CINXE.COM

Search results for: saddle points

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: saddle points</title> <meta name="description" content="Search results for: saddle points"> <meta name="keywords" content="saddle points"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="saddle points" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="saddle points"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2441</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: saddle points</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2441</span> X-Corner Detection for Camera Calibration Using Saddle Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Alturki">Abdulrahman S. Alturki</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20S.%20Loomis"> John S. Loomis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20calibration" title="camera calibration">camera calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=corner%20detector" title=" corner detector"> corner detector</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detector" title=" edge detector"> edge detector</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle%20points" title=" saddle points"> saddle points</a> </p> <a href="https://publications.waset.org/abstracts/40538/x-corner-detection-for-camera-calibration-using-saddle-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2440</span> Design of Saddle Support for Horizontal Pressure Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar">Vinod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Navin%20Kumar"> Navin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra"> Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20Sharma"> Prince Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in Ansys. Stresses are calculated using mathematical approach and Ansys software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20vessel" title=" pressure vessel"> pressure vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle" title=" saddle"> saddle</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/14966/design-of-saddle-support-for-horizontal-pressure-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">743</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2439</span> Evaluation of Outpatient Management of Proctological Surgery under Saddle Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouhouf%20Atef">Bouhouf Atef</a>, <a href="https://publications.waset.org/abstracts/search?q=Beloulou%20Mohamed%20Lamine"> Beloulou Mohamed Lamine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Outpatient surgery is continually developing compared to conventional inpatient surgery; its rate is constantly increasing every year due to global socio-economic pressure. Most hospitals continue to perform proctologic surgery in conventional hospitalization. Purpose: As part of a monocentric prospective descriptive study, we examined the feasibility of proctologic surgery under saddle block on an outpatient basis with the same safety conditions as in traditional hospitalization. Material and methods: This is a monocentric prospective descriptive study spread over a period of 24 months, from December 2018 to December 2020 including 150 patients meeting the medico-surgical and socio-environmental criteria of eligibility for outpatient surgery, operated for proctological pathologies under saddle block in outpatient mode, in the surgery department of the regional military hospital of Constantine Algeria. The data were collected and analyzed by the biomedical statistics software Epi-info and Microsoft Excel, then compared with other related studies. Results: This study involved over a period of two years, 150 male patients with an average age of 32 years (20-64). Most patients (95,33%) were ASA I class, and 4,67% ASA II class. All patients received saddle blocks. The average length of stay of patients was six hours. The quality indicators in outpatient surgery in our study were: zero (0)% of deprogrammings, three (3)% of conversions to full hospitalization, 0,7% of readmissions, an average waiting time before access to the operating room of 83 minutes without delay of discharge, a satisfaction rate of 90,8% and a reduction in the cost compared to conventional inpatient surgery in proportions ranging from – 32,6% and – 48,75%. Conclusions: The outpatient management of proctological surgery under saddle block is very beneficial in terms of safety, efficiency, simplicity, and economy. Our results are in line with those of the literature and our work deserves to be continued to include many patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outpatient%20surgery" title="outpatient surgery">outpatient surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=proctological%20surgery" title=" proctological surgery"> proctological surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle%20block" title=" saddle block"> saddle block</a>, <a href="https://publications.waset.org/abstracts/search?q=satisfaction" title=" satisfaction"> satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a> </p> <a href="https://publications.waset.org/abstracts/192146/evaluation-of-outpatient-management-of-proctological-surgery-under-saddle-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2438</span> Geological Characteristics and Hydrocarbon Potential of M’Rar Formation Within NC-210, Atshan Saddle Ghadamis-Murzuq Basins, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadeg%20M.%20Ghnia">Sadeg M. Ghnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Alghattawi"> Mahmud Alghattawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The NC-210 study area is located in Atshan Saddle between both Ghadamis and Murzuq basins, west Libya. The preserved Palaeozoic successions are predominantly clastics reaching thickness of more than 20,000 ft in northern Ghadamis Basin depocenter. The Carboniferous series consist of interbedded sandstone, siltstone, shale, claystone and minor limestone deposited in a fluctuating shallow marine to brackish lacustrine/fluviatile environment which attain maximum thickness of over 5,000ft in the area of Atshan Saddle and recorded 3,500 ft. in outcrops of Murzuq Basin flanks. The Carboniferous strata was uplifted and eroded during Late Paleozoic and early Mesozoic time in northern Ghadamis Basin and Atshan Saddle. The M'rar Formation age is Tournaisian to Late Serpukhovian based on palynological markers and contains about 12 cycles of sandstone and shale deposited in shallow to outer neritic deltaic settings. The hydrocarbons in the M'rar reservoirs possibly sourced from the Lower Silurian and possibly Frasinian radioactive hot shales. The M'rar Formation lateral, vertical and thickness distribution is possibly influenced by the reactivation of Tumarline Strik-Slip fault and its conjugate faults. A pronounced structural paleohighs and paleolows, trending SE & NW through the Gargaf Saddle, is possibly indicative of the present of two sub-basins in the area of Atshan Saddle. A number of identified seismic reflectors from existing 2D seismic covering Atshan Saddle reflect M’rar deltaic 12 sandstone cycles. M’rar7, M’rar9, M’rar10 and M’rar12 are characterized by high amplitude reflectors, while M’rar2 and M’rar6 are characterized by medium amplitude reflectors. These horizons are productive reservoirs in the study area. Available seismic data in the study area contributed significantly to the identification of M’rar potential traps, which are prominently 3- way dip closure against fault zone. Also seismic data indicates the presence of a significant strikeslip component with the development of flower-structure. The M'rar Formation hydrocarbon discoveries are concentrated mainly in the Atshan Saddle located in southern Ghadamis Basin, Libya and Illizi Basin in southeast of Algeria. Significant additional hydrocarbons may be present in areas adjacent to the Gargaf Uplift, along structural highs and fringing the Hoggar Uplift, providing suitable migration pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title="hydrocarbon potential">hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=stratigraphy" title=" stratigraphy"> stratigraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghadamis%20basin" title=" Ghadamis basin"> Ghadamis basin</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20data%20integration" title=" well data integration"> well data integration</a> </p> <a href="https://publications.waset.org/abstracts/161649/geological-characteristics-and-hydrocarbon-potential-of-mrar-formation-within-nc-210-atshan-saddle-ghadamis-murzuq-basins-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2437</span> Accelerated Molecular Simulation: A Convolution Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jannes%20Quer">Jannes Quer</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Niknejad"> Amir Niknejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Weber"> Marcus Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be &rdquo;steared&rdquo; out of local minimizers of the potential energy surface &ndash; the so-called metastabilities &ndash; of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind &rdquo;stearing&rdquo; is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrapolation" title="extrapolation">extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyring-Kramers" title=" Eyring-Kramers"> Eyring-Kramers</a>, <a href="https://publications.waset.org/abstracts/search?q=metastability" title=" metastability"> metastability</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20sampling" title=" multilevel sampling"> multilevel sampling</a> </p> <a href="https://publications.waset.org/abstracts/67617/accelerated-molecular-simulation-a-convolution-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2436</span> Cauda Equina Syndrome: An Audit on Referral Adequacy and its Impact on Delay to Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Mafullul">David Mafullul</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Lei"> Jiang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Goacher"> Edward Goacher</a>, <a href="https://publications.waset.org/abstracts/search?q=Jibin%20Francis"> Jibin Francis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PURPOSE: Timely decompressive surgery for cauda equina syndrome (CES) is dependent on efficient referral pathways for patients presenting at local primary or secondary centres to tertiary spinal centres in the United Kingdom (UK). Identifying modifiable points of delay within this process is important as minimising time between presentation and surgery may improve patient outcomes. This study aims to analyse whether adequacy of referral impacts on time to surgery in CES. MATERIALS AND METHODS: Data from all cases of confirmed CES referred to a single tertiary UK hospital between August 2017 to December 2019, via a suspected CES e-referral pathway, were obtained retrospectively. Referral adequacy was defined by the inclusion of sufficient information to determine the presence or absence of several NICE ‘red flags’. Correlation between referral adequacy and delay from referral-to-surgery was then analysed. RESULTS: In total, 118 confirmed CES cases were included. Adequate documentation for saddle anaesthesia was associated with reduced delays of more than 48 hours from referral-to-surgery [X2(1, N=116)=7.12, p=.024], an effect partly attributable to these referrals being accepted sooner [U=16.5; n1=27, n2=4, p=.029, r=.39]. Other red flags had poor association with delay. Referral adequacy was better for somatic red flags [bilateral sciatica (97.5%); severe or progressive bilateral neurological deficit of the legs (95.8%); saddle anaesthesia (91.5%)] compared to autonomic red flags [loss of anal tone (80.5%); urinary retention (79.7%); faecal incontinence or lost sensation of rectal fullness (57.6%)]. Although referral adequacy for urinary retention was 79.7%, only 47.5% of referrals documented a post-void residual numerical value. CONCLUSIONS: Adequate documentation of saddle anaesthesia in e-referrals is associated with reduced delay-to-surgery for confirmed CES, partly attributable to these referrals being accepted sooner. Other red flags had poor association with delay to surgery. Referral adequacy for autonomic red flags, including documentation for post-void residuals, has significant room for improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cauda%20equina" title="cauda equina">cauda equina</a>, <a href="https://publications.waset.org/abstracts/search?q=cauda%20equina%20syndrome" title=" cauda equina syndrome"> cauda equina syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=neurosurgery" title=" neurosurgery"> neurosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20surgery" title=" spinal surgery"> spinal surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=decompression" title=" decompression"> decompression</a>, <a href="https://publications.waset.org/abstracts/search?q=delay" title=" delay"> delay</a>, <a href="https://publications.waset.org/abstracts/search?q=referral" title=" referral"> referral</a>, <a href="https://publications.waset.org/abstracts/search?q=referral%20adequacy" title=" referral adequacy"> referral adequacy</a> </p> <a href="https://publications.waset.org/abstracts/190192/cauda-equina-syndrome-an-audit-on-referral-adequacy-and-its-impact-on-delay-to-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2435</span> Form-Finding of Tensioned Fabric Structure in Mathematical Monkey Saddle Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hooi%20Min">Yee Hooi Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi"> Abdul Hadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N."> M. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Kay%20Dora"> A. G. Kay Dora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and pre-stress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Monkey Saddle. Computational form-finding is frequently used to determine the possible form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Monkey Saddle applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface. Such in-sight will lead to improvement of rural basic infrastructure, economic gains, sustainability of built environment and green technology initiative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticlastic" title="anticlastic">anticlastic</a>, <a href="https://publications.waset.org/abstracts/search?q=curvatures" title=" curvatures"> curvatures</a>, <a href="https://publications.waset.org/abstracts/search?q=form-finding" title=" form-finding"> form-finding</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20equilibrium%20shape" title=" initial equilibrium shape"> initial equilibrium shape</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20surface" title=" minimal surface"> minimal surface</a>, <a href="https://publications.waset.org/abstracts/search?q=tensioned%20fabric%20structure" title=" tensioned fabric structure"> tensioned fabric structure</a> </p> <a href="https://publications.waset.org/abstracts/20781/form-finding-of-tensioned-fabric-structure-in-mathematical-monkey-saddle-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2434</span> “Thou Shalt Surely Die”: A Game Theory Analysis of the Book of Genesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Kampmann%20Walther">Bo Kampmann Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This essay examines the narratives of the Book of Genesis through the lens of game theory, a mathematical framework for analyzing strategic interactions among rational actors. By treating key figures in Genesis as players in a game, this analysis sheds light on their decisions and the resulting consequences. Focusing primarily on the story of Adam and Eve, the essay utilizes concepts such as game state, saddle point, optimal strategy, and Nash equilibrium to explore the dynamics at play and scrutinize the existence of two kinds of game rules in Genesis: one being global and post-Fall oriented, the other being local and relegated to life in the Garden. The serpent's intervention and the subsequent actions of Adam and Eve are modeled as strategic moves, revealing the complexities and shifts in the game state from harmony in Eden to a world marked by toil and mortality post-Fall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title="game theory">game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Genesis" title=" Genesis"> Genesis</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=saddle%20point" title=" saddle point"> saddle point</a>, <a href="https://publications.waset.org/abstracts/search?q=nash%20equilibrium" title=" nash equilibrium"> nash equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20Game%20State" title=" New Game State"> New Game State</a> </p> <a href="https://publications.waset.org/abstracts/186277/thou-shalt-surely-die-a-game-theory-analysis-of-the-book-of-genesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2433</span> A Game Theory Analysis of The Enuma Elish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Kampmann%20Walther">Bo Kampmann Walther</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This essay provides an in-depth interpretation of the ancient Babylonian origin narrative, The Enuma Elish, through the lens of game theory. It examines the strategic interactions among the deities in the myth as if they were players in a game, focusing on understanding the dynamics of conflict, cooperation, and equilibrium within the narrative. The pivotal game theory concept known as Nash Equilibrium is given prominent consideration, but saddle points and optimal strategies will also be employed to uncover the decision-making processes of the divine figures, particularly in the cosmic battle for supremacy. This analysis demonstrates that the ancient narrative, beyond its mythological content, illustrates timeless principles of strategic behavior in the pursuit of game success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enuma%20Elish" title="Enuma Elish">Enuma Elish</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Nash%20Equilibrium" title=" Nash Equilibrium"> Nash Equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=Babylonian%20mythology" title=" Babylonian mythology"> Babylonian mythology</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20interaction" title=" strategic interaction"> strategic interaction</a> </p> <a href="https://publications.waset.org/abstracts/191404/a-game-theory-analysis-of-the-enuma-elish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2432</span> Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Alshamasin">Mahdi Alshamasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Riad%20Al-Kasasbeh"> Riad Al-Kasasbeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Korenevskiy"> Nikolay Korenevskiy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupuncture%20points" title="acupuncture points">acupuncture points</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostically%20important%20points%20%28DIP%29" title=" diagnostically important points (DIP)"> diagnostically important points (DIP)</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20factors" title=" confidence factors"> confidence factors</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20functions" title=" membership functions"> membership functions</a>, <a href="https://publications.waset.org/abstracts/search?q=stomach%20diseases" title=" stomach diseases "> stomach diseases </a> </p> <a href="https://publications.waset.org/abstracts/34901/bioengineering-system-for-prediction-and-early-prenosological-diagnostics-of-stomach-diseases-based-on-energy-characteristics-of-bioactive-points-with-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2431</span> Photon Blockade in Non-Hermitian Optomechanical Systems with Nonreciprocal Couplings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Sun">J. Y. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Z.%20Shen"> H. Z. Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the photon blockade at exceptional points for a non-Hermitian optomechanical system coupled to the driven whispering-gallery-mode microresonator with two nanoparticles under the weak optomechanical coupling approximation, where exceptional points emerge periodically by controlling the relative angle of the nanoparticles. We find that conventional photon blockade occurs at exceptional points for the eigenenergy resonance of the single-excitation subspace driven by a laser field and discuss the physical origin of conventional photon blockade. Under the weak driving condition, we analyze the influences of the different parameters on conventional photon blockade. We investigate conventional photon blockade at nonexceptional points, which exists at two optimal detunings due to the eigenstates in the single-excitation subspace splitting from one (coalescence) at exceptional points to two at nonexceptional points. Unconventional photon blockade can occur at nonexceptional points, while it does not exist at exceptional points since the destructive quantum interference cannot occur due to the two different quantum pathways to the two-photon state not being formed. The realization of photon blockade in our proposal provides a viable and flexible way for the preparation of single-photon sources in the non-Hermitian optomechanical system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optomechanical%20systems" title="optomechanical systems">optomechanical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20blockade" title=" photon blockade"> photon blockade</a>, <a href="https://publications.waset.org/abstracts/search?q=non-hermitian" title=" non-hermitian"> non-hermitian</a>, <a href="https://publications.waset.org/abstracts/search?q=exceptional%20points" title=" exceptional points"> exceptional points</a> </p> <a href="https://publications.waset.org/abstracts/178849/photon-blockade-in-non-hermitian-optomechanical-systems-with-nonreciprocal-couplings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2430</span> Degeneracy and Defectiveness in Non-Hermitian Systems with Open Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongxu%20Fu">Yongxu Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaolong%20Wan"> Shaolong Wan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the band degeneracy, defectiveness, as well as exceptional points of non-Hermitian systems and materials analytically. We elaborate on the energy bands, the band degeneracy, and the defectiveness of eigenstates under open boundary conditions based on developing a general theory of one-dimensional (1D) non-Hermitian systems. We research the presence of the exceptional points in a generalized non-Hermitian Su-Schrieffer-Heeger model under open boundary conditions. Beyond our general theory, there exist infernal points in 1D non-Hermitian systems, where the energy spectra under open boundary conditions converge on some discrete energy values. We study two 1D non-Hermitian models with the existence of infernal points. We generalize the infernal points to the infernal knots in four-dimensional non-Hermitian systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-hermitian" title="non-hermitian">non-hermitian</a>, <a href="https://publications.waset.org/abstracts/search?q=degeneracy" title=" degeneracy"> degeneracy</a>, <a href="https://publications.waset.org/abstracts/search?q=defectiveness" title=" defectiveness"> defectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=exceptional%20points" title=" exceptional points"> exceptional points</a>, <a href="https://publications.waset.org/abstracts/search?q=infernal%20points" title=" infernal points"> infernal points</a> </p> <a href="https://publications.waset.org/abstracts/149871/degeneracy-and-defectiveness-in-non-hermitian-systems-with-open-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2429</span> FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Bulanda">Daniel Bulanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20A.%20Starzyk"> Janusz A. Starzyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Horzyk"> Adrian Horzyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20points" title="characteristic points">characteristic points</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20compression" title=" signal compression"> signal compression</a> </p> <a href="https://publications.waset.org/abstracts/132090/flexpoints-efficient-algorithm-for-detection-of-electrocardiogram-characteristic-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2428</span> Circular Approximation by Trigonometric Bézier Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Hussin">Maria Hussin</a>, <a href="https://publications.waset.org/abstracts/search?q=Malik%20Zawwar%20Hussain"> Malik Zawwar Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashrah%20Saddiqa"> Mubashrah Saddiqa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20points" title="control points">control points</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20trigonometric%20B%C3%A9zier%20curves" title=" rational trigonometric Bézier curves"> rational trigonometric Bézier curves</a>, <a href="https://publications.waset.org/abstracts/search?q=radius%20error" title=" radius error"> radius error</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20measure" title=" shape measure"> shape measure</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20functions" title=" weight functions"> weight functions</a> </p> <a href="https://publications.waset.org/abstracts/15444/circular-approximation-by-trigonometric-bezier-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2427</span> Complex Dynamics in a Model of Management of the Protected Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Russu">Paolo Russu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the economic and ecological dynamics that emerge in Protected Areas (PAs) due to interactions between visitors and the animals that live there. The PAs contain two species whose interactions are determined by the Lotka-Volterra equations system. Visitors' decisions to visit PAs are influenced by the entrance cost required to enter the park and the chance of witnessing the species living there. Visitors have contradictory effects on the species and thus on the sustainability of the protected areas: on the one hand, an increase in the number of tourists damages the natural habitat of the regions and thus the species living there; on the other hand, it increases the total amount of entrance fees that the managing body of the PAs can use to perform defensive expenditures that protect the species from extinction. For a given set of parameter values, saddle-node bifurcation, Hopf bifurcation, homoclinic orbits, and a Bogdanov–Takens bifurcation of codimension two has been investigated. The system displays periodic doubling and chaotic solutions, as numerical examples demonstrate. Pontryagin's Maximum Principle was utilised to develop an optimal admission charge policy that maximised social gain and ecosystem conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaos" title="chaos">chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation%20points" title=" bifurcation points"> bifurcation points</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20model" title=" dynamical model"> dynamical model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a> </p> <a href="https://publications.waset.org/abstracts/164280/complex-dynamics-in-a-model-of-management-of-the-protected-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2426</span> An Optimized RDP Algorithm for Curve Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20Lomaliza">Jean-Pierre Lomaliza</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang-Seok%20Moon"> Kwang-Seok Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanhoon%20Park"> Hanhoon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20approximation" title="curve approximation">curve approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20point" title=" essential point"> essential point</a>, <a href="https://publications.waset.org/abstracts/search?q=RDP%20algorithm" title=" RDP algorithm"> RDP algorithm</a> </p> <a href="https://publications.waset.org/abstracts/29359/an-optimized-rdp-algorithm-for-curve-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2425</span> Motion of a Dust Grain Type Particle in Binary Stellar Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Mia">Rajib Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this present paper, we use the photogravitational version of the restricted three body problem (RTBP) in binary systems. In the photogravitational RTBP, an infinitesimal particle (dust grain) is moving under the gravitational attraction and radiation pressure from the two bigger primaries. The third particle does not affect the motion of two bigger primaries. The zero-velocity curves, zero-velocity surfaces and their projections on the plane are studied. We have used existing analytical method to solve the equations of motion. We have obtained the Lagrangian points in some binary stellar systems. It is found that mass reduction factor affects the Lagrangian points. The linear stability of Lagrangian points is studied and found that these points are unstable. Moreover, trajectories of the infinitesimal particle at the triangular points are studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20systems" title="binary systems">binary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20points" title=" Lagrangian points"> Lagrangian points</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20stability" title=" linear stability"> linear stability</a>, <a href="https://publications.waset.org/abstracts/search?q=photogravitational%20RTBP" title=" photogravitational RTBP"> photogravitational RTBP</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectories" title=" trajectories"> trajectories</a> </p> <a href="https://publications.waset.org/abstracts/53094/motion-of-a-dust-grain-type-particle-in-binary-stellar-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2424</span> Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Berna%20Benli">F. Berna Benli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Keskin"> Özgür Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20number" title="fuzzy number">fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20cluster%20points" title=" λ-levelwise statistical cluster points"> λ-levelwise statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20convergence" title=" λ-levelwise statistical convergence"> λ-levelwise statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20limit%20points" title=" λ-levelwise statistical limit points"> λ-levelwise statistical limit points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20cluster%20points" title=" λ-statistical cluster points"> λ-statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20convergence" title=" λ-statistical convergence"> λ-statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20limit%20%20points" title=" λ-statistical limit points"> λ-statistical limit points</a> </p> <a href="https://publications.waset.org/abstracts/20755/lambda-levelwise-statistical-convergence-of-a-sequence-of-fuzzy-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2423</span> Health-Related QOL of Motorists with Spinal Cord Injury in Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Hirose">Hiroaki Hirose</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Ikeda"> Hiroshi Ikeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Isao%20Takeda"> Isao Takeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Japanese version of the SF-36 has been employed to assess individuals’ health-related QOL (HRQOL). This study aimed to clarify the HRQOL of motorists with a spinal cord injury, in order to compare these individuals' SF-36 scores and national standard values. A total of 100 motorists with a spinal cord injury participated in this study. Participants’ HRQOL was evaluated using the Japanese version of the SF-36 (second edition). The score for each subscale was standardized based on data on the Japanese population. The average scores for NPF, NRP, NBP, NGH, NVT, NSF, NRE, and NMH were 10.9, 41.8, 45.9, 47.1, 46.1, 46.7, 46.0, and 47.4 points, respectively. Subjects showed significantly lower scores for NPF and NRP compared with national standard values, which were both ≤ 45.0 points, but relatively normal scores for the other items: NBP, NGH, NVT, NSF, NRE and NMH (> 45.0 points). The average scores for PCS, MCS and RCS were 21.9, 56.0, and 50.0 points, respectively. Subjects showed a significantly lower PCS score (≤ 20.0 points); however, the MCS score was higher (> 55.0 points) along with a relatively normal RCS score in these individuals (= 50.0 points). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health-related%20QOL" title="health-related QOL">health-related QOL</a>, <a href="https://publications.waset.org/abstracts/search?q=HRQOL" title=" HRQOL"> HRQOL</a>, <a href="https://publications.waset.org/abstracts/search?q=SF-36" title=" SF-36"> SF-36</a>, <a href="https://publications.waset.org/abstracts/search?q=motorist" title=" motorist"> motorist</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injury" title=" spinal cord injury"> spinal cord injury</a>, <a href="https://publications.waset.org/abstracts/search?q=Japan" title=" Japan"> Japan</a> </p> <a href="https://publications.waset.org/abstracts/34304/health-related-qol-of-motorists-with-spinal-cord-injury-in-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2422</span> Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanshio%20Richard%20Tyokyaa">Kanshio Richard Tyokyaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagadish%20Singh"> Jagadish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-plane" title="out-of-plane">out-of-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20points" title=" equilibrium points"> equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20restricted%20three-body%20problem" title=" elliptic restricted three-body problem"> elliptic restricted three-body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness" title=" oblateness"> oblateness</a>, <a href="https://publications.waset.org/abstracts/search?q=zonal%20harmonic" title=" zonal harmonic"> zonal harmonic</a> </p> <a href="https://publications.waset.org/abstracts/91381/stability-of-out-of-plane-equilibrium-points-in-the-elliptic-restricted-three-body-problem-with-oblateness-up-to-zonal-harmonic-j4-of-both-primaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2421</span> Relationship of Arm Acupressure Points and Thai Traditional Massage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boonyarat%20Chaleephay">Boonyarat Chaleephay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research paper was to describe the relationship of acupressure points on the anterior surface of the upper limb in accordance with Applied Thai Traditional Massage (ATTM) and the deep structures located at those acupressure points. There were 2 population groups; normal subjects and cadaver specimens. Eighteen males with age ranging from 20-40 years old and seventeen females with ages ranging from 30-97 years old were studies. This study was able to obtain a fundamental knowledge concerning acupressure point and the deep structures that related to those acupressure points. It might be used as the basic knowledge for clinically applying and planning treatment as well as teaching in ATTM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupressure%20point%20%28AP%29" title="acupressure point (AP)">acupressure point (AP)</a>, <a href="https://publications.waset.org/abstracts/search?q=applie%20Thai%0D%0Atraditional%20medicine%20%28ATTM%29" title=" applie Thai traditional medicine (ATTM)"> applie Thai traditional medicine (ATTM)</a>, <a href="https://publications.waset.org/abstracts/search?q=paresthesia" title=" paresthesia"> paresthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=numbness" title=" numbness "> numbness </a> </p> <a href="https://publications.waset.org/abstracts/3901/relationship-of-arm-acupressure-points-and-thai-traditional-massage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2420</span> An Analysis of Pick Travel Distances for Non-Traditional Unit Load Warehouses with Multiple P/D Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subir%20S.%20Rao">Subir S. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing warehouse configurations use non-traditional aisle designs with a central P/D point in their models, which is mathematically simple but less practical. Many warehouses use multiple P/D points to avoid congestion for pickers, and different warehouses have different flow policies and infrastructure for using the P/D points. Many warehouses use multiple P/D points with non-traditional aisle designs in their analytical models. Standard warehouse models introduce one-sided multiple P/D points in a flying-V warehouse and minimize pick distance for a one-way travel between an active P/D point and a pick location with P/D points, assuming uniform flow rates. A simulation of the mathematical model generally uses four fixed configurations of P/D points which are on two different sides of the warehouse. It can be easily proved that if the source and destination P/D points are both chosen randomly, in a uniform way, then minimizing the one-way travel is the same as minimizing the two-way travel. Another warehouse configuration analytically models the warehouse for multiple one-sided P/D points while keeping the angle of the cross-aisles and picking aisles as a decision variable. The minimization of the one-way pick travel distance from the P/D point to the pick location by finding the optimal position/angle of the cross-aisle and picking aisle for warehouses having different numbers of multiple P/D points with variable flow rates is also one of the objectives. Most models of warehouses with multiple P/D points are one-way travel models and we extend these analytical models to minimize the two-way pick travel distance wherein the destination P/D is chosen optimally for the return route, which is not similar to minimizing the one-way travel. In most warehouse models, the return P/D is chosen randomly, but in our research, the return route P/D point is chosen optimally. Such warehouses are common in practice, where the flow rates at the P/D points are flexible and depend totally on the position of the picks. A good warehouse management system is efficient in consolidating orders over multiple P/D points in warehouses where the P/D is flexible in function. In the latter arrangement, pickers and shrink-wrap processes are not assigned to particular P/D points, which ultimately makes the P/D points more flexible and easy to use interchangeably for picking and deposits. The number of P/D points considered in this research uniformly increases from a single-central one to a maximum of each aisle symmetrically having a P/D point below it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-traditional%20warehouse" title="non-traditional warehouse">non-traditional warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=V%20cross-aisle" title=" V cross-aisle"> V cross-aisle</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20P%2FD%20point" title=" multiple P/D point"> multiple P/D point</a>, <a href="https://publications.waset.org/abstracts/search?q=pick%20travel%20distance" title=" pick travel distance"> pick travel distance</a> </p> <a href="https://publications.waset.org/abstracts/186585/an-analysis-of-pick-travel-distances-for-non-traditional-unit-load-warehouses-with-multiple-pd-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2419</span> A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Boussoufi">O. Boussoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Lamrini%20Uahabi"> K. Lamrini Uahabi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Atounti"> M. Atounti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=box%20counting" title="box counting">box counting</a>, <a href="https://publications.waset.org/abstracts/search?q=FracLac" title=" FracLac"> FracLac</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Sets" title=" Julia Sets"> Julia Sets</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandelbrot%20Set" title=" Mandelbrot Set"> Mandelbrot Set</a>, <a href="https://publications.waset.org/abstracts/search?q=Misiurewicz%20Points" title=" Misiurewicz Points"> Misiurewicz Points</a> </p> <a href="https://publications.waset.org/abstracts/88210/a-note-on-the-fractal-dimension-of-mandelbrot-set-and-julia-sets-in-misiurewicz-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2418</span> Investigating the Dose Effect of Electroacupuncture on Mice Inflammatory Pain Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wan-Ting%20Shen">Wan-Ting Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Liang%20Hsieh"> Ching-Liang Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Wen%20Lin"> Yi-Wen Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electroacupuncture (EA) has been reported effective for many kinds of pain and is a common treatment for acute or chronic pain. However, to date, there are limited studies examining the effect of acupuncture dosage. In our experiment, after injecting mice with Complete Freund’s Adjuvant (CFA) to induce inflammatory pain, two groups of mice were administered two different 15 min EA treatments at 2Hz. The first group received EA at a single acupuncture point (ST36, Zusanli) in both legs (two points), whereas the second group received two acupuncture points in both legs (four points) and the analgesic effect was compared. It was found that double points (ST36, Zusanli and SP6, Sanyinjiao) were significantly superior to single points (ST36, Zusanli) when evaluated using the electronic von Frey Test (mechanic) and Hargreaves’ Test (thermal). Through this study, it is expected more novel physiological mechanisms of acupuncture analgesia will be discovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-inflammation" title="anti-inflammation">anti-inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20effect" title=" dose effect"> dose effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electroacupuncture" title=" electroacupuncture"> electroacupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=pain%20control" title=" pain control"> pain control</a> </p> <a href="https://publications.waset.org/abstracts/85851/investigating-the-dose-effect-of-electroacupuncture-on-mice-inflammatory-pain-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2417</span> LEED Empirical Evidence in Northern and Southern Europe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Pushkar">Svetlana Pushkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Leadership in Energy and Environmental Design (LEED) green building rating system is recognized in Europe. LEED uses regional priority (RP) points that are adapted to different environmental conditions. However, the appropriateness of the RP points is still a controversial question. To clarify this issue, two different parts of Europe: northern Europe (Finland and Sweden) and southern Europe (Turkey and Spain) were considered. Similarities and differences in the performances of LEED 2009-new construction (LEED-NC 2009) in these four countries were analyzed. It was found that LEED-NC 2009 performances in northern and southern parts of Europe in terms of Sustainable Sites (SS), Water Efficiency (WE), Materials and Resources (MR), and Indoor Environmental Quality (EQ) were similar, whereas in Energy and Atmosphere (EA), their performances were different. WE and SS revealed high performances (70-100%); EA and EQ demonstrated intermediate performance (40-60%); and MR displayed low performance (20-40%). It should be recommended introducing the following new RP points: for Turkey - water-related points and for all four observed countries - green power-related points for improving the LEED adaptation in Europe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=Europe" title=" Europe"> Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=leadership%20in%20energy%20and%20environmental%20design" title=" leadership in energy and environmental design"> leadership in energy and environmental design</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20priority%20points" title=" regional priority points"> regional priority points</a> </p> <a href="https://publications.waset.org/abstracts/100025/leed-empirical-evidence-in-northern-and-southern-europe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2416</span> Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Mia">Rajib Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoplanetary%20systems" title="exoplanetary systems">exoplanetary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20points" title=" lagrangian points"> lagrangian points</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20orbit" title=" periodic orbit"> periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20three%20body%20problem" title=" restricted three body problem"> restricted three body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/28253/motion-of-an-infinitesimal-particle-in-binary-stellar-systems-kepler-34-kepler-35-kepler-16-kepler-413" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2415</span> Clustering Color Space, Time Interest Points for Moving Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Insaf%20Bellamine">Insaf Bellamine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Tairi"> Hamid Tairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Color%20Space-Time%20Interest%20Points%20%28CSTIP%29" title="Color Space-Time Interest Points (CSTIP)">Color Space-Time Interest Points (CSTIP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Color%20Structure-Texture%20Image%20Decomposition" title=" Color Structure-Texture Image Decomposition"> Color Structure-Texture Image Decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Motion%20Detection" title=" Motion Detection"> Motion Detection</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a> </p> <a href="https://publications.waset.org/abstracts/21989/clustering-color-space-time-interest-points-for-moving-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2414</span> Barnard Feature Point Detector for Low-Contractperiapical Radiography Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Yi%20Ho">Chih-Yi Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Fang%20Chang"> Tzu-Fang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chia%20Huang"> Chih-Chia Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Yen%20Lee"> Chia-Yen Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In dental clinics, the dentists use the periapical radiography image to assess the effectiveness of endodontic treatment of teeth with chronic apical periodontitis. Periapical radiography images are taken at different times to assess alveolar bone variation before and after the root canal treatment, and furthermore to judge whether the treatment was successful. Current clinical assessment of apical tissue recovery relies only on dentist personal experience. It is difficult to have the same standard and objective interpretations due to the dentist or radiologist personal background and knowledge. If periapical radiography images at the different time could be registered well, the endodontic treatment could be evaluated. In the image registration area, it is necessary to assign representative control points to the transformation model for good performances of registration results. However, detection of representative control points (feature points) on periapical radiography images is generally very difficult. Regardless of which traditional detection methods are practiced, sufficient feature points may not be detected due to the low-contrast characteristics of the x-ray image. Barnard detector is an algorithm for feature point detection based on grayscale value gradients, which can obtain sufficient feature points in the case of gray-scale contrast is not obvious. However, the Barnard detector would detect too many feature points, and they would be too clustered. This study uses the local extrema of clustering feature points and the suppression radius to overcome the problem, and compared different feature point detection methods. In the preliminary result, the feature points could be detected as representative control points by the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20detection" title="feature detection">feature detection</a>, <a href="https://publications.waset.org/abstracts/search?q=Barnard%20detector" title=" Barnard detector"> Barnard detector</a>, <a href="https://publications.waset.org/abstracts/search?q=registration" title=" registration"> registration</a>, <a href="https://publications.waset.org/abstracts/search?q=periapical%20radiography%20image" title=" periapical radiography image"> periapical radiography image</a>, <a href="https://publications.waset.org/abstracts/search?q=endodontic%20treatment" title=" endodontic treatment"> endodontic treatment</a> </p> <a href="https://publications.waset.org/abstracts/67658/barnard-feature-point-detector-for-low-contractperiapical-radiography-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2413</span> UAV’s Enhanced Data Collection for Heterogeneous Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Barka">Kamel Barka</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyamine%20Guezouli"> Lyamine Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Assem%20Rezki"> Assem Rezki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we propose a protocol called DataGA-DRF (a protocol for Data collection using a Genetic Algorithm through Dynamic Reference Points) that collects data from Heterogeneous wireless sensor networks. This protocol is based on DGA (Destination selection according to Genetic Algorithm) to control the movement of the UAV (Unmanned aerial vehicle) between dynamic reference points that virtually represent the sensor node deployment. The dynamics of these points ensure an even distribution of energy consumption among the sensors and also improve network performance. To determine the best points, DataGA-DRF uses a classification algorithm such as K-Means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20wireless%20networks" title="heterogeneous wireless networks">heterogeneous wireless networks</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles"> unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20point" title=" reference point"> reference point</a>, <a href="https://publications.waset.org/abstracts/search?q=collect%20data" title=" collect data"> collect data</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/162579/uavs-enhanced-data-collection-for-heterogeneous-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2412</span> Detection of Change Points in Earthquakes Data: A Bayesian Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Al-Awadhi">F. A. Al-Awadhi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Al-Hulail"> D. Al-Hulail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20change%20points" title="multiple change points">multiple change points</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Chain%20Monte%20Carlo" title=" Markov Chain Monte Carlo"> Markov Chain Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20magnitude" title=" earthquake magnitude"> earthquake magnitude</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20mode" title=" hierarchical Bayesian mode"> hierarchical Bayesian mode</a> </p> <a href="https://publications.waset.org/abstracts/21451/detection-of-change-points-in-earthquakes-data-a-bayesian-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=82">82</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=saddle%20points&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10