CINXE.COM

Search results for: hydroponic green forage

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydroponic green forage</title> <meta name="description" content="Search results for: hydroponic green forage"> <meta name="keywords" content="hydroponic green forage"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydroponic green forage" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydroponic green forage"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2257</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydroponic green forage</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Fuzzy Climate Control System for Hydroponic Green Forage Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Germ%C3%A1n%20D%C3%ADaz%20Fl%C3%B3rez">Germán Díaz Flórez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20Olvera%20Olvera"> Carlos Alberto Olvera Olvera</a>, <a href="https://publications.waset.org/abstracts/search?q=Domingo%20Jos%C3%A9%20G%C3%B3mez%20Mel%C3%A9ndez"> Domingo José Gómez Meléndez</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Eneldo%20L%C3%B3pez%20Monteagudo"> Francisco Eneldo López Monteagudo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, population growth has exerted great pressure on natural resources. Two of the most scarce and difficult to obtain resources, arable land, and water, are closely interrelated, to the satisfaction of the demand for food production. In Mexico, the agricultural sector uses more than 70% of water consumption. Therefore, maximize the efficiency of current production systems is inescapable. It is essential to utilize techniques and tools that will enable us to the significant savings of water, labor and fertilizer. In this study, we present a production module of hydroponic green forage (HGF), which is a viable alternative in the production of livestock feed in the semi-arid and arid zones. The equipment in addition to having a forage production module, has a climate and irrigation control system that operated with photovoltaics. The climate control, irrigation and power management is based on fuzzy control techniques. The fuzzy control provides an accurate method in the design of controllers for nonlinear dynamic physical phenomena such as temperature and humidity, besides other as lighting level, aeration and irrigation control using heuristic information. In this working, firstly refers to the production of the hydroponic green forage, suitable weather conditions and fertigation subsequently presents the design of the production module and the design of the controller. A simulation of the behavior of the production module and the end results of actual operation of the equipment are presented, demonstrating its easy design, flexibility, robustness and low cost that represents this equipment in the primary sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title="fuzzy">fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20control%20system" title=" climate control system"> climate control system</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage" title=" hydroponic green forage"> hydroponic green forage</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20production%20module" title=" forage production module"> forage production module</a> </p> <a href="https://publications.waset.org/abstracts/32666/fuzzy-climate-control-system-for-hydroponic-green-forage-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Forage Production Area Development in Bangkok Metropolitan Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thipayasothorn%20Pastraporn">Thipayasothorn Pastraporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Phonpakdee%20Rachadakorn"> Phonpakdee Rachadakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Ponpo%20Sopar"> Ponpo Sopar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forage production area development in Bangkok Metropolitan Region with an Agriculture in the city concept. Food chain of city man reduced distance of the food, so the food chain was a good attempt to connect the city’s product with the changes in each area of city. This paper purposed (I) to study the problems of using forage production area development in Bangkok Metropolitan Region, (II) to propose guidelines of forage production area development in Bangkok Metropolitan Region. We collected the data by questionnaire which we got from the agriculture, marketing and city plan sector in Bangkok Metropolitan Region. We analyzed the questionnaire in the way of relationship and guidelines of forage production area development in Bangkok Metropolitan Region. Results from the analyses are that the role of forage area productive plan in Bangkok Metropolitan Region is important to the cities for adapting in changing way of the food transmission. It also enhanced benefits using from cities fringe. Moreover, it managed watercourse and reduced energy consumption in order to sustainable distribute the food into the cities. . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20plan" title="city plan">city plan</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20production%20area" title=" forage production area"> forage production area</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangkok%20Metropolitan%20Region" title=" Bangkok Metropolitan Region"> Bangkok Metropolitan Region</a> </p> <a href="https://publications.waset.org/abstracts/49443/forage-production-area-development-in-bangkok-metropolitan-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Forage Quality of Chickpea - Barley as Affected by Mixed Cropping System in Water Stress Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rafiee">Masoud Rafiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the quality response of forage to chickpea-barley mixed cropping under drought stress and vermicompost consumption, an experiment was carried out under well watered and %70 water requirement (stress condition) in RCBD as split plot with four replications in temperate condition of Khorramabad in 2013. Chickpea-barley mix cropping (%100 chickpea, %75:25 chickpea:barley, %50:50 chickpea:barley, %25:75 chickpea:barley, and %100 barley) was studied. Results showed that wet and dry forage yield were significantly affected by environment and decreased in stress condition. Also, crude protein content decreased from %26.2 in well watered to %17.3 in stress condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20protein" title="crude protein">crude protein</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20forage%20yield" title=" wet forage yield"> wet forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20forage%20yield" title=" dry forage yield"> dry forage yield</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress%20condition" title=" water stress condition"> water stress condition</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20watered" title=" well watered"> well watered</a> </p> <a href="https://publications.waset.org/abstracts/31169/forage-quality-of-chickpea-barley-as-affected-by-mixed-cropping-system-in-water-stress-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadiah%20Yola%20Putri">Nadiah Yola Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesia%20Putri%20Sharfina"> Nesia Putri Sharfina</a>, <a href="https://publications.waset.org/abstracts/search?q=Traviata%20Prakarti"> Traviata Prakarti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with <em>Nutrient Film Technique </em>(NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20area" title=" urban area"> urban area</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20farming" title=" sky farming"> sky farming</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20landscape" title=" vertical landscape"> vertical landscape</a> </p> <a href="https://publications.waset.org/abstracts/31688/sky-farming-the-alternative-concept-of-green-building-using-vertical-landscape-model-in-urban-area-as-an-effort-to-achieve-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Hydroponic Cultivation Enhances the Morpho-Physiological Traits and Quality Flower Production in Tagetes patula L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujala">Ujala</a>, <a href="https://publications.waset.org/abstracts/search?q=Diksha%20Sharma"> Diksha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahinder%20Partap"> Mahinder Partap</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20R.%20Warghat"> Ashish R. Warghat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavya%20Bhargava"> Bhavya Bhargava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In soil-less agriculture, hydroponic is considered a potential farming system for the production of uniform quality plant material in significantly less time. Therefore, for the first time, the current investigation corroborates the effect of different cultivation conditions (open-field, poly-house, and hydroponic) on morpho-physiological traits, phenolic content, and essential oil components analysis in three flower color variants (yellow, scarlet red, and orange) of Tagetes patula. The results revealed that the maximum plant height, number of secondary branches, number of flowers, photosynthesis, stomatal conductance, and transpiration rate were observed under the hydroponic system as compared to other conditions. However, the maximum content of gallic acid (0.82 mg/g DW), syringic acid (3.98 mg/g DW), epicatechin (0.48 mg/g DW), p-coumaric acid (7.28 mg/g DW), protocatechuic acid (0.59 mg/g DW), ferulic acid (2.58 mg/g DW), and luteolin (8.24 mg/g DW) were quantified maximally under open-field conditions. However, under hydroponic conditions, the higher content of vanillic acid (0.43 mg/g DW), caffeic acid (0.49 mg/g DW), and quercetin (0.92 mg/g DW) were quantified. Moreover, a total of nineteen volatile components were identified in the essential oil of different flower color variants of T. patula cultivated under different conditions. The major reported volatile components in essential oil were (-)-caryophyllene oxide, trans-β-caryophyllene, trans-geraniol, 3 methyl-benzyl alcohol, and 2,2’:5’,2”-terthiophene. It has also been observed that the volatile component percentage range in all variants was observed in open-field (70.85 % to 90.54 %), poly-house (59.03 % to 77.93 %), and hydroponic (68.78 % to 89.41 %). In conclusion, the research highlighted that morpho-physiological performance with flower production was enhanced in the hydroponic system. However, phenolic content and volatile components were maximally observed in open-field conditions. However, significant results have been reported under hydroponic conditions in all studied parameters, so it could be a potential strategy for quality biomass production in T. patula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20patula" title="Tagetes patula">Tagetes patula</a>, <a href="https://publications.waset.org/abstracts/search?q=cultivation%20conditions" title=" cultivation conditions"> cultivation conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=morpho-physiology" title=" morpho-physiology"> morpho-physiology</a> </p> <a href="https://publications.waset.org/abstracts/171884/hydroponic-cultivation-enhances-the-morpho-physiological-traits-and-quality-flower-production-in-tagetes-patula-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Katsoulas">Nikolaos Katsoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Naounoulis"> Ioannis Naounoulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Faliagka"> Sofia Faliagka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title="hydroponics">hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiencu" title=" water use efficiencu"> water use efficiencu</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20use%20efficiency" title=" nutrients use efficiency"> nutrients use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/175832/drainage-management-in-a-cascade-hydroponic-system-combination-of-cucumber-and-melon-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Study of Salinity Stress and Calcium Interaction on Morphological and Physiological Traits of Vicia villosa under Hydroponic Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Khademian">Raheleh Khademian</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Aminian"> Roghayeh Aminian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the study of salinity stress on <em>Vicia villosa</em> and calcium effect for modulation of that, an experiment was conducted under hydroponic condition, and some important morphological and physiological characteristics were evaluated. This experiment was conducted as a factorial based on randomized complete design with three replications. The treatments include salinity stress in three levels (0, 50, and 100 mM NaCl) and calcium in two levels (content in Hoagland solution and double content). The results showed that all morphological and physiological traits include root and shoot length, root and shoot wet and dry weight, leaf area, leaf chlorophyll content, RWC, CMS, and biological yield was significantly different from the control and is affected by the salinity stress severely. But, calcium effect on them was not significant despite of decreasing salinity effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vicia%20villossa" title="Vicia villossa">Vicia villossa</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20stress" title=" salinity stress"> salinity stress</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a> </p> <a href="https://publications.waset.org/abstracts/55356/study-of-salinity-stress-and-calcium-interaction-on-morphological-and-physiological-traits-of-vicia-villosa-under-hydroponic-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> A Descriptive Study of the Mineral Content of Conserved Forage Fed to Horses in the United Kingdom, Ireland, and France</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louise%20Jones">Louise Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20De%20Andrade%20Moral"> Rafael De Andrade Moral</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20C.%20Stephens"> John C. Stephens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Minerals are an essential component of correct nutrition. Conserved hay/haylage is an important component of many horse's diets. Variations in the mineral content of conserved forage should be considered when assessing dietary intake. Objectives: This study describes the levels and differences in 15 commonly analysed minerals in conserved forage fed to horses in the United Kingdom (UK), Ireland (IRL), and France (FRA). Methods: Hay (FRA n=92, IRL n=168, UK n=152) and haylage samples (UK n=287, IRL n=49) were collected during 2017-2020. Mineral analysis was undertaken using inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis was performed using beta regression, Gaussian, or gamma models, depending on the nature of the response variable. Results: There are significant differences in the mineral content of the UK, IRL, and FRA conserved forage samples. FRA hay samples had a significantly higher (p < 0.05) levels of Sulphur (0.16 ± 0.0051 %), Calcium (0.56 ± 0.0342%), Magnesium (0.16 ± 0.0069 mg/ kg DM), Iron (194 ± 23.0 mg/kg DM), Cobalt (0.21 ± 0.0244 mg/kg DM) and Copper (4.94 ± 0.196 mg/kg DM) content compared to hay from the other two countries. UK hay samples had significantly less (p < 0.05) Selenium (0.07 ± 0.0084 mg/kg DM), whilst IRL hay samples were significantly (p < 0.05) higher in Chloride (0.9 ± 0.026mg/kg DM) compared to hay from the other two countries. IRL haylage samples were significantly (p < 0.05) higher in Phosphorus (0.26 ± 0.0102 %), Sulphur (0.17 ± 0.0052 %), Chloride (1.01 ± 0.0519 %), Calcium (0.54 ± 0.0257 %), Selenium (0.17 ± 0.0322 mg/kg DM) and Molybdenum (1.47 ± 0.137 mg/kg DM) compared to haylage from the UK. Main Limitations: Forage samples were obtained from professional yards and may not be reflective of forages fed by most horse owners. Information regarding soil type, species of grass, fertiliser treatment, harvest, or storage conditions were not included in this study. Conclusions: At a DM intake of 2% body weight, conserved forage as sampled in this study will be insufficient to meet Zinc, Iodine, and Copper NRC maintenance requirements, and Se intake will also be insufficient for horses fed the UK conserved forage. Many horses receive hay/haylage as the main component of their diet; this study highlights the need to consider forage analysis when making dietary recommendations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conserved%20forage" title="conserved forage">conserved forage</a>, <a href="https://publications.waset.org/abstracts/search?q=hay" title=" hay"> hay</a>, <a href="https://publications.waset.org/abstracts/search?q=haylage" title=" haylage"> haylage</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a> </p> <a href="https://publications.waset.org/abstracts/137448/a-descriptive-study-of-the-mineral-content-of-conserved-forage-fed-to-horses-in-the-united-kingdom-ireland-and-france" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Evaluation of Forage Yield and Competition Indices for Intercropped Barley and Legumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdollah%20Javanmard">Abdollah Javanmard</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari"> Fariborz Shekari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barley (Hordeum vulgare L.), vetch (Vicia villosa), and grass pea (Lathyrus sativus L.) monocultures as well as mixtures of barley with each of the above legumes, in three seeding ratios (i.e., barley: legume 75:25, 50:50 and 25:75 based on seed numbers) were used to investigate forage yield and competition indices. The results showed that intercropping reduced the dry matter yield of the three component plants, compared with their respective monocrops. The greatest value of total dry matter yield was obtained from barley25-grasspea75 (5.44 t ha-1) mixture, followed by grass pea sole crop (4.99 t ha-1). The total AYL values were positive and greater than 0 in all mixtures, indicating an advantage from intercropping over sole crops. Intercropped barley had a higher relative crowding coefficient (K=1.64) than intercropped legumes (K=1.20), indicating that barley was more competitive than legumes in mixtures. Furthermore, grass pea was more competitive than vetch in mixtures with barley. The highest LER, SPI and MAI were obtained when barley was mixed at a rate of 25% with 75% seed rate of grass pea. It is concluded that intercropping of barley with grass pea has a good potential to improve the performance of forage with high land-use efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=grass%20pea" title=" grass pea"> grass pea</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=LER" title=" LER"> LER</a>, <a href="https://publications.waset.org/abstracts/search?q=monetary%20advantage" title=" monetary advantage"> monetary advantage</a> </p> <a href="https://publications.waset.org/abstracts/3557/evaluation-of-forage-yield-and-competition-indices-for-intercropped-barley-and-legumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Potential of Intercropping Corn and Cowpea to Ratooned Sugarcane for Food and Forage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maricon%20E.%20Gepolani">Maricon E. Gepolani</a>, <a href="https://publications.waset.org/abstracts/search?q=Edna%20A.%20Aguilar"> Edna A. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pearl%20B.%20Sanchez"> Pearl B. Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20P.%20Supangco"> Enrico P. Supangco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intercropping farming system and biofertilizer application are sustainable agricultural practices that increase farm productivity by improving the yield performance of the components involved in the production system. Thus, this on-farm trial determined the yield and forage quality of corn and cowpea with and without biofertilizer application when intercropped with ratooned sugarcane. Intercropping corn and cowpea without biofertilizer application had no negative effect on the vegetative growth of sugarcane. However, application of biofertilizer on intercrops decreased tiller production at 117 days after stubble shaving (DASS), consequently reducing the estimated tonnage yield of sugarcane. The yield of intercrops and forage production of Cp3 cowpea variety increased when intercropped to ratooned sugarcane. In contrast, intercropping PSB 97-92 corn variety to ratooned sugarcane reduced its forage production, but when biofertilizer was applied to intercropped Cp5 cowpea variety, the forage production increased. Profitability (income equivalent ratio) of intercropping for both corn and cowpea are higher than monocropping and are thus suitable intercrops to ratooned sugarcane. Unaffected tiller count (a determinant of sugarcane tonnage yield) when biofertilizer was not applied to intercrops and a reduced tiller count with biofertilizer application to intercrops implies the need to develop a nutrient management practices specific for intercropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title="biofertilizer">biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping%20system" title=" intercropping system"> intercropping system</a>, <a href="https://publications.waset.org/abstracts/search?q=ratooned%20sugarcane" title=" ratooned sugarcane"> ratooned sugarcane</a> </p> <a href="https://publications.waset.org/abstracts/111804/potential-of-intercropping-corn-and-cowpea-to-ratooned-sugarcane-for-food-and-forage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maher%20J.%20Tadros">Maher J. Tadros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20water%20relations" title="plant water relations">plant water relations</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20stress" title=" salinity stress"> salinity stress</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20quality" title=" forage quality"> forage quality</a>, <a href="https://publications.waset.org/abstracts/search?q=multipurpose%20trees" title=" multipurpose trees "> multipurpose trees </a> </p> <a href="https://publications.waset.org/abstracts/15842/plant-water-relations-and-forage-quality-in-leucaena-leucocephala-lam-de-wit-and-acacia-saligna-labill-as-affected-by-salinity-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> The Application of Green Technology to Residential Architecture in Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Chen">Huiru Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuran%20Zhang"> Xuran Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou" title=" Hangzhou"> Hangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20architecture" title=" residential architecture"> residential architecture</a> </p> <a href="https://publications.waset.org/abstracts/92930/the-application-of-green-technology-to-residential-architecture-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Effect of a new Released Bio Organic-Fertilizer in Improving Tomato Growth in Hydroponic System and Under Greenhouse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zayneb%20Kthiri">Zayneb Kthiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Hamada"> Walid Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of organic fertilizers is generally known to be useful to sustain soil fertility and plant growth, especially in poor soils, with less than 1% of organic matter, as it is very common in our Tunisian fields. Therefore, we focused on evaluating the effect of a new released liquid organic fertilizer named Solorga (with 5% of organic matter) compared to a reference product (Espartan: Kimitec, Spain) on tomato plant growth and physiology. Both fertilizers, derived from plant decomposition, were applied at an early stage in hydroponic system and under greenhouse. In hydroponic system, after 14 days of their application by root feeding, a significant difference was observed between treatments. Indeed, Solorga improved shoots and roots length, as well as the biomass respectively, by 45%, 27%, and 27.8% increase rate, while compared to control plants. However, Espartan induced less the measured parameters while compared to untreated control. Moreover, Solorga significantly increased the chlorophyll content by 42% compared to control and by 32% compared to Espartan. In the greenhouse, after 20 days of treatments, the results showed a significant effect of both fertilizers on SPAD index and the number of flowers blossom. Solorga increased the amount of chlorophyll present in the leaf by 7% compared to Espartan as well as the plant height under greenhouse. Moreover, the number of flowers blossom increased by 15% in plants treated with Solorga while compared to Espartan. Whereas, there is no notable difference between both organic fertilizers on the fruits blossom and the number of fruits per blossom. In conclusion, even though there is a difference in the organic matter between both fertilizers, Solorga improved better the plant growth in controlled conditions in hydroponic system while compared to Espartan. Altogether the obtained results are encouraging for the use of Solorga as a soil enriching source of organic matter to help plants to boost their growth and help them to overcome abiotic stresses linked to soil fertility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tomato" title="tomato">tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth" title=" plant growth"> plant growth</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic%20system" title=" hydroponic system"> hydroponic system</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a> </p> <a href="https://publications.waset.org/abstracts/147429/effect-of-a-new-released-bio-organic-fertilizer-in-improving-tomato-growth-in-hydroponic-system-and-under-greenhouse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Quantifying Rumen Enteric Methane Production in Extensive Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Washaya%20Soul">Washaya Soul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mupangwa%20John"> Mupangwa John</a>, <a href="https://publications.waset.org/abstracts/search?q=Mapfumo%20Lizwell"> Mapfumo Lizwell</a>, <a href="https://publications.waset.org/abstracts/search?q=Muchenje%20Voster"> Muchenje Voster</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ruminant animals contribute a considerable amount of methane to the atmosphere, which is a cause of concern for global warming. Two studies were conducted in beef and goats where the studies aimed to determine the enteric CH₄ levels from a herd of beef cows raised on semi-arid rangelands and to evaluate the effect of supplementing goats with forage legumes: Vigna unguiculata and Lablab purpureus on enteric methane production. A total of 24 cows were selected from Boran and Nguni cows (n = 12 per breed) from two different farms; parity (P1 – P4) and season (dry vs. wet) were considered predictor variables in the first experiment. Eighteen goats (weaners, 9 males, 9 females) were used, in which sex and forage species were predictor variables in the second experiment. Three treatment diets were used in goats. Methane was measured using a Laser methane detector [LMD] for six consecutive days and repeated once after every three months in beef cows and once every week for 6 weeks in goats during the post-adaptation period. Parity and breed had no effects on CH₄ production in beef cows; however, season significantly influenced CH₄ outputs. Methane production was higher (P<0.05) in the dry compared to the wet season, 31.1CH₄/DMI(g/kg) and 28.8 CH₄/DMI(g/kg) for the dry and wet seasons, respectively. In goats, forage species and sex of the animal affected enteric methane production (P<0.05). Animals produce more gas when ruminating than feeding or just standing for all treatments. The control treatment exhibited higher (P<0.05) methane emissions per kg of DMI. Male goats produced more methane compared to females (17.40L/day; 12.46 g/kg DMI and 0.126g/day) versus (15.47L/day, 12.28 g/kg DMI, 0.0109g/day) respectively. It was concluded that cows produce more CH₄/DMI during the dry season, while forage legumes reduce enteric methane production in goats, and male goats produce more gas compared to females. It is recommended to introduce forage legumes, particularly during the dry season, to reduce the amount of gas produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beef%20cows" title="beef cows">beef cows</a>, <a href="https://publications.waset.org/abstracts/search?q=extensive%20grazing%20system" title=" extensive grazing system"> extensive grazing system</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20legumes" title=" forage legumes"> forage legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=goats%20Laser%20methane%20detector." title=" goats Laser methane detector."> goats Laser methane detector.</a> </p> <a href="https://publications.waset.org/abstracts/163252/quantifying-rumen-enteric-methane-production-in-extensive-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Shavlakadze">Marine Shavlakadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO<sub>3</sub>)<sub>2 </sub>can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title="hydroponics">hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-fertilizers" title=" micro-fertilizers"> micro-fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese-containing%20materials" title=" manganese-containing materials"> manganese-containing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastes" title=" industrial wastes "> industrial wastes </a> </p> <a href="https://publications.waset.org/abstracts/113053/study-on-the-use-of-manganese-containing-materials-as-a-micro-fertilizer-based-on-the-local-mineral-resources-and-industrial-wastes-in-hydroponic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Darbani">Mohammad Darbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Masoud%20Sinaki"> Jafar Masoud Sinaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Armaghan%20Abedzadeh%20Neyshaburi"> Armaghan Abedzadeh Neyshaburi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20cut%20off" title="irrigation cut off">irrigation cut off</a>, <a href="https://publications.waset.org/abstracts/search?q=forage%20millet" title=" forage millet"> forage millet</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitroxin%20fertilizer" title=" Nitroxin fertilizer"> Nitroxin fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20properties" title=" physiological properties"> physiological properties</a> </p> <a href="https://publications.waset.org/abstracts/18026/effects-of-nitroxin-fertilizer-on-physiological-characters-forage-millet-under-drought-stress-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2240</span> Development and Automation of Medium-Scale NFT Hydroponic Systems: Design Methodology and State of the Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Armando%20Gonz%C3%A1lez-Marin">Oscar Armando González-Marin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhon%20F.%20Rodr%C3%ADguez-Le%C3%B3n"> Jhon F. Rodríguez-León</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Mota-P%C3%A9rez"> Oscar Mota-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Pineda-Pi%C3%B1%C3%B3n"> Jorge Pineda-Piñón</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20S.%20Vel%C3%A1zquez-Gonz%C3%A1lez."> Roberto S. Velázquez-González.</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20C.%20Sosa-Savedra"> Julio C. Sosa-Savedra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past six years, the World Meteorological Organization (WMO) has recorded the warmest years since 1880, primarily attributed to climate change. In addition, the overexploitation of agricultural lands, combined with food and water scarcity, has highlighted the urgent need for sustainable cultivation methods. Hydroponics has emerged as a sustainable farming technique that enables plant cultivation using nutrient solutions without the requirement for traditional soil. Among hydroponic methods, the Nutrient Film Technique (NFT) facilitates plant growth by circulating a nutrient solution continuously. This approach allows the monitoring and precise control of nutritional parameters, with potential for automation and technological integration. This study aims to present the state of the art of automated NFT hydroponic systems, discussing their design methodologies and considerations for implementation. Moreover, a medium-scale NFT system developed at CICATA-QRO is introduced, detailing its current manual management and progress toward automation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title=" hydroponics"> hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20film%20technique" title=" nutrient film technique"> nutrient film technique</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/192149/development-and-automation-of-medium-scale-nft-hydroponic-systems-design-methodology-and-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2239</span> Unveiling the Potential of Hydroponics as a Climate-Smart Technology for Small-Scale Farming and Food Security in Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margaret%20S.%20Gumisiriza">Margaret S. Gumisiriza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernest.%20R.%20Mbega"> Ernest. R. Mbega</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Ndakidemi"> Patrick Ndakidemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Businge%20K.%20Edward"> Businge K. Edward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the paper was to assess existing literature regarding hydroponics in both the developing and developed countries. Furthermore, relate it to the context of African countries, how they can implement it and benefit from it in the face of climate change, high population growth rates, and reduced food production. Agriculture remains the major economic activity for a number of African countries. It is the source of income for most peasants, and still contributes to the Gross Domestic Product in most of these African countries. Unfortunately, climate change coupled with the increasing rates of population growth; rural-urban migration; and urbanization have led to food insecurity due to a reduction of available land for agriculture. This has further intensified the food security dilemma in Africa, especially in urban areas, where land is already limited. Considering the aforementioned state of affairs, there is an increasing demand for interventions that can help farmers in Africa to cope with climate change and increase food production. This review explores hydroponic farming and how it can be used as a climate-smart farming system in Africa’s rural and urban areas. Specifically, the review focuses on hydroponics, requirements for hydroponic farming and the state of hydroponic farming in LDCs and Developed countries (DCs). From the review, it was observed that African countries especially those that receive a lot of sunlight would highly benefit from the solar-powered hydroponic farming systems. Further, still, this farming system will help African countries cope with the challenges of high population pressure in urban areas and climate change as it qualifies to be an urban farming system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=climate-smart%20agriculture" title=" climate-smart agriculture"> climate-smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=solar-powered-hydroponics" title=" solar-powered-hydroponics"> solar-powered-hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=urban-farming" title=" urban-farming"> urban-farming</a> </p> <a href="https://publications.waset.org/abstracts/90382/unveiling-the-potential-of-hydroponics-as-a-climate-smart-technology-for-small-scale-farming-and-food-security-in-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2238</span> Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kritiyaporn%20Kunsook">Kritiyaporn Kunsook</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/abstracts/search?q=na%C3%AFve%20Bayes" title=" naïve Bayes"> naïve Bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20classifier%20by%20voting" title=" ensemble classifier by voting"> ensemble classifier by voting</a> </p> <a href="https://publications.waset.org/abstracts/91070/machine-learning-predictive-models-for-hydroponic-systems-a-case-study-nutrient-film-technique-and-deep-flow-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2237</span> Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Koushafar">Mohammad Koushafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Khoshgoftarmanesh"> Amir Hossein Khoshgoftarmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium" title="calcium">calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title=" hydroponic"> hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20salinity" title=" local salinity"> local salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=salin%20water" title=" salin water"> salin water</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/16048/interactive-of-calcium-potassium-and-dynamic-unequal-salt-distribution-on-the-growth-of-tomato-in-hydroponic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2236</span> The Effects of Phenolic Compounds in Brown Iranian Propolis Extracts on Ruminal Nitrogen Ammonia Concentration in in Vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Vakili">Alireza Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Ehtesham"> Shahab Ehtesham</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Danesh%20Mesgaran"> Mohsen Danesh Mesgaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Paktinat"> Mahdi Paktinat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study is to determine the chemical compounds of brown Iranian propolis(BIP) extracts and to show flavonoids and phenol effects on nitrogen ammonia (NH3-N) in in vitro. Experimental samples were including two diets with different concentrate: forage ratio (80:20 and 60:40) with eight treatments (1:Control diet 60:40 without BIP,2: 60:40 diet with 25% BIP, 3:60:40 diet with 50% BIP, 4: 60:40 diet with 75% BIP,5: Control diet 80:20 without BIP,6: 80:20 diet with 25% BIP,7: 80:20 diet with 50% BIP and 8: 80:20 diet with 75% BIP) and eight repeats. The trial was analyzed considering a completely randomized design by the GLM procedure of SAS 9.1. Means among treatment were compared by Tukey test. The results of this study showed that in food with 80:20 (concentrate: forage), adding BIP 25% did not statistically change NH3-N (p > 0.05) compared to the control treatment but there was a significant difference (p < 0.05) between the effect of BIP 50% on NH3-N compared to the BIP 25% and the control. In diet with 60:40 (concentrate: forage), there was no significant difference between the effect of BIP 25% on NH3-N and the control, nor was there a significant difference between the effect of BIP 50% and 75%, while a significant difference (p < 0.05) between BIP 50% and 75% and the rest was observed. The propolis extract makes nitrogen ammonia decrease. This may help the nitrogen retain longer in ruminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20Iranian%20propolis" title="brown Iranian propolis">brown Iranian propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20ammonia" title=" nitrogen ammonia"> nitrogen ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant" title=" ruminant"> ruminant</a> </p> <a href="https://publications.waset.org/abstracts/50895/the-effects-of-phenolic-compounds-in-brown-iranian-propolis-extracts-on-ruminal-nitrogen-ammonia-concentration-in-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2235</span> Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Trop">Tamar Trop</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Roffeh"> Michal Roffeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20fa%C3%A7ade" title="green façade">green façade</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20wall" title=" green wall"> green wall</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20wall" title=" living wall"> living wall</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness%20to%20pay" title=" willingness to pay"> willingness to pay</a> </p> <a href="https://publications.waset.org/abstracts/188174/willingness-to-purchase-and-pay-a-price-premium-for-an-apartment-with-exterior-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2234</span> Contextual Paper on Green Finance: Analysis of the Green Bonds Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dina%20H.%20Gabr">Dina H. Gabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20El%20Bannan"> Mona A. El Bannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20bonds" title=" green bonds"> green bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20finance" title=" green finance"> green finance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20finance" title=" sustainable finance"> sustainable finance</a> </p> <a href="https://publications.waset.org/abstracts/149244/contextual-paper-on-green-finance-analysis-of-the-green-bonds-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2233</span> Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Elmazek">Eman M. Elmazek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20walls" title=" green walls"> green walls</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20farming" title=" urban farming"> urban farming</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20herb%20garden" title=" roof herb garden"> roof herb garden</a> </p> <a href="https://publications.waset.org/abstracts/46610/agriroofs-and-agriwalls-applications-of-food-production-in-green-roofs-and-green-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2232</span> Integrated Evaluation of Green Design and Green Manufacturing Processes Using a Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Jye%20Tseng">Yuan-Jye Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Han%20Lin"> Shin-Han Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a mathematical model for integrated evaluation of green design and green manufacturing processes is presented. To design a product, there can be alternative options to design the detailed components to fulfill the same product requirement. In the design alternative cases, the components of the product can be designed with different materials and detailed specifications. If several design alternative cases are proposed, the different materials and specifications can affect the manufacturing processes. In this paper, a new concept for integrating green design and green manufacturing processes is presented. A green design can be determined based the manufacturing processes of the designed product by evaluating the green criteria including energy usage and environmental impact, in addition to the traditional criteria of manufacturing cost. With this concept, a mathematical model is developed to find the green design and the associated green manufacturing processes. In the mathematical model, the cost items include material cost, manufacturing cost, and green related cost. The green related cost items include energy cost and environmental cost. The objective is to find the decisions of green design and green manufacturing processes to achieve the minimized total cost. In practical applications, the decision-making can be made to select a good green design case and its green manufacturing processes. In this presentation, an example product is illustrated. It shows that the model is practical and useful for integrated evaluation of green design and green manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20supply%20chain" title=" green supply chain"> green supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20design" title=" green design"> green design</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a> </p> <a href="https://publications.waset.org/abstracts/10104/integrated-evaluation-of-green-design-and-green-manufacturing-processes-using-a-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">807</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2231</span> Sustainable Building Law - The Legal Issues Abound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20J.%20Sobelsohn">Richard J. Sobelsohn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green Building and Sustainable Development help fight climate change, and protects the ozone, animal habitats, air quality, and ground water. The myriad of reasons to go Green has multiplied to the point that a developer that is building a ground-up or renovating/retrofitting a property has a plethora of choices to get to the green goal post. Sustainability not affects the bottom line but satisfies corporate mandates (ESG), consumer demand, market requirements, and the many laws dictating green building practices. The good news is that there are many paths a property owner can take to become green. The bad news is that there are many paths a property owner can take to become green, and they need to choose which direction to take. Certification of a building used to be the highest achievement in the Green building world. Now there are so many variables and laws with which a property owner must comply, and the legal analysis has mushroomed. Operation and Maintenance have also become one of the most important functions for a prudent Green Building owner. So adding to the “development/retrofit” parties involved in the sustainable building legal world, we now need to include all those people who keep the building green, and there are a lot of them! <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20building" title="green building">green building</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20issues" title=" legal issues"> legal issues</a>, <a href="https://publications.waset.org/abstracts/search?q=greenwashing" title=" greenwashing"> greenwashing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20cleaning" title=" green cleaning"> green cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance" title=" compliance"> compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=ESQ" title=" ESQ"> ESQ</a> </p> <a href="https://publications.waset.org/abstracts/154541/sustainable-building-law-the-legal-issues-abound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2230</span> Assessment of Forage Utilization for Pasture-Based Livestock Production in Udubo Grazing Reserve, Bauchi State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Saidu">Mustapha Saidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilyaminu%20Mohammed"> Bilyaminu Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted in Udubo Grazing Reserve between July 2019 and October 2019 to assess forage utilization for pasture-based livestock production in reserve. The grazing land was cross-divided into grids, where 15 coordinates were selected as the sample points. Grids of one-kilometer interval were made. The grids were systematically selected 1 grid after 7 grids. 1 × 1-meter quadrat was made at the coordinate of the selected grids for measurement, estimation, and sample collection. The results of the study indicated that Zornia glochidiatah has the highest percent of species composition (42%), while Mitracarpus hirtus has the lowest percent (0.1%). Urochloa mosambicensis has 48 percent of height removed and 27 percent used by weight, Zornia glochidiata 60 percent of height removed and 57 percent used by weight, Alysicapus veginalis has 55 percent of height removed, and 40 percent used by weight, and Cenchrus biflorus has 40 percent of height removed and 28 percent used by weight. The target is 50 percent utilization of forage by weight during a grazing period as well as at the end of the grazing season. The study found that Orochloa mosambicensis, Alysicarpus veginalis, and Cenchrus biflorus had lower percent by weight which is normal, while Zornia glochidiata had a higher percent by weight which is an indication of danger. The study recommends that the identification of key plant species in pasture and rangeland is critical to implementing a successful grazing management plan. There should be collective action and promotion of historically generated grazing knowledge through public and private advocacies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forage" title="forage">forage</a>, <a href="https://publications.waset.org/abstracts/search?q=grazing%20reserve" title=" grazing reserve"> grazing reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=live%20stock" title=" live stock"> live stock</a>, <a href="https://publications.waset.org/abstracts/search?q=pasture" title=" pasture"> pasture</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20species" title=" plant species"> plant species</a> </p> <a href="https://publications.waset.org/abstracts/157502/assessment-of-forage-utilization-for-pasture-based-livestock-production-in-udubo-grazing-reserve-bauchi-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2229</span> Consumer Behavior and Knowledge on Organic Products in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Warunpun%20Kongsom">Warunpun Kongsom</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Kongsom"> Chaiwat Kongsom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to investigate the awareness, knowledge and consumer behavior towards organic products in Thailand. For this study, a purposive sampling technique was used to identify a sample group of 2,575 consumers over the age of 20 years who intended or made purchases from 1) green shops; 2) supermarkets with branches; and, 3) green markets. A questionnaire was used for data collection across the country. Descriptive statistics were used for data analysis. The results showed that more than 92% of consumers were aware of organic agriculture, but had less knowledge about it. More than 60% of consumers knew that organic agriculture production and processing did not allow the use of chemicals. And about 40% of consumers were confused between the food safety logo and the certified organic logo, and whether GMO was allowed in organic agriculture practice or not. In addition, most consumers perceived that organic agricultural products, good agricultural practice (GAP) products, agricultural chemicals free products, and hydroponic vegetable products had the same standard. In the view of organic consumers, the organic Thailand label was the most seen and reliable among various organic labels. Less than 3% of consumers thought that the International Federation of Organic Agriculture Movements (IFOAM) Global Organic Mark (GOM) was the most seen and reliable. For the behaviors of organic consumers, they purchased organic products mainly at the supermarket and green shop (55.4%), one to two times per month, and with a total expenditure of about 200 to 400 baht each time. The main reason for buying organic products was safety and free from agricultural chemicals. The considered factors in organic product selection were price (29.5%), convenience (22.4%), and a reliable certification system (21.3%). The demands for organic products were mainly rice, vegetables and fruits. Processed organic products were relatively small in quantity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20behavior" title="consumer behavior">consumer behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20knowledge" title=" consumer knowledge"> consumer knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20products" title=" organic products"> organic products</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/47388/consumer-behavior-and-knowledge-on-organic-products-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2228</span> Urea Treatment of Low Dry Matter Oat Silage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor-ul-Ain">Noor-ul-Ain</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir%20Khan"> Muhammad Tahir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Khan"> Kashif Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeela%20Ajmal"> Adeela Ajmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Mustafa"> Hamid Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to evaluate the preservative and upgrading potential of urea (70g/kg DM) added to high moisture oat silage at laboratory scale trial and urea was hydrolysed 95%. Microbial activity measured by pH and volatile fatty acids (VFA) and lactate production was reduced (p<0.001) by the urea addition. The pH of oat silage (without treated) was measured 5.7 and increased up to 8.00 on average while; volatile fatty acids (VFA) concentration was decreased. Relative proportions of fermentation acids changed after urea addition, increasing the acetate and butyrate and decreasing the propionate and lactate proportions. The addition of urea to oat silages increased (P<0.001) water soluble and ammonium nitrogen of the forage. These nitrogen fractions represented more than 40% of total nitrogen. After urea addition, total nitrogen content of oat silages increased from 21.0 g/kg DM to 28 g/kg DM. Application of urea at a rate of 70 g/kg DM significantly increased (P<0.001) the in situ degradation of neutral-detergent fibre after 48h of rumen incubation (NDF-situ). The NDF-situ was 200 g/kg NDF higher on oat forages ensiled with urea than on oat forages ensiled without urea. Oat silages can be effectively preserved and upgraded by ensiling with 70 g urea/kg dry matter. Further studies are required to evaluate voluntary intake of this forage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oat" title="oat">oat</a>, <a href="https://publications.waset.org/abstracts/search?q=silage" title=" silage"> silage</a>, <a href="https://publications.waset.org/abstracts/search?q=urea" title=" urea"> urea</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=forage" title=" forage"> forage</a> </p> <a href="https://publications.waset.org/abstracts/42369/urea-treatment-of-low-dry-matter-oat-silage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydroponic%20green%20forage&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10