CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 50 results for author: <span class="mathjax">Cadoux, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Cadoux%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cadoux, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cadoux%2C+F&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cadoux, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Cadoux%2C+F&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Cadoux%2C+F&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Cadoux%2C+F&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23833">arXiv:2410.23833</a> <span> [<a href="https://arxiv.org/pdf/2410.23833">pdf</a>, <a href="https://arxiv.org/format/2410.23833">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Performance tests and hardware qualification of the FEBs for the Super-FGD of T2K Phase II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giannessi%2C+L">Lorenzo Giannessi</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cap%2C+S">Sebastien Cap</a>, <a href="/search/physics?searchtype=author&query=Chakrani%2C+J">Jaafar Chakrani</a>, <a href="/search/physics?searchtype=author&query=Drapier%2C+O">Olivier Drapier</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Gastaldi%2C+F">Franck Gastaldi</a>, <a href="/search/physics?searchtype=author&query=Jakkapu%2C+M">Mahesh Jakkapu</a>, <a href="/search/physics?searchtype=author&query=Nanni%2C+J">Jerome Nanni</a>, <a href="/search/physics?searchtype=author&query=Sakashita%2C+K">Ken Sakashita</a>, <a href="/search/physics?searchtype=author&query=S%C3%A1nchez%2C+F">Federico S谩nchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23833v1-abstract-short" style="display: inline;"> T2K is a long baseline neutrino experiment, entering Phase II with a Near Detector upgrade. The T2K near detector (ND280) upgrade consists of the installation of three new detector systems: a plastic scintillator neutrino active target (Super-FGD), two time projection chambers (HA-TPC) and a time of flight detector (TOF). The Super-FGD is composed of 2-million 1 cm-cube scintillating cubes read by… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23833v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23833v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23833v1-abstract-full" style="display: none;"> T2K is a long baseline neutrino experiment, entering Phase II with a Near Detector upgrade. The T2K near detector (ND280) upgrade consists of the installation of three new detector systems: a plastic scintillator neutrino active target (Super-FGD), two time projection chambers (HA-TPC) and a time of flight detector (TOF). The Super-FGD is composed of 2-million 1 cm-cube scintillating cubes read by almost 60 thousand wavelength-shifting (WLS) fibers coupled to an MPPC on one end. Given the large number of channels, the limited space inside magnetic environment, and the limited time from production to installation, the development and testing of the Front-end electronics boards (FEB) for the read-out of the Super-FGD channels represented a challenging task for the success of the upgrade. This work presents the performance tests confirming that the FEB aligns with detector requirements, and the hardware qualification of 240 FEBs through a custom QC test bench designed to detect and locate hardware failures to speed up the repairing process. Installation of the electronics in the detector took place in March 2024, one year after the beginning of the FEB mass production, and the first successful neutrino beam run took place in June of the same year. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23833v1-abstract-full').style.display = 'none'; document.getElementById('2410.23833v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Topical Workshop on Electronics for Particle Physics - TWEPP 2024 - 30 September - 4 October, 2024 - Glasgow, Scotland</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12885">arXiv:2404.12885</a> <span> [<a href="https://arxiv.org/pdf/2404.12885">pdf</a>, <a href="https://arxiv.org/format/2404.12885">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Testbeam results of irradiated SiGe BiCMOS monolithic silicon pixel detector without internal gain layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Semendyaev%2C+I">I. Semendyaev</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/physics?searchtype=author&query=Takubo%2C+Y">Y. Takubo</a>, <a href="/search/physics?searchtype=author&query=Togawa%2C+M">M. Togawa</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Cecconi%2C+L">L. Cecconi</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12885v3-abstract-short" style="display: inline;"> Samples of the monolithic silicon pixel ASIC prototype produced in 2022 within the framework of the Horizon 2020 MONOLITH ERC Advanced project were irradiated with 70 MeV protons up to a fluence of 1 x 1016 neq/cm2, and then tested using a beam of 120 GeV/c pions. The ASIC contains a matrix of 100 渭m pitch hexagonal pixels, readout out by low noise and very fast frontend electronics produced in a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12885v3-abstract-full').style.display = 'inline'; document.getElementById('2404.12885v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12885v3-abstract-full" style="display: none;"> Samples of the monolithic silicon pixel ASIC prototype produced in 2022 within the framework of the Horizon 2020 MONOLITH ERC Advanced project were irradiated with 70 MeV protons up to a fluence of 1 x 1016 neq/cm2, and then tested using a beam of 120 GeV/c pions. The ASIC contains a matrix of 100 渭m pitch hexagonal pixels, readout out by low noise and very fast frontend electronics produced in a 130 nm SiGe BiCMOS technology process. The dependence on the proton fluence of the efficiency and the time resolution of this prototype was measured with the frontend electronics operated at a power density between 0.13 and 0.9 W/cm2. The testbeam data show that the detection efficiency of 99.96% measured at sensor bias voltage of 200 V before irradiation becomes 96.2% after a fluence of 1 x 1016 neq/cm2. An increase of the sensor bias voltage to 300 V provides an efficiency to 99.7% at that proton fluence. The timing resolution of 20 ps measured before irradiation rises for a proton fluence of 1 x 1016 neq/cm2 to 53 and 45 ps at HV = 200 and 300 V, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12885v3-abstract-full').style.display = 'none'; document.getElementById('2404.12885v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12520">arXiv:2403.12520</a> <span> [<a href="https://arxiv.org/pdf/2403.12520">pdf</a>, <a href="https://arxiv.org/format/2403.12520">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.021802">10.1103/PhysRevLett.133.021802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of the $谓_e$ and $谓_渭$ Interaction Cross Sections at the LHC with FASER's Emulsion Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abraham%2C+R+M">Roshan Mammen Abraham</a>, <a href="/search/physics?searchtype=author&query=Anders%2C+J">John Anders</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Atkinson%2C+J">Jeremy Atkinson</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F+U">Florian U. Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Burger%2C+A">Angela Burger</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">Roberto Cardella</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">Stephane Debieux</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Desai%2C+A">Ansh Desai</a>, <a href="/search/physics?searchtype=author&query=Dmitrievsky%2C+S">Sergey Dmitrievsky</a>, <a href="/search/physics?searchtype=author&query=Eley%2C+S">Sinead Eley</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12520v2-abstract-short" style="display: inline;"> This paper presents the first results of the study of high-energy electron and muon neutrino charged-current interactions in the FASER$谓$ emulsion/tungsten detector of the FASER experiment at the LHC. A subset of the FASER$谓$ volume, which corresponds to a target mass of 128.6~kg, was exposed to neutrinos from the LHC $pp$ collisions with a centre-of-mass energy of 13.6~TeV and an integrated lumin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12520v2-abstract-full').style.display = 'inline'; document.getElementById('2403.12520v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12520v2-abstract-full" style="display: none;"> This paper presents the first results of the study of high-energy electron and muon neutrino charged-current interactions in the FASER$谓$ emulsion/tungsten detector of the FASER experiment at the LHC. A subset of the FASER$谓$ volume, which corresponds to a target mass of 128.6~kg, was exposed to neutrinos from the LHC $pp$ collisions with a centre-of-mass energy of 13.6~TeV and an integrated luminosity of 9.5 fb$^{-1}$. Applying stringent selections requiring electrons with reconstructed energy above 200~GeV, four electron neutrino interaction candidate events are observed with an expected background of $0.025^{+0.015}_{-0.010}$, leading to a statistical significance of 5.2$蟽$. This is the first direct observation of electron neutrino interactions at a particle collider. Eight muon neutrino interaction candidate events are also detected, with an expected background of $0.22^{+0.09}_{-0.07}$, leading to a statistical significance of 5.7$蟽$. The signal events include neutrinos with energies in the TeV range, the highest-energy electron and muon neutrinos ever detected from an artificial source. The energy-independent part of the interaction cross section per nucleon is measured over an energy range of 560--1740 GeV (520--1760 GeV) for $谓_e$ ($谓_渭$) to be $(1.2_{-0.7}^{+0.8}) \times 10^{-38}~\mathrm{cm}^{2}\,\mathrm{GeV}^{-1}$ ($(0.5\pm0.2) \times 10^{-38}~\mathrm{cm}^{2}\,\mathrm{GeV}^{-1}$), consistent with Standard Model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12520v2-abstract-full').style.display = 'none'; document.getElementById('2403.12520v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 021802 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19398">arXiv:2310.19398</a> <span> [<a href="https://arxiv.org/pdf/2310.19398">pdf</a>, <a href="https://arxiv.org/format/2310.19398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/01/P01014">10.1088/1748-0221/19/01/P01014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation Tolerance of SiGe BiCMOS Monolithic Silicon Pixel Detectors without Internal Gain Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Semendyaev%2C+I">I. Semendyaev</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Nakamura%2C+K">K. Nakamura</a>, <a href="/search/physics?searchtype=author&query=Tabuko%2C+Y">Y. Tabuko</a>, <a href="/search/physics?searchtype=author&query=Togawa%2C+M">M. Togawa</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19398v1-abstract-short" style="display: inline;"> A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer with a resistivity of 350 惟cm were used to produce a fully depleted se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19398v1-abstract-full').style.display = 'inline'; document.getElementById('2310.19398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19398v1-abstract-full" style="display: none;"> A monolithic silicon pixel prototype produced for the MONOLITH ERC Advanced project was irradiated with 70 MeV protons up to a fluence of 1 x 10^16 1 MeV n_eq/cm^2. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer with a resistivity of 350 惟cm were used to produce a fully depleted sensor. Laboratory tests conducted with a 90Sr source show that the detector works satisfactorily after irradiation. The signal-to-noise ratio is not seen to change up to fluence of 6 x 10^14 n_eq /cm^2 . The signal time jitter was estimated as the ratio between the voltage noise and the signal slope at threshold. At -35 {^\circ}C, sensor bias voltage of 200 V and frontend power consumption of 0.9 W/cm^2, the time jitter of the most-probable signal amplitude was estimated to be 21 ps for proton fluence up to 6 x 10 n_eq/cm^2 and 57 ps at 1 x 10^16 n_eq/cm^2 . Increasing the sensor bias to 250 V and the analog voltage of the preamplifier from 1.8 to 2.0 V provides a time jitter of 40 ps at 1 x 10^16 n_eq/cm^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19398v1-abstract-full').style.display = 'none'; document.getElementById('2310.19398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12244">arXiv:2301.12244</a> <span> [<a href="https://arxiv.org/pdf/2301.12244">pdf</a>, <a href="https://arxiv.org/format/2301.12244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/03/P03047">10.1088/1748-0221/18/03/P03047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 20 ps Time Resolution with a Fully-Efficient Monolithic Silicon Pixel Detector without Internal Gain Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Munker%2C+M">M. Munker</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Kugathasan%2C+T">T. Kugathasan</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Elviretti%2C+M">M. Elviretti</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Trusch%2C+A">A. Trusch</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Iodice%2C+L">L. Iodice</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12244v1-abstract-short" style="display: inline;"> A second monolithic silicon pixel prototype was produced for the MONOLITH project. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by a low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer of 350 惟cm resistivity were used to produce a fully depleted sensor. Laboratory and testbeam measurements of the analog channels present in the pixel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12244v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12244v1-abstract-full" style="display: none;"> A second monolithic silicon pixel prototype was produced for the MONOLITH project. The ASIC contains a matrix of hexagonal pixels with 100 渭m pitch, readout by a low-noise and very fast SiGe HBT frontend electronics. Wafers with 50 渭m thick epilayer of 350 惟cm resistivity were used to produce a fully depleted sensor. Laboratory and testbeam measurements of the analog channels present in the pixel matrix show that the sensor has a 130 V wide bias-voltage operation plateau at which the efficiency is 99.8%. Although this prototype does not include an internal gain layer, the design optimised for timing of the sensor and the front-end electronics provides a time resolutions of 20 ps. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12244v1-abstract-full').style.display = 'none'; document.getElementById('2301.12244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.08474">arXiv:2212.08474</a> <span> [<a href="https://arxiv.org/pdf/2212.08474">pdf</a>, <a href="https://arxiv.org/format/2212.08474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167934">10.1016/j.nima.2022.167934 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature dependence of radiation damage annealing of Silicon Photomultipliers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=De+Angelis%2C+N">Nicolas De Angelis</a>, <a href="/search/physics?searchtype=author&query=Kole%2C+M">Merlin Kole</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Hulsman%2C+J">Johannes Hulsman</a>, <a href="/search/physics?searchtype=author&query=Kowalski%2C+T">Tomasz Kowalski</a>, <a href="/search/physics?searchtype=author&query=Kusyk%2C+S">Sebastian Kusyk</a>, <a href="/search/physics?searchtype=author&query=Mianowski%2C+S">Slawomir Mianowski</a>, <a href="/search/physics?searchtype=author&query=Rybka%2C+D">Dominik Rybka</a>, <a href="/search/physics?searchtype=author&query=Stauffer%2C+J">Jerome Stauffer</a>, <a href="/search/physics?searchtype=author&query=Swakon%2C+J">Jan Swakon</a>, <a href="/search/physics?searchtype=author&query=Wrobel%2C+D">Damian Wrobel</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xin Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.08474v1-abstract-short" style="display: inline;"> The last decade has increasingly seen the use of silicon photomultipliers (SiPMs) instead of photomultiplier tubes (PMTs). This is due to various advantages of the former on the latter like its smaller size, lower operating voltage, higher detection efficiency, insensitivity to magnetic fields and mechanical robustness to launch vibrations. All these features make SiPMs ideal for use on space base… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08474v1-abstract-full').style.display = 'inline'; document.getElementById('2212.08474v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.08474v1-abstract-full" style="display: none;"> The last decade has increasingly seen the use of silicon photomultipliers (SiPMs) instead of photomultiplier tubes (PMTs). This is due to various advantages of the former on the latter like its smaller size, lower operating voltage, higher detection efficiency, insensitivity to magnetic fields and mechanical robustness to launch vibrations. All these features make SiPMs ideal for use on space based experiments where the detectors require to be compact, lightweight and capable of surviving launch conditions. A downside with the use of this novel type of detector in space conditions is its susceptibility to radiation damage. In order to understand the lifetime of SiPMs in space, both the damage sustained due to radiation as well as the subsequent recovery, or annealing, from this damage have to be studied. Here we present these studies for three different types of SiPMs from the Hamamatsu S13360 series. Both their behaviour after sustaining radiation equivalent to 2 years in low earth orbit in a typical mission is presented, as well as the recovery of these detectors while stored in different conditions. The storage conditions varied in temperature as well as in operating voltage. The study found that the annealing depends significantly on the temperature of the detectors with those stored at high temperatures recovering significantly faster and at recovering closer to the original performance. Additionally, no significant effect from a reasonable bias voltage on the annealing was observed. Finally the annealing rate as a function of temperature is presented along with various operating strategies for the future SiPM based astrophysical detector POLAR-2 as well as for future SiPM based space borne missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.08474v1-abstract-full').style.display = 'none'; document.getElementById('2212.08474v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11019">arXiv:2208.11019</a> <span> [<a href="https://arxiv.org/pdf/2208.11019">pdf</a>, <a href="https://arxiv.org/format/2208.11019">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/10/P10040">10.1088/1748-0221/17/10/P10040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testbeam Results of the Picosecond Avalanche Detector Proof-Of-Concept Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Munker%2C+M">M. Munker</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Trusch%2C+A">A. Trusch</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">P. Valerio</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Gurimskaya%2C+Y">Y. Gurimskaya</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Pizarro-Medina%2C+A">A. Pizarro-Medina</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11019v1-abstract-short" style="display: inline;"> The proof-of-concept prototype of the Picosecond Avalanche Detector, a multi-PN junction monolithic silicon detector with continuous gain layer deep in the sensor depleted region, was tested with a beam of 180 GeV pions at the CERN SPS. The prototype features low noise and fast SiGe BiCMOS frontend electronics and hexagonal pixels with 100 渭m pitch. At a sensor bias voltage of 125 V, the detector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11019v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11019v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11019v1-abstract-full" style="display: none;"> The proof-of-concept prototype of the Picosecond Avalanche Detector, a multi-PN junction monolithic silicon detector with continuous gain layer deep in the sensor depleted region, was tested with a beam of 180 GeV pions at the CERN SPS. The prototype features low noise and fast SiGe BiCMOS frontend electronics and hexagonal pixels with 100 渭m pitch. At a sensor bias voltage of 125 V, the detector provides full efficiency and average time resolution of 30, 25 and 17 ps in the overall pixel area for a power consumption of 0.4, 0.9 and 2.7 W/cm^2, respectively. In this first prototype the time resolution depends significantly on the distance from the center of the pixel, varying at the highest power consumption measured between 13 ps at the center of the pixel and 25 ps in the inter-pixel region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11019v1-abstract-full').style.display = 'none'; document.getElementById('2208.11019v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11427">arXiv:2207.11427</a> <span> [<a href="https://arxiv.org/pdf/2207.11427">pdf</a>, <a href="https://arxiv.org/format/2207.11427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05066">10.1088/1748-0221/19/05/P05066 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The FASER Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Mansour%2C+E+A">Elham Amin Mansour</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Crespo-Lopez%2C+O">Olivier Crespo-Lopez</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">Stephane Debieux</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dougherty%2C+L">Liam Dougherty</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Ezzat%2C+A">Abdallah Ezzat</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11427v1-abstract-short" style="display: inline;"> FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11427v1-abstract-full').style.display = 'inline'; document.getElementById('2207.11427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11427v1-abstract-full" style="display: none;"> FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$谓$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system and its commissioning using cosmic-rays collected in September 2021 and during the LHC pilot beam test carried out in October 2021. FASER will start taking LHC collision data in 2022, and will run throughout LHC Run 3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11427v1-abstract-full').style.display = 'none'; document.getElementById('2207.11427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">92 pages, 72 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-FASER-2022-001 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05066 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.10507">arXiv:2206.10507</a> <span> [<a href="https://arxiv.org/pdf/2206.10507">pdf</a>, <a href="https://arxiv.org/format/2206.10507">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/01/P01012">10.1088/1748-0221/18/01/P01012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SuperFGD prototype time resolution studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/physics?searchtype=author&query=Arihara%2C+T">T. Arihara</a>, <a href="/search/physics?searchtype=author&query=Baranov%2C+V">V. Baranov</a>, <a href="/search/physics?searchtype=author&query=Bartoszek%2C+L">L. Bartoszek</a>, <a href="/search/physics?searchtype=author&query=Bernardi%2C+L">L. Bernardi</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Boikov%2C+A+V">A. V. Boikov</a>, <a href="/search/physics?searchtype=author&query=Buizza-Avanzini%2C+M">M. Buizza-Avanzini</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cap%C3%B3%2C+J">J. Cap贸</a>, <a href="/search/physics?searchtype=author&query=Cayo%2C+J">J. Cayo</a>, <a href="/search/physics?searchtype=author&query=Chakrani%2C+J">J. Chakrani</a>, <a href="/search/physics?searchtype=author&query=Chong%2C+P+S">P. S. Chong</a>, <a href="/search/physics?searchtype=author&query=Chvirova%2C+A">A. Chvirova</a>, <a href="/search/physics?searchtype=author&query=Danilov%2C+M">M. Danilov</a>, <a href="/search/physics?searchtype=author&query=Davydov%2C+Y+I">Yu. I. Davydov</a>, <a href="/search/physics?searchtype=author&query=Dergacheva%2C+A">A. Dergacheva</a>, <a href="/search/physics?searchtype=author&query=Dokania%2C+N">N. Dokania</a>, <a href="/search/physics?searchtype=author&query=Douqa%2C+D">D. Douqa</a>, <a href="/search/physics?searchtype=author&query=Drapier%2C+O">O. Drapier</a>, <a href="/search/physics?searchtype=author&query=Eguchi%2C+A">A. Eguchi</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fedorova%2C+D">D. Fedorova</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+Y">Y. Fujii</a> , et al. (65 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.10507v2-abstract-short" style="display: inline;"> The SuperFGD will be a part of the ND280 near detector of the T2K and Hyper Kamiokande projects, that will help to reduce systematic uncertainties related with neutrino flux and cross-section modeling. The upgraded ND280 will be able to perform a full exclusive reconstruction of the final state from neutrino-nucleus interactions, including measurements of low momentum protons, pions and, for the f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.10507v2-abstract-full').style.display = 'inline'; document.getElementById('2206.10507v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.10507v2-abstract-full" style="display: none;"> The SuperFGD will be a part of the ND280 near detector of the T2K and Hyper Kamiokande projects, that will help to reduce systematic uncertainties related with neutrino flux and cross-section modeling. The upgraded ND280 will be able to perform a full exclusive reconstruction of the final state from neutrino-nucleus interactions, including measurements of low momentum protons, pions and, for the first time, event-by event measurements of neutron kinematics. The time resolution defines the neutron energy resolution. We present the results of time resolution measurements made with the SuperFGD prototype that consists of 9216 plastic scintillator cubes (cube size is 1 cm$^3$) readout with 1728 wavelength-shifting fibers going along three orthogonal directions. We use data from the muon beam exposure at CERN. The time resolution of 0.97 ns was obtained for one readout channel after implementing the time calibration with a correction for the time-walk effect. The time resolution improves with energy deposited in a scintillator cube. Averaging two readout channels for one scintillator cube improves the time resolution to 0.68 ns which means that signals in different channels are not synchronous. Therefore the contribution from the time recording step of 2.5 ns is averaged as well. Averaging time values from N channels improves the time resolution by $\sim 1/\sqrt{N}$. Therefore a very good time resolution should be achievable for neutrons since neutron recoils hit typically several scintillator cubes and in addition produce larger amplitudes than muons. Measurements performed with a laser and a wide-bandwidth oscilloscope demonstrated that the time resolution obtained with the muon beam is not far from its expected limit. The intrinsic time resolution of one channel is 0.67 ns for signals of 56 photo-electron typical for minimum ionizing particles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.10507v2-abstract-full').style.display = 'none'; document.getElementById('2206.10507v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures. Revised text, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 18 P01012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07952">arXiv:2206.07952</a> <span> [<a href="https://arxiv.org/pdf/2206.07952">pdf</a>, <a href="https://arxiv.org/format/2206.07952">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Picosecond Avalanche Detector -- working principle and gain measurement with a proof-of-concept prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Munker%2C+M">M. Munker</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=Gurimskaya%2C+Y">Y. Gurimskaya</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Trusch%2C+A">A. Trusch</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">P. Valerio</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fenoglio%2C+C+A">C. A. Fenoglio</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Medina%2C+A+P">A. Pizarro Medina</a>, <a href="/search/physics?searchtype=author&query=Iglesias%2C+J+S">J. Sabater Iglesias</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07952v2-abstract-short" style="display: inline;"> The Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a $\mathrm{(NP)_{drift}(NP)_{gain}}$ structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07952v2-abstract-full').style.display = 'inline'; document.getElementById('2206.07952v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07952v2-abstract-full" style="display: none;"> The Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a $\mathrm{(NP)_{drift}(NP)_{gain}}$ structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The signal is then induced by the secondary charges moving inside a thicker drift region. A proof-of-concept monolithic prototype, consisting of a matrix of hexagonal pixels with 100 $渭$m pitch, has been produced using the 130 nm SiGe BiCMOS process by IHP microelectronics. Measurements on probe station and with a $^{55}$Fe X-ray source show that the prototype is functional and displays avalanche gain up to a maximum electron gain of 23. A study of the avalanche characteristics, corroborated by TCAD simulations, indicates that space-charge effects due to the large primary charge produced by the conversion of X-rays from the $^{55}$Fe source limits the effective gain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07952v2-abstract-full').style.display = 'none'; document.getElementById('2206.07952v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.08999">arXiv:2112.08999</a> <span> [<a href="https://arxiv.org/pdf/2112.08999">pdf</a>, <a href="https://arxiv.org/format/2112.08999">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/02/P02019">10.1088/1748-0221/17/02/P02019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Efficiency and time resolution of monolithic silicon pixel detectors in SiGe BiCMOS technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">G. Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">L. Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">P. Valerio</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+T">T. Moretti</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cardarelli%2C+R">R. Cardarelli</a>, <a href="/search/physics?searchtype=author&query=Cardella%2C+R">R. Cardella</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9bieux%2C+S">S. D茅bieux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">D. Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">S. Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Gurimskaya%2C+Y">Y. Gurimskaya</a>, <a href="/search/physics?searchtype=author&query=Kotitsa%2C+R">R. Kotitsa</a>, <a href="/search/physics?searchtype=author&query=Magliocca%2C+C">C. Magliocca</a>, <a href="/search/physics?searchtype=author&query=Martinelli%2C+F">F. Martinelli</a>, <a href="/search/physics?searchtype=author&query=Milanesio%2C+M">M. Milanesio</a>, <a href="/search/physics?searchtype=author&query=M%C3%BCnker%2C+M">M. M眉nker</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Picardi%2C+A">A. Picardi</a>, <a href="/search/physics?searchtype=author&query=Saidi%2C+J">J. Saidi</a>, <a href="/search/physics?searchtype=author&query=R%C3%BCcker%2C+H">H. R眉cker</a>, <a href="/search/physics?searchtype=author&query=Pinto%2C+M+V+B">M. Vicente Barreto Pinto</a>, <a href="/search/physics?searchtype=author&query=Zambito%2C+S">S. Zambito</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.08999v2-abstract-short" style="display: inline;"> A monolithic silicon pixel detector prototype has been produced in the SiGe BiCMOS SG13G2 130 nm node technology by IHP. The ASIC contains a matrix of hexagonal pixels with pitch of approximately 100 $渭$m. Three analog pixels were calibrated in laboratory with radioactive sources and tested in a 180 GeV/c pion beamline at the CERN SPS. A detection efficiency of $\left(99.9^{+0.1}_{-0.2}\right)$% w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08999v2-abstract-full').style.display = 'inline'; document.getElementById('2112.08999v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.08999v2-abstract-full" style="display: none;"> A monolithic silicon pixel detector prototype has been produced in the SiGe BiCMOS SG13G2 130 nm node technology by IHP. The ASIC contains a matrix of hexagonal pixels with pitch of approximately 100 $渭$m. Three analog pixels were calibrated in laboratory with radioactive sources and tested in a 180 GeV/c pion beamline at the CERN SPS. A detection efficiency of $\left(99.9^{+0.1}_{-0.2}\right)$% was measured together with a time resolution of $(36.4 \pm 0.8)$ps at the highest preamplifier bias current working point of 150 $渭$A and at a sensor bias voltage of 160 V. The ASIC was also characterized at lower bias voltage and preamplifier current. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.08999v2-abstract-full').style.display = 'none'; document.getElementById('2112.08999v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.01116">arXiv:2112.01116</a> <span> [<a href="https://arxiv.org/pdf/2112.01116">pdf</a>, <a href="https://arxiv.org/format/2112.01116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166825">10.1016/j.nima.2022.166825 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The tracking detector of the FASER experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Crespo-Lopez%2C+O">Olivier Crespo-Lopez</a>, <a href="/search/physics?searchtype=author&query=Dmitrievsky%2C+S">Sergey Dmitrievsky</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Ezzat%2C+A">Abdallah Ezzat</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.01116v2-abstract-short" style="display: inline;"> FASER is a new experiment designed to search for new light weakly-interacting long-lived particles (LLPs) and study high-energy neutrino interactions in the very forward region of the LHC collisions at CERN. The experimental apparatus is situated 480 m downstream of the ATLAS interaction-point aligned with the beam collision axis. The FASER detector includes four identical tracker stations constru… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01116v2-abstract-full').style.display = 'inline'; document.getElementById('2112.01116v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.01116v2-abstract-full" style="display: none;"> FASER is a new experiment designed to search for new light weakly-interacting long-lived particles (LLPs) and study high-energy neutrino interactions in the very forward region of the LHC collisions at CERN. The experimental apparatus is situated 480 m downstream of the ATLAS interaction-point aligned with the beam collision axis. The FASER detector includes four identical tracker stations constructed from silicon microstrip detectors. Three of the tracker stations form a tracking spectrometer, and enable FASER to detect the decay products of LLPs decaying inside the apparatus, whereas the fourth station is used for the neutrino analysis. The spectrometer has been installed in the LHC complex since March 2021, while the fourth station is not yet installed. FASER will start physics data taking when the LHC resumes operation in early 2022. This paper describes the design, construction and testing of the tracking spectrometer, including the associated components such as the mechanics, readout electronics, power supplies and cooling system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.01116v2-abstract-full').style.display = 'none'; document.getElementById('2112.01116v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res., A 1034 (2022) 166825 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15186">arXiv:2110.15186</a> <span> [<a href="https://arxiv.org/pdf/2110.15186">pdf</a>, <a href="https://arxiv.org/format/2110.15186">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/12/P12028">10.1088/1748-0221/16/12/P12028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The trigger and data acquisition system of the FASER experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Mansour%2C+E+A">Elham Amin Mansour</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D">David Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">Stephane Debieux</a>, <a href="/search/physics?searchtype=author&query=Dmitrievsky%2C+S">Sergey Dmitrievsky</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gamberini%2C+E">Enrico Gamberini</a>, <a href="/search/physics?searchtype=author&query=Galantay%2C+E+K">Edward Karl Galantay</a> , et al. (59 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15186v2-abstract-short" style="display: inline;"> The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500-1000 Hz of other particles originating from the ATLAS interaction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15186v2-abstract-full').style.display = 'inline'; document.getElementById('2110.15186v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15186v2-abstract-full" style="display: none;"> The FASER experiment is a new small and inexpensive experiment that is placed 480 meters downstream of the ATLAS experiment at the CERN LHC. FASER is designed to capture decays of new long-lived particles, produced outside of the ATLAS detector acceptance. These rare particles can decay in the FASER detector together with about 500-1000 Hz of other particles originating from the ATLAS interaction point. A very high efficiency trigger and data acquisition system is required to ensure that the physics events of interest will be recorded. This paper describes the trigger and data acquisition system of the FASER experiment and presents performance results of the system acquired during initial commissioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15186v2-abstract-full').style.display = 'none'; document.getElementById('2110.15186v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2021_JINST_16_P12028 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03078">arXiv:2109.03078</a> <span> [<a href="https://arxiv.org/pdf/2109.03078">pdf</a>, <a href="https://arxiv.org/format/2109.03078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01016">10.1088/1748-0221/17/01/P01016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 4pi time-of-flight detector for the ND280/T2K upgrade </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Korzenev%2C+A">A. Korzenev</a>, <a href="/search/physics?searchtype=author&query=Barao%2C+F">F. Barao</a>, <a href="/search/physics?searchtype=author&query=Bordoni%2C+S">S. Bordoni</a>, <a href="/search/physics?searchtype=author&query=Breton%2C+D">D. Breton</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Lux%2C+T">T. Lux</a>, <a href="/search/physics?searchtype=author&query=Maalmi%2C+J">J. Maalmi</a>, <a href="/search/physics?searchtype=author&query=Mermod%2C+P">P. Mermod</a>, <a href="/search/physics?searchtype=author&query=Mineev%2C+O">O. Mineev</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+F">F. Sanchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03078v2-abstract-short" style="display: inline;"> ND280 is a near detector of the T2K experiment which is located in the J-PARC accelerator complex in Japan. After a decade of fruitful data-taking, ND280 is scheduled for upgrade. The time-of-flight (ToF) detector, which is described in this article, is one of three new detectors that will be installed in the basket of ND280. The ToF detector has a modular structure. Each module represents an arra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03078v2-abstract-full').style.display = 'inline'; document.getElementById('2109.03078v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03078v2-abstract-full" style="display: none;"> ND280 is a near detector of the T2K experiment which is located in the J-PARC accelerator complex in Japan. After a decade of fruitful data-taking, ND280 is scheduled for upgrade. The time-of-flight (ToF) detector, which is described in this article, is one of three new detectors that will be installed in the basket of ND280. The ToF detector has a modular structure. Each module represents an array of 20 plastic scintillator bars which are stacked in a plane of 2.4 x 2.2 m2 area. Six modules of similar construction will be assembled in a cube, thus providing an almost 4pi enclosure for an active neutrino target and two TPCs. The light emitted by scintillator is absorbed by arrays of large-area silicon photo-multipliers (SiPMs) which are attached to both ends of every bar. The readout of SiPMs, shaping and analog sum of individual SiPM signals within the array are performed by a discrete circuit amplifier. An average time resolution of about 0.14 ns is achieved for a single bar when measured with cosmic muons. The detector will be installed in the basket of ND280, where it will be used to veto particle originating outside the neutrino target, improve the particle identification and provide a cosmic trigger for calibration of detectors which are enclosed inside it. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03078v2-abstract-full').style.display = 'none'; document.getElementById('2109.03078v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 (2022) 01, P01016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06197">arXiv:2105.06197</a> <span> [<a href="https://arxiv.org/pdf/2105.06197">pdf</a>, <a href="https://arxiv.org/format/2105.06197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.L091101">10.1103/PhysRevD.104.L091101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First neutrino interaction candidates at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Afik%2C+Y">Yoav Afik</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Arakawa%2C+J">Jason Arakawa</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bernlochner%2C+F">Florian Bernlochner</a>, <a href="/search/physics?searchtype=author&query=Boeckh%2C+T">Tobias Boeckh</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Brenner%2C+L">Lydia Brenner</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cavanagh%2C+C">Charlotte Cavanagh</a>, <a href="/search/physics?searchtype=author&query=Cerutti%2C+F">Francesco Cerutti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=D%27Onofrio%2C+M">Monica D'Onofrio</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06197v3-abstract-short" style="display: inline;"> FASER$谓$ at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb$^{-1}$ of proton-proton collision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06197v3-abstract-full').style.display = 'inline'; document.getElementById('2105.06197v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06197v3-abstract-full" style="display: none;"> FASER$谓$ at the CERN Large Hadron Collider (LHC) is designed to directly detect collider neutrinos for the first time and study their cross sections at TeV energies, where no such measurements currently exist. In 2018, a pilot detector employing emulsion films was installed in the far-forward region of ATLAS, 480 m from the interaction point, and collected 12.2 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 13 TeV. We describe the analysis of this pilot run data and the observation of the first neutrino interaction candidates at the LHC. This milestone paves the way for high-energy neutrino measurements at current and future colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06197v3-abstract-full').style.display = 'none'; document.getElementById('2105.06197v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Auxiliary materials are available at https://faser.web.cern.ch/fasernu-first-neutrino-interaction-candidates</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11690">arXiv:2009.11690</a> <span> [<a href="https://arxiv.org/pdf/2009.11690">pdf</a>, <a href="https://arxiv.org/format/2009.11690">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165679">10.1016/j.nima.2021.165679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Technical design of the phase I Mu3e experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arndt%2C+K">K. Arndt</a>, <a href="/search/physics?searchtype=author&query=Augustin%2C+H">H. Augustin</a>, <a href="/search/physics?searchtype=author&query=Baesso%2C+P">P. Baesso</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berg%2C+F">F. Berg</a>, <a href="/search/physics?searchtype=author&query=Betancourt%2C+C">C. Betancourt</a>, <a href="/search/physics?searchtype=author&query=Bortoletto%2C+D">D. Bortoletto</a>, <a href="/search/physics?searchtype=author&query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&query=Briggl%2C+K">K. Briggl</a>, <a href="/search/physics?searchtype=author&query=Bruch%2C+D+v">D. vom Bruch</a>, <a href="/search/physics?searchtype=author&query=Buonaura%2C+A">A. Buonaura</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Barajas%2C+C+C">C. Chavez Barajas</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+K">K. Clark</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+P">P. Cooke</a>, <a href="/search/physics?searchtype=author&query=Corrodi%2C+S">S. Corrodi</a>, <a href="/search/physics?searchtype=author&query=Damyanova%2C+A">A. Damyanova</a>, <a href="/search/physics?searchtype=author&query=Demets%2C+Y">Y. Demets</a>, <a href="/search/physics?searchtype=author&query=Dittmeier%2C+S">S. Dittmeier</a>, <a href="/search/physics?searchtype=author&query=Eckert%2C+P">P. Eckert</a>, <a href="/search/physics?searchtype=author&query=Ehrler%2C+F">F. Ehrler</a>, <a href="/search/physics?searchtype=author&query=Fahrni%2C+D">D. Fahrni</a>, <a href="/search/physics?searchtype=author&query=Gagneur%2C+S">S. Gagneur</a>, <a href="/search/physics?searchtype=author&query=Gerritzen%2C+L">L. Gerritzen</a> , et al. (80 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11690v3-abstract-short" style="display: inline;"> The Mu3e experiment aims to find or exclude the lepton flavour violating decay $渭\rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2\cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11690v3-abstract-full').style.display = 'inline'; document.getElementById('2009.11690v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11690v3-abstract-full" style="display: none;"> The Mu3e experiment aims to find or exclude the lepton flavour violating decay $渭\rightarrow eee$ at branching fractions above $10^{-16}$. A first phase of the experiment using an existing beamline at the Paul Scherrer Institute (PSI) is designed to reach a single event sensitivity of $2\cdot 10^{-15}$. We present an overview of all aspects of the technical design and expected performance of the phase~I Mu3e detector. The high rate of up to $10^{8}$ muon decays per second and the low momenta of the decay electrons and positrons pose a unique set of challenges, which we tackle using an ultra thin tracking detector based on high-voltage monolithic active pixel sensors combined with scintillating fibres and tiles for precise timing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11690v3-abstract-full').style.display = 'none'; document.getElementById('2009.11690v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">117 pages. Minor corrections to the author list. Replaced with published version. Editor: Frank Meier Aeschbacher</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Vol. 1014 (2021) 165679 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08861">arXiv:2008.08861</a> <span> [<a href="https://arxiv.org/pdf/2008.08861">pdf</a>, <a href="https://arxiv.org/format/2008.08861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/12/P12003">10.1088/1748-0221/15/12/P12003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The SuperFGD Prototype Charged Particle Beam Tests </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Bordoni%2C+S">S. Bordoni</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Douqa%2C+D">D. Douqa</a>, <a href="/search/physics?searchtype=author&query=Dugas%2C+K">K. Dugas</a>, <a href="/search/physics?searchtype=author&query=Ekelof%2C+T">T. Ekelof</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Fransson%2C+K">K. Fransson</a>, <a href="/search/physics?searchtype=author&query=Fujita%2C+R">R. Fujita</a>, <a href="/search/physics?searchtype=author&query=Gramstad%2C+E">E. Gramstad</a>, <a href="/search/physics?searchtype=author&query=Ichikawa%2C+A+K">A. K. Ichikawa</a>, <a href="/search/physics?searchtype=author&query=Ilieva%2C+S">S. Ilieva</a>, <a href="/search/physics?searchtype=author&query=Iwamoto%2C+K">K. Iwamoto</a>, <a href="/search/physics?searchtype=author&query=Jesus-Valls%2C+C">C. Jesus-Valls</a>, <a href="/search/physics?searchtype=author&query=Jung%2C+C+K">C. K. Jung</a>, <a href="/search/physics?searchtype=author&query=Kasetti%2C+S+P">S. P. Kasetti</a>, <a href="/search/physics?searchtype=author&query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&query=Khotjantsev%2C+A">A. Khotjantsev</a>, <a href="/search/physics?searchtype=author&query=Korzenev%2C+A">A. Korzenev</a>, <a href="/search/physics?searchtype=author&query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Kutter%2C+T">T. Kutter</a>, <a href="/search/physics?searchtype=author&query=Lux%2C+T">T. Lux</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08861v2-abstract-short" style="display: inline;"> A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 4蟺 coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintill… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08861v2-abstract-full').style.display = 'inline'; document.getElementById('2008.08861v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08861v2-abstract-full" style="display: none;"> A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 4蟺 coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10x10x10 mm^3, providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920x560x1840 mm^3 volume. A prototype made of 24x8x48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08861v2-abstract-full').style.display = 'none'; document.getElementById('2008.08861v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 29 figures, Edited acknowledgements</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.03073">arXiv:2001.03073</a> <span> [<a href="https://arxiv.org/pdf/2001.03073">pdf</a>, <a href="https://arxiv.org/format/2001.03073">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Technical Proposal: FASERnu </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Andreini%2C+M">Marco Andreini</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Bertone%2C+C">Caterina Bertone</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Buckley%2C+A">Andy Buckley</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cerutti%2C+F">Francesco Cerutti</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Danzeca%2C+S">Salvatore Danzeca</a>, <a href="/search/physics?searchtype=author&query=Dougherty%2C+L">Liam Dougherty</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Denton%2C+P+B">Peter B. Denton</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Fellers%2C+D">Deion Fellers</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gall%2C+J">Jonathan Gall</a>, <a href="/search/physics?searchtype=author&query=Galon%2C+I">Iftah Galon</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a> , et al. (47 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.03073v1-abstract-short" style="display: inline;"> FASERnu is a proposed small and inexpensive emulsion detector designed to detect collider neutrinos for the first time and study their properties. FASERnu will be located directly in front of FASER, 480 m from the ATLAS interaction point along the beam collision axis in the unused service tunnel TI12. From 2021-23 during Run 3 of the 14 TeV LHC, roughly 1,300 electron neutrinos, 20,000 muon neutri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03073v1-abstract-full').style.display = 'inline'; document.getElementById('2001.03073v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.03073v1-abstract-full" style="display: none;"> FASERnu is a proposed small and inexpensive emulsion detector designed to detect collider neutrinos for the first time and study their properties. FASERnu will be located directly in front of FASER, 480 m from the ATLAS interaction point along the beam collision axis in the unused service tunnel TI12. From 2021-23 during Run 3 of the 14 TeV LHC, roughly 1,300 electron neutrinos, 20,000 muon neutrinos, and 20 tau neutrinos will interact in FASERnu with TeV-scale energies. With the ability to observe these interactions, reconstruct their energies, and distinguish flavors, FASERnu will probe the production, propagation, and interactions of neutrinos at the highest human-made energies ever recorded. The FASERnu detector will be composed of 1000 emulsion layers interleaved with tungsten plates. The total volume of the emulsion and tungsten is 25cm x 25cm x 1.35m, and the tungsten target mass is 1.2 tonnes. From 2021-23, 7 sets of emulsion layers will be installed, with replacement roughly every 20-50 1/fb in planned Technical Stops. In this document, we summarize FASERnu's physics goals and discuss the estimates of neutrino flux and interaction rates. We then describe the FASERnu detector in detail, including plans for assembly, transport, installation, and emulsion replacement, and procedures for emulsion readout and analyzing the data. We close with cost estimates for the detector components and infrastructure work and a timeline for the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03073v1-abstract-full').style.display = 'none'; document.getElementById('2001.03073v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 25 figures; submitted to the CERN LHCC on 28 October 2019</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2019-017, LHCC-P-015, UCI-TR-2019-25 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.02310">arXiv:1908.02310</a> <span> [<a href="https://arxiv.org/pdf/1908.02310">pdf</a>, <a href="https://arxiv.org/format/1908.02310">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7631-5">10.1140/epjc/s10052-020-7631-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abreu%2C+H">Henso Abreu</a>, <a href="/search/physics?searchtype=author&query=Antel%2C+C">Claire Antel</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xin Chen</a>, <a href="/search/physics?searchtype=author&query=Coccaro%2C+A">Andrea Coccaro</a>, <a href="/search/physics?searchtype=author&query=Dozen%2C+C">Candan Dozen</a>, <a href="/search/physics?searchtype=author&query=Denton%2C+P+B">Peter B. Denton</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Galon%2C+I">Iftah Galon</a>, <a href="/search/physics?searchtype=author&query=Gibson%2C+S">Stephen Gibson</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+S">Shih-Chieh Hsu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zhen Hu</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Jakobsen%2C+S">Sune Jakobsen</a>, <a href="/search/physics?searchtype=author&query=Jansky%2C+R">Roland Jansky</a>, <a href="/search/physics?searchtype=author&query=Kajomovitz%2C+E">Enrique Kajomovitz</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.02310v2-abstract-short" style="display: inline;"> Neutrinos are copiously produced at particle colliders, but no collider neutrino has ever been detected. Colliders, and particularly hadron colliders, produce both neutrinos and anti-neutrinos of all flavors at very high energies, and they are therefore highly complementary to those from other sources. FASER, the recently approved Forward Search Experiment at the Large Hadron Collider, is ideally… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02310v2-abstract-full').style.display = 'inline'; document.getElementById('1908.02310v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.02310v2-abstract-full" style="display: none;"> Neutrinos are copiously produced at particle colliders, but no collider neutrino has ever been detected. Colliders, and particularly hadron colliders, produce both neutrinos and anti-neutrinos of all flavors at very high energies, and they are therefore highly complementary to those from other sources. FASER, the recently approved Forward Search Experiment at the Large Hadron Collider, is ideally located to provide the first detection and study of collider neutrinos. We investigate the prospects for neutrino studies of a proposed component of FASER, FASER$谓$, a 25cm x 25cm x 1.35m emulsion detector to be placed directly in front of the FASER spectrometer in tunnel TI12. FASER$谓$ consists of 1000 layers of emulsion films interleaved with 1-mm-thick tungsten plates, with a total tungsten target mass of 1.2 tons. We estimate the neutrino fluxes and interaction rates at FASER$谓$, describe the FASER$谓$ detector, and analyze the characteristics of the signals and primary backgrounds. For an integrated luminosity of 150 fb$^{-1}$ to be collected during Run 3 of the 14 TeV Large Hadron Collider from 2021-23, and assuming standard model cross sections, approximately 1300 electron neutrinos, 20,000 muon neutrinos, and 20 tau neutrinos will interact in FASER$谓$, with mean energies of 600 GeV to 1 TeV, depending on the flavor. With such rates and energies, FASER will measure neutrino cross sections at energies where they are currently unconstrained, will bound models of forward particle production, and could open a new window on physics beyond the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02310v2-abstract-full').style.display = 'none'; document.getElementById('1908.02310v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in EPJ C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-EP-2019-160, KYUSHU-RCAPP-2019-003, SLAC-PUB-17460, UCI-TR-2019-19 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J. C80 (2020) no.1, 61 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04468">arXiv:1901.04468</a> <span> [<a href="https://arxiv.org/pdf/1901.04468">pdf</a>, <a href="https://arxiv.org/format/1901.04468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> FASER: ForwArd Search ExpeRiment at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Galon%2C+I">Iftah Galon</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+S">Shih-Chieh Hsu</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Kajomovitz%2C+E">Enrique Kajomovitz</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Kuehn%2C+S">Susanne Kuehn</a>, <a href="/search/physics?searchtype=author&query=Levinson%2C+L">Lorne Levinson</a>, <a href="/search/physics?searchtype=author&query=Otono%2C+H">Hidetoshi Otono</a>, <a href="/search/physics?searchtype=author&query=Petersen%2C+B">Brian Petersen</a>, <a href="/search/physics?searchtype=author&query=Sato%2C+O">Osamu Sato</a>, <a href="/search/physics?searchtype=author&query=Schott%2C+M">Matthias Schott</a>, <a href="/search/physics?searchtype=author&query=Sfyrla%2C+A">Anna Sfyrla</a>, <a href="/search/physics?searchtype=author&query=Smolinsky%2C+J">Jordan Smolinsky</a>, <a href="/search/physics?searchtype=author&query=Soffa%2C+A+M">Aaron M. Soffa</a>, <a href="/search/physics?searchtype=author&query=Takubo%2C+Y">Yosuke Takubo</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04468v1-abstract-short" style="display: inline;"> FASER, the ForwArd Search ExpeRiment, is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHC's high-energy collisions in large numbers in the far-forward region and then travel long distances through concrete and rock without interacting. They may then decay to visible particles in FASER, which is plac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04468v1-abstract-full').style.display = 'inline'; document.getElementById('1901.04468v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04468v1-abstract-full" style="display: none;"> FASER, the ForwArd Search ExpeRiment, is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHC's high-energy collisions in large numbers in the far-forward region and then travel long distances through concrete and rock without interacting. They may then decay to visible particles in FASER, which is placed 480 m downstream of the ATLAS interaction point. In this work, we describe the FASER program. In its first stage, FASER is an extremely compact and inexpensive detector, sensitive to decays in a cylindrical region of radius R = 10 cm and length L = 1.5 m. FASER is planned to be constructed and installed in Long Shutdown 2 and will collect data during Run 3 of the 14 TeV LHC from 2021-23. If FASER is successful, FASER 2, a much larger successor with roughly R ~ 1 m and L ~ 5 m, could be constructed in Long Shutdown 3 and collect data during the HL-LHC era from 2026-35. FASER and FASER 2 have the potential to discover dark photons, dark Higgs bosons, heavy neutral leptons, axion-like particles, and many other long-lived particles, as well as provide new information about neutrinos, with potentially far-ranging implications for particle physics and cosmology. We describe the current status, anticipated challenges, and discovery prospects of the FASER program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04468v1-abstract-full').style.display = 'none'; document.getElementById('1901.04468v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, submitted as Input to the European Particle Physics Strategy Update 2018-2020 and draws on FASER's Letter of Intent, Technical Proposal, and physics case documents (arXiv:1811.10243, arXiv:1812.09139, and arXiv:1811.12522)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UCI-TR-2019-01, KYUSHU-RCAPP-2018-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04351">arXiv:1901.04351</a> <span> [<a href="https://arxiv.org/pdf/1901.04351">pdf</a>, <a href="https://arxiv.org/format/1901.04351">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.asr.2019.01.012">10.1016/j.asr.2019.01.012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Penetrating particle ANalyzer (PAN) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+X">X. Wu</a>, <a href="/search/physics?searchtype=author&query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/physics?searchtype=author&query=Azzarello%2C+P">P. Azzarello</a>, <a href="/search/physics?searchtype=author&query=Bergmann%2C+B">B. Bergmann</a>, <a href="/search/physics?searchtype=author&query=Bertucci%2C+B">B. Bertucci</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+M">M. Campbell</a>, <a href="/search/physics?searchtype=author&query=Duranti%2C+M">M. Duranti</a>, <a href="/search/physics?searchtype=author&query=Ionica%2C+M">M. Ionica</a>, <a href="/search/physics?searchtype=author&query=Kole%2C+M">M. Kole</a>, <a href="/search/physics?searchtype=author&query=Krucker%2C+S">S. Krucker</a>, <a href="/search/physics?searchtype=author&query=Maehlum%2C+G">G. Maehlum</a>, <a href="/search/physics?searchtype=author&query=Meier%2C+D">D. Meier</a>, <a href="/search/physics?searchtype=author&query=Paniccia%2C+M">M. Paniccia</a>, <a href="/search/physics?searchtype=author&query=Pinsky%2C+L">L. Pinsky</a>, <a href="/search/physics?searchtype=author&query=Plainaki%2C+C">C. Plainaki</a>, <a href="/search/physics?searchtype=author&query=Pospisil%2C+S">S. Pospisil</a>, <a href="/search/physics?searchtype=author&query=Stein%2C+T">T. Stein</a>, <a href="/search/physics?searchtype=author&query=Thonet%2C+P+A">P. A. Thonet</a>, <a href="/search/physics?searchtype=author&query=Tomassetti%2C+N">N. Tomassetti</a>, <a href="/search/physics?searchtype=author&query=Tykhonov%2C+A">A. Tykhonov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04351v2-abstract-short" style="display: inline;"> PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles ($> \sim$100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04351v2-abstract-full').style.display = 'inline'; document.getElementById('1901.04351v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04351v2-abstract-full" style="display: none;"> PAN is a scientific instrument suitable for deep space and interplanetary missions. It can precisely measure and monitor the flux, composition, and direction of highly penetrating particles ($> \sim$100 MeV/nucleon) in deep space, over at least one full solar cycle (~11 years). The science program of PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar physics, space weather and space travel. PAN will fill an observation gap of galactic cosmic rays in the GeV region, and provide precise information of the spectrum, composition and emission time of energetic particle originated from the Sun. The precise measurement and monitoring of the energetic particles is also a unique contribution to space weather studies. PAN will map the flux and composition of penetrating particles, which cannot be shielded effectively, precisely and continuously, providing valuable input for the assessment of the related health risk, and for the development of an adequate mitigation strategy. PAN has the potential to become a standard on-board instrument for deep space human travel. PAN is based on the proven detection principle of a magnetic spectrometer, but with novel layout and detection concept. It will adopt advanced particle detection technologies and industrial processes optimized for deep space application. The device will require limited mass (~20 kg) and power (~20 W) budget. Dipole magnet sectors built from high field permanent magnet Halbach arrays, instrumented in a modular fashion with high resolution silicon strip detectors, allow to reach an energy resolution better than 10\% for nuclei from H to Fe at 1 GeV/n. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04351v2-abstract-full').style.display = 'none'; document.getElementById('1901.04351v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03750">arXiv:1901.03750</a> <span> [<a href="https://arxiv.org/pdf/1901.03750">pdf</a>, <a href="https://arxiv.org/format/1901.03750">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> T2K ND280 Upgrade -- Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Ajmi%2C+A">A. Ajmi</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&query=Asada%2C+Y">Y. Asada</a>, <a href="/search/physics?searchtype=author&query=Ashida%2C+Y">Y. Ashida</a>, <a href="/search/physics?searchtype=author&query=Atherton%2C+A">A. Atherton</a>, <a href="/search/physics?searchtype=author&query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&query=Atti%C3%A9%2C+D">D. Atti茅</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+S">S. Ban</a>, <a href="/search/physics?searchtype=author&query=Barbi%2C+M">M. Barbi</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Barr%2C+G">G. Barr</a>, <a href="/search/physics?searchtype=author&query=Batkiewicz%2C+M">M. Batkiewicz</a>, <a href="/search/physics?searchtype=author&query=Beloshapkin%2C+A">A. Beloshapkin</a>, <a href="/search/physics?searchtype=author&query=Berardi%2C+V">V. Berardi</a>, <a href="/search/physics?searchtype=author&query=Berns%2C+L">L. Berns</a>, <a href="/search/physics?searchtype=author&query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+J">J. Bian</a>, <a href="/search/physics?searchtype=author&query=Bienstock%2C+S">S. Bienstock</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Boix%2C+J">J. Boix</a>, <a href="/search/physics?searchtype=author&query=Bolognesi%2C+S">S. Bolognesi</a> , et al. (359 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03750v2-abstract-short" style="display: inline;"> In this document, we present the Technical Design Report of the Upgrade of the T2K Near Detector ND280. The goal of this upgrade is to improve the Near Detector performance to measure the neutrino interaction rate and to constrain the neutrino interaction cross-sections so that the uncertainty in the number of predicted events at Super-Kamiokande is reduced to about 4%. This will allow to improve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03750v2-abstract-full').style.display = 'inline'; document.getElementById('1901.03750v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03750v2-abstract-full" style="display: none;"> In this document, we present the Technical Design Report of the Upgrade of the T2K Near Detector ND280. The goal of this upgrade is to improve the Near Detector performance to measure the neutrino interaction rate and to constrain the neutrino interaction cross-sections so that the uncertainty in the number of predicted events at Super-Kamiokande is reduced to about 4%. This will allow to improve the physics reach of the T2K-II project. This goal is achieved by modifying the upstream part of the detector, adding a new highly granular scintillator detector (Super-FGD), two new TPCs (High-Angle TPC) and six TOF planes. Details about the detector concepts, design and construction methods are presented, as well as a first look at the test-beam data taken in Summer 2018. An update of the physics studies is also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03750v2-abstract-full').style.display = 'none'; document.getElementById('1901.03750v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">196 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-SPSC-2019-001 (SPSC-TDR-006) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09139">arXiv:1812.09139</a> <span> [<a href="https://arxiv.org/pdf/1812.09139">pdf</a>, <a href="https://arxiv.org/format/1812.09139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=FASER+Collaboration"> FASER Collaboration</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+A">Akitaka Ariga</a>, <a href="/search/physics?searchtype=author&query=Ariga%2C+T">Tomoko Ariga</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+J">Jamie Boyd</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Casper%2C+D+W">David W. Casper</a>, <a href="/search/physics?searchtype=author&query=Cerutti%2C+F">Francesco Cerutti</a>, <a href="/search/physics?searchtype=author&query=Danzeca%2C+S">Salvatore Danzeca</a>, <a href="/search/physics?searchtype=author&query=Dougherty%2C+L">Liam Dougherty</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J+L">Jonathan L. Feng</a>, <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Gall%2C+J">Jonathan Gall</a>, <a href="/search/physics?searchtype=author&query=Galon%2C+I">Iftah Galon</a>, <a href="/search/physics?searchtype=author&query=Gonzalez-Sevilla%2C+S">Sergio Gonzalez-Sevilla</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+S">Shih-Chieh Hsu</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Kajomovitz%2C+E">Enrique Kajomovitz</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+F">Felix Kling</a>, <a href="/search/physics?searchtype=author&query=Kuehn%2C+S">Susanne Kuehn</a>, <a href="/search/physics?searchtype=author&query=Lamont%2C+M">Mike Lamont</a>, <a href="/search/physics?searchtype=author&query=Levinson%2C+L">Lorne Levinson</a>, <a href="/search/physics?searchtype=author&query=Otono%2C+H">Hidetoshi Otono</a>, <a href="/search/physics?searchtype=author&query=Osborne%2C+J">John Osborne</a>, <a href="/search/physics?searchtype=author&query=Petersen%2C+B">Brian Petersen</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09139v1-abstract-short" style="display: inline;"> FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds of meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATL… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09139v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09139v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09139v1-abstract-full" style="display: none;"> FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds of meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATLAS IP in the unused service tunnel TI12 and be sensitive to particles that decay in a cylindrical volume with radius R=10 cm and length L=1.5 m. FASER will complement the LHC's existing physics program, extending its discovery potential to a host of new, light particles, with potentially far-reaching implications for particle physics and cosmology. This document describes the technical details of the FASER detector components: the magnets, the tracker, the scintillator system, and the calorimeter, as well as the trigger and readout system. The preparatory work that is needed to install and operate the detector, including civil engineering, transport, and integration with various services is also presented. The information presented includes preliminary cost estimates for the detector components and the infrastructure work, as well as a timeline for the design, construction, and installation of the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09139v1-abstract-full').style.display = 'none'; document.getElementById('1812.09139v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">82 pages, 62 figures; submitted to the CERN LHCC on 7 November 2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2018-036, LHCC-P-013, UCI-TR-2018-22, KYUSHU-RCAPP-2018-07 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.00788">arXiv:1812.00788</a> <span> [<a href="https://arxiv.org/pdf/1812.00788">pdf</a>, <a href="https://arxiv.org/format/1812.00788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Module concept and thermo-mechanical studies of the silicon-based TT-PET small-animal scanner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ferrere%2C+D">Didier Ferrere</a>, <a href="/search/physics?searchtype=author&query=Bandi%2C+Y">Yves Bandi</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Frank Cadoux</a>, <a href="/search/physics?searchtype=author&query=Forshaw%2C+D">Dean Forshaw</a>, <a href="/search/physics?searchtype=author&query=Hayakawa%2C+D">Daiki Hayakawa</a>, <a href="/search/physics?searchtype=author&query=Iacobucci%2C+G">Giuseppe Iacobucci</a>, <a href="/search/physics?searchtype=author&query=Michal%2C+S">Sebastien Michal</a>, <a href="/search/physics?searchtype=author&query=Miucci%2C+A">Antonio Miucci</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">Marzio Nessi</a>, <a href="/search/physics?searchtype=author&query=Paolozzi%2C+L">Lorenzo Paolozzi</a>, <a href="/search/physics?searchtype=author&query=Ripiccini%2C+E">Emanuele Ripiccini</a>, <a href="/search/physics?searchtype=author&query=Valerio%2C+P">Pierpaolo Valerio</a>, <a href="/search/physics?searchtype=author&query=Weber%2C+M">Michele Weber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.00788v3-abstract-short" style="display: inline;"> The TT-PET collaboration is developing an MRI-compatible small animal PET scanner in which the sensitive element is a monolithic silicon pixel ASIC targeting 30 ps RMS time resolution. The photon-detection technique is based on a stack of alternating layers of high-Z photon converter and 100 $\mathrm{渭m}$ silicon sensors, to produce a scanner with 0.5 $\mathrm{\times}$ 0.5 $\mathrm{\times}$ 0.2… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00788v3-abstract-full').style.display = 'inline'; document.getElementById('1812.00788v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.00788v3-abstract-full" style="display: none;"> The TT-PET collaboration is developing an MRI-compatible small animal PET scanner in which the sensitive element is a monolithic silicon pixel ASIC targeting 30 ps RMS time resolution. The photon-detection technique is based on a stack of alternating layers of high-Z photon converter and 100 $\mathrm{渭m}$ silicon sensors, to produce a scanner with 0.5 $\mathrm{\times}$ 0.5 $\mathrm{\times}$ 0.2 $\mathrm{mm^{3}}$ granularity for precise depth-of-interaction measurement. In this paper we present the results of simulation studies for the expected data rate, time-of-flight and spatial resolution, as well as the performance of image reconstruction with and without the use of timing information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.00788v3-abstract-full').style.display = 'none'; document.getElementById('1812.00788v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1811.12381</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.10355">arXiv:1806.10355</a> <span> [<a href="https://arxiv.org/pdf/1806.10355">pdf</a>, <a href="https://arxiv.org/format/1806.10355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.06.036">10.1016/j.nima.2018.06.036 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight performance of the DAMPE silicon tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tykhonov%2C+A">A. Tykhonov</a>, <a href="/search/physics?searchtype=author&query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Azzarello%2C+P">P. Azzarello</a>, <a href="/search/physics?searchtype=author&query=Bernardini%2C+P">P. Bernardini</a>, <a href="/search/physics?searchtype=author&query=Bertucci%2C+B">B. Bertucci</a>, <a href="/search/physics?searchtype=author&query=Bolognini%2C+A">A. Bolognini</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=D%27Amone%2C+A">A. D'Amone</a>, <a href="/search/physics?searchtype=author&query=De+Benedittis%2C+A">A. De Benedittis</a>, <a href="/search/physics?searchtype=author&query=De+Mitri%2C+I">I. De Mitri</a>, <a href="/search/physics?searchtype=author&query=Di+Santo%2C+M">M. Di Santo</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y+F">Y. F. Dong</a>, <a href="/search/physics?searchtype=author&query=Duranti%2C+M">M. Duranti</a>, <a href="/search/physics?searchtype=author&query=D%27Urso%2C+D">D. D'Urso</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+R+R">R. R. Fan</a>, <a href="/search/physics?searchtype=author&query=Fusco%2C+P">P. Fusco</a>, <a href="/search/physics?searchtype=author&query=Gallo%2C+V">V. Gallo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+M">M. Gao</a>, <a href="/search/physics?searchtype=author&query=Gargano%2C+F">F. Gargano</a>, <a href="/search/physics?searchtype=author&query=Garrappa%2C+S">S. Garrappa</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+K">K. Gong</a>, <a href="/search/physics?searchtype=author&query=Ionica%2C+M">M. Ionica</a>, <a href="/search/physics?searchtype=author&query=La+Marra%2C+D">D. La Marra</a>, <a href="/search/physics?searchtype=author&query=Loparco%2C+F">F. Loparco</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.10355v1-abstract-short" style="display: inline;"> DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector, successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mech… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10355v1-abstract-full').style.display = 'inline'; document.getElementById('1806.10355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.10355v1-abstract-full" style="display: none;"> DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector, successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy. DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon-Tungsten tracKer-converter (STK), a BGO calorimeter and a neutron detector. The STK is composed of six double layers of single-sided silicon micro-strip detectors interleaved with three layers of tungsten for photon conversions into electron-positron pairs. The STK is a crucial component of DAMPE, allowing to determine the direction of incoming photons, to reconstruct tracks of cosmic rays and to estimate their absolute charge (Z). We present the in-flight performance of the STK based on two years of in-flight DAMPE data, which includes the noise behavior, signal response, thermal and mechanical stability, alignment and position resolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10355v1-abstract-full').style.display = 'none'; document.getElementById('1806.10355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 924 (2019) 309-315 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.07605">arXiv:1805.07605</a> <span> [<a href="https://arxiv.org/pdf/1805.07605">pdf</a>, <a href="https://arxiv.org/format/1805.07605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.05.041">10.1016/j.nima.2018.05.041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-Orbit Instrument Performance Study and Calibration for POLAR Polarization Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhengheng Li</a>, <a href="/search/physics?searchtype=author&query=Kole%2C+M">Merlin Kole</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jianchao Sun</a>, <a href="/search/physics?searchtype=author&query=Song%2C+L">Liming Song</a>, <a href="/search/physics?searchtype=author&query=Produit%2C+N">Nicolas Produit</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+B">Bobing Wu</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+T">Tianwei Bao</a>, <a href="/search/physics?searchtype=author&query=Bernasconi%2C+T">Tancredi Bernasconi</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y">Yongwei Dong</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+M">Minzi Feng</a>, <a href="/search/physics?searchtype=author&query=Gauvin%2C+N">Neal Gauvin</a>, <a href="/search/physics?searchtype=author&query=Hajdas%2C+W">Wojtek Hajdas</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hancheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&query=Marcinkowski%2C+R">Radoslaw Marcinkowski</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+M">Martin Pohl</a>, <a href="/search/physics?searchtype=author&query=Rybka%2C+D+K">Dominik K. Rybka</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+H">Haoli Shi</a>, <a href="/search/physics?searchtype=author&query=Szabelski%2C+J">Jacek Szabelski</a>, <a href="/search/physics?searchtype=author&query=Tymieniecka%2C+T">Teresa Tymieniecka</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R">Ruijie Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yuanhao Wang</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+X">Xing Wen</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.07605v2-abstract-short" style="display: inline;"> POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500keV. The instrument works based on the Compton Scattering principle with the plastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07605v2-abstract-full').style.display = 'inline'; document.getElementById('1805.07605v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.07605v2-abstract-full" style="display: none;"> POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500keV. The instrument works based on the Compton Scattering principle with the plastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the Chinese space laboratory TG-2 on 15th September, 2016. In order to reliably reconstruct the polarization information a highly detailed understanding of the instrument is required for both data analysis and Monte Carlo studies. For this purpose a full study of the in-orbit performance was performed in order to obtain the instrument calibration parameters such as noise, pedestal, gain nonlinearity of the electronics, threshold, crosstalk and gain, as well as the effect of temperature on the above parameters. Furthermore the relationship between gain and high voltage of the multi-anode photomultiplier tube has been studied and the errors on all measurement values are presented. Finally the typical systematic error on polarization measurements of Gamma-Ray Bursts due to the measurement error of the calibration parameters are estimated using Monte Carlo simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.07605v2-abstract-full').style.display = 'none'; document.getElementById('1805.07605v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 30 figures, 1 table; Preprint accepted by NIMA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 900C (2018) pp. 8-24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.00844">arXiv:1803.00844</a> <span> [<a href="https://arxiv.org/pdf/1803.00844">pdf</a>, <a href="https://arxiv.org/format/1803.00844">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/05/T05008">10.1088/1748-0221/13/05/T05008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Production and Integration of the ATLAS Insertable B-Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbott%2C+B">B. Abbott</a>, <a href="/search/physics?searchtype=author&query=Albert%2C+J">J. Albert</a>, <a href="/search/physics?searchtype=author&query=Alberti%2C+F">F. Alberti</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+M">M. Alex</a>, <a href="/search/physics?searchtype=author&query=Alimonti%2C+G">G. Alimonti</a>, <a href="/search/physics?searchtype=author&query=Alkire%2C+S">S. Alkire</a>, <a href="/search/physics?searchtype=author&query=Allport%2C+P">P. Allport</a>, <a href="/search/physics?searchtype=author&query=Altenheiner%2C+S">S. Altenheiner</a>, <a href="/search/physics?searchtype=author&query=Ancu%2C+L">L. Ancu</a>, <a href="/search/physics?searchtype=author&query=Anderssen%2C+E">E. Anderssen</a>, <a href="/search/physics?searchtype=author&query=Andreani%2C+A">A. Andreani</a>, <a href="/search/physics?searchtype=author&query=Andreazza%2C+A">A. Andreazza</a>, <a href="/search/physics?searchtype=author&query=Axen%2C+B">B. Axen</a>, <a href="/search/physics?searchtype=author&query=Arguin%2C+J">J. Arguin</a>, <a href="/search/physics?searchtype=author&query=Backhaus%2C+M">M. Backhaus</a>, <a href="/search/physics?searchtype=author&query=Balbi%2C+G">G. Balbi</a>, <a href="/search/physics?searchtype=author&query=Ballansat%2C+J">J. Ballansat</a>, <a href="/search/physics?searchtype=author&query=Barbero%2C+M">M. Barbero</a>, <a href="/search/physics?searchtype=author&query=Barbier%2C+G">G. Barbier</a>, <a href="/search/physics?searchtype=author&query=Bassalat%2C+A">A. Bassalat</a>, <a href="/search/physics?searchtype=author&query=Bates%2C+R">R. Bates</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+P">P. Baudin</a>, <a href="/search/physics?searchtype=author&query=Battaglia%2C+M">M. Battaglia</a>, <a href="/search/physics?searchtype=author&query=Beau%2C+T">T. Beau</a>, <a href="/search/physics?searchtype=author&query=Beccherle%2C+R">R. Beccherle</a> , et al. (352 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.00844v3-abstract-short" style="display: inline;"> During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00844v3-abstract-full').style.display = 'inline'; document.getElementById('1803.00844v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.00844v3-abstract-full" style="display: none;"> During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00844v3-abstract-full').style.display = 'none'; document.getElementById('1803.00844v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">90 pages in total. Author list: ATLAS IBL Collaboration, starting page 2. 69 figures, 20 tables. Published in Journal of Instrumentation. All figures available at: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/PIX-2018-001</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation JINST 13 T05008 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02739">arXiv:1712.02739</a> <span> [<a href="https://arxiv.org/pdf/1712.02739">pdf</a>, <a href="https://arxiv.org/format/1712.02739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2018.02.105">10.1016/j.nima.2018.02.105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tykhonov%2C+A">A. Tykhonov</a>, <a href="/search/physics?searchtype=author&query=Ambrosi%2C+G">G. Ambrosi</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Azzarello%2C+P">P. Azzarello</a>, <a href="/search/physics?searchtype=author&query=Bernardini%2C+P">P. Bernardini</a>, <a href="/search/physics?searchtype=author&query=Bertucci%2C+B">B. Bertucci</a>, <a href="/search/physics?searchtype=author&query=Bolognini%2C+A">A. Bolognini</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=D%27Amone%2C+A">A. D'Amone</a>, <a href="/search/physics?searchtype=author&query=De+Benedittis%2C+A">A. De Benedittis</a>, <a href="/search/physics?searchtype=author&query=De+Mitri%2C+I">I. De Mitri</a>, <a href="/search/physics?searchtype=author&query=Di+Santo%2C+M">M. Di Santo</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y+F">Y. F. Dong</a>, <a href="/search/physics?searchtype=author&query=Duranti%2C+M">M. Duranti</a>, <a href="/search/physics?searchtype=author&query=D%27Urso%2C+D">D. D'Urso</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+R+R">R. R. Fan</a>, <a href="/search/physics?searchtype=author&query=Fusco%2C+P">P. Fusco</a>, <a href="/search/physics?searchtype=author&query=Gallo%2C+V">V. Gallo</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+M">M. Gao</a>, <a href="/search/physics?searchtype=author&query=Gargano%2C+F">F. Gargano</a>, <a href="/search/physics?searchtype=author&query=Garrappa%2C+S">S. Garrappa</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+K">K. Gong</a>, <a href="/search/physics?searchtype=author&query=Ionica%2C+M">M. Ionica</a>, <a href="/search/physics?searchtype=author&query=La+Marra%2C+D">D. La Marra</a>, <a href="/search/physics?searchtype=author&query=Lei%2C+S+J">S. J. Lei</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02739v2-abstract-short" style="display: inline;"> The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon-tungsten tracker-converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron-positron pairs to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02739v2-abstract-full').style.display = 'inline'; document.getElementById('1712.02739v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02739v2-abstract-full" style="display: none;"> The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy range, as well as cosmic-ray proton and nuclei components between 10 GeV and 100 TeV. The silicon-tungsten tracker-converter is a crucial component of DAMPE. It allows the direction of incoming photons converting into electron-positron pairs to be estimated, and the trajectory and charge (Z) of cosmic-ray particles to be identified. It consists of 768 silicon micro-strip sensors assembled in 6 double layers with a total active area of 6.6 m$^2$. Silicon planes are interleaved with three layers of tungsten plates, resulting in about one radiation length of material in the tracker. Internal alignment parameters of the tracker have been determined on orbit, with non-showering protons and helium nuclei. We describe the alignment procedure and present the position resolution and alignment stability measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02739v2-abstract-full').style.display = 'none'; document.getElementById('1712.02739v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods Phys. Res. A 893 (2018) 43-56 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.08918">arXiv:1710.08918</a> <span> [<a href="https://arxiv.org/pdf/1710.08918">pdf</a>, <a href="https://arxiv.org/format/1710.08918">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2018.07.009">10.1016/j.astropartphys.2018.07.009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> In-flight energy calibration of the space-borne Compton polarimeter POLAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+H">Hualin Xiao</a>, <a href="/search/physics?searchtype=author&query=Hajdas%2C+W">Wojtek Hajdas</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+B">Bobing Wu</a>, <a href="/search/physics?searchtype=author&query=Produit%2C+N">Nicolas Produit</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J">Jianchao Sun</a>, <a href="/search/physics?searchtype=author&query=Kole%2C+M">Merlin Kole</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+T">Tianwei Bao</a>, <a href="/search/physics?searchtype=author&query=Bernasconi%2C+T">Tancredi Bernasconi</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+T">Tadeusz Batsch</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Chai%2C+J">Junying Chai</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y">Yongwei Dong</a>, <a href="/search/physics?searchtype=author&query=Egli%2C+K">Ken Egli</a>, <a href="/search/physics?searchtype=author&query=Gauvin%2C+N">Neal Gauvin</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+M">Minnan Kong</a>, <a href="/search/physics?searchtype=author&query=Kramert%2C+R">Reinhold Kramert</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+S">Siwei Kong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hancheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lu Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhengheng Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiangtao Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&query=Marcinkowski%2C+R">Radoslaw Marcinkowski</a>, <a href="/search/physics?searchtype=author&query=Orsi%2C+S">Silvio Orsi</a>, <a href="/search/physics?searchtype=author&query=Rybka%2C+D+K">Dominik K. Rybka</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.08918v4-abstract-short" style="display: inline;"> POLAR is a compact wide-field space-borne detector for precise measurements of the linear polarisation of hard X-rays emitted by transient sources in the energy range from 50 keV to 500 keV. It consists of a 40$\times$40 array of plastic scintillator bars used as a detection material. The bars are grouped in 25 detector modules. The energy range sensitivity of POLAR is optimized to match with the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08918v4-abstract-full').style.display = 'inline'; document.getElementById('1710.08918v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.08918v4-abstract-full" style="display: none;"> POLAR is a compact wide-field space-borne detector for precise measurements of the linear polarisation of hard X-rays emitted by transient sources in the energy range from 50 keV to 500 keV. It consists of a 40$\times$40 array of plastic scintillator bars used as a detection material. The bars are grouped in 25 detector modules. The energy range sensitivity of POLAR is optimized to match with the prompt emission photons from the gamma-ray bursts (GRBs). Polarization measurements of the prompt emission would probe source geometries, emission mechanisms and magnetic structures in GRB jets. The instrument can also detect hard X-rays from solar flares and be used for precise measurement of their polarisation. POLAR was launched into a low Earth orbit on-board the Chinese space-lab TG-2 on September 15th, 2016. To achieve high accuracies in polarisation measurements it is essential to assure both before and during the flight a precise energy calibration. Such calibrations are performed with four low activity $^{22}$Na radioactive sources placed inside the instrument. Energy conversion factors are related to Compton edge positions from the collinear annihilation photons from the sources. This paper presents main principles of the in-flight calibration, describes studies of the method based on Monte Carlo simulations and its laboratory verification and finally provides some observation results based on the in-flight data analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.08918v4-abstract-full').style.display = 'none'; document.getElementById('1710.08918v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astroparticle Physics Journal on Dec. 15, 2017</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.00664">arXiv:1708.00664</a> <span> [<a href="https://arxiv.org/pdf/1708.00664">pdf</a>, <a href="https://arxiv.org/format/1708.00664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2017.07.070">10.1016/j.nima.2017.07.070 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Instrument Performance and Simulation Verification of the POLAR Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kole%2C+M">M. Kole</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Produit%2C+N">N. Produit</a>, <a href="/search/physics?searchtype=author&query=Tymieniecka%2C+T">T. Tymieniecka</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zwolinska%2C+A">A. Zwolinska</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+T+W">T. W. Bao</a>, <a href="/search/physics?searchtype=author&query=Bernasconi%2C+T">T. Bernasconi</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+M+Z">M. Z. Feng</a>, <a href="/search/physics?searchtype=author&query=Gauvin%2C+N">N. Gauvin</a>, <a href="/search/physics?searchtype=author&query=Hajdas%2C+W">W. Hajdas</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+S+W">S. W. Kong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H+C">H. C. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">X. Liu</a>, <a href="/search/physics?searchtype=author&query=Marcinkowski%2C+R">R. Marcinkowski</a>, <a href="/search/physics?searchtype=author&query=Orsi%2C+S">S. Orsi</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+M">M. Pohl</a>, <a href="/search/physics?searchtype=author&query=Rybka%2C+D">D. Rybka</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J+C">J. C. Sun</a>, <a href="/search/physics?searchtype=author&query=Song%2C+L+M">L. M. Song</a>, <a href="/search/physics?searchtype=author&query=Szabelski%2C+J">J. Szabelski</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R+J">R. J. Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y+H">Y. H. Wang</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.00664v1-abstract-short" style="display: inline;"> POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00664v1-abstract-full').style.display = 'inline'; document.getElementById('1708.00664v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.00664v1-abstract-full" style="display: none;"> POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.00664v1-abstract-full').style.display = 'none'; document.getElementById('1708.00664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint Accepted for Publication in Nuclear Instruments and Methods in Physics Research A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.01785">arXiv:1707.01785</a> <span> [<a href="https://arxiv.org/pdf/1707.01785">pdf</a>, <a href="https://arxiv.org/format/1707.01785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/02/P02006">10.1088/1748-0221/13/02/P02006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A fully active fine grained detector with three readout views </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&query=Khotjantsev%2C+A">A. Khotjantsev</a>, <a href="/search/physics?searchtype=author&query=Korzenev%2C+A">A. Korzenev</a>, <a href="/search/physics?searchtype=author&query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Longhin%2C+A">A. Longhin</a>, <a href="/search/physics?searchtype=author&query=Mefodiev%2C+A">A. Mefodiev</a>, <a href="/search/physics?searchtype=author&query=Mermod%2C+P">P. Mermod</a>, <a href="/search/physics?searchtype=author&query=Mineev%2C+O">O. Mineev</a>, <a href="/search/physics?searchtype=author&query=Noah%2C+E">E. Noah</a>, <a href="/search/physics?searchtype=author&query=Sgalaberna%2C+D">D. Sgalaberna</a>, <a href="/search/physics?searchtype=author&query=Smirnov%2C+A">A. Smirnov</a>, <a href="/search/physics?searchtype=author&query=Yershov%2C+N">N. Yershov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.01785v4-abstract-short" style="display: inline;"> This paper describes a novel idea of a fine-grained fully-active plastic scintillator detector made of many optically independent $1\times1\times1~\text{cm}^3$ cubes with readout on three orthogonal projections by wavelength shifting fibers. The original purpose of this detector is to serve as an active neutrino target for the detection, measurement and identification of the final state particles… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01785v4-abstract-full').style.display = 'inline'; document.getElementById('1707.01785v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.01785v4-abstract-full" style="display: none;"> This paper describes a novel idea of a fine-grained fully-active plastic scintillator detector made of many optically independent $1\times1\times1~\text{cm}^3$ cubes with readout on three orthogonal projections by wavelength shifting fibers. The original purpose of this detector is to serve as an active neutrino target for the detection, measurement and identification of the final state particles down to a few tenths MeV kinetic energies. The three readout views as well as the fine granularity ensure powerful localization and measurement of the deposited energy combined with good timing properties and isotropic acceptance. The possible application as a new active target for the T2K near detector, initial simulation studies and R&D test results are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.01785v4-abstract-full').style.display = 'none'; document.getElementById('1707.01785v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10406">arXiv:1705.10406</a> <span> [<a href="https://arxiv.org/pdf/1705.10406">pdf</a>, <a href="https://arxiv.org/format/1705.10406">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/07/C07028">10.1088/1748-0221/12/07/C07028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+P">P. Benoit</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Bross%2C+A">A. Bross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&query=Chikuma%2C+N">N. Chikuma</a>, <a href="/search/physics?searchtype=author&query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Hallsj%C3%B6%2C+S">S-P. Hallsj枚</a>, <a href="/search/physics?searchtype=author&query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&query=Kleymenova%2C+A">A. Kleymenova</a>, <a href="/search/physics?searchtype=author&query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Likhacheva%2C+V">V. Likhacheva</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+B">B. Martinez</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10406v3-abstract-short" style="display: inline;"> T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10406v3-abstract-full').style.display = 'inline'; document.getElementById('1705.10406v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10406v3-abstract-full" style="display: none;"> T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10406v3-abstract-full').style.display = 'none'; document.getElementById('1705.10406v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In new version: modified both plots of Fig.1 and added one sentence in the introduction part explaining Baby MIND role in WAGASCI experiment, added information for the affiliations</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08917">arXiv:1704.08917</a> <span> [<a href="https://arxiv.org/pdf/1704.08917">pdf</a>, <a href="https://arxiv.org/format/1704.08917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Baby MIND Experiment Construction Status </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R Bayes</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+P">P. Benoit</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Bross%2C+A">A. Bross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&query=Chikuma%2C+N">N. Chikuma</a>, <a href="/search/physics?searchtype=author&query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Hallsj%C3%B6%2C+S">S-P. Hallsj枚</a>, <a href="/search/physics?searchtype=author&query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&query=Kleymenova%2C+A">A. Kleymenova</a>, <a href="/search/physics?searchtype=author&query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Likhacheva%2C+V">V. Likhacheva</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+B">B. Martinez</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08917v1-abstract-short" style="display: inline;"> Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08917v1-abstract-full').style.display = 'inline'; document.getElementById('1704.08917v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08917v1-abstract-full" style="display: none;"> Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08917v1-abstract-full').style.display = 'none'; document.getElementById('1704.08917v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at NuPhys2016 (London, 12-14 December 2016). 4 pages, LaTeX, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NuPhys2016-Parsa </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.08079">arXiv:1704.08079</a> <span> [<a href="https://arxiv.org/pdf/1704.08079">pdf</a>, <a href="https://arxiv.org/format/1704.08079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Baby MIND: A magnetised spectrometer for the WAGASCI experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Antonova%2C+M">M. Antonova</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R Bayes</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+P">P. Benoit</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Cross%2C+A">A. Cross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&query=Chikuma%2C+N">N. Chikuma</a>, <a href="/search/physics?searchtype=author&query=Dudarev%2C+A">A. Dudarev</a>, <a href="/search/physics?searchtype=author&query=Ekel%C3%B6f%2C+T">T. Ekel枚f</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Y. Favre</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+S">S. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Hallsj%C3%B6%2C+S">S-P. Hallsj枚</a>, <a href="/search/physics?searchtype=author&query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&query=Khabibullin%2C+M">M. Khabibullin</a>, <a href="/search/physics?searchtype=author&query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&query=Kleymenova%2C+A">A. Kleymenova</a>, <a href="/search/physics?searchtype=author&query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&query=Kostin%2C+A">A. Kostin</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Likhacheva%2C+V">V. Likhacheva</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+B">B. Martinez</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.08079v1-abstract-short" style="display: inline;"> The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a mag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08079v1-abstract-full').style.display = 'inline'; document.getElementById('1704.08079v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.08079v1-abstract-full" style="display: none;"> The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.08079v1-abstract-full').style.display = 'none'; document.getElementById('1704.08079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presented at NuPhys2016 (London, 12-14 December 2016). Title + 4 pages, LaTeX, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NuPhys2016-Hallsj\"o </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06173">arXiv:1704.06173</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Calibration of the Space-borne Compton Polarimeter POLAR flight model with 100% polarized X-ray beams </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+H+L">H. L. Xiao</a>, <a href="/search/physics?searchtype=author&query=Hajdas%2C+W">W. Hajdas</a>, <a href="/search/physics?searchtype=author&query=Socha%2C+P">P. Socha</a>, <a href="/search/physics?searchtype=author&query=Marcinkowski%2C+R">R. Marcinkowski</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+B+B">B. B. Wu</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+T+W">T. W. Bao</a>, <a href="/search/physics?searchtype=author&query=Chai%2C+J+Y">J. Y. Chai</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y+W">Y. W. Dong</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+M+N">M. N. Kong</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J+T">J. T. Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+H+L">H. L. Shi</a>, <a href="/search/physics?searchtype=author&query=Song%2C+L+M">L. M. Song</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+J+C">J. C. Sun</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+R+J">R. J. Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y+H">Y. H. Wang</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+X">X. Wen</a>, <a href="/search/physics?searchtype=author&query=Xiong%2C+S+L">S. L. Xiong</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L+Y">L. Y. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S+N">S. N. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X+F">X. F. Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y+J">Y. J. Zhang</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06173v2-abstract-short" style="display: inline;"> POLAR is space-borne detector designed for a precise measurement of gamma-ray polarization of the prompt emissions of Gamma-Ray Bursts in the energy range 50 keV - 500 keV. POLAR is a compact Compton polarimeter consisting of 40$\times$ 40 plastic scintillator bars read out by 25 multi-anode PMTs. In May 2015, we performed a series of tests of the POLAR flight model with 100\% polarized x-rays bea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06173v2-abstract-full').style.display = 'inline'; document.getElementById('1704.06173v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06173v2-abstract-full" style="display: none;"> POLAR is space-borne detector designed for a precise measurement of gamma-ray polarization of the prompt emissions of Gamma-Ray Bursts in the energy range 50 keV - 500 keV. POLAR is a compact Compton polarimeter consisting of 40$\times$ 40 plastic scintillator bars read out by 25 multi-anode PMTs. In May 2015, we performed a series of tests of the POLAR flight model with 100\% polarized x-rays beams at the European Synchrotron Radiation Facility beam-line ID11 aming to study thresholds, crosstalk between channels and responses of POLAR flight model to polarized X-ray beams. In this paper we present the data analysis method and some analysis results. According the results, POLAR FM has good polarimetric capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06173v2-abstract-full').style.display = 'none'; document.getElementById('1704.06173v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The paper was withdrawn by authors because the work has not yet finshed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.04210">arXiv:1703.04210</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Gain factor and parameter settings optimization of the new gamma-ray burst polarimeter POLAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+X+F">X. F. Zhang</a>, <a href="/search/physics?searchtype=author&query=Hajdas%2C+W">W. Hajdas</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+H+L">H. L. Xiao</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+X">X. Wen</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+B+B">B. B. Wu</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+T+W">T. W. Bao</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+T">T. Batsch</a>, <a href="/search/physics?searchtype=author&query=Bernasconi%2C+T">T. Bernasconi</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cernuda%2C+I">I. Cernuda</a>, <a href="/search/physics?searchtype=author&query=Chai%2C+J+Y">J. Y. Chai</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y+W">Y. W. Dong</a>, <a href="/search/physics?searchtype=author&query=Gauvin%2C+N">N. Gauvin</a>, <a href="/search/physics?searchtype=author&query=He%2C+J+J">J. J. He</a>, <a href="/search/physics?searchtype=author&query=Kole%2C+M">M. Kole</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+M+N">M. N. Kong</a>, <a href="/search/physics?searchtype=author&query=Lechanoine-Leluc%2C+C">C. Lechanoine-Leluc</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">L. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z+H">Z. H. Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J+T">J. T. Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">X. Liu</a>, <a href="/search/physics?searchtype=author&query=Marcinkowski%2C+R">R. Marcinkowski</a>, <a href="/search/physics?searchtype=author&query=Orsi%2C+S">S. Orsi</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+M">M. Pohl</a>, <a href="/search/physics?searchtype=author&query=Rapin%2C+D">D. Rapin</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.04210v2-abstract-short" style="display: inline;"> As a space-borne detector POLAR is designed to conduct hard X-ray polarization measurements of gamma-ray bursts on the statistically significant sample of events and with an unprecedented accuracy. During its development phase a number of tests, calibrations runs and verification measurements were carried out in order to validate instrument functionality and optimize operational parameters. In thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04210v2-abstract-full').style.display = 'inline'; document.getElementById('1703.04210v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.04210v2-abstract-full" style="display: none;"> As a space-borne detector POLAR is designed to conduct hard X-ray polarization measurements of gamma-ray bursts on the statistically significant sample of events and with an unprecedented accuracy. During its development phase a number of tests, calibrations runs and verification measurements were carried out in order to validate instrument functionality and optimize operational parameters. In this article we present results on gain optimization togeter with verification data obtained in the course of broad laboratory and environmental tests. In particular we focus on exposures to the $^{137}$Cs radioactive source and determination of the gain dependence on the high voltage for all 1600 detection channels of the polarimeter. Performance of the instrument is described in detail with respect to the dynamic range, energy resolution and temperature dependence. Gain optimization algorithms and response non-uniformity studies are also broadly discussed. Results presented below constitute important parts for development of the POLAR calibration and operation database. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.04210v2-abstract-full').style.display = 'none'; document.getElementById('1703.04210v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">There still some disagreement about one of the conclusions presented in the paper among all the authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.04955">arXiv:1607.04955</a> <span> [<a href="https://arxiv.org/pdf/1607.04955">pdf</a>, <a href="https://arxiv.org/format/1607.04955">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/11/10/T10007">10.1088/1748-0221/11/10/T10007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The design and construction of the MICE Electron-Muon Ranger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Bene%2C+P">P. Bene</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bolognini%2C+D">D. Bolognini</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Debieux%2C+S">S. Debieux</a>, <a href="/search/physics?searchtype=author&query=Drielsma%2C+F">F. Drielsma</a>, <a href="/search/physics?searchtype=author&query=Giannini%2C+G">G. Giannini</a>, <a href="/search/physics?searchtype=author&query=Graulich%2C+J+S">J. S. Graulich</a>, <a href="/search/physics?searchtype=author&query=Husi%2C+C">C. Husi</a>, <a href="/search/physics?searchtype=author&query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&query=Lietti%2C+D">D. Lietti</a>, <a href="/search/physics?searchtype=author&query=Masciocchi%2C+F">F. Masciocchi</a>, <a href="/search/physics?searchtype=author&query=Nicola%2C+L">L. Nicola</a>, <a href="/search/physics?searchtype=author&query=Messomo%2C+E+N">E. Noah Messomo</a>, <a href="/search/physics?searchtype=author&query=Prest%2C+M">M. Prest</a>, <a href="/search/physics?searchtype=author&query=Rothenfusser%2C+K">K. Rothenfusser</a>, <a href="/search/physics?searchtype=author&query=Sandstrom%2C+R">R. Sandstrom</a>, <a href="/search/physics?searchtype=author&query=Vallazza%2C+E">E. Vallazza</a>, <a href="/search/physics?searchtype=author&query=Verguilov%2C+V">V. Verguilov</a>, <a href="/search/physics?searchtype=author&query=Wisting%2C+H">H. Wisting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.04955v1-abstract-short" style="display: inline;"> The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter installed in the beam line of the Muon Ionization Cooling Experiment (MICE). The experiment will demonstrate ionization cooling, an essential technology needed for the realization of a Neutrino Factory and/or a Muon Collider. The EMR is designed to measure the properties of low energy beams composed of muons, electrons and pions… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04955v1-abstract-full').style.display = 'inline'; document.getElementById('1607.04955v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.04955v1-abstract-full" style="display: none;"> The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter installed in the beam line of the Muon Ionization Cooling Experiment (MICE). The experiment will demonstrate ionization cooling, an essential technology needed for the realization of a Neutrino Factory and/or a Muon Collider. The EMR is designed to measure the properties of low energy beams composed of muons, electrons and pions, and perform the identification particle-by-particle. The detector consists of 48 orthogonal layers of 59 triangular scintillator bars. The readout is implemented using FPGA custom made electronics and commercially available modules. This article describes the construction of the detector from its design up to its commissioning with cosmic data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.04955v1-abstract-full').style.display = 'none'; document.getElementById('1607.04955v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.03412">arXiv:1607.03412</a> <span> [<a href="https://arxiv.org/pdf/1607.03412">pdf</a>, <a href="https://arxiv.org/format/1607.03412">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-4609-z">10.1140/epjc/s10052-017-4609-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An innovative silicon photomultiplier digitizing camera for gamma-ray astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Heller%2C+M">Matthieu Heller</a>, <a href="/search/physics?searchtype=author&query=Schioppa%2C+E+J">Enrico Junior Schioppa</a>, <a href="/search/physics?searchtype=author&query=Porcelli%2C+A">Alessio Porcelli</a>, <a href="/search/physics?searchtype=author&query=Pujadas%2C+I+T">Isaac Troyano Pujadas</a>, <a href="/search/physics?searchtype=author&query=Zietara%2C+K">Krzysztof Zietara</a>, <a href="/search/physics?searchtype=author&query=Della+Volpe%2C+D">Domenico Della Volpe</a>, <a href="/search/physics?searchtype=author&query=Montaruli%2C+T">Teresa Montaruli</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Favre%2C+Y">Yannick Favre</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+J+A+A">Juan Antonio Aguilar Sanchez</a>, <a href="/search/physics?searchtype=author&query=Christov%2C+A">Asen Christov</a>, <a href="/search/physics?searchtype=author&query=Prandini%2C+E">Elisa Prandini</a>, <a href="/search/physics?searchtype=author&query=Rajda%2C+P">Pawel Rajda</a>, <a href="/search/physics?searchtype=author&query=Rameez%2C+M">Mohamed Rameez</a>, <a href="/search/physics?searchtype=author&query=Blinik%2C+W">Woijciech Blinik</a>, <a href="/search/physics?searchtype=author&query=Blocki%2C+J">Jacek Blocki</a>, <a href="/search/physics?searchtype=author&query=Bogacz%2C+L">Leszek Bogacz</a>, <a href="/search/physics?searchtype=author&query=Borkowski%2C+J">Jurek Borkowski</a>, <a href="/search/physics?searchtype=author&query=Bulik%2C+T">Tomasz Bulik</a>, <a href="/search/physics?searchtype=author&query=Frankowski%2C+A">Adam Frankowski</a>, <a href="/search/physics?searchtype=author&query=Grudzinska%2C+M">Mira Grudzinska</a>, <a href="/search/physics?searchtype=author&query=Idzkowski%2C+B">Bartosz Idzkowski</a>, <a href="/search/physics?searchtype=author&query=Jamrozy%2C+M">Mateusz Jamrozy</a>, <a href="/search/physics?searchtype=author&query=Janiak%2C+M">Mateusz Janiak</a>, <a href="/search/physics?searchtype=author&query=Kasperek%2C+J">Jerzy Kasperek</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.03412v1-abstract-short" style="display: inline;"> The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented mirror dish and an innovative fully digital camera based on silicon photo-multipliers (SiPMs). Since the SST sub-array will consist of up to 70 telescopes, the challenge is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03412v1-abstract-full').style.display = 'inline'; document.getElementById('1607.03412v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.03412v1-abstract-full" style="display: none;"> The single-mirror small-size telescope (SST-1M) is one of the three proposed designs for the small-size telescopes (SSTs) of the Cherenkov Telescope Array (CTA) project. The SST-1M will be equipped with a 4 m-diameter segmented mirror dish and an innovative fully digital camera based on silicon photo-multipliers (SiPMs). Since the SST sub-array will consist of up to 70 telescopes, the challenge is not only to build a telescope with excellent performance, but also to design it so that its components can be commissioned, assembled and tested by industry. In this paper we review the basic steps that led to the design concepts for the SST-1M camera and the ongoing realization of the first prototype, with focus on the innovative solutions adopted for the photodetector plane and the readout and trigger parts of the camera. In addition, we report on results of laboratory measurements on real scale elements that validate the camera design and show that it is capable of matching the CTA requirements of operating up to high-moon-light background conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03412v1-abstract-full').style.display = 'none'; document.getElementById('1607.03412v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 61 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.08306">arXiv:1510.08306</a> <span> [<a href="https://arxiv.org/pdf/1510.08306">pdf</a>, <a href="https://arxiv.org/format/1510.08306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/10/12/P12012">10.1088/1748-0221/10/12/P12012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron-Muon Ranger: performance in the MICE Muon Beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Alekou%2C+A">A. Alekou</a>, <a href="/search/physics?searchtype=author&query=Apollonio%2C+M">M. Apollonio</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Barber%2C+G">G. Barber</a>, <a href="/search/physics?searchtype=author&query=Barclay%2C+P">P. Barclay</a>, <a href="/search/physics?searchtype=author&query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&query=Bene%2C+P">P. Bene</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Blackmore%2C+V+J">V. J. Blackmore</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Blot%2C+S">S. Blot</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Booth%2C+C+N">C. N. Booth</a>, <a href="/search/physics?searchtype=author&query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S">S. Boyd</a>, <a href="/search/physics?searchtype=author&query=Bradshaw%2C+T+W">T. W. Bradshaw</a>, <a href="/search/physics?searchtype=author&query=Bravar%2C+U">U. Bravar</a>, <a href="/search/physics?searchtype=author&query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Capponi%2C+M">M. Capponi</a>, <a href="/search/physics?searchtype=author&query=Carlisle%2C+T">T. Carlisle</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.08306v2-abstract-short" style="display: inline;"> The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08306v2-abstract-full').style.display = 'inline'; document.getElementById('1510.08306v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.08306v2-abstract-full" style="display: none;"> The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/$c$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.08306v2-abstract-full').style.display = 'none'; document.getElementById('1510.08306v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RAL-P-2015-008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.04474">arXiv:1507.04474</a> <span> [<a href="https://arxiv.org/pdf/1507.04474">pdf</a>, <a href="https://arxiv.org/ps/1507.04474">ps</a>, <a href="https://arxiv.org/format/1507.04474">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2016.06.007">10.1016/j.astropartphys.2016.06.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A crosstalk and non-uniformity correction method for the Compact Space-borne Compton Polarimeter POLAR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xiao%2C+H">Hualin Xiao</a>, <a href="/search/physics?searchtype=author&query=Hajdas%2C+W">Wojtek Hajdas</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+B">Bobing Wu</a>, <a href="/search/physics?searchtype=author&query=Produit%2C+N">Nicolas Produit</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+T">Tianwei Bao</a>, <a href="/search/physics?searchtype=author&query=Batsch%2C+T">Tadeusz Batsch</a>, <a href="/search/physics?searchtype=author&query=Britvich%2C+I">Ilia Britvich</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">Franck Cadoux</a>, <a href="/search/physics?searchtype=author&query=Chai%2C+J">Junying Chai</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+Y">Yongwei Dong</a>, <a href="/search/physics?searchtype=author&query=Gauvin%2C+N">Neal Gauvin</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+M">Minnan Kong</a>, <a href="/search/physics?searchtype=author&query=Kong%2C+S">Siwei Kong</a>, <a href="/search/physics?searchtype=author&query=Rybka%2C+D+K">Dominik K. Rybka</a>, <a href="/search/physics?searchtype=author&query=Leluc%2C+C">Catherine Leluc</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lu Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jiangtao Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xin Liu</a>, <a href="/search/physics?searchtype=author&query=Marcinkowski%2C+R">Radoslaw Marcinkowski</a>, <a href="/search/physics?searchtype=author&query=Paniccia%2C+M">Mercedes Paniccia</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+M">Martin Pohl</a>, <a href="/search/physics?searchtype=author&query=Rapin%2C+D">Divic Rapin</a>, <a href="/search/physics?searchtype=author&query=Rutczynska%2C+A">Aleksandra Rutczynska</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+H">Haoli Shi</a>, <a href="/search/physics?searchtype=author&query=Song%2C+L">Liming Song</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.04474v3-abstract-short" style="display: inline;"> In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by dedicated instruments can provide new data and be an ultimate tool to unveil their real nature. A novel space-borne Compton polarimeter POLAR onboard t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04474v3-abstract-full').style.display = 'inline'; document.getElementById('1507.04474v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.04474v3-abstract-full" style="display: none;"> In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by dedicated instruments can provide new data and be an ultimate tool to unveil their real nature. A novel space-borne Compton polarimeter POLAR onboard the Chinese space station TG2 is designed to measure linear polarization of gamma-rays arriving from GRB prompt emissions. POLAR uses plastics scintillator bars (PS) as gamma-ray detectors and multi-anode photomultipliers (MAPMTs) for readout of the scintillation light. Inherent properties of such detection systems are crosstalk and non-uniformity. The crosstalk smears recorded energy over multiple channels making both non-uniformity corrections and energy calibration more difficult. Rigorous extraction of polarization observable requires to take such effects properly into account. We studied influence of the crosstalk on energy depositions during laboratory measurements with X-ray beams. A relation between genuine and recorded energy was deduced using an introduced model of data analysis. It postulates that both the crosstalk and non-uniformities can be described with a single matrix obtained in calibrations with mono-energetic X- and gamma-rays. Necessary corrections are introduced using matrix based equations allowing for proper evaluation of the measured GRB spectra. Validity of the method was established during dedicated experimental tests. The same approach can be also applied in space utilizing POLAR internal calibration sources. The introduced model is general and with some adjustments well suitable for data analysis from other MAPMT-based instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.04474v3-abstract-full').style.display = 'none'; document.getElementById('1507.04474v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.07682">arXiv:1503.07682</a> <span> [<a href="https://arxiv.org/pdf/1503.07682">pdf</a>, <a href="https://arxiv.org/ps/1503.07682">ps</a>, <a href="https://arxiv.org/format/1503.07682">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/10/05/P05002">10.1088/1748-0221/10/05/P05002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of the displacement damage on the Charge Collection Efficiency in Silicon Drift Detectors for the LOFT satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Del+Monte%2C+E">E. Del Monte</a>, <a href="/search/physics?searchtype=author&query=Evangelista%2C+Y">Y. Evangelista</a>, <a href="/search/physics?searchtype=author&query=Bozzo%2C+E">E. Bozzo</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Rachevski%2C+A">A. Rachevski</a>, <a href="/search/physics?searchtype=author&query=Zampa%2C+G">G. Zampa</a>, <a href="/search/physics?searchtype=author&query=Zampa%2C+N">N. Zampa</a>, <a href="/search/physics?searchtype=author&query=Feroci%2C+M">M. Feroci</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+M">M. Pohl</a>, <a href="/search/physics?searchtype=author&query=Vacchi%2C+A">A. Vacchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.07682v1-abstract-short" style="display: inline;"> The technology of Silicon Drift Detectors (SDDs) has been selected for the two instruments aboard the Large Observatory For X-ray Timing (LOFT) space mission. LOFT underwent a three year long assessment phase as candidate for the M3 launch opportunity within the "Cosmic Vision 2015 -- 2025" long-term science plan of the European Space Agency. During the LOFT assessment phase, we studied the displa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07682v1-abstract-full').style.display = 'inline'; document.getElementById('1503.07682v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.07682v1-abstract-full" style="display: none;"> The technology of Silicon Drift Detectors (SDDs) has been selected for the two instruments aboard the Large Observatory For X-ray Timing (LOFT) space mission. LOFT underwent a three year long assessment phase as candidate for the M3 launch opportunity within the "Cosmic Vision 2015 -- 2025" long-term science plan of the European Space Agency. During the LOFT assessment phase, we studied the displacement damage produced in the SDDs by the protons trapped in the Earth's magnetosphere. In a previous paper we discussed the effects of the Non Ionising Energy Losses from protons on the SDD leakage current. In this paper we report the measurement of the variation of Charge Collection Efficiency produced by displacement damage caused by protons and the comparison with the expected damage in orbit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.07682v1-abstract-full').style.display = 'none'; document.getElementById('1503.07682v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures. Accepted for publication by Journal of Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.4405">arXiv:1409.4405</a> <span> [<a href="https://arxiv.org/pdf/1409.4405">pdf</a>, <a href="https://arxiv.org/format/1409.4405">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Agostino%2C+L">L. Agostino</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Autiero%2C+D">D. Autiero</a>, <a href="/search/physics?searchtype=author&query=B%C3%A9sida%2C+O">O. B茅sida</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+F">F. Bay</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&query=Blebea-Apostu%2C+A+M">A. M. Blebea-Apostu</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Bolognesi%2C+S">S. Bolognesi</a>, <a href="/search/physics?searchtype=author&query=Bordoni%2C+S">S. Bordoni</a>, <a href="/search/physics?searchtype=author&query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&query=Buizza-Avanzini%2C+M">M. Buizza-Avanzini</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Caiulo%2C+D">D. Caiulo</a>, <a href="/search/physics?searchtype=author&query=Calin%2C+M">M. Calin</a>, <a href="/search/physics?searchtype=author&query=Campanelli%2C+M">M. Campanelli</a>, <a href="/search/physics?searchtype=author&query=Cantini%2C+C">C. Cantini</a>, <a href="/search/physics?searchtype=author&query=Chaussard%2C+L">L. Chaussard</a>, <a href="/search/physics?searchtype=author&query=Chesneanu%2C+D">D. Chesneanu</a>, <a href="/search/physics?searchtype=author&query=Colino%2C+N">N. Colino</a>, <a href="/search/physics?searchtype=author&query=Crivelli%2C+P">P. Crivelli</a>, <a href="/search/physics?searchtype=author&query=De+Bonis%2C+I">I. De Bonis</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9clais%2C+Y">Y. D茅clais</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.4405v1-abstract-short" style="display: inline;"> In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.4405v1-abstract-full').style.display = 'inline'; document.getElementById('1409.4405v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.4405v1-abstract-full" style="display: none;"> In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6\times 6\times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable to 20 kton or 50~kton. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.4405v1-abstract-full').style.display = 'none'; document.getElementById('1409.4405v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">217 pages, 164 figures, LBNO-DEMO (CERN WA105) Collaboration</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-SPSC-2014-013, SPSC-TDR-004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.6089">arXiv:1405.6089</a> <span> [<a href="https://arxiv.org/pdf/1405.6089">pdf</a>, <a href="https://arxiv.org/format/1405.6089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Bross%2C+A">A. Bross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&query=Izmaylov%2C+A">A. Izmaylov</a>, <a href="/search/physics?searchtype=author&query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&query=Karpikov%2C+I">I. Karpikov</a>, <a href="/search/physics?searchtype=author&query=Khabibulin%2C+M">M. Khabibulin</a>, <a href="/search/physics?searchtype=author&query=Khotyantsev%2C+A">A. Khotyantsev</a>, <a href="/search/physics?searchtype=author&query=Kopylov%2C+A">A. Kopylov</a>, <a href="/search/physics?searchtype=author&query=Kudenko%2C+Y">Y. Kudenko</a>, <a href="/search/physics?searchtype=author&query=Matev%2C+R">R. Matev</a>, <a href="/search/physics?searchtype=author&query=Mineev%2C+O">O. Mineev</a>, <a href="/search/physics?searchtype=author&query=Musienko%2C+Y">Y. Musienko</a>, <a href="/search/physics?searchtype=author&query=Nessi%2C+M">M. Nessi</a>, <a href="/search/physics?searchtype=author&query=Noah%2C+E">E. Noah</a>, <a href="/search/physics?searchtype=author&query=Rubbia%2C+A">A. Rubbia</a>, <a href="/search/physics?searchtype=author&query=Shaykiev%2C+A">A. Shaykiev</a>, <a href="/search/physics?searchtype=author&query=Soler%2C+P">P. Soler</a>, <a href="/search/physics?searchtype=author&query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&query=Vankova-Kirilova%2C+G">G. Vankova-Kirilova</a>, <a href="/search/physics?searchtype=author&query=Yershov%2C+N">N. Yershov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.6089v1-abstract-short" style="display: inline;"> The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. The current proposal is submitted to b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6089v1-abstract-full').style.display = 'inline'; document.getElementById('1405.6089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.6089v1-abstract-full" style="display: none;"> The design, construction and testing of neutrino detector prototypes at CERN are ongoing activities. This document reports on the design of solid state baby MIND and TASD detector prototypes and outlines requirements for a test beam at CERN to test these, tentatively planned on the H8 beamline in the North Area, which is equipped with a large aperture magnet. The current proposal is submitted to be considered in light of the recently approved projects related to neutrino activities with the SPS in the North Area in the medium term 2015-2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.6089v1-abstract-full').style.display = 'none'; document.getElementById('1405.6089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1404.2734">arXiv:1404.2734</a> <span> [<a href="https://arxiv.org/pdf/1404.2734">pdf</a>, <a href="https://arxiv.org/format/1404.2734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2014.05.010">10.1016/j.astropartphys.2014.05.010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design, optimization and characterization of the light concentrators of the single-mirror small size telescopes of the Cherenkov Telescope Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Basili%2C+A">A. Basili</a>, <a href="/search/physics?searchtype=author&query=Boccone%2C+V">V. Boccone</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Christov%2C+A">A. Christov</a>, <a href="/search/physics?searchtype=author&query=della+Volpe%2C+D">D. della Volpe</a>, <a href="/search/physics?searchtype=author&query=Montaruli%2C+T">T. Montaruli</a>, <a href="/search/physics?searchtype=author&query=Platos%2C+L">L. Platos</a>, <a href="/search/physics?searchtype=author&query=Rameez%2C+M">M. Rameez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1404.2734v1-abstract-short" style="display: inline;"> The focal-plane camera of $纬$-ray telescopes frequently uses light concentrators in front of light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of an hexagonal hollow l… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2734v1-abstract-full').style.display = 'inline'; document.getElementById('1404.2734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1404.2734v1-abstract-full" style="display: none;"> The focal-plane camera of $纬$-ray telescopes frequently uses light concentrators in front of light sensors. The purpose of these concentrators is to increase the effective area of the camera as well as to reduce the stray light coming at large incident angles. These light concentrators are usually based on the Winston cone design. In this contribution we present the design of an hexagonal hollow light concentrator with a lateral profile optimized using a cubic B茅zier function to achieve a higher collection efficiency in the angular region of interest. The design presented here is optimized for a Davies-Cotton telescope with primary mirror of about 4 meters of diameter and focal length of 5.6 m. The described concentrators are part of an innovative camera made up of silicon-photomultipliers sensors, although a similar approach can be used for other sizes of single-mirror telescopes with different camera sensors, including photomultipliers. The challenge of our approach is to achieve a cost-effective design suitable for standard industrial productions of both the plastic concentrator substrate and the reflective coating. At the same time we maximize the optical performance. In this paper we also describe the optical set-up to measure the absolute collection efficiency of the light guides and demonstrate our good understanding of the measured data using a professional light tracing simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1404.2734v1-abstract-full').style.display = 'none'; document.getElementById('1404.2734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1403.3573">arXiv:1403.3573</a> <span> [<a href="https://arxiv.org/pdf/1403.3573">pdf</a>, <a href="https://arxiv.org/format/1403.3573">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> FACT -- The G-APD revolution in Cherenkov astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bretz%2C+T">T. Bretz</a>, <a href="/search/physics?searchtype=author&query=Anderhub%2C+H">H. Anderhub</a>, <a href="/search/physics?searchtype=author&query=Backes%2C+M">M. Backes</a>, <a href="/search/physics?searchtype=author&query=Biland%2C+A">A. Biland</a>, <a href="/search/physics?searchtype=author&query=Boccone%2C+V">V. Boccone</a>, <a href="/search/physics?searchtype=author&query=Braun%2C+I">I. Braun</a>, <a href="/search/physics?searchtype=author&query=Bu%C3%9F%2C+J">J. Bu脽</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Commichau%2C+V">V. Commichau</a>, <a href="/search/physics?searchtype=author&query=Djambazov%2C+L">L. Djambazov</a>, <a href="/search/physics?searchtype=author&query=Dorner%2C+D">D. Dorner</a>, <a href="/search/physics?searchtype=author&query=Einecke%2C+S">S. Einecke</a>, <a href="/search/physics?searchtype=author&query=Eisenacher%2C+D">D. Eisenacher</a>, <a href="/search/physics?searchtype=author&query=Gendotti%2C+A">A. Gendotti</a>, <a href="/search/physics?searchtype=author&query=Grimm%2C+O">O. Grimm</a>, <a href="/search/physics?searchtype=author&query=von+Gunten%2C+H">H. von Gunten</a>, <a href="/search/physics?searchtype=author&query=Haller%2C+C">C. Haller</a>, <a href="/search/physics?searchtype=author&query=Hempfling%2C+C">C. Hempfling</a>, <a href="/search/physics?searchtype=author&query=Hildebrand%2C+D">D. Hildebrand</a>, <a href="/search/physics?searchtype=author&query=Horisberger%2C+U">U. Horisberger</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+B">B. Huber</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+S">K. S. Kim</a>, <a href="/search/physics?searchtype=author&query=Knoetig%2C+M+L">M. L. Knoetig</a>, <a href="/search/physics?searchtype=author&query=K%C3%B6hne%2C+J+H">J. H. K枚hne</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%A4henb%C3%BChl%2C+T">T. Kr盲henb眉hl</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1403.3573v1-abstract-short" style="display: inline;"> Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.3573v1-abstract-full').style.display = 'inline'; document.getElementById('1403.3573v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1403.3573v1-abstract-full" style="display: none;"> Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1403.3573v1-abstract-full').style.display = 'none'; document.getElementById('1403.3573v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 2013</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.6822">arXiv:1308.6822</a> <span> [<a href="https://arxiv.org/pdf/1308.6822">pdf</a>, <a href="https://arxiv.org/format/1308.6822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&query=Agarwalla%2C+S+K">S. K. Agarwalla</a>, <a href="/search/physics?searchtype=author&query=Ankenbrandt%2C+C+M">C. M. Ankenbrandt</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G">G. Barker</a>, <a href="/search/physics?searchtype=author&query=Baussan%2C+E">E. Baussan</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&query=Blackmore%2C+V">V. Blackmore</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogacz%2C+S+A">S. A. Bogacz</a>, <a href="/search/physics?searchtype=author&query=Booth%2C+C">C. Booth</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S+B">S. B. Boyd</a>, <a href="/search/physics?searchtype=author&query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cease%2C+H">H. Cease</a>, <a href="/search/physics?searchtype=author&query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&query=Cobb%2C+J">J. Cobb</a>, <a href="/search/physics?searchtype=author&query=Colling%2C+D">D. Colling</a>, <a href="/search/physics?searchtype=author&query=Coloma%2C+P">P. Coloma</a>, <a href="/search/physics?searchtype=author&query=Coney%2C+L">L. Coney</a>, <a href="/search/physics?searchtype=author&query=Dobbs%2C+A">A. Dobbs</a> , et al. (88 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.6822v1-abstract-short" style="display: inline;"> The nuSTORM facility has been designed to deliver beams of electron neutrinos and muon neutrinos (and their anti-particles) from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility is unique in that it will: 1. Allow searches for sterile neutrinos of exquisite sensitivity to be carried out; 2. Serve future long- and short-baseline neu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.6822v1-abstract-full').style.display = 'inline'; document.getElementById('1308.6822v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.6822v1-abstract-full" style="display: none;"> The nuSTORM facility has been designed to deliver beams of electron neutrinos and muon neutrinos (and their anti-particles) from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility is unique in that it will: 1. Allow searches for sterile neutrinos of exquisite sensitivity to be carried out; 2. Serve future long- and short-baseline neutrino-oscillation programs by providing definitive measurements of electron neutrino and muon neutrino scattering cross sections off nuclei with percent-level precision; and 3. Constitutes the crucial first step in the development of muon accelerators as a powerful new technique for particle physics. The document describes the facility in detail and demonstrates its physics capabilities. This document was submitted to the Fermilab Physics Advisory Committee in consideration for Stage I approval. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.6822v1-abstract-full').style.display = 'none'; document.getElementById('1308.6822v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.1512">arXiv:1308.1512</a> <span> [<a href="https://arxiv.org/pdf/1308.1512">pdf</a>, <a href="https://arxiv.org/format/1308.1512">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> FACT - The First G-APD Cherenkov Telescope: Status and Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bretz%2C+T">T. Bretz</a>, <a href="/search/physics?searchtype=author&query=Anderhub%2C+H">H. Anderhub</a>, <a href="/search/physics?searchtype=author&query=Backes%2C+M">M. Backes</a>, <a href="/search/physics?searchtype=author&query=Biland%2C+A">A. Biland</a>, <a href="/search/physics?searchtype=author&query=Boccone%2C+V">V. Boccone</a>, <a href="/search/physics?searchtype=author&query=Braun%2C+I">I. Braun</a>, <a href="/search/physics?searchtype=author&query=Bretz%2C+T">T. Bretz</a>, <a href="/search/physics?searchtype=author&query=Buss%2C+J">J. Buss</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Commichau%2C+V">V. Commichau</a>, <a href="/search/physics?searchtype=author&query=Djambazov%2C+L">L. Djambazov</a>, <a href="/search/physics?searchtype=author&query=Dorner%2C+D">D. Dorner</a>, <a href="/search/physics?searchtype=author&query=Einecke%2C+S">S. Einecke</a>, <a href="/search/physics?searchtype=author&query=Eisenacher%2C+D">D. Eisenacher</a>, <a href="/search/physics?searchtype=author&query=Gendotti%2C+A">A. Gendotti</a>, <a href="/search/physics?searchtype=author&query=Grimm%2C+O">O. Grimm</a>, <a href="/search/physics?searchtype=author&query=von+Gunten%2C+H">H. von Gunten</a>, <a href="/search/physics?searchtype=author&query=Haller%2C+C">C. Haller</a>, <a href="/search/physics?searchtype=author&query=Hildebrand%2C+D">D. Hildebrand</a>, <a href="/search/physics?searchtype=author&query=Horisberger%2C+U">U. Horisberger</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+B">B. Huber</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+-">K. -S. Kim</a>, <a href="/search/physics?searchtype=author&query=Knoetig%2C+M+L">M. L. Knoetig</a>, <a href="/search/physics?searchtype=author&query=Koehne%2C+J+-">J. -H. Koehne</a>, <a href="/search/physics?searchtype=author&query=Kraehenbuehl%2C+T">T. Kraehenbuehl</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.1512v1-abstract-short" style="display: inline;"> The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1512v1-abstract-full').style.display = 'inline'; document.getElementById('1308.1512v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.1512v1-abstract-full" style="display: none;"> The First G-APD Cherenkov telescope (FACT) is the first telescope using silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the HEGRA CT3 telescope, still located at the Observatorio del Roque de los Muchachos, and it is successfully in operation since Oct. 2011. The use of Silicon devices promises a higher photon detection efficiency, more robustness and higher precision than photo-multiplier tubes. The FACT collaboration is investigating with which precision these devices can be operated on the long-term. Currently, the telescope is successfully operated from remote and robotic operation is under development. During the past months of operation, the foreseen monitoring program of the brightest known TeV blazars has been carried out, and first physics results have been obtained including a strong flare of Mrk501. An instantaneous flare alert system is already in a testing phase. This presentation will give an overview of the project and summarize its goals, status and first results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.1512v1-abstract-full').style.display = 'none'; document.getElementById('1308.1512v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FACT/ICRC2013/682 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.1419">arXiv:1305.1419</a> <span> [<a href="https://arxiv.org/pdf/1305.1419">pdf</a>, <a href="https://arxiv.org/format/1305.1419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Neutrinos from Stored Muons nuSTORM: Expression of Interest </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adey%2C+D">D. Adey</a>, <a href="/search/physics?searchtype=author&query=Agarwalla%2C+S+K">S. K. Agarwalla</a>, <a href="/search/physics?searchtype=author&query=Ankenbrandt%2C+C+M">C. M. Ankenbrandt</a>, <a href="/search/physics?searchtype=author&query=Asfandiyarov%2C+R">R. Asfandiyarov</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G">G. Barker</a>, <a href="/search/physics?searchtype=author&query=Baussan%2C+E">E. Baussan</a>, <a href="/search/physics?searchtype=author&query=Bayes%2C+R">R. Bayes</a>, <a href="/search/physics?searchtype=author&query=Bhadra%2C+S">S. Bhadra</a>, <a href="/search/physics?searchtype=author&query=Blackmore%2C+V">V. Blackmore</a>, <a href="/search/physics?searchtype=author&query=Blondel%2C+A">A. Blondel</a>, <a href="/search/physics?searchtype=author&query=Bogacz%2C+S+A">S. A. Bogacz</a>, <a href="/search/physics?searchtype=author&query=Booth%2C+C">C. Booth</a>, <a href="/search/physics?searchtype=author&query=Boyd%2C+S+B">S. B. Boyd</a>, <a href="/search/physics?searchtype=author&query=Bravar%2C+A">A. Bravar</a>, <a href="/search/physics?searchtype=author&query=Brice%2C+S+J">S. J. Brice</a>, <a href="/search/physics?searchtype=author&query=Bross%2C+A+D">A. D. Bross</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Cease%2C+H">H. Cease</a>, <a href="/search/physics?searchtype=author&query=Cervera%2C+A">A. Cervera</a>, <a href="/search/physics?searchtype=author&query=Cobb%2C+J">J. Cobb</a>, <a href="/search/physics?searchtype=author&query=Colling%2C+D">D. Colling</a>, <a href="/search/physics?searchtype=author&query=Coney%2C+L">L. Coney</a>, <a href="/search/physics?searchtype=author&query=Dobbs%2C+A">A. Dobbs</a>, <a href="/search/physics?searchtype=author&query=Dobson%2C+J">J. Dobson</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.1419v1-abstract-short" style="display: inline;"> The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.1419v1-abstract-full').style.display = 'inline'; document.getElementById('1305.1419v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.1419v1-abstract-full" style="display: none;"> The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.1419v1-abstract-full').style.display = 'none'; document.getElementById('1305.1419v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages; 24 figures; 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-SPSC-2013-015 / SPSC-EOI-009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.1710">arXiv:1304.1710</a> <span> [<a href="https://arxiv.org/pdf/1304.1710">pdf</a>, <a href="https://arxiv.org/format/1304.1710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/8/06/P06008">10.1088/1748-0221/8/06/P06008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Operation of FACT -- The First G-APD Cherenkov Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Anderhub%2C+H">H. Anderhub</a>, <a href="/search/physics?searchtype=author&query=Backes%2C+M">M. Backes</a>, <a href="/search/physics?searchtype=author&query=Biland%2C+A">A. Biland</a>, <a href="/search/physics?searchtype=author&query=Boccone%2C+V">V. Boccone</a>, <a href="/search/physics?searchtype=author&query=Braun%2C+I">I. Braun</a>, <a href="/search/physics?searchtype=author&query=Bretz%2C+T">T. Bretz</a>, <a href="/search/physics?searchtype=author&query=Bu%C3%9F%2C+J">J. Bu脽</a>, <a href="/search/physics?searchtype=author&query=Cadoux%2C+F">F. Cadoux</a>, <a href="/search/physics?searchtype=author&query=Commichau%2C+V">V. Commichau</a>, <a href="/search/physics?searchtype=author&query=Djambazov%2C+L">L. Djambazov</a>, <a href="/search/physics?searchtype=author&query=Dorner%2C+D">D. Dorner</a>, <a href="/search/physics?searchtype=author&query=Einecke%2C+S">S. Einecke</a>, <a href="/search/physics?searchtype=author&query=Eisenacher%2C+D">D. Eisenacher</a>, <a href="/search/physics?searchtype=author&query=Gendotti%2C+A">A. Gendotti</a>, <a href="/search/physics?searchtype=author&query=Grimm%2C+O">O. Grimm</a>, <a href="/search/physics?searchtype=author&query=von+Gunten%2C+H">H. von Gunten</a>, <a href="/search/physics?searchtype=author&query=Haller%2C+C">C. Haller</a>, <a href="/search/physics?searchtype=author&query=Hildebrand%2C+D">D. Hildebrand</a>, <a href="/search/physics?searchtype=author&query=Horisberger%2C+U">U. Horisberger</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+B">B. Huber</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+K+-">K. -S. Kim</a>, <a href="/search/physics?searchtype=author&query=Knoetig%2C+M+L">M. L. Knoetig</a>, <a href="/search/physics?searchtype=author&query=K%22ohne%2C+J+H">J. H. K"ohne</a>, <a href="/search/physics?searchtype=author&query=Kr%22ahenb%22uhl%2C+T">T. Kr"ahenb"uhl</a>, <a href="/search/physics?searchtype=author&query=Krumm%2C+B">B. Krumm</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.1710v1-abstract-short" style="display: inline;"> The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1710v1-abstract-full').style.display = 'inline'; document.getElementById('1304.1710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.1710v1-abstract-full" style="display: none;"> The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.1710v1-abstract-full').style.display = 'none'; document.getElementById('1304.1710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corresponding authors: T. Bretz and Q. Weitzel</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2013 JINST 8 P06008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1110.1813">arXiv:1110.1813</a> <span> [<a href="https://arxiv.org/pdf/1110.1813">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bravar%2C+U">U. Bravar</a>, <a href="/search/physics?searchtype=author&query=Bogomilov%2C+M">M. Bogomilov</a>, <a href="/search/physics?searchtype=author&query=Karadzhov%2C+Y">Y. Karadzhov</a>, <a href="/search/physics?searchtype=author&query=Kolev%2C+D">D. Kolev</a>, <a href="/search/physics?searchtype=author&query=Russinov%2C+I">I. Russinov</a>, <a href="/search/physics?searchtype=author&query=Tsenov%2C+R">R. Tsenov</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+L">L. Wang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+F+Y">F. Y. Xu</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+S+X">S. X. Zheng</a>, <a href="/search/physics?searchtype=author&query=Bertoni%2C+R">R. Bertoni</a>, <a href="/search/physics?searchtype=author&query=Bonesini%2C+M">M. Bonesini</a>, <a href="/search/physics?searchtype=author&query=Mazza%2C+R">R. Mazza</a>, <a href="/search/physics?searchtype=author&query=Palladino%2C+V">V. Palladino</a>, <a href="/search/physics?searchtype=author&query=Cecchet%2C+G">G. Cecchet</a>, <a href="/search/physics?searchtype=author&query=de+Bari%2C+A">A. de Bari</a>, <a href="/search/physics?searchtype=author&query=Capponi%2C+M">M. Capponi</a>, <a href="/search/physics?searchtype=author&query=Iaciofano%2C+A">A. Iaciofano</a>, <a href="/search/physics?searchtype=author&query=Orestano%2C+D">D. Orestano</a>, <a href="/search/physics?searchtype=author&query=Pastore%2C+F">F. Pastore</a>, <a href="/search/physics?searchtype=author&query=Tortora%2C+L">L. Tortora</a>, <a href="/search/physics?searchtype=author&query=Ishimoto%2C+S">S. Ishimoto</a>, <a href="/search/physics?searchtype=author&query=Suzuki%2C+S">S. Suzuki</a>, <a href="/search/physics?searchtype=author&query=Yoshimura%2C+K">K. Yoshimura</a>, <a href="/search/physics?searchtype=author&query=Mori%2C+Y">Y. Mori</a>, <a href="/search/physics?searchtype=author&query=Kuno%2C+Y">Y. Kuno</a> , et al. (123 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1110.1813v2-abstract-short" style="display: inline;"> The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.1813v2-abstract-full').style.display = 'inline'; document.getElementById('1110.1813v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1110.1813v2-abstract-full" style="display: none;"> The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1110.1813v2-abstract-full').style.display = 'none'; document.getElementById('1110.1813v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the DPF-2011 Conference, Providence, RI, August 8-13, 2011</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Cadoux%2C+F&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Cadoux%2C+F&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Cadoux%2C+F&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>