a></sup> </p><p>With the correct sign, the result (<b><a href="#math_10">10</a></b>) can be abbreviated </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{\text{t}}\propto \,e^{-\kappa y\,}e^{i(k_{x}x-\omega t)}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo>&#x221D;<!-- ∝ --></mo> <mspace width="thinmathspace" /> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BA;<!-- κ --></mi> <mi>y</mi> <mspace width="thinmathspace" /> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{\text{t}}\propto \,e^{-\kappa y\,}e^{i(k_{x}x-\omega t)}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e81510c4ad3f1782239c8cd066c44a071c135f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.675ex; height:3.176ex;" alt="{\displaystyle \mathbf {E} _{\text{t}}\propto \,e^{-\kappa y\,}e^{i(k_{x}x-\omega t)}\,,}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_11" class="reference nourlexpansion" style="font-weight:bold;">11</span>)</b></td></tr></tbody></table> <p>where </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\kappa &amp;=k_{0}\,{\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}\\k_{x\!}&amp;=n_{1}k_{0}\sin \theta _{\text{i}}~,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03BA;<!-- κ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mspace width="negativethinmathspace" /> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\kappa &amp;=k_{0}\,{\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}\\k_{x\!}&amp;=n_{1}k_{0}\sin \theta _{\text{i}}~,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a7b49a5b9111645b5474e91e400a38ef283b73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:25.8ex; height:7.843ex;" alt="{\displaystyle {\begin{aligned}\kappa &amp;=k_{0}\,{\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}\\k_{x\!}&amp;=n_{1}k_{0}\sin \theta _{\text{i}}~,\end{aligned}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_12" class="reference nourlexpansion" style="font-weight:bold;">12</span>)</b></td></tr></tbody></table> <p>and <span class="texhtml"><i>k</i><sub>0</sub></span> is the wavenumber in vacuum, i.e.&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\omega /c\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>c</mi> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\omega /c\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b2e3e27d193b6b27c94e1713cd001455ceab06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.036ex; height:2.843ex;" alt="{\displaystyle \,\omega /c\,.}"></span> </p><p>So the evanescent wave is a plane sinewave traveling in the <span class="texhtml mvar" style="font-style:italic;">x</span> direction, with an amplitude that decays exponentially in the <span class="texhtml mvar" style="font-style:italic;">y</span> direction (cf.&#160;Fig.&#8239;9). It is evident that the energy stored in this wave likewise travels in the <span class="texhtml mvar" style="font-style:italic;">x</span> direction and does not cross the interface. Hence the <a href="/wiki/Poynting_vector" title="Poynting vector">Poynting vector</a> generally has a component in the <span class="texhtml mvar" style="font-style:italic;">x</span> direction, but its <span class="texhtml mvar" style="font-style:italic;">y</span> component averages to zero (although its instantaneous <span class="texhtml mvar" style="font-style:italic;">y</span> component is not <i>identically</i> zero).<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-coldatoms_37-0" class="reference"><a href="#cite_note-coldatoms-37"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FITR_penetration_depth.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/FITR_penetration_depth.svg/220px-FITR_penetration_depth.svg.png" decoding="async" width="220" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/FITR_penetration_depth.svg/330px-FITR_penetration_depth.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/FITR_penetration_depth.svg/440px-FITR_penetration_depth.svg.png 2x" data-file-width="800" data-file-height="500" /></a><figcaption><b>Fig.<span style="white-space: nowrap;">&#8201;</span>12</b>:<span style="font-size:120%">&#160;</span>Penetration depth of the evanescent wave (in&#160;wavelengths) vs.&#160;angle of incidence, for various values of the relative refractive index (internal w.r.t.&#160;external)</figcaption></figure> <p>Eq.&#8239;(<b><a href="#math_11">11</a></b>) indicates that the amplitude of the evanescent wave falls off by a factor <span class="texhtml mvar" style="font-style:italic;">e</span> as the coordinate <span class="texhtml mvar" style="font-style:italic;">y</span> (measured from the interface) increases by the distance<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d=1/\kappa \,,\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>&#x03BA;<!-- κ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d=1/\kappa \,,\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b4a3b6b86124cbd6064df6e758f7dc75437a383" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.399ex; height:2.843ex;" alt="{\displaystyle d=1/\kappa \,,\,}"></span> commonly called the "penetration depth" of the evanescent wave.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Taking reciprocals of the first equation of (<b><a href="#math_12">12</a></b>), we find that the penetration depth is<sup id="cite_ref-coldatoms_37-1" class="reference"><a href="#cite_note-coldatoms-37"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d={\frac {\lambda _{0}}{2\pi \,{\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}}}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msubsup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d={\frac {\lambda _{0}}{2\pi \,{\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}}}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f9d3eba7ff3f2cded91793c829655e87f2e56ab" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:26.56ex; height:8.176ex;" alt="{\displaystyle d={\frac {\lambda _{0}}{2\pi \,{\sqrt {n_{1}^{2}\sin ^{2}\theta _{\text{i}}\,-\,n_{2}^{2}}}}}~,}"></span> where <i>λ</i><sub>0</sub> is the wavelength in vacuum, i.e.&#160;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,2\pi /k_{0}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,2\pi /k_{0}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15b2048d051c65deec5fed9d02896d03429de439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.343ex; height:2.843ex;" alt="{\displaystyle \,2\pi /k_{0}\,.}"></span><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> Dividing the numerator and denominator by <span class="texhtml"><i>n</i><sub>2</sub></span> yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d={\frac {\lambda _{2}}{2\pi \,{\sqrt {(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}\,-\,1}}}}~,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d={\frac {\lambda _{2}}{2\pi \,{\sqrt {(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}\,-\,1}}}}~,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/770174d99b72d7bc09dedf6a0148edbd881f1bdc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:31.748ex; height:8.176ex;" alt="{\displaystyle d={\frac {\lambda _{2}}{2\pi \,{\sqrt {(n_{1}/n_{2})^{2}\sin ^{2}\theta _{\text{i}}\,-\,1}}}}~,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\lambda _{2}=\lambda _{0}/n_{2}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\lambda _{2}=\lambda _{0}/n_{2}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc26e645ab3453b92aed49406667ef3031f137d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.303ex; height:2.843ex;" alt="{\displaystyle \,\lambda _{2}=\lambda _{0}/n_{2}\,}"></span> is the wavelength in the second (external) medium. Hence we can plot <span class="texhtml mvar" style="font-style:italic;">d</span> in units of <i>λ</i><sub>2&#8202;</sub>, as a function of the angle of incidence, for various values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1}/n_{2\,}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mspace width="thinmathspace" /> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1}/n_{2\,}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d01244185bced15b8c47d036866be546271346b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.447ex; height:2.843ex;" alt="{\displaystyle n_{1}/n_{2\,}}"></span> (Fig.&#8239;12).<span style="white-space: nowrap;">&#8201;</span> As&#160;<i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> decreases towards the critical angle, the denominator approaches zero, so that <span class="texhtml mvar" style="font-style:italic;">d</span> increases without limit – as is to be expected, because as soon as <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> is <i>less</i> than critical, uniform plane waves are permitted in the external medium. As <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> approaches 90° (grazing incidence),<span style="white-space: nowrap;">&#8201;</span> <span class="texhtml mvar" style="font-style:italic;">d</span> approaches a minimum <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d_{\text{min}}={\frac {\lambda _{2}}{2\pi \,{\sqrt {(n_{1}/n_{2})^{2}-1}}}}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>min</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d_{\text{min}}={\frac {\lambda _{2}}{2\pi \,{\sqrt {(n_{1}/n_{2})^{2}-1}}}}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/035561cdb0129b33a7c4a363524f78c797a8758d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.476ex; height:6.676ex;" alt="{\displaystyle d_{\text{min}}={\frac {\lambda _{2}}{2\pi \,{\sqrt {(n_{1}/n_{2})^{2}-1}}}}~.}"></span> For incidence from water to air, or common glass to air,<span style="white-space: nowrap;">&#8201;</span> <span class="texhtml"><i>d</i><sub>min</sub></span> is not much different from <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num"><i>λ</i><sub>2</sub></span><span class="sr-only">/</span><span class="den">2<i>π</i></span></span>&#8288;</span>.<span style="white-space: nowrap;">&#8201;</span> But <span class="texhtml mvar" style="font-style:italic;">d</span> is larger at smaller angles of incidence (Fig.&#8239;12), and the amplitude may still be significant at distances of several times <span class="texhtml mvar" style="font-style:italic;">d</span>; for example, because <span class="texhtml">e<sup>−4.6</sup></span> is just greater than 0.01, the evanescent wave amplitude within a distance <span class="texhtml">4.6<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><i>d</i></span>&#8202; of the interface is at least 1% of its value at the interface. Hence, speaking loosely, we tend to say that the evanescent wave amplitude is significant within "a few wavelengths" of the interface. </p> <div class="mw-heading mw-heading2"><h2 id="Phase_shifts"><span class="anchor" id="Phase_shift_upon_total_internal_reflection"></span>Phase shifts</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=7" title="Edit section: Phase shifts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Between 1817 and 1823, <a href="/wiki/Augustin-Jean_Fresnel" title="Augustin-Jean Fresnel">Augustin-Jean Fresnel</a> discovered that total internal reflection is accompanied by a non-trivial <a href="/wiki/Phase_(waves)" title="Phase (waves)">phase</a> shift (that is, a phase shift that is not restricted to 0° or 180°), as the <a href="/wiki/Fresnel_equations" title="Fresnel equations">Fresnel reflection coefficient</a> acquires a non-zero <a href="/wiki/Complex_number" title="Complex number">imaginary part</a>.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> We shall now explain this effect for electromagnetic waves in the case of <a href="/wiki/Linearity" title="Linearity">linear</a>, <a href="/wiki/Homogeneity_(physics)" title="Homogeneity (physics)">homogeneous</a>, isotropic, non-magnetic media. The phase shift turns out to be an <i>advance</i>, which grows as the incidence angle increases beyond the critical angle, but which depends on the polarization of the incident wave. </p><p>In equations (<b><a href="#math_5">5</a></b>), (<b><a href="#math_7">7</a></b>), (<b><a href="#math_8">8</a></b>), (<b><a href="#math_10">10</a></b>), and (<b><a href="#math_11">11</a></b>), we advance the phase by the angle <i>ϕ</i> if we replace <span class="texhtml"><i>ωt</i></span> by <span class="texhtml"><i>ωt+ϕ</i></span><span style="white-space: nowrap;">&#8201;</span> (that is, if we replace <span class="texhtml"><i>−ωt</i></span> by <span class="texhtml"><i>−ωt−ϕ</i></span>),<span style="white-space: nowrap;">&#8201;</span> with the result that the (complex) field is multiplied by <span class="texhtml"><i>e<sup>−iϕ</sup></i></span>. So a phase <i>advance</i> is equivalent to multiplication by a complex constant with a <i>negative</i> <a href="/wiki/Argument_(complex_analysis)" title="Argument (complex analysis)">argument</a>. This becomes more obvious when (e.g.) the field (<b><a href="#math_5">5</a></b>) is factored as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E_{k}} e^{i\mathbf {k\cdot r} }e^{-i\omega t},\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </msub> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">r</mi> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> </mrow> </msup> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E_{k}} e^{i\mathbf {k\cdot r} }e^{-i\omega t},\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdf9441b8f1a47998a445d62ca66309a00cfe332" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.916ex; height:3.009ex;" alt="{\displaystyle \mathbf {E_{k}} e^{i\mathbf {k\cdot r} }e^{-i\omega t},\,}"></span> where the last factor contains the time-dependence.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>Note 10<span class="cite-bracket">&#93;</span></a></sup> </p><p>To represent the polarization of the incident, reflected, or transmitted wave, the electric field adjacent to an interface can be resolved into two perpendicular components, known as the <a href="/wiki/Polarization_(waves)#s_and_p_designations" title="Polarization (waves)"><i>s</i>&#160;and&#160;<i>p</i></a> components, which are parallel to the <i>surface</i> and the <i>plane</i> of incidence, respectively; in other words, the <i>s</i>&#160;and&#160;<i>p</i> components are respectively <i>square</i> and <i>parallel</i> to the plane of incidence.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>Note 11<span class="cite-bracket">&#93;</span></a></sup> </p><p>For each component of polarization, the incident, reflected, or transmitted electric field <span style="font-size:120%">(</span><span class="texhtml"><b>E</b></span> in Eq.&#8239;(<b><a href="#math_5">5</a></b>)<span style="font-size:120%">)</span> has a certain direction, and can be represented by its (complex) scalar component in that direction. The reflection or transmission coefficient can then be defined as a <i>ratio</i> of complex components at the same point, or at infinitesimally separated points on opposite sides of the interface. But, in order to fix the <i>signs</i> of the coefficients, we must choose positive senses for the "directions". For the <i>s</i> components, the obvious choice is to say that the positive directions of the incident, reflected, and transmitted fields are all the same (e.g., the <span class="texhtml mvar" style="font-style:italic;">z</span> direction in Fig.&#8239;11). For the <i>p</i> components, this article adopts the convention that the positive directions of the incident, reflected, and transmitted fields are inclined towards the same medium (that is, towards the same side of the interface, e.g.&#160;like the red arrows in Fig.&#8239;11).<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>Note 12<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> But the reader should be warned that some books use a different convention for the <i>p</i> components, causing a different sign in the resulting formula for the reflection coefficient.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p><p>For the <i>s</i> polarization, let the reflection and transmission coefficients be <span class="texhtml mvar" style="font-style:italic;">r<sub>s</sub></span> and <span class="texhtml mvar" style="font-style:italic;">t<sub>s</sub></span> respectively. For the <i>p</i> polarization, let the corresponding coefficients be <span class="texhtml mvar" style="font-style:italic;">r<sub>p</sub></span> and <span class="texhtml mvar" style="font-style:italic;">t<sub>p</sub>&#8202;</span>. Then, for <i><a href="/wiki/Linearity" title="Linearity">linear</a>, <a href="/wiki/Homogeneity_(physics)" title="Homogeneity (physics)">homogeneous</a>, isotropic, non-magnetic</i> media, the coefficients are given by:<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{s}={\frac {n_{1}\cos \theta _{\text{i}}-n_{2}\cos \theta _{\text{t}}}{n_{1}\cos \theta _{\text{i}}+n_{2}\cos \theta _{\text{t}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mrow> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{s}={\frac {n_{1}\cos \theta _{\text{i}}-n_{2}\cos \theta _{\text{t}}}{n_{1}\cos \theta _{\text{i}}+n_{2}\cos \theta _{\text{t}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00f0bba36b4fcfdf9b4c95eda83fe2cce17a09db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.238ex; height:5.843ex;" alt="{\displaystyle r_{s}={\frac {n_{1}\cos \theta _{\text{i}}-n_{2}\cos \theta _{\text{t}}}{n_{1}\cos \theta _{\text{i}}+n_{2}\cos \theta _{\text{t}}}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_13" class="reference nourlexpansion" style="font-weight:bold;">13</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{s}={\frac {2n_{1}\cos \theta _{\text{i}}}{n_{1}\cos \theta _{\text{i}}+n_{2}\cos \theta _{\text{t}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mrow> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{s}={\frac {2n_{1}\cos \theta _{\text{i}}}{n_{1}\cos \theta _{\text{i}}+n_{2}\cos \theta _{\text{t}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41d4c6a165d26aa8b297fa8278933f30ef0bfdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.029ex; height:5.843ex;" alt="{\displaystyle t_{s}={\frac {2n_{1}\cos \theta _{\text{i}}}{n_{1}\cos \theta _{\text{i}}+n_{2}\cos \theta _{\text{t}}}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_14" class="reference nourlexpansion" style="font-weight:bold;">14</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{p}={\frac {n_{2}\cos \theta _{\text{i}}-n_{1}\cos \theta _{\text{t}}}{n_{2}\cos \theta _{\text{i}}+n_{1}\cos \theta _{\text{t}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mrow> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{p}={\frac {n_{2}\cos \theta _{\text{i}}-n_{1}\cos \theta _{\text{t}}}{n_{2}\cos \theta _{\text{i}}+n_{1}\cos \theta _{\text{t}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c7157a10965f6a9bc81c8013a2a266281020536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.294ex; height:5.843ex;" alt="{\displaystyle r_{p}={\frac {n_{2}\cos \theta _{\text{i}}-n_{1}\cos \theta _{\text{t}}}{n_{2}\cos \theta _{\text{i}}+n_{1}\cos \theta _{\text{t}}}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_15" class="reference nourlexpansion" style="font-weight:bold;">15</span>)</b></td></tr></tbody></table> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{p}={\frac {2n_{1}\cos \theta _{\text{i}}}{n_{2}\cos \theta _{\text{i}}+n_{1}\cos \theta _{\text{t}}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mrow> <mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{p}={\frac {2n_{1}\cos \theta _{\text{i}}}{n_{2}\cos \theta _{\text{i}}+n_{1}\cos \theta _{\text{t}}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65856e7d68155a190aeb3ded6bb00971ca0e1edf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.119ex; height:5.843ex;" alt="{\displaystyle t_{p}={\frac {2n_{1}\cos \theta _{\text{i}}}{n_{2}\cos \theta _{\text{i}}+n_{1}\cos \theta _{\text{t}}}}\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_16" class="reference nourlexpansion" style="font-weight:bold;">16</span>)</b></td></tr></tbody></table> <p>(For a derivation of the above, see&#8202; <i><a href="/wiki/Fresnel_equations#Theory" title="Fresnel equations">Fresnel equations&#8202; §&#8239;Theory</a></i>.) </p><p>Now we suppose that the transmitted wave is evanescent. With the correct sign (+), substituting (<b><a href="#math_9">9</a></b>) into (<b><a href="#math_13">13</a></b>) gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{s}=\,{\frac {n\cos \theta _{\text{i}}-i{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{n\cos \theta _{\text{i}}+i{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> <mrow> <mi>n</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{s}=\,{\frac {n\cos \theta _{\text{i}}-i{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{n\cos \theta _{\text{i}}+i{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63ec900d01d7853fbe03a714a28825ddb83fc824" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.35ex; height:7.509ex;" alt="{\displaystyle r_{s}=\,{\frac {n\cos \theta _{\text{i}}-i{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{n\cos \theta _{\text{i}}+i{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}}\,,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=n_{1}/n_{2}\,;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=n_{1}/n_{2}\,;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d594bfcbd6d18c86543cbe4ba25540ef279ec3b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.587ex; height:2.843ex;" alt="{\displaystyle n=n_{1}/n_{2}\,;}"></span> that is, <span class="texhtml mvar" style="font-style:italic;">n</span> is the index of the "internal" medium relative to the "external" one, or the index of the internal medium if the external one is vacuum.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>Note 13<span class="cite-bracket">&#93;</span></a></sup><span style="white-space: nowrap;">&#8201;</span> So the magnitude of <span class="texhtml mvar" style="font-style:italic;">r<sub>s</sub></span> is 1, and the <i><a href="/wiki/Argument_(complex_analysis)" title="Argument (complex analysis)">argument</a></i> of <span class="texhtml mvar" style="font-style:italic;">r<sub>s</sub></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2\arctan {\frac {\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}{n\cos \theta _{\text{i}}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> <mrow> <mi>n</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2\arctan {\frac {\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}{n\cos \theta _{\text{i}}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21216370f9037650e8675251456baf71dfbf0d01" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:27.321ex; height:6.676ex;" alt="{\displaystyle -2\arctan {\frac {\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}{n\cos \theta _{\text{i}}}}\,,}"></span> which gives a phase <i>advance</i> of<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><sup id="cite_ref-jw529_47-0" class="reference"><a href="#cite_note-jw529-47"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{s}=\,2\arctan {\frac {\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}{n\cos \theta _{\text{i}}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> <mn>2</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> <mrow> <mi>n</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{s}=\,2\arctan {\frac {\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}{n\cos \theta _{\text{i}}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db66b605750c19f4f640440cf121f6a975604890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.034ex; height:6.676ex;" alt="{\displaystyle \delta _{s}=\,2\arctan {\frac {\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}{n\cos \theta _{\text{i}}}}\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_17" class="reference nourlexpansion" style="font-weight:bold;">17</span>)</b></td></tr></tbody></table> <p>Making the same substitution in (<b><a href="#math_14">14</a></b>), we find that <span class="texhtml mvar" style="font-style:italic;">t<sub>s</sub></span> has the same denominator as <span class="texhtml mvar" style="font-style:italic;">r<sub>s</sub></span> with a positive real numerator (instead of a complex conjugate numerator) and therefore has <i>half</i> the argument of <span class="texhtml"><i>r<sub>s</sub></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> so that <i>the phase advance of the evanescent wave is half that of the reflected wave</i>. </p><p>With the same choice of sign,<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>Note 14<span class="cite-bracket">&#93;</span></a></sup> substituting (<b><a href="#math_9">9</a></b>) into (<b><a href="#math_15">15</a></b>) gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{p}=\,{\frac {\cos \theta _{\text{i}}-in{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}+in{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{p}=\,{\frac {\cos \theta _{\text{i}}-in{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}+in{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc7a84cd96028b9a60df3d24d333c2b349bbb5e7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.019ex; height:7.509ex;" alt="{\displaystyle r_{p}=\,{\frac {\cos \theta _{\text{i}}-in{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}+in{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}}\,,}"></span> whose magnitude is 1, and whose argument is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -2\arctan {\frac {\,n{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -2\arctan {\frac {\,n{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73da401cb263a3796c477c058a6703e4a7f4f8fb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.102ex; height:6.676ex;" alt="{\displaystyle -2\arctan {\frac {\,n{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}}}\,,}"></span> which gives a phase <i>advance</i> of<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><sup id="cite_ref-jw529_47-1" class="reference"><a href="#cite_note-jw529-47"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{p}=\,2\arctan {\frac {\,n{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> <mn>2</mn> <mi>arctan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mspace width="thinmathspace" /> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mrow> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{p}=\,2\arctan {\frac {\,n{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ac7dbd1401896fc289f6ad738ad159b4b14ee23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:32.871ex; height:6.676ex;" alt="{\displaystyle \delta _{p}=\,2\arctan {\frac {\,n{\sqrt {n^{2}\sin ^{2}\theta _{\text{i}}-1}}}{\cos \theta _{\text{i}}}}\,.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_18" class="reference nourlexpansion" style="font-weight:bold;">18</span>)</b></td></tr></tbody></table> <p>Making the same substitution in (<b><a href="#math_16">16</a></b>), we again find that the phase advance of the evanescent wave is <i>half</i> that of the reflected wave. </p><p>Equations (<b><a href="#math_17">17</a></b>) and (<b><a href="#math_18">18</a></b>) apply when<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>c</sub> ≤ <i>θ</i><sub>i</sub> &lt; 90°,</span> where <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> is the angle of incidence and <i>θ</i><sub>c</sub> is the critical angle<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml">arcsin&#8202;(1/<i>n</i>)</span>.<span style="white-space: nowrap;">&#8201;</span> These equations show that </p> <ul><li>each phase advance is zero at the critical angle (for which the numerator is zero);</li> <li>each phase advance approaches 180° as<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>i</sub> → 90°</span>; and</li> <li><span class="texhtml"><i>δ<sub>p</sub> &gt; δ<sub>s</sub></i></span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> at intermediate values of <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> <span style="font-size:120%">(</span>because the factor <span class="texhtml"><i>n</i></span> is in the numerator of (<b><a href="#math_18">18</a></b>) and the denominator of (<b><a href="#math_17">17</a></b>)<span style="font-size:120%">)</span>.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>For <span class="texhtml"><i>θ</i><sub>i</sub> ≤ <i>θ</i><sub>c</sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>,</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> the reflection coefficients are given by equations (<b><a href="#math_13">13</a></b>) and (<b><a href="#math_15">15</a></b>), and are <i>real</i>, so that the phase shift is either 0° (if the coefficient is positive) or 180° (if the coefficient is negative). </p><p>In (<b><a href="#math_13">13</a></b>), if we put<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{2}=n_{1}\sin \theta _{\text{i}}/\sin \theta _{\text{t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{2}=n_{1}\sin \theta _{\text{i}}/\sin \theta _{\text{t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aeee99d6d90231dc0e79685e95fd128e104cc43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.161ex; height:2.843ex;" alt="{\displaystyle n_{2}=n_{1}\sin \theta _{\text{i}}/\sin \theta _{\text{t}}}"></span> (Snell's law) and multiply the numerator and denominator by<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>n</i><sub>1</sub></span></span>&#8288;</span><span style="white-space: nowrap;">&#8201;</span>sin<span style="white-space: nowrap;">&#8201;</span><i>θ</i><sub>t</sub><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span></span>,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> we&#160;obtain&#8202;<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{s}=-{\frac {\sin(\theta _{\text{i}}-\theta _{\text{t}})}{\sin(\theta _{\text{i}}+\theta _{\text{t}})}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{s}=-{\frac {\sin(\theta _{\text{i}}-\theta _{\text{t}})}{\sin(\theta _{\text{i}}+\theta _{\text{t}})}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12d118c02f0d6847b66188756e7213b6a2228399" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.076ex; height:6.509ex;" alt="{\displaystyle r_{s}=-{\frac {\sin(\theta _{\text{i}}-\theta _{\text{t}})}{\sin(\theta _{\text{i}}+\theta _{\text{t}})}}\,,}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_19" class="reference nourlexpansion" style="font-weight:bold;">19</span>)</b></td></tr></tbody></table> <p>which is positive for all angles of incidence with a transmitted ray (since<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>t</sub> &gt; <i>θ</i><sub>i</sub></span>), giving a phase shift <span class="texhtml mvar" style="font-style:italic;">δ<sub>s</sub></span> of zero. </p><p>If we do likewise with (<b><a href="#math_15">15</a></b>), the result is easily shown to be equivalent to&#8202;<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{p}={\frac {\tan(\theta _{\text{i}}-\theta _{\text{t}})}{\tan(\theta _{\text{i}}+\theta _{\text{t}})}}\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>i</mtext> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{p}={\frac {\tan(\theta _{\text{i}}-\theta _{\text{t}})}{\tan(\theta _{\text{i}}+\theta _{\text{t}})}}\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54e5c84aa9f4a4089ebc165842368455d386efdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.828ex; height:6.509ex;" alt="{\displaystyle r_{p}={\frac {\tan(\theta _{\text{i}}-\theta _{\text{t}})}{\tan(\theta _{\text{i}}+\theta _{\text{t}})}}\,,}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_20" class="reference nourlexpansion" style="font-weight:bold;">20</span>)</b></td></tr></tbody></table> <p>which is negative for small angles (that is, near normal incidence), but changes sign at <i><a href="/wiki/Brewster%27s_angle" title="Brewster&#39;s angle">Brewster's angle</a></i>, where&#8202; <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> and <i>θ</i><sub>t</sub> are complementary. Thus the phase shift <span class="texhtml mvar" style="font-style:italic;">δ<sub>p</sub></span> is 180° for small <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> but switches to 0° at Brewster's angle. Combining the complementarity with Snell's law yields<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>i</sub> = arctan&#8202;(1/<i>n</i>)</span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> as Brewster's angle for dense-to-rare incidence.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>Note 15<span class="cite-bracket">&#93;</span></a></sup> </p><p><span style="font-size:120%">(</span>Equations (<b><a href="#math_19">19</a></b>) and (<b><a href="#math_20">20</a></b>) are known as <i>Fresnel's sine law</i> and <i>Fresnel's tangent law</i>.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> Both reduce to 0/0 at normal incidence, but yield the correct results in the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> as<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml"><i>θ</i><sub>i</sub> → 0</span>. That they have opposite signs as we approach normal incidence is an obvious disadvantage of the sign convention used in this article; the corresponding advantage is that they have the same signs at grazing incidence.<span style="font-size:120%">)</span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Phase_advance_at_internal_reflection.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Phase_advance_at_internal_reflection.svg/220px-Phase_advance_at_internal_reflection.svg.png" decoding="async" width="220" height="274" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Phase_advance_at_internal_reflection.svg/330px-Phase_advance_at_internal_reflection.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Phase_advance_at_internal_reflection.svg/440px-Phase_advance_at_internal_reflection.svg.png 2x" data-file-width="567" data-file-height="705" /></a><figcaption><b>Fig.<span style="white-space: nowrap;">&#8201;</span>13</b>:<span style="font-size:120%">&#160;</span>Phase advance at "internal" reflections for refractive indices of 1.55, 1.5, and 1.45 ("internal" relative to "external"). Beyond the critical angle, the <i>p</i>&#160;(red) and <i>s</i>&#160;(blue) polarizations undergo unequal phase shifts on <i>total</i> internal reflection; the macroscopically observable difference between these shifts is plotted in black.</figcaption></figure> <p>That completes the information needed to plot <span class="texhtml mvar" style="font-style:italic;">δ<sub>s</sub></span> and <span class="texhtml mvar" style="font-style:italic;">δ<sub>p</sub></span> for all angles of incidence. This is done in Fig.&#8239;13,<sup id="cite_ref-jw529_47-2" class="reference"><a href="#cite_note-jw529-47"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> with <span class="texhtml mvar" style="font-style:italic;">δ<sub>p</sub></span> in red and <span class="texhtml mvar" style="font-style:italic;">δ<sub>s</sub></span> in blue, for three refractive indices. On the angle-of-incidence scale (horizontal axis), Brewster's angle is where <span class="texhtml mvar" style="font-style:italic;">δ<sub>p</sub></span> (red) falls from 180° to 0°, and the critical angle is where both <span class="texhtml mvar" style="font-style:italic;">δ<sub>p</sub></span> and <span class="texhtml mvar" style="font-style:italic;">δ<sub>s</sub></span> (red and blue) start to rise again. To the left of the critical angle is the region of <i>partial</i> reflection, where both reflection coefficients are real (phase 0° or 180°) with magnitudes less than&#160;1. To the right of the critical angle is the region of <i>total</i> reflection, where both reflection coefficients are complex with magnitudes equal&#160;to&#160;1. In that region, the black curves show the phase advance of the <i>p</i>&#160;component relative to the <i>s</i>&#160;component:<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta =\delta _{p\!}-\delta _{s}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> <mo>=</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mspace width="negativethinmathspace" /> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta =\delta _{p\!}-\delta _{s}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dbea923e2263a2147cdb1f1a111a01096bf821f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.762ex; height:3.009ex;" alt="{\displaystyle \delta =\delta _{p\!}-\delta _{s}\,.}"></span> It can be seen that a refractive index of 1.45 is not enough to give a 45° phase difference, whereas a refractive index of 1.5 is enough (by a slim margin) to give a 45° phase difference at two angles of incidence: about 50.2° and 53.3°. </p><p>This 45° relative shift is employed in Fresnel's invention, now known as the Fresnel rhomb, in which the angles of incidence are chosen such that the two internal reflections cause a total relative phase shift of 90° between the two polarizations of an incident wave. This device performs the same function as a birefringent <a href="/wiki/Quarter-wave_plate" class="mw-redirect" title="Quarter-wave plate">quarter-wave plate</a>, but is more achromatic (that is, the phase shift of the rhomb is less sensitive to <a href="/wiki/Wavelength" title="Wavelength">wavelength</a>). Either device may be used, for instance, to transform <a href="/wiki/Linear_polarization" title="Linear polarization">linear polarization</a> to <a href="/wiki/Circular_polarization" title="Circular polarization">circular polarization</a> (which Fresnel also discovered) and vice versa. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Fresnel_rhomb" title="Fresnel rhomb">Fresnel rhomb</a></div> <p>In Fig.&#8239;13,&#160; <span class="texhtml"><i>δ</i></span> is computed by a final subtraction; but there are other ways of expressing it. Fresnel himself, in 1823,<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> gave a formula for&#8202; <span class="texhtml">cos<span style="white-space: nowrap;">&#8201;</span><i>δ</i></span>.<span style="white-space: nowrap;">&#8201;</span> Born and Wolf (1970, p.&#8239;50) derive an expression for<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> <span class="texhtml">tan&#8202;(<i>δ</i>/2),</span> and find its maximum analytically. </p><p>For TIR of a beam with finite width, the variation in the phase shift with the angle of incidence gives rise to the <i><a href="/wiki/Goos%E2%80%93H%C3%A4nchen_effect" title="Goos–Hänchen effect">Goos–Hänchen effect</a></i>, which is a lateral shift of the reflected beam within the plane of incidence.<sup id="cite_ref-coldatoms_37-2" class="reference"><a href="#cite_note-coldatoms-37"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-berman-2012_58-0" class="reference"><a href="#cite_note-berman-2012-58"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> This effect applies to linear polarization in the <i>s</i> or <i>p</i> direction. The <i><a href="/wiki/Imbert%E2%80%93Fedorov_effect" title="Imbert–Fedorov effect">Imbert–Fedorov effect</a></i> is an analogous effect for circular or <a href="/wiki/Elliptical_polarization" title="Elliptical polarization">elliptical polarization</a>, and produces a shift perpendicular to the plane of incidence.<sup id="cite_ref-bliokh-aiello-2013_59-0" class="reference"><a href="#cite_note-bliokh-aiello-2013-59"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=8" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Prism_(optics)#Reflective·prisms" title="Prism (optics)">Prism (optics) §&#160;Reflective·prisms</a></div> <p><b><a href="/wiki/Optical_fiber" title="Optical fiber">Optical&#160;fibers</a></b> exploit total internal reflection to carry signals over long distances with little attenuation.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> They are used in <a href="/wiki/Telecommunication_cable" class="mw-redirect" title="Telecommunication cable">telecommunication cables</a>, and in image-forming fiberscopes such as <a href="/wiki/Colonoscopy" title="Colonoscopy">colonoscopes</a>.<sup id="cite_ref-rudd-1971_61-0" class="reference"><a href="#cite_note-rudd-1971-61"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the <b>catadioptric <a href="/wiki/Fresnel_lens" title="Fresnel lens">Fresnel lens</a></b>, invented by Augustin-Jean Fresnel for use in <a href="/wiki/Lighthouse" title="Lighthouse">lighthouses</a>, the outer prisms use TIR to deflect light from the lamp through a greater angle than would be possible with purely refractive prisms, but with less absorption of light (and less risk of tarnishing) than with conventional mirrors.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Porro_binocular.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Porro_binocular.jpg/220px-Porro_binocular.jpg" decoding="async" width="220" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Porro_binocular.jpg/330px-Porro_binocular.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Porro_binocular.jpg/440px-Porro_binocular.jpg 2x" data-file-width="699" data-file-height="713" /></a><figcaption><b>Fig.<span style="white-space: nowrap;">&#8201;</span>14</b>:<span style="font-size:120%">&#160;</span>Porro prisms (labeled 2 &amp; 3) in a pair of binoculars</figcaption></figure> <p>Other <b><a href="/wiki/Prism_(optics)" title="Prism (optics)">reflecting prisms</a></b> that use TIR include the following (with some overlap between the categories):<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><b><a href="/wiki/Erect_image" title="Erect image">Image-erecting</a> prisms</b> for <a href="/wiki/Binoculars" title="Binoculars">binoculars</a> and <a href="/wiki/Spotting_scope" title="Spotting scope">spotting&#160;scopes</a> include paired 45°-90°-45° <a href="/wiki/Porro_prism" title="Porro prism">Porro&#160;prisms</a> (Fig.&#8239;14), the <a href="/wiki/Porro%E2%80%93Abbe_prism" title="Porro–Abbe prism">Porro–Abbe prism</a>, the inline Koenig<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Abbe%E2%80%93Koenig_prism" title="Abbe–Koenig prism">Abbe–Koenig</a> prisms, and the compact inline <a href="/wiki/Schmidt%E2%80%93Pechan_prism" title="Schmidt–Pechan prism">Schmidt–Pechan prism</a>. (The last consists of two components, of which one is a kind of <a href="/wiki/Bauernfeind_prism" title="Bauernfeind prism">Bauernfeind prism</a>, which requires a reflective coating on one of its two reflecting faces, due to a sub-critical angle of incidence.) These prisms have the additional function of folding the optical path from the <a href="/wiki/Objective_lens" class="mw-redirect" title="Objective lens">objective&#160;lens</a> to the <a href="/wiki/Prime_focus" class="mw-redirect" title="Prime focus">prime&#160;focus</a>, reducing the overall length for a given primary <a href="/wiki/Focal_length" title="Focal length">focal&#160;length</a>.</li> <li>A <b>prismatic <a href="/wiki/Star_diagonal" title="Star diagonal">star diagonal</a></b> for an astronomical <a href="/wiki/Telescope" title="Telescope">telescope</a> may consist of a single Porro prism (configured for a single reflection, giving a mirror-reversed image) or an <a href="/wiki/Amici_roof_prism" title="Amici roof prism">Amici roof prism</a> (which gives a non-reversed image).</li> <li><b><a href="/wiki/Roof_prism" title="Roof prism">Roof prisms</a></b> use TIR at two faces meeting at a sharp 90° angle. This category includes the Koenig, Abbe–Koenig, Schmidt–Pechan, and Amici types (already mentioned), and the roof <a href="/wiki/Pentaprism" title="Pentaprism">pentaprism</a> used in <a href="/wiki/Single-lens_reflex_camera" title="Single-lens reflex camera">SLR&#160;cameras</a>; the last of these requires a reflective coating on one <span class="nowrap">non-TIR</span> face.</li> <li>A <b>prismatic <a href="/wiki/Corner_reflector" title="Corner reflector">corner reflector</a></b> uses three total internal reflections to reverse the direction of incoming light.</li> <li>The <b><a href="/wiki/Dove_prism" title="Dove prism">Dove prism</a></b> gives an inline view with mirror-reversal.</li></ul> <p><b>Polarizing prisms</b>: Although the Fresnel rhomb, which converts between linear and elliptical polarization, is not birefringent (doubly refractive), there are other kinds of prisms that combine birefringence with TIR in such a way that light of a particular polarization is totally reflected while light of the orthogonal polarization is at least partly transmitted. Examples include the <a href="/wiki/Nicol_prism" title="Nicol prism">Nicol prism</a>,<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Glan%E2%80%93Thompson_prism" title="Glan–Thompson prism">Glan–Thompson prism</a>, <a href="/wiki/Glan%E2%80%93Foucault_prism" title="Glan–Foucault prism">Glan–Foucault prism</a> (or "Foucault prism"),<sup id="cite_ref-nave-prisms_66-0" class="reference"><a href="#cite_note-nave-prisms-66"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Glan%E2%80%93Taylor_prism" title="Glan–Taylor prism">Glan–Taylor prism</a>.<sup id="cite_ref-archard-taylor-1948_68-0" class="reference"><a href="#cite_note-archard-taylor-1948-68"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p><p><b><a href="/wiki/Refractometer" title="Refractometer">Refractometers</a></b>, which measure refractive indices, often use the critical angle.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-wollaston-1802a_70-0" class="reference"><a href="#cite_note-wollaston-1802a-70"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p><b><a href="/wiki/Rain_sensor#Automotive_sensors" title="Rain sensor">Rain sensors</a></b> for automatic <a href="/wiki/Windscreen_wiper#History" title="Windscreen wiper">windscreen/windshield wipers</a> have been implemented using the principle that total internal reflection will guide an infrared beam from a source to a detector if the outer surface of the windshield is dry, but any water drops on the surface will divert some of the light.<sup id="cite_ref-hella_71-0" class="reference"><a href="#cite_note-hella-71"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Edge-lit <a href="/wiki/Light-emitting_diode" title="Light-emitting diode">LED</a> panels</b>, used (e.g.) for <a href="/wiki/Backlight" title="Backlight">backlighting</a> of <a href="/wiki/Liquid-crystal_display" title="Liquid-crystal display">LCD</a> computer monitors, exploit TIR to confine the LED light to the acrylic glass pane, except that some of the light is scattered by etchings on one side of the pane, giving an approximately uniform <a href="/wiki/Luminous_emittance" class="mw-redirect" title="Luminous emittance">luminous emittance</a>.<sup id="cite_ref-gourlay-2015_72-0" class="reference"><a href="#cite_note-gourlay-2015-72"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Total_Internal_Reflection_Fluorescence_Microscopy.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Total_Internal_Reflection_Fluorescence_Microscopy.svg/220px-Total_Internal_Reflection_Fluorescence_Microscopy.svg.png" decoding="async" width="220" height="213" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Total_Internal_Reflection_Fluorescence_Microscopy.svg/330px-Total_Internal_Reflection_Fluorescence_Microscopy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Total_Internal_Reflection_Fluorescence_Microscopy.svg/440px-Total_Internal_Reflection_Fluorescence_Microscopy.svg.png 2x" data-file-width="815" data-file-height="789" /></a><figcaption><b>Fig.<span style="white-space: nowrap;">&#8201;</span>15</b>:<span style="font-size:120%">&#160;</span>Operation of a "trans-geometry" TIR fluorescence microscope: (1)&#8239;objective, (2)&#8239;emission beam &#91;signal&#93;, (3)&#8239;immersion oil, (4)&#8239;cover slip, (5)&#8239;specimen, (6)&#8239;evanescent wave range, (7)&#8239;excitation beam, (8)&#8239;quartz prism.</figcaption></figure> <p><b>Total internal reflection microscopy</b> (TIRM) uses the evanescent wave to illuminate small objects close to the reflecting interface. The consequent scattering of the evanescent wave (a&#160;form of frustrated TIR), makes the objects appear bright when viewed from the "external" side.<sup id="cite_ref-ambrose-1956_27-1" class="reference"><a href="#cite_note-ambrose-1956-27"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> In the <i><a href="/wiki/Total_internal_reflection_fluorescence_microscope" title="Total internal reflection fluorescence microscope">total internal reflection fluorescence microscope</a></i> (TIRFM), instead of relying on simple scattering, we choose an evanescent wavelength short enough to cause <a href="/wiki/Fluorescence" title="Fluorescence">fluorescence</a> (Fig.&#8239;15).<sup id="cite_ref-axelrod-1981_73-0" class="reference"><a href="#cite_note-axelrod-1981-73"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> The high sensitivity of the illumination to the distance from the interface allows measurement of extremely small displacements and forces.<sup id="cite_ref-axelrod-2001_74-0" class="reference"><a href="#cite_note-axelrod-2001-74"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup> </p><p>A <b><a href="/wiki/Beam_splitter" title="Beam splitter">beam-splitter</a> cube</b> uses frustrated TIR to divide the power of the incoming beam between the transmitted and reflected beams.<sup id="cite_ref-harvard-ftir_24-2" class="reference"><a href="#cite_note-harvard-ftir-24"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> The width of the air gap (or low-refractive-index gap) between the two prisms can be made adjustable, giving higher transmission and lower reflection for a narrower gap, or higher reflection and lower transmission for a wider gap.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p><p><b><a href="/wiki/Optical_modulator" title="Optical modulator">Optical modulation</a></b> can be accomplished by means of frustrated TIR with a rapidly variable gap.<sup id="cite_ref-astheimer-et-al-1966_76-0" class="reference"><a href="#cite_note-astheimer-et-al-1966-76"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> As the transmission coefficient is highly sensitive to the gap width (the function being approximately exponential until the gap is almost closed), this technique can achieve a large <a href="/wiki/Dynamic_range" title="Dynamic range">dynamic range</a>. </p><p><b>Optical <a href="/wiki/Fingerprint" title="Fingerprint">fingerprinting</a></b> devices have used frustrated TIR to record images of persons' fingerprints without the use of ink (cf.&#160;Fig.&#8239;11).<sup id="cite_ref-harrick-1962_77-0" class="reference"><a href="#cite_note-harrick-1962-77"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> </p><p><b><a href="/wiki/Gait_analysis" title="Gait analysis">Gait analysis</a></b> can be performed by using frustrated TIR with a high-speed camera, to capture and analyze footprints.<sup id="cite_ref-noldus-catwalk_78-0" class="reference"><a href="#cite_note-noldus-catwalk-78"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> </p><p>A <b><a href="/wiki/Gonioscopy" title="Gonioscopy">gonioscope</a></b>, used in <a href="/wiki/Optometry" title="Optometry">optometry</a> and <a href="/wiki/Ophthalmology" title="Ophthalmology">ophthalmology</a> for the diagnosis of <a href="/wiki/Glaucoma" title="Glaucoma">glaucoma</a>, <i>suppresses</i> TIR in order to look into the angle between the <a href="/wiki/Iris_(anatomy)" title="Iris (anatomy)">iris</a> and the <a href="/wiki/Cornea" title="Cornea">cornea</a>. This view is usually blocked by TIR at the cornea-air interface. The gonioscope replaces the air with a higher-index medium, allowing transmission at oblique incidence, typically followed by reflection in a "mirror", which itself may be implemented using TIR.<sup id="cite_ref-bruce-et-al-2016_79-0" class="reference"><a href="#cite_note-bruce-et-al-2016-79"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-gat-gon_80-0" class="reference"><a href="#cite_note-gat-gon-80"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some <a href="/wiki/Multi-touch#Optical" title="Multi-touch"><b>multi-touch</b></a> interactive tables and <a href="/wiki/Interactive_whiteboard" title="Interactive whiteboard">whiteboards</a> utilise FTIR to detect fingers touching the screen. An infrared camera is placed behind the screen surface, which is edge-lit by infrared LEDs; when touching the surface FTIR causes some of the infrared light to escape the screen plane, and the camera sees this as bright areas. <a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a> software is then used to translate this into a series of coordinates and gestures. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=9" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Discovery">Discovery</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=10" title="Edit section: Discovery"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The surprisingly comprehensive and largely correct explanations of the <a href="/wiki/Rainbow" title="Rainbow">rainbow</a> by <a href="/wiki/Theodoric_of_Freiberg" title="Theodoric of Freiberg">Theodoric of Freiberg</a> (written between 1304 and 1310)<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Kam%C4%81l_al-D%C4%ABn_al-F%C4%81ris%C4%AB" title="Kamāl al-Dīn al-Fārisī">Kamāl al-Dīn al-Fārisī</a> (completed by 1309),<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> although sometimes mentioned in connection with total internal reflection (TIR), are of dubious relevance because the internal reflection of sunlight in a spherical raindrop is <i>not</i> total.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>Note 16<span class="cite-bracket">&#93;</span></a></sup> But, according to <a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Carl Benjamin Boyer</a>, Theodoric's treatise on the rainbow also classified optical phenomena under five causes, the last of which was "a total reflection at the boundary of two transparent media".<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> Theodoric's work was forgotten until it was rediscovered by <a href="/wiki/Giovanni_Battista_Venturi" title="Giovanni Battista Venturi">Giovanni Battista Venturi</a> in 1814.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Johannes_Kepler_by_Hans_von_Aachen.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Johannes_Kepler_by_Hans_von_Aachen.jpg/220px-Johannes_Kepler_by_Hans_von_Aachen.jpg" decoding="async" width="220" height="307" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/8/8b/Johannes_Kepler_by_Hans_von_Aachen.jpg 1.5x" data-file-width="324" data-file-height="452" /></a><figcaption><div style="text-align: center;">Johannes Kepler (1571–1630)</div></figcaption></figure> <p>Theodoric having fallen into obscurity, the discovery of TIR was generally attributed to <a href="/wiki/Johannes_Kepler" title="Johannes Kepler">Johannes Kepler</a>, who published his findings in his <i><a href="/wiki/Dioptrice" class="mw-redirect" title="Dioptrice">Dioptrice</a></i> in 1611. Although Kepler failed to find the true law of refraction, he showed by experiment that for air-to-glass incidence, the incident and refracted rays rotated in the same sense about the point of incidence, and that as the angle of incidence varied through ±90°, the angle of refraction (as we now call it) varied through ±42°. He was also aware that the incident and refracted rays were interchangeable. But these observations did not cover the case of a ray incident from glass to air at an angle beyond 42°, and Kepler promptly concluded that such a ray could only be <i>reflected</i>.<sup id="cite_ref-mach-2003_86-0" class="reference"><a href="#cite_note-mach-2003-86"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> rediscovered the law of refraction and published it in his <i><a href="/wiki/Dioptrique" title="Dioptrique">Dioptrique</a></i> of 1637. In the same work he mentioned the senses of rotation of the incident and refracted rays and the condition of TIR. But he neglected to discuss the limiting case, and consequently failed to give an expression for the critical angle, although he could easily have done so.<sup id="cite_ref-sabra-1981_87-0" class="reference"><a href="#cite_note-sabra-1981-87"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Huygens_and_Newton:_Rival_explanations">Huygens and Newton: Rival explanations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=11" title="Edit section: Huygens and Newton: Rival explanations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Christiaan_Huygens" title="Christiaan Huygens">Christiaan Huygens</a>, in his <i><a href="/wiki/Treatise_on_Light" title="Treatise on Light">Treatise on Light</a></i> (1690), paid much attention to the threshold at which the incident ray is "unable to penetrate into the other transparent substance".<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> Although he gave neither a name nor an algebraic expression for the critical angle, he gave numerical examples for glass-to-air and water-to-air incidence, noted the large change in the angle of refraction for a small change in the angle of incidence near the critical angle, and cited this as the cause of the rapid increase in brightness of the reflected ray as the refracted ray approaches the tangent to the interface.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> Huygens' insight is confirmed by modern theory: in Eqs.&#8239;(<b><a href="#math_13">13</a></b>) and (<b><a href="#math_15">15</a></b>) above, there is nothing to say that the reflection coefficients increase exceptionally steeply as <i>θ</i><sub>t</sub> approaches 90°, except that, according to Snell's law,<span style="white-space: nowrap;">&#8201;</span> <i>θ</i><sub>t</sub>&#160;itself is an increasingly steep function of <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub>. </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Christiaan-huygens4.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/220px-Christiaan-huygens4.jpg" decoding="async" width="220" height="229" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/330px-Christiaan-huygens4.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/03/Christiaan-huygens4.jpg/440px-Christiaan-huygens4.jpg 2x" data-file-width="1109" data-file-height="1154" /></a><figcaption><div style="text-align: center;">Christiaan Huygens (1629–1695)</div></figcaption></figure> <p>Huygens offered an explanation of TIR within the same framework as his explanations of the laws of rectilinear propagation, reflection, ordinary refraction, and even the extraordinary refraction of "<a href="/wiki/Iceland_spar" title="Iceland spar">Iceland crystal</a>" (calcite). That framework rested on two premises: first, every point crossed by a propagating wavefront becomes a source of secondary wavefronts ("Huygens' principle"); and second, given an initial wavefront, any subsequent position of the wavefront is the <a href="/wiki/Envelope_(mathematics)" title="Envelope (mathematics)">envelope</a> (common tangent surface) of all the secondary wavefronts emitted from the initial position. All cases of reflection or refraction by a surface are then explained simply by considering the secondary waves emitted from that surface. In the case of refraction from a medium of slower propagation to a medium of faster propagation, there is a certain obliquity of incidence beyond which it is impossible for the secondary wavefronts to form a common tangent in the second medium;<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> this is what we now call the critical angle. As the incident wavefront approaches this critical obliquity, the refracted wavefront becomes concentrated against the refracting surface, augmenting the secondary waves that produce the reflection back into the first medium.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> </p><p>Huygens' system even accommodated <i>partial</i> reflection at the interface between different media, albeit vaguely, by analogy with the laws of collisions between particles of different sizes.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> However, as long as the wave theory continued to assume <a href="/wiki/Longitudinal_wave" title="Longitudinal wave">longitudinal waves</a>, it had no chance of accommodating polarization, hence no chance of explaining the polarization-dependence of extraordinary refraction,<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> or of the partial reflection coefficient, or of the phase shift in TIR. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Portrait_of_Sir_Isaac_Newton,_1689.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Portrait_of_Sir_Isaac_Newton%2C_1689.jpg/220px-Portrait_of_Sir_Isaac_Newton%2C_1689.jpg" decoding="async" width="220" height="265" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Portrait_of_Sir_Isaac_Newton%2C_1689.jpg/330px-Portrait_of_Sir_Isaac_Newton%2C_1689.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Portrait_of_Sir_Isaac_Newton%2C_1689.jpg/440px-Portrait_of_Sir_Isaac_Newton%2C_1689.jpg 2x" data-file-width="2218" data-file-height="2671" /></a><figcaption><div style="text-align: center;">Isaac Newton (1642/3–1726/7)</div></figcaption></figure> <p><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a> rejected the wave explanation of rectilinear propagation, believing that if light consisted of waves, it would "bend and spread every way" into the shadows.<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> His corpuscular theory of light explained rectilinear propagation more simply, and it accounted for the ordinary laws of refraction and reflection, including TIR, on the hypothesis that the corpuscles of light were subject to a force acting perpendicular to the interface.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> In this model, for dense-to-rare incidence, the force was an attraction back towards the denser medium, and the critical angle was the angle of incidence at which the normal velocity of the approaching corpuscle was just enough to reach the far side of the force field; at more oblique incidence, the corpuscle would be turned back.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Newton gave what amounts to a formula for the critical angle, albeit in words: "as the Sines are which measure the Refraction, so is the Sine of Incidence at which the total Reflexion begins, to the Radius of the Circle".<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> </p><p>Newton went beyond Huygens in two ways. First, not surprisingly, Newton pointed out the relationship between TIR and <i><a href="/wiki/Dispersion_(optics)" title="Dispersion (optics)">dispersion</a></i>: when a beam of white light approaches a glass-to-air interface at increasing obliquity, the most strongly-refracted rays (violet) are the first to be "taken out" by "total Reflexion", followed by the less-refracted rays.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> Second, he observed that total reflection could be <i>frustrated</i> (as we now say) by laying together two prisms, one plane and the other slightly convex; and he explained this simply by noting that the corpuscles would be attracted not only to the first prism, but also to the second.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> </p><p>In two other ways, however, Newton's system was less coherent. First, his explanation of <i>partial</i> reflection depended not only on the supposed forces of attraction between corpuscles and media, but also on the more nebulous hypothesis of "Fits of easy Reflexion" and "Fits of easy Transmission".<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> Second, although his corpuscles could conceivably have "sides" or "poles", whose orientations could conceivably determine whether the corpuscles suffered ordinary or extraordinary refraction in "Island-Crystal",<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> his geometric description of the extraordinary refraction<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> was theoretically unsupported<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> and empirically inaccurate.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Laplace,_Malus,_and_attenuated_total_reflectance_(ATR)"><span id="Laplace.2C_Malus.2C_and_attenuated_total_reflectance_.28ATR.29"></span>Laplace, Malus, and attenuated total reflectance (ATR)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=12" title="Edit section: Laplace, Malus, and attenuated total reflectance (ATR)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/William_Hyde_Wollaston" title="William Hyde Wollaston">William Hyde Wollaston</a>, in the first of a pair of papers read to the <a href="/wiki/Royal_Society" title="Royal Society">Royal Society</a> of London in 1802,<sup id="cite_ref-wollaston-1802a_70-1" class="reference"><a href="#cite_note-wollaston-1802a-70"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> reported his invention of a <a href="/wiki/Refractometer" title="Refractometer">refractometer</a> based on the critical angle of incidence from an internal medium of known "refractive power" (refractive index) to an external medium whose index was to be measured.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> With this device, Wollaston measured the "refractive powers" of numerous materials, some of which were too opaque to permit direct measurement of an angle of refraction. Translations of his papers were published in France in 1803, and apparently came to the attention of <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Pierre-Simon Laplace</a>.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_(1775).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_%281775%29.jpg/220px-Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_%281775%29.jpg" decoding="async" width="220" height="281" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_%281775%29.jpg/330px-Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_%281775%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ac/Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_%281775%29.jpg/440px-Pierre-Simon_de_Laplace_by_Johann_Ernst_Heinsius_%281775%29.jpg 2x" data-file-width="661" data-file-height="844" /></a><figcaption><div style="text-align: center;">Pierre-Simon Laplace (1749–1827)</div></figcaption></figure> <p>According to Laplace's elaboration of Newton's theory of refraction, a corpuscle incident on a plane interface between two homogeneous isotropic media was subject to a force field that was symmetrical about the interface. If both media were transparent, total reflection would occur if the corpuscle were turned back before it exited the field in the second medium. But if the second medium were opaque, reflection would not be total unless the corpuscle were turned back before it left the <i>first</i> medium; this required a larger critical angle than the one given by Snell's law, and consequently impugned the validity of Wollaston's method for opaque media.<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> Laplace combined the two cases into a single formula for the relative refractive index in terms of the critical angle (minimum angle of incidence for TIR). The formula contained a parameter which took one value for a transparent external medium and another value for an opaque external medium. Laplace's theory further predicted a relationship between refractive index and density for a given substance.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Malus_by_Boilly_1810.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Malus_by_Boilly_1810.jpg/220px-Malus_by_Boilly_1810.jpg" decoding="async" width="220" height="309" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/87/Malus_by_Boilly_1810.jpg/330px-Malus_by_Boilly_1810.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/87/Malus_by_Boilly_1810.jpg/440px-Malus_by_Boilly_1810.jpg 2x" data-file-width="800" data-file-height="1125" /></a><figcaption><div style="text-align: center;">Étienne-Louis Malus (1775–1812)</div></figcaption></figure> <p>In 1807, Laplace's theory was tested experimentally by his protégé, <a href="/wiki/%C3%89tienne-Louis_Malus" title="Étienne-Louis Malus">Étienne-Louis Malus</a>. Taking Laplace's formula for the refractive index as given, and using it to measure the refractive index of bees' wax in the liquid (transparent) state and the solid (opaque) state at various temperatures (hence various densities), Malus verified Laplace's relationship between refractive index and density.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-frankel-1976_110-0" class="reference"><a href="#cite_note-frankel-1976-110"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> </p><p>But Laplace's theory implied that if the angle of incidence exceeded his modified critical angle, the reflection would be total even if the external medium was absorbent. Clearly this was wrong: in Eqs.&#8239;(<b><a href="#math_12">12</a></b>) above, there is no threshold value of the angle <i>θ</i><sub><span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">i</span></sub> beyond which <i>κ</i> becomes infinite; so the penetration depth of the evanescent wave (1/<i>κ</i>) is always non-zero, and the external medium, if it is at all lossy, will attenuate the reflection. As to why Malus apparently observed such an angle for opaque wax, we must infer that there was a certain angle beyond which the attenuation of the reflection was so small that <a href="/wiki/Attenuated_total_reflectance" title="Attenuated total reflectance">ATR</a> was visually indistinguishable from TIR.<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fresnel_and_the_phase_shift">Fresnel and the phase shift</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=13" title="Edit section: Fresnel and the phase shift"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Fresnel" class="mw-redirect" title="Fresnel">Fresnel</a> came to the study of total internal reflection through his research on polarization. In 1811, <a href="/wiki/Fran%C3%A7ois_Arago" title="François Arago">François Arago</a> discovered that polarized light was apparently "depolarized" in an orientation-dependent and color-dependent manner when passed through a slice of doubly-refractive crystal: the emerging light showed colors when viewed through an analyzer (second polarizer). <i>Chromatic polarization</i>, as this phenomenon came to be called, was more thoroughly investigated in 1812 by <a href="/wiki/Jean-Baptiste_Biot" title="Jean-Baptiste Biot">Jean-Baptiste Biot</a>. In 1813, Biot established that one case studied by Arago, namely <a href="/wiki/Quartz" title="Quartz">quartz</a> cut perpendicular to its <a href="/wiki/Optic_axis_of_a_crystal" title="Optic axis of a crystal">optic axis</a>, was actually a gradual rotation of the <a href="/wiki/Plane_of_polarization" title="Plane of polarization">plane of polarization</a> with distance.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Augustin_Fresnel.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Augustin_Fresnel.jpg/220px-Augustin_Fresnel.jpg" decoding="async" width="220" height="270" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Augustin_Fresnel.jpg/330px-Augustin_Fresnel.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/0/02/Augustin_Fresnel.jpg 2x" data-file-width="391" data-file-height="480" /></a><figcaption><div style="text-align: center;">Augustin-Jean Fresnel (1788–1827)</div></figcaption></figure> <p>In 1816, Fresnel offered his first attempt at a <i>wave-based</i> theory of chromatic polarization. Without (yet) explicitly invoking <a href="/wiki/Transverse_wave" title="Transverse wave">transverse waves</a>, his theory treated the light as consisting of two perpendicularly polarized components.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> In 1817 he noticed that plane-polarized light seemed to be partly depolarized by total internal reflection, if initially polarized at an acute angle to the plane of incidence.<sup id="cite_ref-brewster-priority_114-0" class="reference"><a href="#cite_note-brewster-priority-114"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> By including total internal reflection in a chromatic-polarization experiment, he found that the apparently depolarized light was a mixture of components polarized parallel and perpendicular to the plane of incidence, and that the total reflection introduced a phase difference between them.<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> Choosing an appropriate angle of incidence (not yet exactly specified) gave a phase difference of 1/8 of a cycle. Two such reflections from the "parallel faces" of "two coupled prisms" gave a phase difference of 1/4 of a cycle. In that case, if the light was initially polarized at 45° to the plane of incidence and reflection, it appeared to be <i>completely</i> depolarized after the two reflections. These findings were reported in a memoir submitted and read to the <a href="/wiki/French_Academy_of_Sciences" title="French Academy of Sciences">French Academy of Sciences</a> in November 1817.<sup id="cite_ref-fresnel-1817_116-0" class="reference"><a href="#cite_note-fresnel-1817-116"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1821, Fresnel derived formulae equivalent to his sine and tangent laws <span style="font-size:120%">(</span>Eqs.&#8239;(<b><a href="#math_19">19</a></b>) and (<b><a href="#math_20">20</a></b>), above<span style="font-size:120%">)</span><span style="white-space: nowrap;">&#8201;</span> by modeling light waves as <a href="/wiki/S-wave" class="mw-redirect" title="S-wave">transverse elastic waves</a> with vibrations perpendicular to what had previously been called the <a href="/wiki/Plane_of_polarization" title="Plane of polarization">plane of polarization</a>.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>Note 17<span class="cite-bracket">&#93;</span></a></sup> Using old experimental data, he promptly confirmed that the equations correctly predicted the direction of polarization of the reflected beam when the incident beam was polarized at 45° to the plane of incidence, for light incident from air onto glass or water.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> The experimental confirmation was reported in a "postscript" to the work in which Fresnel expounded his mature theory of chromatic polarization, introducing transverse waves.<sup id="cite_ref-fresnel-1821a_120-0" class="reference"><a href="#cite_note-fresnel-1821a-120"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> Details of the derivation were given later, in a memoir read to the academy in January 1823.<sup id="cite_ref-fresnel-1823a_121-0" class="reference"><a href="#cite_note-fresnel-1823a-121"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> The derivation combined conservation of energy with continuity of the <i>tangential</i> vibration at the interface, but failed to allow for any condition on the <i>normal</i> component of vibration.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> </p><p>Meanwhile, in a memoir submitted in December 1822,<sup id="cite_ref-fresnel-1822z_123-0" class="reference"><a href="#cite_note-fresnel-1822z-123"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> Fresnel coined the terms <i><a href="/wiki/Linear_polarization" title="Linear polarization">linear polarization</a></i>, <i><a href="/wiki/Circular_polarization" title="Circular polarization">circular polarization</a></i>, and <i><a href="/wiki/Elliptical_polarization" title="Elliptical polarization">elliptical polarization</a></i>.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> For <i>circular</i> polarization, the two perpendicular components were a quarter-cycle (±90°) out of phase. </p><p>The new terminology was useful in the memoir of January 1823,<sup id="cite_ref-fresnel-1823a_121-1" class="reference"><a href="#cite_note-fresnel-1823a-121"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> containing the detailed derivations of the sine and tangent laws: in that same memoir, Fresnel found that for angles of incidence greater than the critical angle, the resulting reflection coefficients were complex with unit magnitude. Noting that the magnitude represented the amplitude ratio as usual, he guessed that the argument represented the phase shift, and verified the hypothesis by experiment.<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> The verification involved </p> <ul><li>calculating the angle of incidence that would introduce a total phase difference of 90° between the <i>s</i> and <i>p</i> components, for various numbers of total internal reflections at that angle (generally there were two solutions),</li> <li>subjecting light to that number of total internal reflections at that angle of incidence, with an initial linear polarization at 45° to the plane of incidence, and</li> <li>checking that the final polarization was circular.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>This procedure was necessary because, with the technology of the time, one could not measure the <i>s</i>&#160;and&#160;<i>p</i> phase-shifts directly, and one could not measure an arbitrary degree of ellipticality of polarization, such as might be caused by the difference between the phase shifts. But one could verify that the polarization was <i>circular</i>, because the brightness of the light was then insensitive to the orientation of the analyzer. </p><p>For glass with a refractive index of 1.51, Fresnel calculated that a 45° phase difference between the two reflection coefficients (hence a 90° difference after two reflections) required an angle of incidence of 48°37' or 54°37'. He cut a rhomb to the latter angle and found that it performed as expected.<sup id="cite_ref-127" class="reference"><a href="#cite_note-127"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> Thus the specification of the Fresnel rhomb was completed. Similarly, Fresnel calculated and verified the angle of incidence that would give a 90° phase difference after <i>three</i> reflections at the same angle, and <i>four</i> reflections at the same angle. In each case there were two solutions, and in each case he reported that the larger angle of incidence gave an accurate circular polarization (for an initial linear polarization at 45° to the plane of reflection). For the case of three reflections he also tested the smaller angle, but found that it gave some coloration due to the proximity of the critical angle and its slight dependence on wavelength. (Compare Fig.&#8239;13 above, which shows that the phase difference <span class="texhtml"><i>δ</i></span> is more sensitive to the refractive index for smaller angles of incidence.) </p><p>For added confidence, Fresnel predicted and verified that four total internal reflections at 68°27' would give an accurate circular polarization if two of the reflections had water as the external medium while the other two had air, but not if the reflecting surfaces were all wet or all dry.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> </p><p>Fresnel's deduction of the phase shift in TIR is thought to have been the first occasion on which a physical meaning was attached to the argument of a complex number. Although this reasoning was applied without the benefit of knowing that light waves were electromagnetic, it passed the test of experiment, and survived remarkably intact after <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a> changed the presumed nature of the waves.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> Meanwhile, Fresnel's success inspired <a href="/wiki/James_MacCullagh" title="James MacCullagh">James MacCullagh</a> and <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a>, beginning in 1836, to analyze reflection from metals by using the Fresnel equations with a <a href="/wiki/Refractive_index#Complex_refractive_index" title="Refractive index">complex refractive index</a>.<sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> The imaginary part of the complex index represents absorption.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> </p><p>The term <i>critical angle</i>, used for convenience in the above narrative, is anachronistic: it apparently dates from 1873.<sup id="cite_ref-merriamW-ca_132-0" class="reference"><a href="#cite_note-merriamW-ca-132"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 20th century, <a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">quantum electrodynamics</a> reinterpreted the amplitude of an electromagnetic wave in terms of the probability of finding a photon.<sup id="cite_ref-feynman-1988_133-0" class="reference"><a href="#cite_note-feynman-1988-133"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> In this framework, partial transmission and frustrated TIR concern the probability of a photon crossing a boundary, and attenuated total reflectance concerns the probability of a photon being absorbed on the other side. </p><p>Research into the more subtle aspects of the phase shift in TIR, including the Goos–Hänchen and Imbert–Fedorov effects and their quantum interpretations, has continued into the 21st century.<sup id="cite_ref-bliokh-aiello-2013_59-1" class="reference"><a href="#cite_note-bliokh-aiello-2013-59"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Gallery">Gallery</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=14" title="Edit section: Gallery"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul class="gallery mw-gallery-packed" style="text-align: left"> <li class="gallerybox" style="width: 215.33333333333px"> <div class="thumb" style="width: 213.33333333333px;"><span typeof="mw:File"><a href="/wiki/File:Black_triggerfish.jpg" class="mw-file-description" title="An Indian triggerfish and its total reflection in the water&#39;s surface"><img alt="An Indian triggerfish and its total reflection in the water&#39;s surface" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Black_triggerfish.jpg/320px-Black_triggerfish.jpg" decoding="async" width="214" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Black_triggerfish.jpg/480px-Black_triggerfish.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Black_triggerfish.jpg/640px-Black_triggerfish.jpg 2x" data-file-width="1600" data-file-height="1200" /></a></span></div> <div class="gallerytext">An <a href="/wiki/Indian_triggerfish" title="Indian triggerfish">Indian triggerfish</a> and its total reflection in the water's surface</div> </li> <li class="gallerybox" style="width: 124.66666666667px"> <div class="thumb" style="width: 122.66666666667px;"><span typeof="mw:File"><a href="/wiki/File:ReflexionTotale.jpg" class="mw-file-description" title="Total reflection of a paintbrush by the water–air surface in a glass"><img alt="Total reflection of a paintbrush by the water–air surface in a glass" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/ReflexionTotale.jpg/184px-ReflexionTotale.jpg" decoding="async" width="123" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ae/ReflexionTotale.jpg/276px-ReflexionTotale.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ae/ReflexionTotale.jpg/368px-ReflexionTotale.jpg 2x" data-file-width="1468" data-file-height="1914" /></a></span></div> <div class="gallerytext">Total reflection of a paintbrush by the water–air surface in a glass</div> </li> <li class="gallerybox" style="width: 162px"> <div class="thumb" style="width: 160px;"><span typeof="mw:File"><a href="/wiki/File:Demostration_of_Total-Internal-Reflection(TIR)_in_a_wine_glass.jpg" class="mw-file-description" title="Total internal reflection of a green laser in the stem of a wine glass"><img alt="Total internal reflection of a green laser in the stem of a wine glass" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Demostration_of_Total-Internal-Reflection%28TIR%29_in_a_wine_glass.jpg/240px-Demostration_of_Total-Internal-Reflection%28TIR%29_in_a_wine_glass.jpg" decoding="async" width="160" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Demostration_of_Total-Internal-Reflection%28TIR%29_in_a_wine_glass.jpg/360px-Demostration_of_Total-Internal-Reflection%28TIR%29_in_a_wine_glass.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Demostration_of_Total-Internal-Reflection%28TIR%29_in_a_wine_glass.jpg/480px-Demostration_of_Total-Internal-Reflection%28TIR%29_in_a_wine_glass.jpg 2x" data-file-width="1852" data-file-height="1853" /></a></span></div> <div class="gallerytext">Total internal reflection of a green laser in the stem of a wine glass</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 15em;"> <ul><li><a href="/wiki/Attenuated_total_reflectance" title="Attenuated total reflectance">Attenuated total reflectance</a></li> <li><a href="/wiki/Evanescent_field" title="Evanescent field">Evanescent field</a></li> <li><a href="/wiki/Fiberscope" title="Fiberscope">Fiberscope</a></li> <li><a href="/wiki/Fresnel_equations" title="Fresnel equations">Fresnel equations</a></li> <li><a href="/wiki/Fresnel_lens" title="Fresnel lens">Fresnel lens</a></li> <li><a href="/wiki/Fresnel_rhomb" title="Fresnel rhomb">Fresnel rhomb</a></li> <li><a href="/wiki/Goos%E2%80%93H%C3%A4nchen_effect" title="Goos–Hänchen effect">Goos–Hänchen effect</a></li> <li><a href="/wiki/Imbert%E2%80%93Fedorov_effect" title="Imbert–Fedorov effect">Imbert–Fedorov effect</a></li> <li><a href="/wiki/Optical_fiber" title="Optical fiber">Optical fiber</a></li> <li><a href="/wiki/Polarization_(waves)" title="Polarization (waves)">Polarization (waves)</a></li> <li><a href="/wiki/Snell%27s_window" title="Snell&#39;s window">Snell's window</a></li> <li><a href="/wiki/Total_internal_reflection_fluorescence_microscope" title="Total internal reflection fluorescence microscope">TIR fluorescence microscope</a></li> <li><a href="/wiki/Total_internal_reflection_microscopy" title="Total internal reflection microscopy">TIR microscopy</a></li> <li><a href="/wiki/Total_external_reflection" title="Total external reflection">Total external reflection</a></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=16" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><a href="/wiki/Birefringence" title="Birefringence">Birefringent</a> media, such as <a href="/wiki/Calcite" title="Calcite">calcite</a>, are non-isotropic (anisotropic). When we say that the extraordinary refraction of a calcite crystal "violates Snell's law", we mean that Snell's law does not apply to the extraordinary <i>ray</i>, because the direction of this ray inside the crystal generally differs from that of the associated wave-normal (Huygens, 1690, tr.&#160;Thompson, p.&#8239;65, Art.&#8239;24), and because the wave-normal speed is itself dependent on direction. (Note that the cited passage contains a translation error: in the phrase "conjugate with respect to diameters which are not in the straight line AB", the word "not" is unsupported by <a rel="nofollow" class="external text" href="https://www.dbnl.org/tekst/huyg003oeuv19_01/huyg003oeuv19_01_0102.php">Huygens' original French</a>, and is geometrically incorrect.)</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">According to Eqs.&#8239;(<b><a href="#math_13">13</a></b>)<span style="white-space: nowrap;">&#8201;</span>and<span style="white-space: nowrap;">&#8201;</span>(<b><a href="#math_15">15</a></b>), reflection is total for incidence <i>at</i> the critical angle. On that basis, Fig.&#8239;5 ought to show a fully reflected ray, and no tangential ray, for incidence at <i>θ</i><sub>c</sub>. But, due to <a href="/wiki/Diffraction" title="Diffraction">diffraction</a>, an incident beam of finite width cannot have a single angle of incidence; there must be some divergence of the beam. Moreover, the graph of the reflection coefficient vs. the angle of incidence becomes vertical at <i>θ</i><sub>c</sub> (Jenkins &amp; White, 1976, p.&#8239;527), so that a small divergence of the beam causes a large loss of reflection. Similarly, near the critical angle, a small divergence in the angle of incidence causes a large divergence in the angle of refraction (cf.&#160;Huygens, 1690, tr.&#160;Thompson, p.&#8239;41); the tangential refracted ray should therefore be taken only as a limiting case.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">For non-isotropic media, Eq.&#8239;(<b><a href="#math_1">1</a></b>) still describes the law of refraction in terms of <i>wave-normal</i> directions and speeds, but the range of applicability of that law is determined by the constraints on the <i>ray</i> directions (cf.&#160;Buchwald, 1989, p.&#8239;29).</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">The quoted range varies because of different crystal <a href="/wiki/Polytype" class="mw-redirect" title="Polytype">polytypes</a>.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text">Power "per unit area" is appropriate for fields in three dimensions. In two dimensions, we might want the product of effort and flow to be power per unit <i>length</i>. In one dimension, or in a <a href="/wiki/Lumped_element_model" class="mw-redirect" title="Lumped element model">lumped-element model</a>, we might want it to be simply power.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">We assume that the equations describing the fields are <a href="/wiki/Linearity#Physics" title="Linearity">linear</a>.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">The above form (<b><a href="#math_5">5</a></b>) is typically used by physicists. <a href="/wiki/Electrical_engineering" title="Electrical engineering">Electrical engineers</a> typically prefer the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E_{k}} e^{j(\omega t-\mathbf {k\cdot r} )};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </msub> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E_{k}} e^{j(\omega t-\mathbf {k\cdot r} )};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6ba0d93f2cb3d55a2f0f2cd039bee1f5676f4f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.035ex; height:3.176ex;" alt="{\displaystyle \mathbf {E_{k}} e^{j(\omega t-\mathbf {k\cdot r} )};}"></span> that is, they not only use <span class="texhtml"><i>j</i></span> instead of <span class="texhtml"><i>i</i></span> for the imaginary unit, but also change the sign of the exponent, with the result that the whole expression is replaced by its <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a>, leaving the real part unchanged. The electrical engineers' form and the formulae derived therefrom may be converted to the physicists' convention by substituting <span class="texhtml"><i>−i</i></span> for <span class="texhtml"><i>j</i></span> (Stratton, 1941, pp.&#8239;vii–viii).</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">We assume that there are no <a href="/wiki/Doppler_effect" title="Doppler effect">Doppler shifts</a>, so that <i>ω</i> does not change at interfaces between media.</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">If we correctly convert this to the electrical engineering convention, we get <span class="texhtml"><i>−j</i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">⋯</span></span>&#8202;</span> on the right-hand side of (<b><a href="#math_9">9</a></b>), which is <i>not</i> the principal square root. So it is not valid to assume, <i>a&#160;priori</i>, that what mathematicians call the "<a href="/wiki/Square_root#Principal_square_root_of_a_complex_number" title="Square root">principal square root</a>" is the physically applicable one.</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">In the electrical engineering convention, the time-dependent factor is <span class="texhtml"><i>e<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><sup>jωt</sup></i>,</span> so that a phase advance corresponds to multiplication by a complex constant with a <i>positive</i> argument. This article, however, uses the physics convention, with the time-dependent factor <span class="texhtml"><i>e<sup>−iωt</sup></i></span>.</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">The <i>s</i> originally comes from the German <i>senkrecht</i>, meaning "perpendicular" (to the plane of incidence). The alternative mnemonics in the text are perhaps more suitable for English speakers.</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">In other words, for <i>both</i> polarizations, this article uses the convention that the positive directions of the incident, reflected, and transmitted fields are all the same for whichever field is normal to the plane of incidence; this is the <span class="texhtml"><b>E</b></span> field for the <i>s</i> polarization, and the <span class="texhtml"><b>H</b></span> field for the <i>p</i> polarization.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">This nomenclature follows Jenkins &amp; White, 1976, pp.&#8239;526–9. Some authors, however, use the <i>reciprocal</i> refractive index and therefore obtain different forms for our Eqs.&#8239;(<b><a href="#math_17">17</a></b>) and (<b><a href="#math_18">18</a></b>). Examples include Born &amp; Wolf &#91;1970, p.&#8239;49, eqs.&#8239;(60)&#93;<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> and Stratton &#91;1941, p.&#8239;499, eqs.&#8239;(43)&#93;. Furthermore, Born &amp; Wolf define <span class="texhtml"><i>δ</i><sub>⊥</sub></span> and <span class="texhtml"><i>δ</i><sub>∥</sub></span> as arguments rather than phase shifts, causing a change of sign.</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">It is merely fortuitous that the principal square root turns out to be the correct one in the present situation, and only because we use the time-dependent factor <span class="texhtml"><i>e<sup>−iωt</sup></i></span>.<span style="white-space: nowrap;">&#8201;</span> If we instead used the electrical engineers' time-dependent factor <span class="texhtml"><i>e<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span><sup>jωt</sup></i></span>,<span style="white-space: nowrap;">&#8201;</span> choosing the principal square root would yield the same argument for the reflection coefficient, but this would be interpreted as the <i>opposite</i> phase shift, which would be wrong. But if we choose the square root so that the transmitted field is evanescent, we get the right phase shift with either time-dependent factor.</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">The more familiar formula&#8202; <span class="texhtml">arctan<span style="white-space: nowrap;">&#8201;</span><i>n</i></span><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> is for rare-to-dense incidence. In both cases, <span class="texhtml"><i>n</i></span> is the refractive index of the denser medium relative to the rarer medium.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text">For an external ray incident on a spherical raindrop, the refracted ray is in the plane of the incident ray and the center of the drop, and the angle of refraction is less than the critical angle for water-air incidence; but this angle of refraction, by the spherical symmetry, is also the angle of incidence for the internal reflection, which is therefore less than total. Moreover, if that reflection were total, all subsequent internal reflections would have the same angle of incidence (due to the symmetry) and would also be total, so that the light would never escape to produce a visible bow.</span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text">Hence, where Fresnel says that after total internal reflection at the appropriate incidence, the wave polarized parallel to the plane of incidence is "behind" by 1/8 of a cycle (quoted by Buchwald, 1989, p.&#8239;381), he refers to the wave whose plane of polarization is parallel to the plane of incidence, i.e. the wave whose vibration is <i>perpendicular</i> to that plane, i.e. what we now call the <i>s</i> component.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=17" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-feynman-1963-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-feynman-1963_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-feynman-1963_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">R.P. Feynman, R.B. Leighton, and M.&#160;Sands, 1963–2013, <i>The Feynman Lectures on Physics</i>, California Institute of Technology, Volume&#160;<span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">II</span>,<span style="white-space: nowrap;">&#8201;</span> <a rel="nofollow" class="external text" href="https://feynmanlectures.caltech.edu/II_33.html#Ch33-S6">§&#8239;33-6</a>.</span> </li> <li id="cite_note-antich-et-al-1991-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-antich-et-al-1991_2-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAntichAndersonAshmanDowdey2009" class="citation journal cs1">Antich, Peter P.; Anderson, Jon A.; Ashman, Richard B.; Dowdey, James E.; Gonzales, Jerome; Murry, Robert C.; Zerwekh, Joseph E.; Pak, Charles Y. C. (2009). "Measurement of mechanical properties of bone material in vitro by ultrasound reflection: Methodology and comparison with ultrasound transmission". <i>Journal of Bone and Mineral Research</i>. <b>6</b> (4): 417–426. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjbmr.5650060414">10.1002/jbmr.5650060414</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1858525">1858525</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:6914223">6914223</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Bone+and+Mineral+Research&amp;rft.atitle=Measurement+of+mechanical+properties+of+bone+material+in+vitro+by+ultrasound+reflection%3A+Methodology+and+comparison+with+ultrasound+transmission&amp;rft.volume=6&amp;rft.issue=4&amp;rft.pages=417-426&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A6914223%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F1858525&amp;rft_id=info%3Adoi%2F10.1002%2Fjbmr.5650060414&amp;rft.aulast=Antich&amp;rft.aufirst=Peter+P.&amp;rft.au=Anderson%2C+Jon+A.&amp;rft.au=Ashman%2C+Richard+B.&amp;rft.au=Dowdey%2C+James+E.&amp;rft.au=Gonzales%2C+Jerome&amp;rft.au=Murry%2C+Robert+C.&amp;rft.au=Zerwekh%2C+Joseph+E.&amp;rft.au=Pak%2C+Charles+Y.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, p.&#8202;11.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, p.&#8202;527. (The refracted beam becomes fainter in terms of total power, but not necessarily in terms of visibility, because the beam also becomes narrower as it becomes more nearly tangential.)</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, p.&#8202;26.</span> </li> <li id="cite_note-young-1814-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-young-1814_6-0">^</a></b></span> <span class="reference-text">Cf.<span style="white-space: nowrap;">&#8201;</span> Thomas Young in the <i>Quarterly Review</i>, April 1814, reprinted in T.&#8239;Young (ed. G.&#8239;Peacock), <i>Miscellaneous Works of the late Thomas Young</i>, London: J.&#160;Murray, 1855, vol.<span style="white-space: nowrap;">&#8201;</span>1, at <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GyzPAAAAMAAJ&amp;pg=PA263">p.&#8239;263</a>.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Cf. Born &amp; Wolf, 1970, pp.&#8239;12–13.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Cf.<span style="white-space: nowrap;">&#8201;</span> Huygens, 1690, tr.&#160;Thompson, p.&#8202;38.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;13; Jenkins &amp; White, 1976, pp.&#8239;9–10. This definition uses vacuum as the "reference medium". In principle, any isotropic medium can be chosen as the reference. For some purposes it is convenient to choose air, in which the speed of light is about 0.03% lower than in vacuum (cf.&#160;Rutten and van Venrooij, 2002, pp.&#8239;10,&#8239;352). The present article, however, chooses vacuum.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Cf. Jenkins &amp; White, 1976, p.&#8202;25.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, pp.&#8239;10,&#8239;25.</span> </li> <li id="cite_note-lynch-2015-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-lynch-2015_15-0">^</a></b></span> <span class="reference-text">Cf.<span style="white-space: nowrap;">&#8201;</span> D.K. Lynch (1&#160;February 2015), <a rel="nofollow" class="external text" href="https://www.osapublishing.org/ao/fulltext.cfm?uri=ao-54-4-B8&amp;id=301426">"Snell's window in wavy water"</a>, <i>Applied Optics</i>, <b>54</b>&#160;(4): B8–B11, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FAO.54.0000B8">10.1364/AO.54.0000B8</a>.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">Huygens (1690, tr.&#160;Thompson, p.&#8202;41), for glass-to-air incidence, noted that if the obliqueness of the incident ray is only 1° short of critical, the refracted ray is more than 11° from the tangent. <i>N.B.:</i>&#160;Huygens' definition of the "angle of incidence" is the <a href="/wiki/Complementary_angle" class="mw-redirect" title="Complementary angle">complement</a> of the modern definition.</span> </li> <li id="cite_note-graham-tilt-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-graham-tilt_17-0">^</a></b></span> <span class="reference-text">J.R. Graham, <a rel="nofollow" class="external text" href="https://www.gemsociety.org/article/stonedesign-brightness-settings/">"Can you cut a gem design for tilt brightness?"</a>, International Gem Society, accessed 21&#160;March 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181214015732/https://www.gemsociety.org/article/stonedesign-brightness-settings/">archived</a> 14&#160;December 2018.</span> </li> <li id="cite_note-pjs-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-pjs_19-0">^</a></b></span> <span class="reference-text">'PJS' (author), <a rel="nofollow" class="external text" href="https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Sound-Pressure-Sound-Power-and-Sound-Intensity-What-s-the/ta-p/382834">"Sound Pressure, Sound Power, and Sound Intensity: What's the difference?"</a> <i>Siemens PLM Community</i>, accessed 10&#160;April 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190410061749/https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Sound-Pressure-Sound-Power-and-Sound-Intensity-What-s-the/ta-p/382834">archived</a> 10&#160;April 2019.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Stratton, 1941, pp.&#8239;131–7.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Stratton, 1941, p.&#8202;37.</span> </li> <li id="cite_note-harvard-ftir-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-harvard-ftir_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-harvard-ftir_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-harvard-ftir_24-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Cf.<span style="white-space: nowrap;">&#8201;</span> Harvard Natural Sciences Lecture Demonstrations, <a rel="nofollow" class="external text" href="https://sciencedemonstrations.fas.harvard.edu/presentations/frustrated-total-internal-reflection">"Frustrated Total Internal Reflection"</a>, accessed 9&#160;April 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180802161335/https://sciencedemonstrations.fas.harvard.edu/presentations/frustrated-total-internal-reflection">archived</a> 2&#160;August 2018.</span> </li> <li id="cite_note-ehrlich-1997-25"><span class="mw-cite-backlink">^ <a href="#cite_ref-ehrlich-1997_25-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ehrlich-1997_25-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">R. Ehrlich, 1997, <i>Why Toast Lands Jelly-side Down: Zen and the Art of Physics Demonstrations</i>, Princeton University Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-02891-0" title="Special:BookSources/978-0-691-02891-0">978-0-691-02891-0</a>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=uPw2b_9QXQwC&amp;pg=PA182">p.&#8202;182</a>, accessed 26&#160;March 2019.</span> </li> <li id="cite_note-bowley-2009-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-bowley-2009_26-0">^</a></b></span> <span class="reference-text">R. Bowley, 2009, <a rel="nofollow" class="external text" href="http://www.sixtysymbols.com/videos/reflection.htm">"Total Internal Reflection"</a> (4-minute video), <i>Sixty Symbols</i>, <a href="/wiki/Brady_Haran" title="Brady Haran">Brady Haran</a> for the <a href="/wiki/University_of_Nottingham" title="University of Nottingham">University of Nottingham</a>, from 1:25.</span> </li> <li id="cite_note-ambrose-1956-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-ambrose-1956_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ambrose-1956_27-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE.J._Ambrose1956" class="citation journal cs2">E.J. Ambrose (24 November 1956), <a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F1781194a0">"A surface contact microscope for the study of cell movements"</a>, <i>Nature</i>, <b>178</b> (4543): 1194, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1956Natur.178.1194A">1956Natur.178.1194A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F1781194a0">10.1038/1781194a0</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/13387666">13387666</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:4290898">4290898</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature&amp;rft.atitle=A+surface+contact+microscope+for+the+study+of+cell+movements&amp;rft.volume=178&amp;rft.issue=4543&amp;rft.pages=1194&amp;rft.date=1956-11-24&amp;rft_id=info%3Adoi%2F10.1038%2F1781194a0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A4290898%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F13387666&amp;rft_id=info%3Abibcode%2F1956Natur.178.1194A&amp;rft.au=E.J.+Ambrose&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252F1781194a0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span>.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_RosumVan_Den_Berg2021" class="citation journal cs1">Van Rosum, Aernout; Van Den Berg, Ed (May 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1742-6596%2F1929%2F1%2F012050">"Using frustrated internal reflection as an analog to quantum tunneling"</a>. <i>Journal of Physics: Conference Series</i>. <b>1929</b> (1): 012050. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JPhCS1929a2050V">2021JPhCS1929a2050V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1742-6596%2F1929%2F1%2F012050">10.1088/1742-6596/1929/1/012050</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:235591328">235591328</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Physics%3A+Conference+Series&amp;rft.atitle=Using+frustrated+internal+reflection+as+an+analog+to+quantum+tunneling&amp;rft.volume=1929&amp;rft.issue=1&amp;rft.pages=012050&amp;rft.date=2021-05&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A235591328%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F1742-6596%2F1929%2F1%2F012050&amp;rft_id=info%3Abibcode%2F2021JPhCS1929a2050V&amp;rft.aulast=Van+Rosum&amp;rft.aufirst=Aernout&amp;rft.au=Van+Den+Berg%2C+Ed&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F1742-6596%252F1929%252F1%252F012050&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span></span> </li> <li id="cite_note-thermo-fisher-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-thermo-fisher_29-0">^</a></b></span> <span class="reference-text">Thermo Fisher Scientific, <a rel="nofollow" class="external text" href="https://www.thermofisher.com/au/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/ftir-information/ftir-sample-handling-techniques/ftir-sample-handling-techniques-attenuated-total-reflection-atr.html">"FTIR Sample Techniques: Attenuated Total Reflection (ATR)"</a>, accessed 9&#160;April 2019.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, p.&#8202;228.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, pp.&#8239;16–17, eqs.&#8239;(20),&#8202;(21).</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;47, eq.&#8202;(54), where their <span class="texhtml mvar" style="font-style:italic;">n</span> is our <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{2}/n_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{2}/n_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0a80cf7a442503f06fc2610505e2b86122e0a28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.06ex; height:2.843ex;" alt="{\displaystyle n_{2}/n_{1}}"></span> (<i>not</i> our <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1}/n_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1}/n_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c75aa96fcc8221f4dfc74fca66cb5d3e10bb4116" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.06ex; height:2.843ex;" alt="{\displaystyle n_{1}/n_{2}}"></span>).</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Stratton, 1941, p.&#8239;499; Born &amp; Wolf, 1970, p.&#8239;48.</span> </li> <li id="cite_note-coldatoms-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-coldatoms_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-coldatoms_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-coldatoms_37-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Laboratory of Cold Atoms Near Surfaces (Jagiellonian University), <a rel="nofollow" class="external text" href="http://www.coldatoms.com/en/research/evanescent-wave/23-waciwoci-fali-zanikajcej.html">"Evanescent wave properties"</a>, accessed 11&#160;April 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180428004832/http://www.coldatoms.com/en/research/evanescent-wave/23-waciwoci-fali-zanikajcej.html">archived</a> 28&#160;April 2018. (<i>N.B.:</i> This page uses <span class="texhtml mvar" style="font-style:italic;">z</span> for the coordinate normal to the interface, and the superscripts ⊥ and ∥ for the <i>s</i> ("TE") and <i>p</i> polarizations, respectively. Pages on this site use the time-dependent factor <span class="texhtml"><i>e</i><sup>+<i>iωt</i></sup></span> —&#160;that is, the electrical engineers' time-dependent factor with the physicists' symbol for the imaginary unit.)</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Hecht, 2017, p.&#8239;136.</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;16.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">Whittaker, 1910, pp.&#8239;132,&#8239;135–6.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">One notable authority that uses the "different" convention (but without taking it very far) is <i>The Feynman Lectures on Physics</i>, at Volume&#160;<span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">I</span>, eq.&#8239;(33.8) (for <span class="texhtml mvar" style="font-style:italic;">B</span>), and Volume&#160;<span class="serif-fonts" style="font-family: &#39;Georgia Pro&#39;, Georgia, &#39;DejaVu Serif&#39;, Times, &#39;Times New Roman&#39;, FreeSerif, &#39;DejaVu Math TeX&#39;, &#39;URW Bookman L&#39;, serif;">II</span>, Figs.&#8239;33-6 and 33-7.</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;40, eqs.&#8239;(20),&#8202;(21), where the subscript ⊥ corresponds to <i>s</i>, and ∥ to <i>p</i>.</span> </li> <li id="cite_note-jw529-47"><span class="mw-cite-backlink">^ <a href="#cite_ref-jw529_47-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-jw529_47-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-jw529_47-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Cf. Jenkins &amp; White, 1976, p.&#8202;529.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">"The phase of the polarization in which the <i>magnetic</i> field is parallel to the interface is advanced with respect to that of the other polarization." —&#160;Fitzpatrick, 2013, p.&#8202;140; Fitzpatrick, 2013a; emphasis added.</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text">Fresnel, 1866, pp.&#8239;773,&#8239;789n.</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;40, eqs.&#8202;(21a); Hecht, 2017, p.&#8202;125, eq.&#8202;(4.42); Jenkins &amp; White, 1976, p.&#8202;524, eqs.&#8202;(25a).</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">Fresnel, 1866, pp.&#8239;757,&#8239;789n.</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;40, eqs.&#8202;(21a); Hecht, 2017, p.&#8202;125, eq.&#8202;(4.43); Jenkins &amp; White, 1976, p.&#8202;524, eqs.&#8202;(25a).</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">Whittaker, 1910, p.&#8202;134; Darrigol, 2012, p.<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>213.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Stratton, 1941, p.&#8202;500, eq.&#8202;(44). The corresponding expression in Born &amp; Wolf (1970, p.&#8239;50) is the other way around because the terms represent arguments rather than phase shifts.</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text">Buchwald, 1989, pp.&#8239;394,<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>453; Fresnel, 1866, pp.&#8239;759,<span style="white-space: nowrap;">&#8201;</span>786–7,<span style="white-space: nowrap;">&#8201;</span>790.</span> </li> <li id="cite_note-berman-2012-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-berman-2012_58-0">^</a></b></span> <span class="reference-text">P.R. Berman, 2012, <a rel="nofollow" class="external text" href="http://www.scholarpedia.org/article/Goos-H%C3%A4nchen_effect">"Goos-Hänchen effect"</a>, <i>Scholarpedia</i> <b>7</b>&#160;(3):&#160;11584,<span style="white-space: nowrap;">&#8201;</span> §&#8239;2.1, especially eqs.&#8239;(1)&#160;to&#160;(3). Note that Berman's <span class="texhtml"><i>n</i></span> is the reciprocal of the <span class="texhtml"><i>n</i></span> in the present article.</span> </li> <li id="cite_note-bliokh-aiello-2013-59"><span class="mw-cite-backlink">^ <a href="#cite_ref-bliokh-aiello-2013_59-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bliokh-aiello-2013_59-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBliokhAiello2013" class="citation journal cs1">Bliokh, K. Y.; Aiello, A. (2013). "Goos–Hänchen and Imbert–Fedorov beam shifts: An overview". <i>Journal of Optics</i>. <b>15</b> (1): 014001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1210.8236">1210.8236</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JOpt...15a4001B">2013JOpt...15a4001B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2040-8978%2F15%2F1%2F014001">10.1088/2040-8978/15/1/014001</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118380597">118380597</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Optics&amp;rft.atitle=Goos%E2%80%93H%C3%A4nchen+and+Imbert%E2%80%93Fedorov+beam+shifts%3A+An+overview&amp;rft.volume=15&amp;rft.issue=1&amp;rft.pages=014001&amp;rft.date=2013&amp;rft_id=info%3Aarxiv%2F1210.8236&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118380597%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F2040-8978%2F15%2F1%2F014001&amp;rft_id=info%3Abibcode%2F2013JOpt...15a4001B&amp;rft.aulast=Bliokh&amp;rft.aufirst=K.+Y.&amp;rft.au=Aiello%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, pp.&#8239;40–42.</span> </li> <li id="cite_note-rudd-1971-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-rudd-1971_61-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRudd1971" class="citation journal cs1">Rudd, W. W. (1971). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2370306">"Fiberoptic Colonoscopy: A Dramatic Advance in Colon Surgery"</a>. <i>Canadian Family Physician</i>. <b>17</b> (12): 42–45. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2370306">2370306</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20468707">20468707</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Canadian+Family+Physician&amp;rft.atitle=Fiberoptic+Colonoscopy%3A+A+Dramatic+Advance+in+Colon+Surgery&amp;rft.volume=17&amp;rft.issue=12&amp;rft.pages=42-45&amp;rft.date=1971&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2370306%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F20468707&amp;rft.aulast=Rudd&amp;rft.aufirst=W.+W.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2370306&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Levitt, 2013, pp.&#8239;79–80.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, pp.&#8239;26–7 (Porro, Dove, 90°&#8239;Amici, corner reflector, Lummer-Brodhun);<span style="white-space: nowrap;">&#8201;</span> Born &amp; Wolf, 1970, pp.&#8239;240–41 (Porro, Koenig), 243–4 (Dove).</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, p.&#8202;241.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text">Born &amp; Wolf, 1970, pp.&#8239;690–91.</span> </li> <li id="cite_note-nave-prisms-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-nave-prisms_66-0">^</a></b></span> <span class="reference-text">R. Nave, <a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Polpri.html">"Prisms for Polarization"</a> (Nicol, Glan–Foucault), Georgia State University, accessed 27&#160;March 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190325131327/http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Polpri.html">archived</a> 25&#160;March 2019.</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text">Jenkins &amp; White, 1976, pp.&#8239;510–11 (Nicol, Glan–Thompson, "Foucault").</span> </li> <li id="cite_note-archard-taylor-1948-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-archard-taylor-1948_68-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.F._ArchardA.M._Taylor1948" class="citation journal cs2">J.F. Archard; A.M. Taylor (December 1948), "Improved Glan-Foucault prism", <i>Journal of Scientific Instruments</i>, <b>25</b> (12): 407–9, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1948JScI...25..407A">1948JScI...25..407A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0950-7671%2F25%2F12%2F304">10.1088/0950-7671/25/12/304</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Scientific+Instruments&amp;rft.atitle=Improved+Glan-Foucault+prism&amp;rft.volume=25&amp;rft.issue=12&amp;rft.pages=407-9&amp;rft.date=1948-12&amp;rft_id=info%3Adoi%2F10.1088%2F0950-7671%2F25%2F12%2F304&amp;rft_id=info%3Abibcode%2F1948JScI...25..407A&amp;rft.au=J.F.+Archard&amp;rft.au=A.M.+Taylor&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span>.</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">Buchwald, 1989, pp.&#8239;19–21; Jenkins &amp; White, 1976, pp.&#8239;27–8.</span> </li> <li id="cite_note-wollaston-1802a-70"><span class="mw-cite-backlink">^ <a href="#cite_ref-wollaston-1802a_70-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-wollaston-1802a_70-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1">"XII. A method of examining refractive and dispersive powers, by prismatic reflection". <i>Philosophical Transactions of the Royal Society of London</i>. <b>92</b>: 365–380. 1802. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frstl.1802.0014">10.1098/rstl.1802.0014</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:110328209">110328209</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Philosophical+Transactions+of+the+Royal+Society+of+London&amp;rft.atitle=XII.+A+method+of+examining+refractive+and+dispersive+powers%2C+by+prismatic+reflection&amp;rft.volume=92&amp;rft.pages=365-380&amp;rft.date=1802&amp;rft_id=info%3Adoi%2F10.1098%2Frstl.1802.0014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A110328209%23id-name%3DS2CID&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span></span> </li> <li id="cite_note-hella-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-hella_71-0">^</a></b></span> <span class="reference-text">HELLA GmbH &amp; Co.<span style="white-space: nowrap;">&#8201;</span>KGaA, <a rel="nofollow" class="external text" href="https://www.hella.com/techworld/au/Technical/Car-electronics-and-electrics/Check-change-rain-sensor-42078/">"Rain sensor &amp; headlight sensor testing – Repair instructions &amp; fault diagnosis"</a>, accessed 9&#160;April 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190408124216/https://www.hella.com/techworld/au/Technical/Car-electronics-and-electrics/Check-change-rain-sensor-42078/">archived</a> 8&#160;April 2019.</span> </li> <li id="cite_note-gourlay-2015-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-gourlay-2015_72-0">^</a></b></span> <span class="reference-text">J. Gourlay, <a rel="nofollow" class="external text" href="https://www.led-professional.com/resources-1/articles/making-light-work-2013-light-sources-for-modern-lighting-requirements">"Making Light Work – Light Sources for Modern Lighting Requirements"</a>, <i>LED&#160;Professional</i>, accessed 29&#160;March 2019; <a rel="nofollow" class="external text" href="https://www.led-professional.com/resources-1/articles/making-light-work-2013-light-sources-for-modern-lighting-requirements">archived</a> 12&#160;April 2016.</span> </li> <li id="cite_note-axelrod-1981-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-axelrod-1981_73-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._Axelrod1981" class="citation journal cs2">D. Axelrod (April 1981), <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111781">"Cell-substrate contacts illuminated by total internal reflection fluorescence"</a>, <i>Journal of Cell Biology</i>, <b>89</b> (1): 141–5, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1083%2Fjcb.89.1.141">10.1083/jcb.89.1.141</a>, <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2111781">2111781</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7014571">7014571</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Cell+Biology&amp;rft.atitle=Cell-substrate+contacts+illuminated+by+total+internal+reflection+fluorescence&amp;rft.volume=89&amp;rft.issue=1&amp;rft.pages=141-5&amp;rft.date=1981-04&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2111781%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F7014571&amp;rft_id=info%3Adoi%2F10.1083%2Fjcb.89.1.141&amp;rft.au=D.+Axelrod&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2111781&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span>.</span> </li> <li id="cite_note-axelrod-2001-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-axelrod-2001_74-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._Axelrod2001" class="citation journal cs2">D. Axelrod (November 2001), <a rel="nofollow" class="external text" href="https://deepblue.lib.umich.edu/bitstream/2027.42/72779/1/j.1600-0854.2001.21104.x.pdf">"Total Internal Reflection Fluorescence Microscopy in Cell Biology"</a> <span class="cs1-format">(PDF)</span>, <i>Traffic</i>, <b>2</b> (11): 764–74, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1034%2Fj.1600-0854.2001.21104.x">10.1034/j.1600-0854.2001.21104.x</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2027.42%2F72779">2027.42/72779</a></span>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11733042">11733042</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15202097">15202097</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Traffic&amp;rft.atitle=Total+Internal+Reflection+Fluorescence+Microscopy+in+Cell+Biology&amp;rft.volume=2&amp;rft.issue=11&amp;rft.pages=764-74&amp;rft.date=2001-11&amp;rft_id=info%3Ahdl%2F2027.42%2F72779&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15202097%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F11733042&amp;rft_id=info%3Adoi%2F10.1034%2Fj.1600-0854.2001.21104.x&amp;rft.au=D.+Axelrod&amp;rft_id=https%3A%2F%2Fdeepblue.lib.umich.edu%2Fbitstream%2F2027.42%2F72779%2F1%2Fj.1600-0854.2001.21104.x.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span>.</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">Hecht, 2017, p.&#8239;138.</span> </li> <li id="cite_note-astheimer-et-al-1966-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-astheimer-et-al-1966_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR.W._AstheimerG._FalbelS._Minkowitz1966" class="citation journal cs2">R.W. Astheimer; G. Falbel; S. Minkowitz (January 1966), "Infrared modulation by means of frustrated total internal reflection", <i>Applied Optics</i>, <b>5</b> (1): 87–91, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1966ApOpt...5...87A">1966ApOpt...5...87A</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FAO.5.000087">10.1364/AO.5.000087</a>, <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20048791">20048791</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Optics&amp;rft.atitle=Infrared+modulation+by+means+of+frustrated+total+internal+reflection&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=87-91&amp;rft.date=1966-01&amp;rft_id=info%3Apmid%2F20048791&amp;rft_id=info%3Adoi%2F10.1364%2FAO.5.000087&amp;rft_id=info%3Abibcode%2F1966ApOpt...5...87A&amp;rft.au=R.W.+Astheimer&amp;rft.au=G.+Falbel&amp;rft.au=S.+Minkowitz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ATotal+internal+reflection" class="Z3988"></span>.</span> </li> <li id="cite_note-harrick-1962-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-harrick-1962_77-0">^</a></b></span> <span class="reference-text">N.J. Harrick (1962-3), <a rel="nofollow" class="external text" href="http://www.extra.research.philips.com/hera/people/aarts/_Philips%20Bound%20Archive/PTechReview/PTechReview-24-1962_63-271.pdf">"Fingerprinting via total internal reflection"</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged August 2023">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup>, <i>Philips Technical Review</i>, <b>24</b>&#160;(9): 271–4; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240114200413/https://pearl-hifi.com/06_Lit_Archive/02_PEARL_Arch/Vol_16/Sec_53/Philips_Tech_Review/PTechReview-24-1962_63-271.pdf">archived</a> January 2024</span> </li> <li id="cite_note-noldus-catwalk-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-noldus-catwalk_78-0">^</a></b></span> <span class="reference-text">Noldus Information Technology, <a rel="nofollow" class="external text" href="https://www.noldus.com/animal-behavior-research/products/catwalk">"CatWalk™&#160;XT"</a>, accessed 29&#160;March 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190325131350/https://www.noldus.com/animal-behavior-research/products/catwalk">archived</a> 25&#160;March 2019.</span> </li> <li id="cite_note-bruce-et-al-2016-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-bruce-et-al-2016_79-0">^</a></b></span> <span class="reference-text">E.&#8239;Bruce, R.&#8239;Bendure, S.&#8239;Krein, and N.&#8239;Lighthizer, <a rel="nofollow" class="external text" href="https://www.reviewofoptometry.com/article/zoom-in-on-gonioscopy">"Zoom in on Gonioscopy"</a>, <i>Review of Optometry</i>, 21&#160;September 2016.</span> </li> <li id="cite_note-gat-gon-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-gat-gon_80-0">^</a></b></span> <span class="reference-text">Glaucoma Associates of Texas, <a rel="nofollow" class="external text" href="http://glaucomaassociates.com/glaucoma-tests-and-diagnosis/gonioscopy/">"Gonioscopy"</a>, accessed 29&#160;March 2019; <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180822021649/http://glaucomaassociates.com/glaucoma-tests-and-diagnosis/gonioscopy/">archived</a> 22&#160;August 2018.</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text">Boyer, 1959, p.&#8239;110.</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text">Kamāl al-Dīn al-Fārisī, <a href="/wiki/File:Autograph_by_Kam%C4%81l_al-D%C4%ABn_al-F%C4%81ris%C4%AB_3.jpg" title="File:Autograph by Kamāl al-Dīn al-Fārisī 3.jpg"><i>Tanqih al-Manazir</i></a> (autograph manuscript, 708&#160;<a href="/wiki/Hijri_year" title="Hijri year">AH</a> / 1309&#160;<a href="/wiki/Common_Era" title="Common Era">CE</a>), Adilnor Collection.</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text">Boyer, 1959, pp.&#8239;113,&#8202;114,&#8202;335.&#160; Boyer cites J.&#8239;Würschmidt's edition of Theodoric's <i>De iride et radialibus impressionibus</i>, in <i>Beiträge zur Geschichte der Philosophie des Mittelalters</i>, vol.&#8239;12, nos.&#8239;5–6 (1914), at p.&#8239;47.</span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">Boyer, 1959, pp.&#8239;307,&#8202;335.</span> </li> <li id="cite_note-mach-2003-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-mach-2003_86-0">^</a></b></span> <span class="reference-text">E. Mach (tr.<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span> J.S.<span style="white-space: nowrap;">&#8201;</span>Anderson &amp; A.F.A.<span style="white-space: nowrap;">&#8201;</span>Young), <i>The Principles of Physical Optics: An Historical and Philosophical Treatment</i> (London: Methuen &amp; Co, 1926), reprinted Mineola, NY: Dover, 2003, pp.&#8239;30–32.</span> </li> <li id="cite_note-sabra-1981-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-sabra-1981_87-0">^</a></b></span> <span class="reference-text">A.I. Sabra, <i>Theories of Light: From Descartes to Newton</i> (London: Oldbourne Book Co., 1967), reprinted Cambridge University Press, 1981, pp.&#8239;111–12.</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text">Huygens, 1690, tr.&#160;Thompson, p.&#8202;39.</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text">Huygens, 1690, tr.&#160;Thompson, pp.&#8239;40–41. Notice that Huygens' definition of the "angle of incidence" is the <a href="/wiki/Complementary_angle" class="mw-redirect" title="Complementary angle">complement</a> of the modern definition.</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text">Huygens, 1690, tr.&#160;Thompson, pp.&#8239;39–40.</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text">Huygens, 1690, tr.&#160;Thompson, pp.&#8239;40–41.</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text">Huygens, 1690, tr.&#160;Thompson, pp.&#8239;16,&#8202;42.</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text">Huygens, 1690, tr.&#160;Thompson, pp.&#8239;92–4.</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text">Newton, 1730, p.&#8202;362.</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text">Darrigol, 2012, pp.&#8239;93–4,&#8239;103.</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text">Newton, 1730, pp.&#8239;370–71.</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text">Newton, 1730, p.&#8202;246. Notice that a "sine" meant the length of a side for a specified "radius" (hypotenuse), whereas nowadays we take the radius as unity or express the sine as a ratio.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">Newton, 1730, pp.&#8239;56–62,&#8239;264.</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text">Newton, 1730, pp.&#8239;371–2.</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text">Newton, 1730, p.&#8202;281.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text">Newton, 1730, p.&#8202;373.</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text">Newton, 1730, p.&#8202;356.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text">Buchwald, 1980, pp.&#8239;327,&#8239;331–2.</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text">Buchwald, 1980, pp.&#8239;335–6,&#8239;364; Buchwald, 1989, pp.&#8239;9–10,&#8239;13.</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text">Buchwald, 1989, pp.&#8239;19–21.</span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text">Buchwald, 1989, p.&#8202;28.</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text">Darrigol, 2012, pp.&#8239;187–8.</span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text">Buchwald, 1989, p.&#8202;30.</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text">Buchwald, 1980, pp.&#8239;29–31.</span> </li> <li id="cite_note-frankel-1976-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-frankel-1976_110-0">^</a></b></span> <span class="reference-text">E. Frankel (May&#160;1976), "Corpuscular optics and the wave theory of light: The science and politics of a revolution in physics", <i>Social Studies of Science</i>, <b>6</b>&#160;(2): 141–84, at p.&#8239;145.</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text">Cf. Buchwald, 1989, p.&#8202;30 (quoting Malus)</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text">Darrigol, 2012, pp.&#8239;193–6,<span style="white-space: nowrap;">&#8201;</span>290.</span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text">Darrigol, 2012, p.&#8202;206.</span> </li> <li id="cite_note-brewster-priority-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-brewster-priority_114-0">^</a></b></span> <span class="reference-text">This effect had been previously discovered by <a href="/wiki/David_Brewster" title="David Brewster">Brewster</a>, but not yet adequately reported. See: <a rel="nofollow" class="external text" href="https://books.google.com/books?id=KBE_AAAAYAAJ&amp;pg=PA213">"On a new species of moveable polarization"</a>, <i>&#91;Quarterly&#93; Journal of Science and the Arts</i>, vol.&#8239;2, no.&#8202;3, 1817, p.&#8202;213;&#160; <a href="/wiki/Thomas_Young_(scientist)" title="Thomas Young (scientist)">T.&#160;Young</a>, "Chromatics", <i>Supplement to the Fourth, Fifth, and Sixth Editions of the Encyclopædia Britannica</i>, vol.&#8239;3 (first half, issued February 1818), pp.&#8239;141–63, at <a rel="nofollow" class="external text" href="https://archive.org/stream/gri_33125011196801#page/n258/mode/1up">p.&#8202;157</a>;&#160; Lloyd, 1834, p.&#8202;368.</span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text">Darrigol, 2012, p.&#8202;207.</span> </li> <li id="cite_note-fresnel-1817-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-fresnel-1817_116-0">^</a></b></span> <span class="reference-text">A. Fresnel, "Mémoire sur les modifications que la réflexion imprime à la lumière polarisée" ("Memoir on the modifications that reflection impresses on polarized light"), signed &amp; submitted 10&#160;November 1817, read 24&#160;November 1817; printed in Fresnel, 1866, pp.&#8239;441–85, including pp.&#8239;452 (rediscovery of depolarization by total internal reflection), 455 (two reflections, "coupled prisms", "parallelepiped in glass"), 467–8 (phase difference per reflection); see also p.&#8202;487, note&#160;1, for the date of reading.</span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text">Darrigol, 2012, p.&#8202;212.</span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text">Buchwald, 1989, pp.&#8239;390–91; Fresnel, 1866, pp.&#8239;646–8.</span> </li> <li id="cite_note-fresnel-1821a-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-fresnel-1821a_120-0">^</a></b></span> <span class="reference-text">A. Fresnel, "Note sur le calcul des teintes que la polarisation développe dans les lames cristallisées" et&#160;seq., <i>Annales de Chimie et de Physique</i>, Ser.&#8239;2, vol.&#8239;17, pp.&#8239;102–11 (May 1821), 167–96 (June 1821), 312–15 ("Postscript", July 1821); reprinted in Fresnel, 1866, pp.&#8239;609–48; translated as "On the calculation of the tints that polarization develops in crystalline plates, &amp;&#160;postscript", <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Zenodo" title="Zenodo">Zenodo</a>:&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://zenodo.org/record/4058004">4058004</a></span>, 2021.</span> </li> <li id="cite_note-fresnel-1823a-121"><span class="mw-cite-backlink">^ <a href="#cite_ref-fresnel-1823a_121-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-fresnel-1823a_121-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">A. Fresnel, "Mémoire sur la loi des modifications que la réflexion imprime à la lumière polarisée" ("Memoir on the law of the modifications that reflection impresses on polarized light"), read 7&#160;January 1823; reprinted in Fresnel, 1866, pp.&#8239;767–99 (full text, published 1831), pp.&#8239;753–62 (extract, published 1823). See especially pp.&#8239;773 (sine law), 757 (tangent law), 760–61 and 792–6 (angles of total internal reflection for given phase differences).</span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text">Buchwald, 1989, pp.&#8239;391–3; Darrigol, 2012, pp.&#8239;212–13; Whittaker, 1910, pp.&#8239;133–5.</span> </li> <li id="cite_note-fresnel-1822z-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-fresnel-1822z_123-0">^</a></b></span> <span class="reference-text">A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9&#160;December 1822; printed in Fresnel, 1866, pp.&#8239;731–51 (full text), pp.&#8239;719–29 (<i>extrait</i>, first published in <i>Bulletin de la Société philomathique</i> for 1822, pp.&#8239;191–8); full text translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Zenodo" title="Zenodo">Zenodo</a>:&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://zenodo.org/record/4745976">4745976</a></span>, 2021.</span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text">Buchwald, 1989, pp.&#8239;230–31; Fresnel, 1866, p.&#8202;744.</span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-125">^</a></b></span> <span class="reference-text">Lloyd, 1834, pp.&#8239;369–70; Buchwald, 1989, pp.&#8239;393–4,<span style="white-space: nowrap;">&#8201;</span>453; Fresnel, 1866, pp.&#8239;781–96.</span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text">Fresnel, 1866, pp.<span style="white-space: nowrap;">&#8201;</span>760–61,<span style="white-space: nowrap;">&#8201;</span>792–6; Whewell, 1857, p.&#8202;359.</span> </li> <li id="cite_note-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-127">^</a></b></span> <span class="reference-text">Fresnel, 1866, pp.&#8239;760–61, 792–3.</span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text">Fresnel, 1866, pp.&#8239;761,<span style="white-space: nowrap;">&#8201;</span>793–6; Whewell, 1857, p.&#8202;359.</span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text">Bochner, 1963, pp.&#8239;198–200.</span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text">Whittaker, 1910, pp.<span style="white-space: nowrap;">&#8201;</span>177–9.</span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text">Bochner, 1963, p.&#8239;200; Born &amp; Wolf, 1970, p.&#8239;613.</span> </li> <li id="cite_note-merriamW-ca-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-merriamW-ca_132-0">^</a></b></span> <span class="reference-text">Merriam-Webster, Inc., <a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/critical%20angle">"critical angle"</a>, accessed 21&#160;April 2019. (No primary source is given.)</span> </li> <li id="cite_note-feynman-1988-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-feynman-1988_133-0">^</a></b></span> <span class="reference-text">R.P. Feynman, 1985 (seventh printing, 1988), <i>QED: The Strange Theory of Light and Matter</i>, Princeton University Press, esp.&#160;pp.&#8239;33,&#8239;109–10.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=18" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>S. Bochner (June&#160;1963), "The significance of some basic mathematical conceptions for physics", <i>Isis</i>, <b>54</b>&#160;(2): 179–205; <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/228537">228537</a>.</li> <li>M. Born and E. Wolf, 1970, <i><a href="/wiki/Principles_of_Optics" title="Principles of Optics">Principles of Optics</a></i>, 4th&#160;Ed., Oxford: Pergamon Press.</li> <li>C.B. Boyer, 1959, <i>The Rainbow: From Myth to Mathematics</i>, New York: Thomas Yoseloff.</li> <li>J.Z. Buchwald (December&#160;1980), "Experimental investigations of double refraction from Huygens to Malus", <i>Archive for History of Exact Sciences</i>, <b>21</b>&#160;(4): 311–373.</li> <li>J.Z. Buchwald, 1989, <i>The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century</i>, University of Chicago Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-226-07886-8" title="Special:BookSources/0-226-07886-8">0-226-07886-8</a>.</li> <li>O. Darrigol, 2012, <i>A History of Optics: From Greek Antiquity to the Nineteenth Century</i>, Oxford, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-964437-7" title="Special:BookSources/978-0-19-964437-7">978-0-19-964437-7</a>.</li> <li>R. Fitzpatrick, 2013, <i>Oscillations and Waves: An Introduction</i>, Boca Raton, FL: CRC&#160;Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4665-6608-8" title="Special:BookSources/978-1-4665-6608-8">978-1-4665-6608-8</a>.</li> <li>R. Fitzpatrick, 2013a, <a rel="nofollow" class="external text" href="http://farside.ph.utexas.edu/teaching/315/Waves/node53.html">"Total Internal Reflection"</a>, University of Texas at Austin, accessed 14&#160;March 2018.</li> <li>A. Fresnel, 1866&#8202; (ed.<span style="white-space: nowrap;">&#8201;</span> H.&#160;de Senarmont, E.&#160;Verdet, and L.&#160;Fresnel), <i>Oeuvres complètes d'Augustin Fresnel</i>, Paris: Imprimerie Impériale (3&#160;vols., 1866–70), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1l0_AAAAcAAJ">vol.<span style="white-space: nowrap;">&#8201;</span>1&#160;(1866)</a>.</li> <li>E. Hecht, 2017, <i>Optics</i>, 5th Ed., Pearson Education, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-292-09693-3" title="Special:BookSources/978-1-292-09693-3">978-1-292-09693-3</a>.</li> <li>C. Huygens, 1690, <i>Traité de la Lumière</i> (Leiden: Van der Aa), translated by S.P.&#160;Thompson as <i><a rel="nofollow" class="external text" href="http://www.gutenberg.org/ebooks/14725">Treatise on Light</a></i>, University of Chicago Press, 1912; Project Gutenberg, 2005. (Cited page numbers match the 1912 edition and the Gutenberg HTML edition.)</li> <li>F.A. Jenkins and H.E. White, 1976, <i>Fundamentals of Optics</i>, 4th&#160;Ed., New&#160;York: McGraw-Hill, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-032330-5" title="Special:BookSources/0-07-032330-5">0-07-032330-5</a>.</li> <li>T.H. Levitt, 2013, <i>A Short Bright Flash: Augustin Fresnel and the Birth of the Modern Lighthouse</i>, New York: W.W.&#160;Norton, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-393-35089-0" title="Special:BookSources/978-0-393-35089-0">978-0-393-35089-0</a>.</li> <li>H. Lloyd, 1834, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mtU4AAAAMAAJ&amp;pg=PA295">"Report on the progress and present state of physical optics"</a>, <i>Report of the Fourth Meeting of the British Association for the Advancement of Science</i> (held at Edinburgh in 1834), London: J.&#160;Murray, 1835, pp.&#8239;295–413.</li> <li>I. Newton, 1730, <a rel="nofollow" class="external text" href="http://www.gutenberg.org/ebooks/33504"><i>Opticks: or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light</i></a>, 4th&#160;Ed. (London: William Innys, 1730; Project Gutenberg, 2010); republished with foreword by A.&#160;Einstein and Introduction by E.T.&#160;Whittaker (London: George Bell &amp; Sons, 1931); reprinted with additional Preface by I.B.&#160;Cohen and Analytical Table of Contents by D.H.D.&#160;Roller,&#160; Mineola, NY: Dover, 1952, 1979 (with revised preface), 2012. (Cited page numbers match the Gutenberg HTML edition and the Dover editions.)</li> <li>H.G.J. Rutten and M.A.M.<span style="white-space: nowrap;">&#8201;</span>van Venrooij, 1988 (fifth printing, 2002), <i>Telescope Optics: A&#160;Comprehensive Manual for Amateur Astronomers</i>, Richmond,&#8239;VA: Willmann-Bell, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-943396-18-7" title="Special:BookSources/978-0-943396-18-7">978-0-943396-18-7</a>.</li> <li>J.A. Stratton, 1941, <i>Electromagnetic Theory</i>, New York: McGraw-Hill.</li> <li>W. Whewell, 1857, <i>History of the Inductive Sciences: From the Earliest to the Present Time</i>, 3rd&#160;Ed., London: J.W.&#160;Parker &amp; Son, <a rel="nofollow" class="external text" href="https://archive.org/details/bub_gb_cBSrVEkaR8EC">vol.&#8239;2</a>.</li> <li><a href="/wiki/E._T._Whittaker" title="E. T. Whittaker">E. T. Whittaker</a>, 1910, [<a rel="nofollow" class="external free" href="https://archive.org/details/historyoftheorie00whitrich">https://archive.org/details/historyoftheorie00whitrich</a> <a href="/wiki/A_History_of_the_Theories_of_Aether_and_Electricity" title="A History of the Theories of Aether and Electricity"><i>A History of the Theories of Aether and Electricity: From the Age of Descartes to the Close of the Nineteenth Century</i></a>, London: Longmans, Green, &amp; Co.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Total_internal_reflection&amp;action=edit&amp;section=19" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <a href="https://commons.wikimedia.org/wiki/Total_internal_reflection" class="extiw" title="commons:Total internal reflection"><span style="font-style:italic; font-weight:bold;">Total internal reflection</span></a>.</div></div> </div> <ul><li>Mr.&#160;Mangiacapre, <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=g7LT66M5G5c">"Fluorescence in a Liquid"</a> (video, <span class="nowrap">1m<span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>28s</span>), uploaded 13&#160;March 2012.<span style="white-space: nowrap;">&#8201;</span> (Fluorescence and TIR of a violet laser beam in quinine water.)</li> <li>PhysicsatUVM, <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=q7Q8l3xKyr4">"Frustrated Total Internal Reflection"</a> (video, 37s), uploaded 21&#160;November 2011.<span style="white-space: nowrap;">&#8201;</span> ("A&#160;laser beam undergoes total internal reflection in a fogged piece of plexiglass...")</li> <li>SMUPhysics, <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=LqQlO9ORomQ">"Internal Reflection"</a> (video, 12s), uploaded 20&#160;May 2010.<span style="white-space: nowrap;">&#8201;</span> (Transition from refraction through critical angle to TIR in a 45°-90°-45° prism.)</li></ul> <div style="width:100%; height:1ex; clear:both;"></div> <style data-mw-deduplicate="TemplateStyles:r1130092004">.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;justify-content:center;align-items:baseline}.mw-parser-output .portal-bar-bordered{padding:0 2em;background-color:#fdfdfd;border:1px solid #a2a9b1;clear:both;margin:1em auto 0}.mw-parser-output .portal-bar-related{font-size:100%;justify-content:flex-start}.mw-parser-output .portal-bar-unbordered{padding:0 1.7em;margin-left:0}.mw-parser-output .portal-bar-header{margin:0 1em 0 0.5em;flex:0 0 auto;min-height:24px}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;flex:0 1 auto;padding:0.15em 0;column-gap:1em;align-items:baseline;margin:0;list-style:none}.mw-parser-output .portal-bar-content-related{margin:0;list-style:none}.mw-parser-output .portal-bar-item{display:inline-block;margin:0.15em 0.2em;min-height:24px;line-height:24px}@media screen and (max-width:768px){.mw-parser-output .portal-bar{font-size:88%;font-weight:bold;display:flex;flex-flow:column wrap;align-items:baseline}.mw-parser-output .portal-bar-header{text-align:center;flex:0;padding-left:0.5em;margin:0 auto}.mw-parser-output .portal-bar-related{font-size:100%;align-items:flex-start}.mw-parser-output .portal-bar-content{display:flex;flex-flow:row wrap;align-items:center;flex:0;column-gap:1em;border-top:1px solid #a2a9b1;margin:0 auto;list-style:none}.mw-parser-output .portal-bar-content-related{border-top:none;margin:0;list-style:none}}.mw-parser-output .navbox+link+.portal-bar,.mw-parser-output .navbox+style+.portal-bar,.mw-parser-output .navbox+link+.portal-bar-bordered,.mw-parser-output .navbox+style+.portal-bar-bordered,.mw-parser-output .sister-bar+link+.portal-bar,.mw-parser-output .sister-bar+style+.portal-bar,.mw-parser-output .portal-bar+.navbox-styles+.navbox,.mw-parser-output .portal-bar+.navbox-styles+.sister-bar{margin-top:-1px}</style><div class="portal-bar noprint metadata noviewer portal-bar-bordered" role="navigation" aria-label="Portals"><span class="portal-bar-header"><a href="/wiki/Wikipedia:Contents/Portals" title="Wikipedia:Contents/Portals">Portals</a>:</span><ul class="portal-bar-content"><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/17px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/26px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/34px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span> </span><a href="/wiki/Portal:Physics" title="Portal:Physics">Physics</a></li><li class="portal-bar-item"><span class="nowrap"><span typeof="mw:File"><span><img alt="image" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/17px-Newton%27s_reflecting_telescope.jpg" decoding="async" width="17" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/26px-Newton%27s_reflecting_telescope.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Newton%27s_reflecting_telescope.jpg/34px-Newton%27s_reflecting_telescope.jpg 2x" data-file-width="1140" data-file-height="1276" /></span></span> </span><a href="/wiki/Portal:History_of_science" title="Portal:History of science">History of science</a></li></ul></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐n2fsv Cached time: 20241122140402 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.328 seconds Real time usage: 1.619 seconds Preprocessor visited node count: 24099/1000000 Post‐expand include size: 113877/2097152 bytes Template argument size: 22109/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 148104/5000000 bytes Lua time usage: 0.423/10.000 seconds Lua memory usage: 6022045/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1207.878 1 -total 28.65% 346.002 2 Template:Reflist 16.29% 196.816 44 Template:R 15.15% 183.031 47 Template:R/ref 11.42% 137.936 10 Template:Cite_journal 11.15% 134.691 1 Template:Short_description 10.43% 126.003 105 Template:Math 7.61% 91.890 2 Template:Pagetype 5.67% 68.443 47 Template:R/superscript 4.86% 58.663 47 Template:R/where --> <!-- Saved in parser cache with key enwiki:pcache:idhash:30426-0!canonical and timestamp 20241122140402 and revision id 1253361997. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Total_internal_reflection&amp;oldid=1253361997">https://en.wikipedia.org/w/index.php?title=Total_internal_reflection&amp;oldid=1253361997</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Light" title="Category:Light">Light</a></li><li><a href="/wiki/Category:Waves" title="Category:Waves">Waves</a></li><li><a href="/wiki/Category:Physical_phenomena" title="Category:Physical phenomena">Physical phenomena</a></li><li><a href="/wiki/Category:Optical_phenomena" title="Category:Optical phenomena">Optical phenomena</a></li><li><a href="/wiki/Category:Physical_optics" title="Category:Physical optics">Physical optics</a></li><li><a href="/wiki/Category:Geometrical_optics" title="Category:Geometrical optics">Geometrical optics</a></li><li><a href="/wiki/Category:Glass_physics" title="Category:Glass physics">Glass physics</a></li><li><a href="/wiki/Category:History_of_physics" title="Category:History of physics">History of physics</a></li><li><a href="/wiki/Category:Lighthouses" title="Category:Lighthouses">Lighthouses</a></li><li><a href="/wiki/Category:Dimensionless_numbers" title="Category:Dimensionless numbers">Dimensionless numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_August_2023" title="Category:Articles with dead external links from August 2023">Articles with dead external links from August 2023</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_December_2021" title="Category:Use dmy dates from December 2021">Use dmy dates from December 2021</a></li><li><a href="/wiki/Category:Commons_link_is_on_Wikidata" title="Category:Commons link is on Wikidata">Commons link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 October 2024, at 15:52<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Total_internal_reflection&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-r5tzf","wgBackendResponseTime":141,"wgPageParseReport":{"limitreport":{"cputime":"1.328","walltime":"1.619","ppvisitednodes":{"value":24099,"limit":1000000},"postexpandincludesize":{"value":113877,"limit":2097152},"templateargumentsize":{"value":22109,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":148104,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1207.878 1 -total"," 28.65% 346.002 2 Template:Reflist"," 16.29% 196.816 44 Template:R"," 15.15% 183.031 47 Template:R/ref"," 11.42% 137.936 10 Template:Cite_journal"," 11.15% 134.691 1 Template:Short_description"," 10.43% 126.003 105 Template:Math"," 7.61% 91.890 2 Template:Pagetype"," 5.67% 68.443 47 Template:R/superscript"," 4.86% 58.663 47 Template:R/where"]},"scribunto":{"limitreport-timeusage":{"value":"0.423","limit":"10.000"},"limitreport-memusage":{"value":6022045,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-n2fsv","timestamp":"20241122140402","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Total internal reflection","url":"https:\/\/en.wikipedia.org\/wiki\/Total_internal_reflection","sameAs":"http:\/\/www.wikidata.org\/entity\/Q234943","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q234943","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-08-03T02:51:14Z","dateModified":"2024-10-25T15:52:08Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/fe\/Total_internal_reflection_by_fluorescence.jpg","headline":"physical phenomenon"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10