CINXE.COM
Search results for: spike-timing-dependent plasticity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spike-timing-dependent plasticity</title> <meta name="description" content="Search results for: spike-timing-dependent plasticity"> <meta name="keywords" content="spike-timing-dependent plasticity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spike-timing-dependent plasticity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spike-timing-dependent plasticity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 225</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spike-timing-dependent plasticity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Effect of Treated Peat Soil on the Plasticity Index and Hardening Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Aida%20Mario">Siti Nur Aida Mario</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Hafifee%20Ahmad"> Farah Hafifee Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Tawie"> Rudy Tawie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=peat%20soil" title=" peat soil"> peat soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a> </p> <a href="https://publications.waset.org/abstracts/44907/effect-of-treated-peat-soil-on-the-plasticity-index-and-hardening-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlo%20Selyshchev">Pavlo Selyshchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetiana%20Didenko"> Tetiana Didenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climb%20and%20glide%20of%20dislocations" title="climb and glide of dislocations">climb and glide of dislocations</a>, <a href="https://publications.waset.org/abstracts/search?q=fractures%20of%20transient%20plasticity" title=" fractures of transient plasticity"> fractures of transient plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20feed-back" title=" non-linear feed-back"> non-linear feed-back</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defects" title=" point defects"> point defects</a> </p> <a href="https://publications.waset.org/abstracts/55262/theoretical-approach-to-kinetics-of-transient-plasticity-of-metals-under-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Plasticity in Matrix Dominated Metal-Matrix Composite with One Active Slip Based Dislocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Takele%20Kasa">Temesgen Takele Kasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this paper is to suggest one active slip based continuum dislocation approach to matrix dominated MMC plasticity analysis. The approach centered the free energy principles through the continuum behavior of dislocations combined with small strain continuum kinematics. The analytical derivation of this method includes the formulation of one active slip system, the thermodynamic approach of dislocations, determination of free energy, and evolution of dislocations. In addition zero and non-zero energy dissipation analysis of dislocation evolution is also formulated by using varational energy minimization method. In general, this work shows its capability to analyze the plasticity of matrix dominated MMC with inclusions. The proposed method is also found to be capable of handling plasticity of MMC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20slip" title="active slip">active slip</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20dislocation" title=" continuum dislocation"> continuum dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=dominated" title=" dominated"> dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20dominated" title=" matrix dominated"> matrix dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/66664/plasticity-in-matrix-dominated-metal-matrix-composite-with-one-active-slip-based-dislocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Nonlinear Analysis with Failure Using the Boundary Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Pineda%20Leon">Ernesto Pineda Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dante%20Tolentino%20Lopez"> Dante Tolentino Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Janis%20Zapata%20Lopez"> Janis Zapata Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/89969/nonlinear-analysis-with-failure-using-the-boundary-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> A Crystal Plasticity Approach to Model Dynamic Strain Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Bal">Burak Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demircan%20Canadinc"> Demircan Canadinc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title="crystal plasticity">crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20aging" title=" dynamic strain aging"> dynamic strain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadfield%20steel" title=" Hadfield steel"> Hadfield steel</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20strain%20rate%20sensitivity" title=" negative strain rate sensitivity"> negative strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/76918/a-crystal-plasticity-approach-to-model-dynamic-strain-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangbo%20Pu">Jiangbo Pu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanhui%20Xu"> Hanhui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yazhou%20Wang"> Yazhou Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyan%20Cui"> Hongyan Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Hu"> Yong Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injury%20%28SCI%29" title="spinal cord injury (SCI)">spinal cord injury (SCI)</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20entropy" title=" sample entropy"> sample entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system"> complex system</a>, <a href="https://publications.waset.org/abstracts/search?q=firing%20pattern" title=" firing pattern"> firing pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20activity" title=" spontaneous activity"> spontaneous activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Basso%20Beattie%20Bresnahan%20%28BBB%29%20score" title=" Basso Beattie Bresnahan (BBB) score"> Basso Beattie Bresnahan (BBB) score</a> </p> <a href="https://publications.waset.org/abstracts/35148/non-linear-analysis-of-spontaneous-eeg-after-spinal-cord-injury-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mridul%20Sharma">Mridul Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Saroha"> Praveen Saroha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today's world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20derived%20neurotrophic%20factor" title="brain derived neurotrophic factor">brain derived neurotrophic factor</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20plasticity" title=" brain plasticity"> brain plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a> </p> <a href="https://publications.waset.org/abstracts/112374/descriptive-study-of-role-played-by-exercise-and-diet-on-brain-plasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> The Effect of Sand Content on Behavior of Kaolin Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Tohidi">Hamed Tohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20W.%20Mahar"> James W. Mahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%27s%20behaviour" title="clay's behaviour">clay's behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20content" title=" sand content"> sand content</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaolin%20clay" title=" Kaolin clay"> Kaolin clay</a> </p> <a href="https://publications.waset.org/abstracts/76267/the-effect-of-sand-content-on-behavior-of-kaolin-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Neuroplasticity: A Fresh Begining for Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title="neuroplasticity">neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20plasticity" title=" cognitive plasticity"> cognitive plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20theories" title=" plasticity theories"> plasticity theories</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20mechanisms" title=" plasticity mechanisms"> plasticity mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/11412/neuroplasticity-a-fresh-begining-for-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Neuroplasticity: A Fresh Beginning for Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title="neuroplasticity">neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20plasticity" title=" cognitive plasticity"> cognitive plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20theories" title=" plasticity theories"> plasticity theories</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20mechanisms" title=" plasticity mechanisms"> plasticity mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/26751/neuroplasticity-a-fresh-beginning-for-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Ali%20Sadegh-Zadeh">Seyed-Ali Sadegh-Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahboobe%20Bahrami"> Mahboobe Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Ahmadi"> Sahar Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed-Yaser%20Mousavi"> Seyed-Yaser Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Atashbar"> Hamed Atashbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Hajiyavand"> Amir M. Hajiyavand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20plasticity" title="neural plasticity">neural plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20adaptation" title=" brain adaptation"> brain adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20reshaping" title=" cognitive reshaping"> cognitive reshaping</a> </p> <a href="https://publications.waset.org/abstracts/184565/neural-reshaping-the-plasticity-of-human-brain-and-artificial-intelligence-in-the-learning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Cartelier">K. Cartelier</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aime"> D. Aime</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vernoud"> V. Vernoud</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Buitink"> J. Buitink</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Prosperi"> J. M. Prosperi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gallardo"> K. Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Le%20Signor"> C. Le Signor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GWAS" title="GWAS">GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20truncatula" title=" Medicago truncatula"> Medicago truncatula</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20proteins" title=" storage proteins"> storage proteins</a> </p> <a href="https://publications.waset.org/abstracts/114311/elucidating-the-genetic-determinism-of-seed-protein-plasticity-in-response-to-the-environment-using-medicago-truncatula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Bearing Capacity of Sulphuric Acid Content Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20N.%20Khare">R. N. Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Sahu"> J. P. Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Tamrakar"> Rajesh Kumar Tamrakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title="soil compaction">soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=H2SO4" title=" H2SO4"> H2SO4</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water" title=" soil water"> soil water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conditions" title=" water conditions"> water conditions</a> </p> <a href="https://publications.waset.org/abstracts/10029/bearing-capacity-of-sulphuric-acid-content-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Collapse Surface Definition of Clayey Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Naeemifar">Omid Naeemifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Naeimifar"> Ibrahim Naeimifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roza%20Rahbari"> Roza Rahbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been shown that a certain collapse surface may be defined for loose sands in the three dimensional space in which the sample sand experiences collapse and instability leading to an unsteady and strain-softening behaviour. The unsteady state due to collapse surface may lead to such phenomena in the sand as liquefaction and flow behaviour during undrained loading. Investigating the existence of the collapse surface in Firoozkooh 161 sand and its different clay mixtures with various plasticities, the present study aims to carry out an in-depth investigation of the effects of clay percent and its plasticity on the clayey sand behaviours. The results obtained indicate that collapse surface characteristics largely depend on fine percent and its plasticity. Interesting findings are also reported in this paper on the effects of fine sand percent and its plasticity on the behavioural characteristics and liquefaction potential of clayey sands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20state" title="critical state">critical state</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20surface" title=" collapse surface"> collapse surface</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20sand" title=" clayey sand"> clayey sand</a> </p> <a href="https://publications.waset.org/abstracts/38207/collapse-surface-definition-of-clayey-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu">Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li"> Chun-Qing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ductile%20metal%20pipes" title="Ductile metal pipes">Ductile metal pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20fracture%20toughness" title=" elastic fracture toughness"> elastic fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20crack" title=" longitudinal crack"> longitudinal crack</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/79581/model-of-elastic-fracture-toughness-for-ductile-metal-pipes-with-external-longitudinal-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Darshan%20Shaileshkumar">Patel Darshan Shaileshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Vanza"> M. G. Vanza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20shell%20ash" title="palm kernel shell ash">palm kernel shell ash</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cotton%20soil" title=" black cotton soil"> black cotton soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20limit" title=" liquid limit"> liquid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20index" title=" group index"> group index</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a> </p> <a href="https://publications.waset.org/abstracts/167203/improvement-in-plasticity-index-and-group-index-of-black-cotton-soil-using-palm-kernel-shell-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Material Parameter Identification of Modified AbdelKarim-Ohno Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cermak">Martin Cermak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Karasek"> Tomas Karasek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Rojicek"> Jaroslav Rojicek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20approach" title=" inverse approach"> inverse approach</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20plasticity" title=" cyclic plasticity"> cyclic plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting" title=" ratcheting "> ratcheting </a> </p> <a href="https://publications.waset.org/abstracts/21152/material-parameter-identification-of-modified-abdelkarim-ohno-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Halahla">A. M. Halahla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Baluch"> M. H. Baluch</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Rahman"> M. K. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Al-Gadhib"> A. H. Al-Gadhib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Akhtar"> M. N. Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20beam-column%20joints" title=" exterior beam-column joints"> exterior beam-column joints</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20damage%20plasticity%20model" title=" concrete damage plasticity model"> concrete damage plasticity model</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20simulation" title=" computational simulation"> computational simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20finite%20element%20model" title=" 3-D finite element model"> 3-D finite element model</a> </p> <a href="https://publications.waset.org/abstracts/41069/finite-element-simulation-of-rc-exterior-beam-column-joints-using-damage-plasticity-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Hastuti">Yulia Hastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi"> Ratna Dewi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sandi"> Muhammad Sandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20binder" title=" soil binder"> soil binder</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/58657/the-effect-of-soil-binder-and-gypsum-to-the-changes-of-the-expansive-soil-shear-strength-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> The Influence of Ni Elements on Mechanical Properties and Microstructure of Twinning Induced Plasticity (TWIP)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuksel%20Akinay">Yuksel Akinay</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Hayat"> Fatih Hayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of Ni elements on mechanical properties and microstructure of twinning induced plasticity (TWIP) steels were investigated in this study. TWIP 1 (0,6C, 24Mn) and TWIP 2 (0,6C, 24Mn, 1Ni) high Mn TWIP (Twinning Induced Plasticity) steels were fabricated, and were annealed at 700°C, 800°C and 900°C for 150 minute and then air-cooled. The microstructures and mechanical properties of specimens were analysed to investigate influence of Ni element on TWIP steel. The carbide precipitations have seen in microstructure of TWIP 1 and TWIP 2 specimen annealed at 700 °C. However, the microstructures of TWIP 1 annealed at 800°C and 900°C are fully austenite and some grains are including annealing twins. However twining did not occur at TWIP 2 specimens annealed at 700 °C, 800 °C and 900 °C. TWIP 2 steel contains also Ni element differently from TWIP 1 steel. It can conclude that, Nickel (Ni) was restrained formation of twinning. The reversion of the tensile strength occurred between 700°C and 800°C because of the carbide precipitation hardening. Beside that, hardness value has decreased between 800 °C and 900 °C, which show a good agreement with the equilibrium dissolution temperature of M3C carbides. However, the results show that, carbide precipitations also are as strong barriers for the formation of twining. For this reason, twinning was not obtained at 700 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20manganese" title="high manganese">high manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TWIP%20steel" title=" TWIP steel"> TWIP steel</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20rolling" title=" cold rolling"> cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a> </p> <a href="https://publications.waset.org/abstracts/41666/the-influence-of-ni-elements-on-mechanical-properties-and-microstructure-of-twinning-induced-plasticity-twip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Evaluation of Cyclic Thermo-Mechanical Responses of an Industrial Gas Turbine Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Rae">Y. Rae</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benaarbia"> A. Benaarbia</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hughes"> J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Sun"> Wei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an elasto-visco-plastic computational modelling method which can be used to assess the cyclic plasticity responses of high temperature structures operating under thermo-mechanical loadings. The material constitutive equation used is an improved unified multi-axial Chaboche-Lemaitre model, which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorithm. The associated user material (UMAT) code is developed and calibrated across isothermal hold-time low cycle fatigue tests for a typical turbine rotor steel for use in finite element (FE) implementation. The model is applied to a realistic industrial gas turbine rotor, where the study focuses its attention on the deformation heterogeneities and critical high stress areas within the rotor structure. The potential improvements of such FE visco-plastic approach are discussed. An integrated life assessment procedure based on R5 and visco-plasticity modelling, is also briefly addressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unified%20visco-plasticity" title="unified visco-plasticity">unified visco-plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical" title=" thermo-mechanical"> thermo-mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20rotor" title=" turbine rotor"> turbine rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modelling" title=" finite element modelling"> finite element modelling</a> </p> <a href="https://publications.waset.org/abstracts/118938/evaluation-of-cyclic-thermo-mechanical-responses-of-an-industrial-gas-turbine-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> A Constitutive Model for Time-Dependent Behavior of Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20Mac">T. N. Mac</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shahbodaghkhan"> B. Shahbodaghkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Khalili"> N. Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounding%20surface" title="bounding surface">bounding surface</a>, <a href="https://publications.waset.org/abstracts/search?q=consistency%20theory" title=" consistency theory"> consistency theory</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20model" title=" constitutive model"> constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/9523/a-constitutive-model-for-time-dependent-behavior-of-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekim%20Berisha">Bekim Berisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hirsiger"> Sebastian Hirsiger</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Hora"> Pavel Hora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropic%20hardening" title="anisotropic hardening">anisotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title=" crystal plasticity"> crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20solver" title=" spectral solver"> spectral solver</a> </p> <a href="https://publications.waset.org/abstracts/91272/modeling-of-anisotropic-hardening-based-on-crystal-plasticity-theory-and-virtual-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Experimental and Numerical Investigation on Deformation Behaviour of Single Crystal Copper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suman%20Paik">Suman Paik</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Durgaprasad"> P. V. Durgaprasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijan%20K.%20Dutta"> Bijan K. Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study combining experimental and numerical investigation on the deformation behaviour of single crystals of copper is presented in this paper. Cylindrical samples were cut in specific orientations from high purity copper single crystal and subjected to uniaxial compression loading at quasi-static strain rate. The stress-strain curves along two different crystallographic orientations were then extracted. In order to study and compare the deformation responses, a single crystal plasticity model incorporating non-Schmid effects was developed assuming cross-slip plays an important role in orientation of the material. By making use of crystal plasticity finite element method, the model was applied to investigate the orientation dependence of the stress-strain behaviour of two crystallographic orientations. Finally, details of slip activities of deformed crystals were investigated by linking the orientation of slip lines with the theoretical traces of possible crystallographic planes. The experimentally determined active slip modes were matched with those determined by simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title="crystal plasticity">crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Schmid%20effects" title=" non-Schmid effects"> non-Schmid effects</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20strain" title=" finite strain"> finite strain</a> </p> <a href="https://publications.waset.org/abstracts/107627/experimental-and-numerical-investigation-on-deformation-behaviour-of-single-crystal-copper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Seyfi">Sara Seyfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDT%20contamination" title="DDT contamination">DDT contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20characteristics" title=" geotechnical characteristics"> geotechnical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination" title=" petroleum contamination"> petroleum contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/186047/studying-the-simultaneous-effect-of-petroleum-and-ddt-pollution-on-the-geotechnical-characteristics-of-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almudena%20Espin%20Perez">Almudena Espin Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Tyler%20Risom"> Tyler Risom</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Pelz"> Carl Pelz</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20English"> Isabel English</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20M.%20Angelo"> Robert M. Angelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosalie%20%20Sears"> Rosalie Sears</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20J.%20Gentles"> Andrew J. Gentles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deconvolution" title="deconvolution">deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microenvironment" title=" microenvironment"> microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=PDAC" title=" PDAC"> PDAC</a> </p> <a href="https://publications.waset.org/abstracts/122441/computational-approaches-to-study-lineage-plasticity-in-human-pancreatic-ductal-adenocarcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Effect of Interference and Form Defect on the Cohesion of the Shrink-Fit Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allal%20Bedlaoui">Allal Bedlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Boutoutaou"> Hamid Boutoutaou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to its superior economics, shrink-fit assembly is one of the best mechanical assembly methods. There are simply two components, the axis and hub. It is used in many different industries, including the production of trains, cars, and airplanes. The outer radius of the inner cylinder must be greater than the inner radius of the outer cylinder for this operation; this difference is referred to as the "interference" between the two cylinders. There are three ways to accomplish this: heating the outer cylinder to cause it to expand; cooling the cylinder's inside to cause it to contract; and third, finishing the fitting under a press. At the intersection of the two matched parts, a contact pressure and friction force are generated. We consider interference and form defects in this article because they prevent the connection between the axis and the hub from having a perfect form surface and because we will be looking at how they affect the assembly. Numerical simulation is used to ascertain if interference and form defects have a beneficial or negative influence in the distribution of stresses, assembly resistance, and plasticity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shrink-fit" title="shrink-fit">shrink-fit</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=form%20defect" title=" form defect"> form defect</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20force" title=" extraction force"> extraction force</a> </p> <a href="https://publications.waset.org/abstracts/167735/effect-of-interference-and-form-defect-on-the-cohesion-of-the-shrink-fit-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabitha%20Rahim">Sabitha Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=language%20acquisition" title="language acquisition">language acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20paths" title=" neural paths"> neural paths</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title=" neuroplasticity"> neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=vocabulary%20attrition" title=" vocabulary attrition"> vocabulary attrition</a> </p> <a href="https://publications.waset.org/abstracts/124459/neuroplasticity-in-language-acquisition-in-english-as-foreign-language-classrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Surbhi">Surbhi Surbhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Erni"> Andrea Erni</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunter%20Meister"> Gunter Meister</a>, <a href="https://publications.waset.org/abstracts/search?q=Harold%20Cremer"> Harold Cremer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Beclin"> Christophe Beclin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RNA-induced%20silencing%20complexes" title="RNA-induced silencing complexes">RNA-induced silencing complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=TNRC6B" title=" TNRC6B"> TNRC6B</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=argonaute" title=" argonaute"> argonaute</a>, <a href="https://publications.waset.org/abstracts/search?q=synapse" title=" synapse"> synapse</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20plasticity" title=" neuronal plasticity"> neuronal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurogenesis" title=" neurogenesis"> neurogenesis</a> </p> <a href="https://publications.waset.org/abstracts/155817/in-vivo-investigation-of-microrna-expression-and-function-at-the-mammalian-synapse-by-ago-app" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> A Molecular Dynamics Study on Intermittent Plasticity and Dislocation Avalanche Emissions in FCC and BCC Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Varillas">Javier Varillas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Alcal%C3%A1"> Jorge Alcalá</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate dislocation avalanche phenomena in face-centered cubic (FCC) and body-centered cubic (BCC) crystals using massive, large-scale molecular dynamics (MD) simulations. The analysis is focused on the intermittent development of dense dislocation arrangements subjected to uniaxial tensile straining under displacement control. We employ a novel computational scheme that allows us to inject an entangled dislocation structure in periodic MD domains. We assess the emission of plastic bursts (or dislocation avalanches) in terms of the sharp stress drops detected in the stress-strain curve. The plastic activity corresponds to the sporadic operation of specific dislocation glide processes exhibiting quiescent periods between successive avalanche events. We find that the plastic intermittences in our simulations do not overlap in time under sufficiently low strain rates as dissipation operates faster than driving, where the dense dislocation networks evolve through the emission of dislocation avalanche events whose carried slip adheres to self-organized power-law distributions. These findings enable the extension of the slip distributions obtained from strict displacement-controlled micropillar compression experiments towards smaller values of slip size. Our results furnish further understanding upon the development of entangled dislocation networks in metal plasticity, including specific mechanisms of dislocation propagation and annihilation, along with the evolution of specific dislocation populations through dislocation density analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dislocations" title="dislocations">dislocations</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20plasticity" title=" intermittent plasticity"> intermittent plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20distributions" title=" slip distributions"> slip distributions</a> </p> <a href="https://publications.waset.org/abstracts/120323/a-molecular-dynamics-study-on-intermittent-plasticity-and-dislocation-avalanche-emissions-in-fcc-and-bcc-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spike-timing-dependent%20plasticity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>