CINXE.COM

Wirbelstärke – Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="de" dir="ltr"> <head> <meta charset="UTF-8"> <title>Wirbelstärke – Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"687df9ac-38b8-406f-a95d-c8c87fa01dc7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Wirbelstärke","wgTitle":"Wirbelstärke","wgCurRevisionId":252546015,"wgRevisionId":252546015,"wgArticleId":476490,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Strömungsmechanik","Meteorologische Größe"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Wirbelstärke","wgRelevantArticleId":476490,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Vorticity","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":252546015,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgInternalRedirectTargetUrl":"/wiki/Wirbelst%C3%A4rke","wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1143513","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.54"}; RLSTATE={"ext.gadget.dewiki-logo":"ready","ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.dewikiDarkmode":"ready","ext.gadget.dewikiResponsive":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.createNewSection","ext.gadget.WikiMiniAtlas","ext.gadget.OpenStreetMap","ext.gadget.CommonsDirekt","ext.gadget.donateLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=de&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2Cdewiki-logo%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle%2CdewikiDarkmode%2CdewikiResponsive&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=de&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.22"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Wirbelstärke – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//de.m.wikipedia.org/wiki/Wirbelst%C3%A4rke"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Wirbelst%C3%A4rke"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="alternate" type="application/atom+xml" title="Atom-Feed für „Wikipedia“" href="/w/index.php?title=Spezial:Letzte_%C3%84nderungen&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="auth.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Wirbelstärke rootpage-Wirbelstärke skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Zum Inhalt springen</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Website"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Hauptmenü" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hauptmenü" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hauptmenü</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hauptmenü</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">In die Seitenleiste verschieben</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">Verbergen</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Hauptseite" title="Hauptseite besuchen [z]" accesskey="z"><span>Hauptseite</span></a></li><li id="n-topics" class="mw-list-item"><a href="/wiki/Portal:Wikipedia_nach_Themen"><span>Themenportale</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Spezial:Zuf%C3%A4llige_Seite" title="Zufällige Seite aufrufen [x]" accesskey="x"><span>Zufälliger Artikel</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Spezial:Spezialseiten"><span>Spezialseiten</span></a></li> </ul> </div> </div> <div id="p-Mitmachen" class="vector-menu mw-portlet mw-portlet-Mitmachen" > <div class="vector-menu-heading"> Mitmachen </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-Artikel-verbessern" class="mw-list-item"><a href="/wiki/Wikipedia:Beteiligen"><span>Artikel verbessern</span></a></li><li id="n-Neuerartikel" class="mw-list-item"><a href="/wiki/Hilfe:Neuen_Artikel_anlegen"><span>Neuen Artikel anlegen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Autorenportal" title="Info-Zentrum über Beteiligungsmöglichkeiten"><span>Autorenportal</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hilfe:%C3%9Cbersicht" title="Übersicht über Hilfeseiten"><span>Hilfe</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Spezial:Letzte_%C3%84nderungen" title="Liste der letzten Änderungen in Wikipedia [r]" accesskey="r"><span>Letzte Änderungen</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt" title="Kontaktmöglichkeiten"><span>Kontakt</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:Hauptseite" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Die freie Enzyklopädie" src="/static/images/mobile/copyright/wikipedia-tagline-de.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Spezial:Suche" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Durchsuche die Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Suche</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spezial:Suche"> </div> <button class="cdx-button cdx-search-input__end-button">Suchen</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Meine Werkzeuge"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Erscheinungsbild"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Änderung des Aussehens der Schriftgröße, -breite und -farbe der Seite" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Erscheinungsbild" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Erscheinungsbild</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=de.wikipedia.org&amp;uselang=de" class=""><span>Spenden</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Wirbelst%C3%A4rke" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich." class=""><span>Benutzerkonto erstellen</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Wirbelst%C3%A4rke" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o" class=""><span>Anmelden</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Weitere Optionen" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Meine Werkzeuge" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Meine Werkzeuge</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Benutzermenü" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=de.wikipedia.org&amp;uselang=de"><span>Spenden</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Spezial:Benutzerkonto_anlegen&amp;returnto=Wirbelst%C3%A4rke" title="Wir ermutigen dich dazu, ein Benutzerkonto zu erstellen und dich anzumelden. Es ist jedoch nicht zwingend erforderlich."><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Benutzerkonto erstellen</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Spezial:Anmelden&amp;returnto=Wirbelst%C3%A4rke" title="Anmelden ist zwar keine Pflicht, wird aber gerne gesehen. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Anmelden</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Seiten für nicht angemeldete Benutzer <a href="/wiki/Wikipedia:Starthilfe" aria-label="Erfahre mehr über das Bearbeiten"><span>Weitere Informationen</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Spezial:Meine_Beitr%C3%A4ge" title="Eine Liste der Bearbeitungen, die von dieser IP-Adresse gemacht wurden [y]" accesskey="y"><span>Beiträge</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Spezial:Meine_Diskussionsseite" title="Diskussion über Änderungen von dieser IP-Adresse [n]" accesskey="n"><span>Diskussionsseite</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003EVerbergen\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"anonnotice\" lang=\"de\" dir=\"ltr\"\u003E\u003Cdiv class=\"rahmenfarbe1\" aria-hidden=\"true\" style=\"border-style:solid; padding:0 .2em;\"\u003EDas Aussehen der deutschsprachigen Wikipedia hat sich geändert: Das Hauptmenü ist nun links neben dem Logo erreichbar, die eigene Diskussionsseite und Beitragsliste rechts neben dem Link zum Anmelden und die Werkzeugleiste mit Verweisen zu Schwesterprojekten wie Wikimedia Commons rechts neben dem Link zur Versionsgeschichte. \u003Ca href=\"/wiki/Hilfe:Skin/Vector_2022\" title=\"Hilfe:Skin/Vector 2022\"\u003EWeitere Informationen\u003C/a\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Website"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Inhaltsverzeichnis" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Inhaltsverzeichnis</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">In die Seitenleiste verschieben</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">Verbergen</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Anfang)</div> </a> </li> <li id="toc-Formale_Notation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formale_Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formale Notation</span> </div> </a> <ul id="toc-Formale_Notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hydrodynamik" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Hydrodynamik"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Hydrodynamik</span> </div> </a> <ul id="toc-Hydrodynamik-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Meteorologie" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Meteorologie"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Meteorologie</span> </div> </a> <button aria-controls="toc-Meteorologie-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Unterabschnitt Meteorologie umschalten</span> </button> <ul id="toc-Meteorologie-sublist" class="vector-toc-list"> <li id="toc-Potentielle_Vortizität" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Potentielle_Vortizität"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Potentielle Vortizität</span> </div> </a> <ul id="toc-Potentielle_Vortizität-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Anmerkungen" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Anmerkungen"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Anmerkungen</span> </div> </a> <ul id="toc-Anmerkungen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Literatur" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Literatur"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Literatur</span> </div> </a> <ul id="toc-Literatur-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Weblinks" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Weblinks"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Weblinks</span> </div> </a> <ul id="toc-Weblinks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Einzelnachweise" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Einzelnachweise"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Einzelnachweise</span> </div> </a> <ul id="toc-Einzelnachweise-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Inhaltsverzeichnis" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Inhaltsverzeichnis" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Inhaltsverzeichnis umschalten" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Inhaltsverzeichnis umschalten</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Wirbelstärke</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Zu einem Artikel in einer anderen Sprache gehen. Verfügbar in 24 Sprachen" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-24" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">24 Sprachen</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D9%88%D8%A7%D9%85%D9%8A%D8%A9" title="دوامية – Arabisch" lang="ar" hreflang="ar" data-title="دوامية" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%97%D0%B0%D0%B2%D1%96%D1%85%D1%80%D0%B0%D0%BD%D0%B0%D1%81%D1%86%D1%8C" title="Завіхранасць – Belarussisch" lang="be" hreflang="be" data-title="Завіхранасць" data-language-autonym="Беларуская" data-language-local-name="Belarussisch" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Vorticitat" title="Vorticitat – Katalanisch" lang="ca" hreflang="ca" data-title="Vorticitat" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vorticita" title="Vorticita – Tschechisch" lang="cs" hreflang="cs" data-title="Vorticita" data-language-autonym="Čeština" data-language-local-name="Tschechisch" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Vorticity" title="Vorticity – Englisch" lang="en" hreflang="en" data-title="Vorticity" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Vorticidad" title="Vorticidad – Spanisch" lang="es" hreflang="es" data-title="Vorticidad" data-language-autonym="Español" data-language-local-name="Spanisch" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bortizitate" title="Bortizitate – Baskisch" lang="eu" hreflang="eu" data-title="Bortizitate" data-language-autonym="Euskara" data-language-local-name="Baskisch" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%88%D8%B1%D8%AA%DB%8C%D8%B3%DB%8C%D8%AA%D9%87" title="ورتیسیته – Persisch" lang="fa" hreflang="fa" data-title="ورتیسیته" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A2%D7%A8%D7%91%D7%95%D7%9C%D7%99%D7%95%D7%AA" title="ערבוליות – Hebräisch" lang="he" hreflang="he" data-title="ערבוליות" data-language-autonym="עברית" data-language-local-name="Hebräisch" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AD%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A4%BF%E0%A4%B2%E0%A4%A4%E0%A4%BE" title="भ्रमिलता – Hindi" lang="hi" hreflang="hi" data-title="भ्रमिलता" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Vorticit%C3%A0" title="Vorticità – Italienisch" lang="it" hreflang="it" data-title="Vorticità" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%B8%A6%E5%BA%A6" title="渦度 – Japanisch" lang="ja" hreflang="ja" data-title="渦度" data-language-autonym="日本語" data-language-local-name="Japanisch" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%86%8C%EC%9A%A9%EB%8F%8C%EC%9D%B4%EB%8F%84" title="소용돌이도 – Koreanisch" lang="ko" hreflang="ko" data-title="소용돌이도" data-language-autonym="한국어" data-language-local-name="Koreanisch" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vorticiteit" title="Vorticiteit – Niederländisch" lang="nl" hreflang="nl" data-title="Vorticiteit" data-language-autonym="Nederlands" data-language-local-name="Niederländisch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Kvervling" title="Kvervling – Norwegisch (Nynorsk)" lang="nn" hreflang="nn" data-title="Kvervling" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegisch (Nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wirowo%C5%9B%C4%87" title="Wirowość – Polnisch" lang="pl" hreflang="pl" data-title="Wirowość" data-language-autonym="Polski" data-language-local-name="Polnisch" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Vorticidade" title="Vorticidade – Portugiesisch" lang="pt" hreflang="pt" data-title="Vorticidade" data-language-autonym="Português" data-language-local-name="Portugiesisch" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Vorticitate" title="Vorticitate – Rumänisch" lang="ro" hreflang="ro" data-title="Vorticitate" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B2%D0%B8%D1%85%D1%80%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Завихренность – Russisch" lang="ru" hreflang="ru" data-title="Завихренность" data-language-autonym="Русский" data-language-local-name="Russisch" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Vorticity" title="Vorticity – einfaches Englisch" lang="en-simple" hreflang="en-simple" data-title="Vorticity" data-language-autonym="Simple English" data-language-local-name="einfaches Englisch" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Vorticitet" title="Vorticitet – Schwedisch" lang="sv" hreflang="sv" data-title="Vorticitet" data-language-autonym="Svenska" data-language-local-name="Schwedisch" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%81%E0%AE%B4%E0%AE%BF%E0%AE%AE%E0%AF%88" title="சுழிமை – Tamil" lang="ta" hreflang="ta" data-title="சுழிமை" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%97%D0%B0%D0%B2%D0%B8%D1%85%D1%80%D0%B5%D0%BD%D1%96%D1%81%D1%82%D1%8C" title="Завихреність – Ukrainisch" lang="uk" hreflang="uk" data-title="Завихреність" data-language-autonym="Українська" data-language-local-name="Ukrainisch" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B6%A1%E9%87%8F" title="涡量 – Chinesisch" lang="zh" hreflang="zh" data-title="涡量" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1143513#sitelinks-wikipedia" title="Links auf Artikel in anderen Sprachen bearbeiten" class="wbc-editpage">Links bearbeiten</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namensräume"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Wirbelst%C3%A4rke" title="Seiteninhalt anzeigen [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Diskussion:Wirbelst%C3%A4rke" rel="discussion" title="Diskussion zum Seiteninhalt [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Sprachvariante ändern" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Deutsch</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Ansichten"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Wirbelst%C3%A4rke"><span>Lesen</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=history" title="Frühere Versionen dieser Seite [h]" accesskey="h"><span>Versionsgeschichte</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Seitenwerkzeuge"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Werkzeuge" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Werkzeuge</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Werkzeuge</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">In die Seitenleiste verschieben</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">Verbergen</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Weitere Optionen" > <div class="vector-menu-heading"> Aktionen </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Wirbelst%C3%A4rke"><span>Lesen</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit" title="Diese Seite mit dem VisualEditor bearbeiten [v]" accesskey="v"><span>Bearbeiten</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit" title="Den Quelltext dieser Seite bearbeiten [e]" accesskey="e"><span>Quelltext bearbeiten</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=history"><span>Versionsgeschichte</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Allgemein </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Spezial:Linkliste/Wirbelst%C3%A4rke" title="Liste aller Seiten, die hierher verlinken [j]" accesskey="j"><span>Links auf diese Seite</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Spezial:%C3%84nderungen_an_verlinkten_Seiten/Wirbelst%C3%A4rke" rel="nofollow" title="Letzte Änderungen an Seiten, die von hier verlinkt sind [k]" accesskey="k"><span>Änderungen an verlinkten Seiten</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;oldid=252546015" title="Dauerhafter Link zu dieser Seitenversion"><span>Permanenter Link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=info" title="Weitere Informationen über diese Seite"><span>Seiten­­informationen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Spezial:Zitierhilfe&amp;page=Wirbelst%C3%A4rke&amp;id=252546015&amp;wpFormIdentifier=titleform" title="Hinweise, wie diese Seite zitiert werden kann"><span>Artikel zitieren</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Spezial:URL-K%C3%BCrzung&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FWirbelst%25C3%25A4rke"><span>Kurzlink</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Spezial:QrCode&amp;url=https%3A%2F%2Fde.wikipedia.org%2Fwiki%2FWirbelst%25C3%25A4rke"><span>QR-Code herunterladen</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Drucken/​exportieren </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Spezial:DownloadAsPdf&amp;page=Wirbelst%C3%A4rke&amp;action=show-download-screen"><span>Als PDF herunterladen</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;printable=yes" title="Druckansicht dieser Seite [p]" accesskey="p"><span>Druckversion</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In anderen Projekten </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Vorticity" hreflang="en"><span>Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1143513" title="Link zum verbundenen Objekt im Datenrepositorium [g]" accesskey="g"><span>Wikidata-Datenobjekt</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Seitenwerkzeuge"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Erscheinungsbild"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Erscheinungsbild</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">In die Seitenleiste verschieben</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">Verbergen</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">aus Wikipedia, der freien Enzyklopädie</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Weitergeleitet von <a href="/w/index.php?title=Vorticity&amp;redirect=no" class="mw-redirect" title="Vorticity">Vorticity</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"><p>Die <b>Wirbelstärke</b> oder <b>Wirbeldichte</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:2.343ex;" alt="{\displaystyle {\vec {\omega }}}" /></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\eta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b7;<!-- η --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\eta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dacdf0eaa3c2bde6ba1723200bb63252acaaad38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.27ex; height:2.843ex;" alt="{\displaystyle {\vec {\eta }}}" /></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\zeta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b6;<!-- ζ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\zeta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc55f29d1759ae452f91abad0b49b59bf5bf1cf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.338ex; height:3.343ex;" alt="{\displaystyle {\vec {\zeta }}}" /></span> beziffert eine zentrale Größe der <a href="/wiki/Str%C3%B6mungsmechanik" title="Strömungsmechanik">Strömungsmechanik</a> und der <a href="/wiki/Meteorologie" title="Meteorologie">Meteorologie</a>, indem sie dem <a href="/wiki/Strudel_(Physik)" title="Strudel (Physik)">Strudel</a> und den kreis- oder spiralförmigen Strömungen ein <a href="/wiki/Geschwindigkeitsfeld" title="Geschwindigkeitsfeld">Feld von Geschwindigkeiten</a> zuordnet. Die gleichwertige Bezeichnung <b>Vortizität</b> von lateinisch vortex = „Wirbel, Strudel“, <span style="font-style:normal;font-weight:normal"><a href="/wiki/Englische_Sprache" title="Englische Sprache">englisch</a></span> <span lang="en-Latn" style="font-style:italic">Vorticity</span>, wird mit <i>Wirbelhaftigkeit</i> übersetzt. </p><p>In der Strömungsmechanik werden kleine Unterschiede in Geschwindigkeit und Richtung von <a href="/wiki/Gas" title="Gas">Gasen</a> und <a href="/wiki/Fl%C3%BCssigkeit" title="Flüssigkeit">Flüssigkeiten</a> als <a href="/wiki/Scherung_(Mechanik)#Scherung_von_Fluiden" title="Scherung (Mechanik)">Scherung</a> bezeichnet. Die <a href="/wiki/Stromlinien" class="mw-redirect" title="Stromlinien">Stromlinien</a> sind anderseits geometrische Hilfsmittel zur anschaulichen Beschreibung einer Strömung als gerichtete Bewegung von Teilchen. Schließlich ist die <a href="/wiki/Viskosit%C3%A4t" title="Viskosität">Viskosität</a> die Zähflüssigkeit oder Zähigkeit von <a href="/wiki/Fluid" title="Fluid">Fluiden</a>, also der Widerstand des Fluids gegenüber Scherung. </p><p>Anschaulich entspricht die Wirbelstärke der Tendenz eines Fluidelements zur Eigen<a href="/wiki/Rotation_(Physik)" title="Rotation (Physik)">drehung</a> um eine Achse, aus der eine <a href="/wiki/Zirkulation_(Feldtheorie)" title="Zirkulation (Feldtheorie)">Zirkulation</a> von fließenden oder strömenden Medien in einem geschlossenen Gebiet entsteht. Weiter wird das <a href="/wiki/Quadratisches_Mittel" title="Quadratisches Mittel">Mittel der quadratischen</a> Wirbelstärke über einer bestimmten Fläche als <a href="/wiki/Enstrophie" title="Enstrophie">Enstrophie</a> bezeichnet, welche z.&#160;B. das Strömungsverhalten von Glas-<a href="/wiki/Doppelfassade" title="Doppelfassade">Doppelfassaden</a> beschreibt. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formale_Notation">Formale Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=1" title="Abschnitt bearbeiten: Formale Notation" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=1" title="Quellcode des Abschnitts bearbeiten: Formale Notation"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Wirbelstärke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:2.343ex;" alt="{\displaystyle {\vec {\omega }}}" /></span>, in der Meteorologie angelehnt an die Zirkulation mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\zeta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b6;<!-- ζ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\zeta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc55f29d1759ae452f91abad0b49b59bf5bf1cf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.338ex; height:3.343ex;" alt="{\displaystyle {\vec {\zeta }}}" /></span> bezeichnet, ist definiert als die <a href="/wiki/Rotation_(Mathematik)" class="mw-redirect" title="Rotation (Mathematik)">Rotation</a> der Geschwindigkeit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}" /></span> eines <a href="/wiki/Vektorfeld" title="Vektorfeld">Vektorfelds</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}:=\operatorname {rot} {\vec {v}}={\vec {\nabla }}\times {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>:=</mo> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}:=\operatorname {rot} {\vec {v}}={\vec {\nabla }}\times {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/641a604a4371b605dbd159864b2941184e45bbef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:18.782ex; height:2.843ex;" alt="{\displaystyle {\vec {\omega }}:=\operatorname {rot} {\vec {v}}={\vec {\nabla }}\times {\vec {v}}}" /></span></dd></dl> <p>Sie hat die <a href="/wiki/SI-Einheit" class="mw-redirect" title="SI-Einheit">SI-Einheit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{\mathrm {s} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{\mathrm {s} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69f824b8b6a7cb425dfb823d82dea835f003498d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.658ex; height:3.343ex;" alt="{\displaystyle {\tfrac {1}{\mathrm {s} }}}" /></span> und ist wie jede Rotation eines Vektorfelds ein <a href="/wiki/Pseudovektor" title="Pseudovektor">Pseudovektor</a>feld. </p><p>Weil sich in einem <a href="/wiki/Abgeschlossenes_System" title="Abgeschlossenes System">abgeschlossenen System</a> die <a href="/wiki/Erhaltungsgr%C3%B6%C3%9Fe" class="mw-redirect" title="Erhaltungsgröße">Erhaltungsgrößen</a> nicht ändern, ist die Wirbelstärke gleich der flächenbezogenen <a href="/wiki/Zirkulation_(Feldtheorie)" title="Zirkulation (Feldtheorie)">Zirkulations</a>rate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.453ex; height:2.176ex;" alt="{\displaystyle \Gamma }" /></span>:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma :=\oint _{\partial A}{\vec {v}}\cdot \mathrm {d} {\vec {r}}=\int _{A}\;\operatorname {rot} ({\vec {v}})\cdot \mathrm {d} {\vec {A}}=\int _{A}{\vec {\omega }}\cdot \mathrm {d} {\vec {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> <mo>:=</mo> <msub> <mo>&#x222e;<!-- ∮ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>A</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mo>&#x222b;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mspace width="thickmathspace"></mspace> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mo>&#x222b;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma :=\oint _{\partial A}{\vec {v}}\cdot \mathrm {d} {\vec {r}}=\int _{A}\;\operatorname {rot} ({\vec {v}})\cdot \mathrm {d} {\vec {A}}=\int _{A}{\vec {\omega }}\cdot \mathrm {d} {\vec {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad7efa02ef82cdd930bc4691dd7935390044189" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:44.614ex; height:5.676ex;" alt="{\displaystyle \Gamma :=\oint _{\partial A}{\vec {v}}\cdot \mathrm {d} {\vec {r}}=\int _{A}\;\operatorname {rot} ({\vec {v}})\cdot \mathrm {d} {\vec {A}}=\int _{A}{\vec {\omega }}\cdot \mathrm {d} {\vec {A}}}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow {\vec {\omega }}\cdot {\vec {n}}={\frac {\mathrm {d} \Gamma }{\mathrm {d} A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21d2;<!-- ⇒ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi mathvariant="normal">&#x393;<!-- Γ --></mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>A</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow {\vec {\omega }}\cdot {\vec {n}}={\frac {\mathrm {d} \Gamma }{\mathrm {d} A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01259d415cf7f12d5c3ff557c8e86f90c4e901de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.459ex; height:5.509ex;" alt="{\displaystyle \Rightarrow {\vec {\omega }}\cdot {\vec {n}}={\frac {\mathrm {d} \Gamma }{\mathrm {d} A}}}" /></span></dd></dl> <p>mit der <a href="/wiki/Normale" class="mw-redirect" title="Normale">Normalen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49569db585c1b6306d5ffd91161775f67235fae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:2.343ex;" alt="{\displaystyle {\vec {n}}}" /></span>. </p><p>In der Meteorologie liegen – außer bei echt dreidimensionalen <a href="/wiki/Wirbel_(Str%C3%B6mungslehre)" title="Wirbel (Strömungslehre)">Wirbeln</a> wie <a href="/wiki/Tornado" title="Tornado">Tornados</a> – oft zweidimensionale <a href="/wiki/Geschwindigkeitsfeld" title="Geschwindigkeitsfeld">Geschwindigkeitsfelder</a> vor. Die entsprechende Vortizität zeigt in <i>z</i>-Richtung und lautet </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\zeta }}:=\operatorname {rot} {\vec {v}}_{2D}=\left({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}}\right){\vec {e}}_{z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b6;<!-- ζ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>:=</mo> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>D</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>y</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\zeta }}:=\operatorname {rot} {\vec {v}}_{2D}=\left({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}}\right){\vec {e}}_{z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58f13f6340d6732d62fc4b5693271cd3f8b0f8ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.797ex; height:6.343ex;" alt="{\displaystyle {\vec {\zeta }}:=\operatorname {rot} {\vec {v}}_{2D}=\left({\frac {\partial v_{y}}{\partial x}}-{\frac {\partial v_{x}}{\partial y}}\right){\vec {e}}_{z}}" /></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Hydrodynamik">Hydrodynamik</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=2" title="Abschnitt bearbeiten: Hydrodynamik" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=2" title="Quellcode des Abschnitts bearbeiten: Hydrodynamik"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In der <a href="/wiki/Hydrodynamik" class="mw-redirect" title="Hydrodynamik">Hydrodynamik</a> ist die Vortizität oder Wirbeldichte die Rotation der Fluidgeschwindigkeit, die in Richtung der Drehachse bzw. bei zweidimensionalen <a href="/wiki/Fluss_(Physik)" title="Fluss (Physik)">Flüssen</a> senkrecht zur Flussebene orientiert ist. Für Fluide mit einer festen Rotation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c1134146f17ac8fa94b01ee366ead3d4104db1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.676ex;" alt="{\displaystyle {\vec {\omega }}_{0}}" /></span> um eine Achse (z.&#160;B. einen rotierenden Zylinder) ist die Geschwindigkeit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}" /></span> eines Teilchens in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6aec3c9ce13b53e9e24c98e7cce4212627884c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {r}}}" /></span> identisch mit<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}={\vec {\omega }}_{0}\times {\vec {r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}={\vec {\omega }}_{0}\times {\vec {r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e74f03e5985d14f556ec24d11011508625d398ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.837ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}={\vec {\omega }}_{0}\times {\vec {r}}}" /></span>. Damit ist die Wirbelstärke <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:2.343ex;" alt="{\displaystyle {\vec {\omega }}}" /></span> gleich der doppelten <a href="/wiki/Winkelgeschwindigkeit" title="Winkelgeschwindigkeit">Winkelgeschwindigkeit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91c1134146f17ac8fa94b01ee366ead3d4104db1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.676ex;" alt="{\displaystyle {\vec {\omega }}_{0}}" /></span> des Fluidelements<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}=2{\vec {\omega }}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}=2{\vec {\omega }}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afecdb9fa12744275fff55d882d3b41716d260ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.207ex; height:2.676ex;" alt="{\displaystyle {\vec {\omega }}=2{\vec {\omega }}_{0}}" /></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {v}}={\vec {\nabla }}\times \left({\vec {\omega }}_{0}\times {\vec {r}}\right)={\vec {\omega }}_{0}\left({\vec {\nabla }}\cdot {\vec {r}}\right)-\left({\vec {\omega }}_{0}\cdot {\vec {\nabla }}\right){\vec {r}}=3{\vec {\omega }}_{0}-{\vec {\omega }}_{0}=2{\vec {\omega }}_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#xd7;<!-- × --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#xd7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>3</mn> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {v}}={\vec {\nabla }}\times \left({\vec {\omega }}_{0}\times {\vec {r}}\right)={\vec {\omega }}_{0}\left({\vec {\nabla }}\cdot {\vec {r}}\right)-\left({\vec {\omega }}_{0}\cdot {\vec {\nabla }}\right){\vec {r}}=3{\vec {\omega }}_{0}-{\vec {\omega }}_{0}=2{\vec {\omega }}_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3998a29514fe1c2e48995121f85266598c31a84d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:72.546ex; height:4.843ex;" alt="{\displaystyle {\vec {\omega }}={\vec {\nabla }}\times {\vec {v}}={\vec {\nabla }}\times \left({\vec {\omega }}_{0}\times {\vec {r}}\right)={\vec {\omega }}_{0}\left({\vec {\nabla }}\cdot {\vec {r}}\right)-\left({\vec {\omega }}_{0}\cdot {\vec {\nabla }}\right){\vec {r}}=3{\vec {\omega }}_{0}-{\vec {\omega }}_{0}=2{\vec {\omega }}_{0}}" /></span></dd></dl> <p>Fluide ohne Wirbelstärke heißen rotations- oder <a href="/wiki/Wirbelfrei" class="mw-redirect" title="Wirbelfrei">wirbelfrei</a> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}=0\;{\text{bzw.}}\;\zeta =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext>bzw.</mtext> </mrow> <mspace width="thickmathspace"></mspace> <mi>&#x3b6;<!-- ζ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}=0\;{\text{bzw.}}\;\zeta =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acb79a6eb5e0cf59bde54fe91cf6e47c1445bee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.003ex; height:2.676ex;" alt="{\displaystyle {\vec {\omega }}=0\;{\text{bzw.}}\;\zeta =0}" /></span>. Allerdings können auch die Fluidelemente eines solchen rotationsfreien Fluids eine Winkelgeschwindigkeit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}_{0}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}_{0}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbbd702b1e66d15109343df22acf9400f453a45c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.761ex; height:2.843ex;" alt="{\displaystyle {\vec {\omega }}_{0}\neq 0}" /></span> besitzen, d.&#160;h. sich auf gekrümmten Bahnen bewegen, vgl. die folgende Abbildung, wobei der Buchstabe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c9;<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }" /></span> im Text für die Wirbelstärke und in der Abbildung für die Winkelgeschwindigkeit steht: </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Datei:Vortizit%C3%A4t.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Vortizit%C3%A4t.svg/260px-Vortizit%C3%A4t.svg.png" decoding="async" width="260" height="331" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Vortizit%C3%A4t.svg/390px-Vortizit%C3%A4t.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Vortizit%C3%A4t.svg/520px-Vortizit%C3%A4t.svg.png 2x" data-file-width="550" data-file-height="700" /></a><figcaption>Vortizität und Winkelgeschwindigkeit</figcaption></figure> <p>Man betrachtet ein <a href="/wiki/Infinitesimal" class="mw-redirect" title="Infinitesimal">infinitesimal</a> kleines, quadratisches Gebiet einer Flüssigkeit. Wenn dieses Gebiet rotiert, ist die Wirbelstärke der Strömung ungleich null. Die Wirbelstärke bezieht sich auf <a href="/wiki/Wirbel_(Str%C3%B6mungslehre)#Erzwungener_Wirbel" title="Wirbel (Strömungslehre)">erzwungene Wirbel</a> mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}=\operatorname {rot} {\vec {v}}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}=\operatorname {rot} {\vec {v}}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ad8e20bd2cb69ce20086e3588903dfed1a0877" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.346ex; height:2.843ex;" alt="{\displaystyle {\vec {\omega }}=\operatorname {rot} {\vec {v}}\neq 0}" /></span>. </p><p>Die Vortizität ist ein geeignetes Mittel für Flüssigkeiten mit kleiner <a href="/wiki/Viskosit%C3%A4t" title="Viskosität">Viskosität</a>. Dann kann die Vortizität an fast allen Orten der Strömung als gleich null angesehen werden. Dies ist offensichtlich für zweidimensionale Strömungen, in denen der Fluss auf der <a href="/wiki/Komplexe_Ebene" class="mw-redirect" title="Komplexe Ebene">komplexen Ebene</a> dargestellt werden kann. Derartige Probleme können meist analytisch gelöst werden. </p><p>Durch Anwendung der Rotation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\nabla }}\times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#xd7;<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\nabla }}\times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f618f7c6314f26d01727fe5dd66353adb6a8698" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.843ex;" alt="{\displaystyle {\vec {\nabla }}\times }" /></span> auf die <a href="/wiki/Navier-Stokes-Gleichungen" title="Navier-Stokes-Gleichungen">Navier-Stokes-Gleichungen</a> für die Geschwindigkeit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}" /></span> lässt sich eine Transportgleichung für die Wirbelstärke gewinnen. Für <a href="/wiki/Inkompressibel" class="mw-redirect" title="Inkompressibel">inkompressible</a>, nichtviskose Flüssigkeiten lautet diese:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {D} {\vec {\omega }}}{\mathrm {D} t}}=({\vec {\omega }}\cdot {\vec {\nabla }})\ {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">D</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mtext>&#xa0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {D} {\vec {\omega }}}{\mathrm {D} t}}=({\vec {\omega }}\cdot {\vec {\nabla }})\ {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8265fcb8a99e7b1d753962c462e88e09862fa6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.782ex; height:5.343ex;" alt="{\displaystyle {\frac {\mathrm {D} {\vec {\omega }}}{\mathrm {D} t}}=({\vec {\omega }}\cdot {\vec {\nabla }})\ {\vec {v}}}" /></span></dd></dl> <p>Auch für reale Strömungen (dreidimensional, endliche <a href="/wiki/Reynoldszahl" class="mw-redirect" title="Reynoldszahl">Reynoldszahl</a>, d.&#160;h. Viskosität ungleich Null) ist die Betrachtung des Flusses über die Wirbelstärke mit Einschränkungen nutzbar, wenn man annimmt, dass das Vortizitätsfeld als eine Anordnung einzelner Wirbel darstellbar ist. Die <a href="/wiki/Diffusion" title="Diffusion">Diffusion</a> dieser Wirbel durch die Strömung wird durch die Wirbeltransportgleichung beschrieben<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {D} {\vec {\omega }}}{\mathrm {D} t}}=({\vec {\omega }}\cdot {\vec {\nabla }})\ {\vec {v}}+{\frac {\eta }{\rho }}\cdot (\nabla ^{2}{\vec {\omega }})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">D</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mtext>&#xa0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b7;<!-- η --></mi> <mi>&#x3c1;<!-- ρ --></mi> </mfrac> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {D} {\vec {\omega }}}{\mathrm {D} t}}=({\vec {\omega }}\cdot {\vec {\nabla }})\ {\vec {v}}+{\frac {\eta }{\rho }}\cdot (\nabla ^{2}{\vec {\omega }})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a14b19aee63487e8c188c79e397431d0b0e72889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.585ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {D} {\vec {\omega }}}{\mathrm {D} t}}=({\vec {\omega }}\cdot {\vec {\nabla }})\ {\vec {v}}+{\frac {\eta }{\rho }}\cdot (\nabla ^{2}{\vec {\omega }})}" /></span></dd></dl> <p>wobei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4be87ad083e5ead48d92b0c82f2d4e719cb34a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.99ex; height:2.676ex;" alt="{\displaystyle \nabla ^{2}}" /></span> den <a href="/wiki/Laplace-Operator" title="Laplace-Operator">Laplace-Operator</a> bezeichnet.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> Hier wurde die Wirbeldichtegleichung durch den Diffusionsterm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\eta }{\rho }}\cdot (\nabla ^{2}{\vec {\omega }})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b7;<!-- η --></mi> <mi>&#x3c1;<!-- ρ --></mi> </mfrac> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\eta }{\rho }}\cdot (\nabla ^{2}{\vec {\omega }})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8be199dc37e708310874265b7aacb75c1481aa96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.962ex; height:5.343ex;" alt="{\displaystyle {\frac {\eta }{\rho }}\cdot (\nabla ^{2}{\vec {\omega }})}" /></span> ergänzt. </p><p>Für hochviskose Strömungen, beispielsweise <a href="/wiki/Taylor-Couette-Str%C3%B6mung" title="Taylor-Couette-Strömung">Taylor-Couette-Strömungen</a>, kann es sinnvoller sein, direkt das Geschwindigkeitsfeld des Fluids anstelle der Wirbelstärke zu betrachten, da die hohe Viskosität zu einer sehr starken Diffusion der Wirbel führt. </p><p>Die <a href="/wiki/Wirbellinie" title="Wirbellinie">Wirbellinie</a> hängt direkt mit der Wirbelstärke zusammen, indem Wirbellinien Tangenten an die Wirbelstärke sind. Die Gesamtheit der durch ein Flächenelement <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da1d35422f3d3b3cfcfd9b9aebe9176599fed24d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.959ex; height:2.176ex;" alt="{\displaystyle dA}" /></span> gehenden Wirbellinien wird als <i>Wirbelfaden</i> bezeichnet. Die <a href="/wiki/Helmholtzsche_Wirbels%C3%A4tze" title="Helmholtzsche Wirbelsätze">Helmholtzschen Wirbelsätze</a> sagen aus, dass der Wirbelfluss <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \iint {\vec {\omega }}\cdot \mathrm {d} {\vec {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222c;<!-- ∬ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22c5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \iint {\vec {\omega }}\cdot \mathrm {d} {\vec {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f60acb02abfcba19fd0fcb4ba4a8a72ea28ae034" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:9.968ex; height:5.676ex;" alt="{\displaystyle \iint {\vec {\omega }}\cdot \mathrm {d} {\vec {A}}}" /></span> sowohl zeitlich als auch räumlich konstant ist. </p> <div class="mw-heading mw-heading2"><h2 id="Meteorologie">Meteorologie</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=3" title="Abschnitt bearbeiten: Meteorologie" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=3" title="Quellcode des Abschnitts bearbeiten: Meteorologie"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In der Meteorologie wird mit der Vortizität hauptsächlich die Rotation von Luft um eine Achse beschrieben. </p><p>Die absolute Vortizität <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{\mathrm {abs} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{\mathrm {abs} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a759a9592dc9f4583ac8867ef4cd80cc9ed76c0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.062ex; height:2.009ex;" alt="{\displaystyle \omega _{\mathrm {abs} }}" /></span> eines Volumenelements oder eines Körpers in der Meteorologie setzt sich zusammen aus zwei Summanden, der planetaren Vortizität <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathrm {c} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathrm {c} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/654588e10fc524524c7ab9f979a0ece43bb96def" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.101ex; height:2.509ex;" alt="{\displaystyle f_{\mathrm {c} }}" /></span> und der relativen Vortizität <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{\mathrm {rel} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">l</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{\mathrm {rel} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a06c202c1e733f2ae254495863fdcfd2c2d5fd55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.51ex; height:2.009ex;" alt="{\displaystyle \omega _{\mathrm {rel} }}" /></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c3916703cae7938143d38865f78f27faadd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.095ex; height:2.509ex;" alt="{\displaystyle \zeta }" /></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\omega _{\mathrm {abs} }=\colon \eta &amp;=f_{\mathrm {c} }+\omega _{\mathrm {rel} }\\&amp;=f_{\mathrm {c} }+\zeta \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> <mo>=</mo> <mo>&#x3a;<!-- : --></mo> <mi>&#x3b7;<!-- η --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">l</mi> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> </mrow> </mrow> </msub> <mo>+</mo> <mi>&#x3b6;<!-- ζ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\omega _{\mathrm {abs} }=\colon \eta &amp;=f_{\mathrm {c} }+\omega _{\mathrm {rel} }\\&amp;=f_{\mathrm {c} }+\zeta \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f9bb5389ae5f22daff1c64603667f90148a5f71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:21.02ex; height:5.843ex;" alt="{\displaystyle {\begin{aligned}\omega _{\mathrm {abs} }=\colon \eta &amp;=f_{\mathrm {c} }+\omega _{\mathrm {rel} }\\&amp;=f_{\mathrm {c} }+\zeta \end{aligned}}}" /></span></dd></dl> <p>Aufgrund der <a href="/wiki/Erddrehung" class="mw-redirect" title="Erddrehung">Erddrehung</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a713d16c489051d4f515e12b1f86061c6be799b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.5ex; height:2.009ex;" alt="{\displaystyle \omega _{0}}" /></span> erfährt jeder Körper in Erdnähe eine Rotation um die <a href="/wiki/Erdachse" title="Erdachse">Erdachse</a> und besitzt somit eine feste Vortizität. Diese wird bestimmt durch den <a href="/wiki/Corioliskraft" title="Corioliskraft">Coriolisfaktor</a> </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\mathrm {c} }=2\omega _{0}\sin \varphi \approx 10^{-4}\,{\frac {1}{\mathrm {s} }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">c</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>&#x3c9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x3c6;<!-- φ --></mi> <mo>&#x2248;<!-- ≈ --></mo> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\mathrm {c} }=2\omega _{0}\sin \varphi \approx 10^{-4}\,{\frac {1}{\mathrm {s} }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50665ca3b32289c6b762964aa27be510eccb74c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.154ex; height:5.176ex;" alt="{\displaystyle f_{\mathrm {c} }=2\omega _{0}\sin \varphi \approx 10^{-4}\,{\frac {1}{\mathrm {s} }}}" /></span>,</dd></dl></dd></dl> <p>der vom <a href="/wiki/Breitengrad" class="mw-redirect" title="Breitengrad">Breitengrad</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3c6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }" /></span> abhängt, und als <i>planetare Vortizität</i> bezeichnet. </p><p>Die <i>relative Vortizität</i> ist die mit der Eigendrehung des Körpers zusammenhängende Größe. Da in der Meteorologie meist zweidimensionale Strömungsfelder auftreten, wird sie oft durch die Rotation in zwei Dimensionen ausgedrückt: </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\zeta }}:=\operatorname {rot} {\vec {v}}_{2D}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3b6;<!-- ζ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>:=</mo> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>D</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\zeta }}:=\operatorname {rot} {\vec {v}}_{2D}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eca5fbd35f50cf68d29b4a32529a8233984ba51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.039ex; height:3.343ex;" alt="{\displaystyle {\vec {\zeta }}:=\operatorname {rot} {\vec {v}}_{2D}}" /></span></dd></dl></dd></dl> <p>Die Richtung des Wirbelstärke-Vektors lässt sich mit der <a href="/wiki/Korkenzieherregel" title="Korkenzieherregel">Korkenzieherregel</a> bestimmen: Dreht sich das Fluid <i>gegen</i> den <a href="/wiki/Uhrzeigersinn" class="mw-redirect" title="Uhrzeigersinn">Uhrzeigersinn</a>, so zeigt die Wirbelstärke nach oben und ist positiv. Auf der <a href="/wiki/Nordhalbkugel" title="Nordhalbkugel">Nordhalbkugel</a> wird Rotation gegen den Uhrzeigersinn, also mit positivem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }" /></span>, als <a href="/wiki/Zyklonale_Rotation" title="Zyklonale Rotation">zyklonale Rotation</a> bezeichnet und mit negativem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x3b7;<!-- η --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d701857cf5fbec133eebaf94deadf722537f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.169ex; height:2.176ex;" alt="{\displaystyle \eta }" /></span> als <a href="/wiki/Antizyklonale_Rotation" title="Antizyklonale Rotation">antizyklonale Rotation</a>. Auf der <a href="/wiki/S%C3%BCdhalbkugel" title="Südhalbkugel">Südhalbkugel</a> gilt dies jeweils entsprechend umgekehrt. </p><p>In <a href="/w/index.php?title=Nat%C3%BCrliche_Koordinaten&amp;action=edit&amp;redlink=1" class="new" title="Natürliche Koordinaten (Seite nicht vorhanden)">natürlichen Koordinaten</a> ergibt sich: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{2}\zeta &amp;=\zeta _{C}&amp;&amp;+\zeta _{S}\\&amp;=v\cdot K_{s}&amp;&amp;-{\frac {\partial v}{\partial n}}\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x3b6;<!-- ζ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>&#x3b6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> </mtd> <mtd></mtd> <mtd> <mi></mi> <mo>+</mo> <msub> <mi>&#x3b6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo>=</mo> <mi>v</mi> <mo>&#x22c5;<!-- ⋅ --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mtd> <mtd></mtd> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>v</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>n</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{2}\zeta &amp;=\zeta _{C}&amp;&amp;+\zeta _{S}\\&amp;=v\cdot K_{s}&amp;&amp;-{\frac {\partial v}{\partial n}}\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b2cc5fac53455928e0ab77c02f4e0dda78bfc92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.433ex; margin-bottom: -0.239ex; width:17.117ex; height:8.509ex;" alt="{\displaystyle {\begin{alignedat}{2}\zeta &amp;=\zeta _{C}&amp;&amp;+\zeta _{S}\\&amp;=v\cdot K_{s}&amp;&amp;-{\frac {\partial v}{\partial n}}\end{alignedat}}}" /></span></dd></dl> <p>mit<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>der Krümmungsvortizität <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta _{C}:=v\cdot K_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3b6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mo>:=</mo> <mi>v</mi> <mo>&#x22c5;<!-- ⋅ --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta _{C}:=v\cdot K_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/005b4a1fa613220a56aed726a64301e3176b2d39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.028ex; height:2.509ex;" alt="{\displaystyle \zeta _{C}:=v\cdot K_{s}}" /></span> <ul><li>der <a href="/wiki/Kr%C3%BCmmung" title="Krümmung">Krümmung</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a44d82e5e2fdd046a55645a8b3f967cfa7fd0a8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.976ex; height:2.509ex;" alt="{\displaystyle K_{s}}" /></span> der <a href="/wiki/Stromlinie" title="Stromlinie">Stromlinien</a></li></ul></li> <li>der Scherungsvortizität <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta _{S}:=-{\frac {\partial v}{\partial n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x3b6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mo>:=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>v</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>n</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta _{S}:=-{\frac {\partial v}{\partial n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ce9e7b2679ad26dac64b8b65d25c003125bbbd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.413ex; height:5.509ex;" alt="{\displaystyle \zeta _{S}:=-{\frac {\partial v}{\partial n}}}" /></span> <ul><li>den Komponenten&#160;<i>n</i> und&#160;<i>s</i> des Koordinatensystems.</li></ul></li></ul> <div class="mw-heading mw-heading3"><h3 id="Potentielle_Vortizität"><span id="Potentielle_Vortizit.C3.A4t"></span>Potentielle Vortizität</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=4" title="Abschnitt bearbeiten: Potentielle Vortizität" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=4" title="Quellcode des Abschnitts bearbeiten: Potentielle Vortizität"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die <a href="/wiki/Helmholtzsche_Wirbels%C3%A4tze" title="Helmholtzsche Wirbelsätze">Helmholtzschen Erhaltungssätze für den Wirbelfluss</a> führen zur <a href="/wiki/Potentielle_Vortizit%C3%A4t" title="Potentielle Vortizität">potentiellen Vortizität</a>&#160;PV:<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV={\frac {\eta }{\Delta p}}={\frac {f_{c}+\zeta }{\Delta p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x3b7;<!-- η --></mi> <mrow> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo>+</mo> <mi>&#x3b6;<!-- ζ --></mi> </mrow> <mrow> <mi mathvariant="normal">&#x394;<!-- Δ --></mi> <mi>p</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV={\frac {\eta }{\Delta p}}={\frac {f_{c}+\zeta }{\Delta p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c6d1848fcc613a82f5ddaa7d969da1efea5c902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:20.526ex; height:5.843ex;" alt="{\displaystyle PV={\frac {\eta }{\Delta p}}={\frac {f_{c}+\zeta }{\Delta p}}}" /></span></dd></dl> <p>Durch Kombination der Wirbeldichtegleichung mit der <a href="/wiki/Kontinuit%C3%A4tsgleichung" title="Kontinuitätsgleichung">Kontinuitätsgleichung</a> kann man zeigen, dass die potentielle Vortizität zeitlich erhalten ist: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} PV}{\mathrm {d} t}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>P</mi> <mi>V</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} PV}{\mathrm {d} t}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/522a54f8853f606c1e8ef8acd15ebb17db279240" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.922ex; height:5.509ex;" alt="{\displaystyle {\frac {\mathrm {d} PV}{\mathrm {d} t}}=0}" /></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Anmerkungen">Anmerkungen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=5" title="Abschnitt bearbeiten: Anmerkungen" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=5" title="Quellcode des Abschnitts bearbeiten: Anmerkungen"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Die Literatur enthält auch die Definition<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}={\frac {1}{2}}\operatorname {rot} {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x3c9;<!-- ω --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>rot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {\omega }}={\frac {1}{2}}\operatorname {rot} {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1a18524afa004050ad3bd0b3bc07e8052b376e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.471ex; height:5.176ex;" alt="{\displaystyle {\vec {\omega }}={\frac {1}{2}}\operatorname {rot} {\vec {v}}}" /></span></dd></dl> <p>Die Begriffe <i>Wirbelstärke</i>, <i>Wirbeldichte</i>, <i>Wirbelhaftigkeit</i>, <i>Wirbeligkeit</i>, <i>Wirbelung</i>, <i>Vortizität</i>, <i>Wirbelfaden</i> sowie die Benennung der <i>Wirbeldichte-</i> und <i>Wirbeltransportgleichung</i> sind nicht klar definiert und somit schwer gegeneinander abgrenzbar. In der Literatur finden sich teilweise widersprüchliche Angaben und Definitionen. </p> <div class="mw-heading mw-heading2"><h2 id="Literatur">Literatur</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=6" title="Abschnitt bearbeiten: Literatur" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=6" title="Quellcode des Abschnitts bearbeiten: Literatur"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Hans Stephani, Gerhard Kluge: <i>Theoretische Mechanik</i>. Spektrum Akademischer Verlag, Heidelberg 1995, <a href="/wiki/Spezial:ISBN-Suche/3860252844" class="internal mw-magiclink-isbn">ISBN 3-86025-284-4</a></li> <li>Ludwig Bergmann, Clemens Schaefer: <i>Lehrbuch der Experimentalphysik</i>. Band 1: <i>Mechanik, Relativität, Wärme</i>. de Gruyter, Berlin 1998. <a href="/wiki/Spezial:ISBN-Suche/3110128705" class="internal mw-magiclink-isbn">ISBN 3-11-012870-5</a></li> <li>Lew D. Landau, Jewgeni M. Lifschitz: <i>Lehrbuch der theoretischen Physik</i>. Band 6: <i>Hydrodynamik</i>. Verlag Harri Deutsch, Frankfurt am Main 2007. <a href="/wiki/Spezial:ISBN-Suche/9783817113316" class="internal mw-magiclink-isbn">ISBN 978-3-8171-1331-6</a></li> <li>Koji Ohkitani: <i>Elementary Account Of Vorticity And Related Equations</i>. Cambridge University Press, 2005. <a href="/wiki/Spezial:ISBN-Suche/0521819849" class="internal mw-magiclink-isbn">ISBN 0-521-81984-9</a></li> <li>Andrew J. Majda, Andrea L. Bertozzi: <i>Vorticity and Incompressible Flow</i>. Cambridge University Press, 2002. <a href="/wiki/Spezial:ISBN-Suche/0521639484" class="internal mw-magiclink-isbn">ISBN 0-521-63948-4</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Weblinks">Weblinks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=7" title="Abschnitt bearbeiten: Weblinks" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=7" title="Quellcode des Abschnitts bearbeiten: Weblinks"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="sisterproject" style="margin:0.1em 0 0 0;"><div class="noresize noviewer" style="display:inline-block; line-height:10px; min-width:1.6em; text-align:center;" aria-hidden="true" role="presentation"><span class="mw-default-size" typeof="mw:File"><span title="Commons"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div><b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Vorticity?uselang=de"><span lang="en">Commons</span>: Wirbelstärke</a></span></b>&#160;– Sammlung von Bildern, Videos und Audiodateien</div> <div class="mw-heading mw-heading2"><h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;veaction=edit&amp;section=8" title="Abschnitt bearbeiten: Einzelnachweise" class="mw-editsection-visualeditor"><span>Bearbeiten</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Wirbelst%C3%A4rke&amp;action=edit&amp;section=8" title="Quellcode des Abschnitts bearbeiten: Einzelnachweise"><span>Quelltext bearbeiten</span></a><span class="mw-editsection-bracket">]</span></span></div> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Etienne Guyon, Jean-Pierre Hulin, Luc Petit&#58; <cite style="font-style:italic">Hydrodynamik -</cite>. 3. Auflage. Vieweg + Teubner, Wiesbaden 1997, <a href="/wiki/Spezial:ISBN-Suche/9783528072766" class="internal mw-magiclink-isbn">ISBN 978-3-528-07276-6</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>105</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Wirbelst%C3%A4rke&amp;rft.au=Etienne+Guyon%2C+Jean-Pierre+Hulin%2C+Luc+Petit&amp;rft.btitle=Hydrodynamik+-&amp;rft.date=1997&amp;rft.edition=3.&amp;rft.genre=book&amp;rft.isbn=9783528072766&amp;rft.pages=105&amp;rft.place=Wiesbaden&amp;rft.pub=Vieweg+%2B+Teubner" style="display:none">&#160;</span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Ludwig Bergmann, Clemens Schaefer: <i>Lehrbuch der Experimentalphysik, Band 1: Mechanik, Relativität, Wärme</i>, S. 564. de Gruyter, Berlin 1998. <a href="/wiki/Spezial:ISBN-Suche/3110128705" class="internal mw-magiclink-isbn">ISBN 3-11-012870-5</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">Arnold Sommerfeld&#58; <cite style="font-style:italic">Mechanik</cite>. 8. Auflage. Harri Deutsch, Thun und Frankfurt/Main 1977, <a href="/wiki/Spezial:ISBN-Suche/3871443743" class="internal mw-magiclink-isbn">ISBN 3-87144-374-3</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>104</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Wirbelst%C3%A4rke&amp;rft.au=Arnold+Sommerfeld&amp;rft.btitle=Mechanik&amp;rft.date=1977&amp;rft.edition=8.&amp;rft.genre=book&amp;rft.isbn=3871443743&amp;rft.pages=104&amp;rft.place=Thun+und+Frankfurt%2FMain&amp;rft.pub=Harri+Deutsch" style="display:none">&#160;</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">I.N. Bronstein, K. A. Semendjajew&#58; <cite style="font-style:italic">Taschenbuch der Mathematik</cite>. 19. Auflage. Harri Deutsch, Thun und Frankfurt/Main 1980, <a href="/wiki/Spezial:ISBN-Suche/3871444928" class="internal mw-magiclink-isbn">ISBN 3-87144-492-8</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>626</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Wirbelst%C3%A4rke&amp;rft.au=I.N.+Bronstein%2C+K.+A.+Semendjajew&amp;rft.btitle=Taschenbuch+der+Mathematik&amp;rft.date=1980&amp;rft.edition=19.&amp;rft.genre=book&amp;rft.isbn=3871444928&amp;rft.pages=626&amp;rft.place=Thun+und+Frankfurt%2FMain&amp;rft.pub=Harri+Deutsch" style="display:none">&#160;</span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text"><span class="cite">Roland Netz:&#32;<a rel="nofollow" class="external text" href="https://einrichtungen.ph.tum.de/T37/WS1011/KontMech/SkriptKontinuumsmech.pdf"><i>Mechanik der Kontinua.</i></a>&#32;(PDF; 671&#160;kB)<span class="Abrufdatum">&#32;Abgerufen am 25.&#160;Mai 2011</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3AWirbelst%C3%A4rke&amp;rft.title=Mechanik+der+Kontinua&amp;rft.description=Mechanik+der+Kontinua&amp;rft.identifier=http%3A%2F%2Feinrichtungen.ph.tum.de%2FT37%2FWS1011%2FKontMech%2FSkriptKontinuumsmech.pdf&amp;rft.creator=Roland+Netz">&#160;</span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text">Etienne Guyon, Jean-Pierre Hulin, Luc Petit&#58; <cite style="font-style:italic">Hydrodynamik -</cite>. 3. Auflage. Vieweg + Teubner, Wiesbaden 1997, <a href="/wiki/Spezial:ISBN-Suche/9783528072766" class="internal mw-magiclink-isbn">ISBN 978-3-528-07276-6</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em">&#160;</span>282</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rfr_id=info:sid/de.wikipedia.org:Wirbelst%C3%A4rke&amp;rft.au=Etienne+Guyon%2C+Jean-Pierre+Hulin%2C+Luc+Petit&amp;rft.btitle=Hydrodynamik+-&amp;rft.date=1997&amp;rft.edition=3.&amp;rft.genre=book&amp;rft.isbn=9783528072766&amp;rft.pages=282&amp;rft.place=Wiesbaden&amp;rft.pub=Vieweg+%2B+Teubner" style="display:none">&#160;</span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080921183217/http://www.ihr.uni-stuttgart.de/fileadmin/user_upload/autoren/mh/structure/node24.html"><i>Wirbeltransportgleichungen.</i></a>&#32;Archiviert&#32;vom&#32;<style data-mw-deduplicate="TemplateStyles:r250917974">.mw-parser-output .dewiki-iconexternal>a{background-position:center right!important;background-repeat:no-repeat!important}body.skin-minerva .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/a/a4/OOjs_UI_icon_external-link-ltr-progressive.svg")!important;background-size:10px!important;padding-right:13px!important}body.skin-timeless .mw-parser-output .dewiki-iconexternal>a,body.skin-monobook .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/3/30/MediaWiki_external_link_icon.svg")!important;padding-right:13px!important}body.skin-vector .mw-parser-output .dewiki-iconexternal>a{background-image:url("https://upload.wikimedia.org/wikipedia/commons/9/96/Link-external-small-ltr-progressive.svg")!important;background-size:0.857em!important;padding-right:1em!important}</style><span class="dewiki-iconexternal"><a class="external text" href="https://redirecter.toolforge.org/?url=http%3A%2F%2Fwww.ihr.uni-stuttgart.de%2Ffileadmin%2Fuser_upload%2Fautoren%2Fmh%2Fstructure%2Fnode24.html">Original</a></span>&#32;(nicht mehr online verfügbar)&#32;am&#32;<span style="white-space:nowrap;">21.&#160;September 2008</span><span>;</span><span class="Abrufdatum">&#32;abgerufen am 25.&#160;Mai 2011</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3AWirbelst%C3%A4rke&amp;rft.title=Wirbeltransportgleichungen&amp;rft.description=Wirbeltransportgleichungen&amp;rft.identifier=https%3A%2F%2Fweb.archive.org%2Fweb%2F20080921183217%2Fhttp%3A%2F%2Fwww.ihr.uni-stuttgart.de%2Ffileadmin%2Fuser_upload%2Fautoren%2Fmh%2Fstructure%2Fnode24.html&amp;rft.source=http&#58;//www.ihr.uni-stuttgart.de/fileadmin/user_upload/autoren/mh/structure/node24.html">&#160;</span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="http://www.wetter3.de/vorticity.html"><i>Vorticity.</i></a><span class="Abrufdatum">&#32;Abgerufen am 25.&#160;Mai 2011</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3AWirbelst%C3%A4rke&amp;rft.title=Vorticity&amp;rft.description=Vorticity&amp;rft.identifier=http%3A%2F%2Fwww.wetter3.de%2Fvorticity.html">&#160;</span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150218233406/http://www.iapmw.unibe.ch/teaching/vorlesungen/atmosphaerenphysik/FS_2011/AT-phys_FS11_Kapitel6b.pdf"><i>Atmosphärenphysik.</i></a>&#32;(PDF; 337&#160;kB)&#32;Archiviert&#32;vom&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r250917974" /><span class="dewiki-iconexternal"><a class="external text" href="https://redirecter.toolforge.org/?url=http%3A%2F%2Fwww.iapmw.unibe.ch%2Fteaching%2Fvorlesungen%2Fatmosphaerenphysik%2FFS_2011%2FAT-phys_FS11_Kapitel6b.pdf">Original</a></span>&#32;(nicht mehr online verfügbar)&#32;am&#32;<span style="white-space:nowrap;">18.&#160;Februar 2015</span><span>;</span><span class="Abrufdatum">&#32;abgerufen am 25.&#160;Mai 2011</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3AWirbelst%C3%A4rke&amp;rft.title=Atmosph%C3%A4renphysik&amp;rft.description=Atmosph%C3%A4renphysik&amp;rft.identifier=https%3A%2F%2Fweb.archive.org%2Fweb%2F20150218233406%2Fhttp%3A%2F%2Fwww.iapmw.unibe.ch%2Fteaching%2Fvorlesungen%2Fatmosphaerenphysik%2FFS_2011%2FAT-phys_FS11_Kapitel6b.pdf&amp;rft.source=http&#58;//www.iapmw.unibe.ch/teaching/vorlesungen/atmosphaerenphysik/FS_2011/AT-phys_FS11_Kapitel6b.pdf">&#160;</span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text"><span class="cite"><a rel="nofollow" class="external text" href="http://scienceworld.wolfram.com/physics/Vorticity.html"><i>Vorticity -- from Eric Weisstein's World of Physics.</i></a>&#32;In:&#32;<i>scienceworld.wolfram.com.</i><span class="Abrufdatum">&#32;Abgerufen am 25.&#160;Mai 2011</span>.</span><span style="display: none;" class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&amp;rfr_id=info%3Asid%2Fde.wikipedia.org%3AWirbelst%C3%A4rke&amp;rft.title=Vorticity+--+from+Eric+Weisstein%27s+World+of+Physics&amp;rft.description=Vorticity+--+from+Eric+Weisstein%27s+World+of+Physics&amp;rft.identifier=http%3A%2F%2Fscienceworld.wolfram.com%2Fphysics%2FVorticity.html">&#160;</span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text">Hans Stephani, Gerhard Kluge: <i>Theoretische Mechanik</i>. Spektrum Akademischer Verlag, Heidelberg 1995, <a href="/wiki/Spezial:ISBN-Suche/3860252844" class="internal mw-magiclink-isbn">ISBN 3-86025-284-4</a>, S. 273.</span> </li> </ol></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://auth.wikimedia.org/loginwiki/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Abgerufen von „<a dir="ltr" href="https://de.wikipedia.org/w/index.php?title=Wirbelstärke&amp;oldid=252546015">https://de.wikipedia.org/w/index.php?title=Wirbelstärke&amp;oldid=252546015</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorien" title="Wikipedia:Kategorien">Kategorien</a>: <ul><li><a href="/wiki/Kategorie:Str%C3%B6mungsmechanik" title="Kategorie:Strömungsmechanik">Strömungsmechanik</a></li><li><a href="/wiki/Kategorie:Meteorologische_Gr%C3%B6%C3%9Fe" title="Kategorie:Meteorologische Größe">Meteorologische Größe</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Diese Seite wurde zuletzt am 23. Januar 2025 um 11:01 Uhr bearbeitet.</li> <li id="footer-info-copyright"><div id="footer-info-copyright-stats" class="noprint"><a rel="nofollow" class="external text" href="https://pageviews.wmcloud.org/?pages=Wirbelst%C3%A4rke&amp;project=de.wikipedia.org">Abrufstatistik</a>&#160;· <a rel="nofollow" class="external text" href="https://xtools.wmcloud.org/authorship/de.wikipedia.org/Wirbelst%C3%A4rke?uselang=de">Autoren</a> </div><div id="footer-info-copyright-separator"><br /></div><div id="footer-info-copyright-info"> <p>Der Text ist unter der Lizenz <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de">„Creative-Commons Namensnennung – Weitergabe unter gleichen Bedingungen“</a> verfügbar; Informationen zu den Urhebern und zum Lizenzstatus eingebundener Mediendateien (etwa Bilder oder Videos) können im Regelfall durch Anklicken dieser abgerufen werden. Möglicherweise unterliegen die Inhalte jeweils zusätzlichen Bedingungen. Durch die Nutzung dieser Website erklären Sie sich mit den <span class="plainlinks"><a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/de">Nutzungsbedingungen</a> und der <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/de">Datenschutzrichtlinie</a></span> einverstanden.<br /> </p> Wikipedia® ist eine eingetragene Marke der Wikimedia Foundation Inc.</div></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%C3%9Cber_Wikipedia">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Impressum">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-mobileview"><a href="//de.m.wikipedia.org/w/index.php?title=Wirbelst%C3%A4rke&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile Ansicht</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://www.wikimedia.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/static/images/footer/wikimedia-button.svg" width="84" height="29"><img src="/static/images/footer/wikimedia.svg" width="25" height="25" alt="Wikimedia Foundation" lang="en" loading="lazy"></picture></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" lang="en" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Suche</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Wikipedia durchsuchen"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Spezial:Suche"> </div> <button class="cdx-button cdx-search-input__end-button">Suchen</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Inhaltsverzeichnis" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Inhaltsverzeichnis umschalten" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Inhaltsverzeichnis umschalten</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Wirbelstärke</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>24 Sprachen</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Abschnitt hinzufügen</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="mw-portlet mw-portlet-dock-bottom emptyPortlet" id="p-dock-bottom"> <ul> </ul> </div> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7ccc697c5f-hwj6w","wgBackendResponseTime":198,"wgPageParseReport":{"limitreport":{"cputime":"0.216","walltime":"0.364","ppvisitednodes":{"value":1871,"limit":1000000},"postexpandincludesize":{"value":19353,"limit":2097152},"templateargumentsize":{"value":6392,"limit":2097152},"expansiondepth":{"value":11,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":15271,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 204.200 1 -total"," 41.28% 84.292 5 Vorlage:Internetquelle"," 22.79% 46.540 4 Vorlage:Literatur"," 19.05% 38.900 1 Vorlage:Commonscat"," 13.39% 27.336 1 Vorlage:EnS"," 13.38% 27.313 1 Vorlage:Wikidata-Registrierung"," 5.90% 12.056 2 Vorlage:Referrer"," 5.04% 10.295 2 Vorlage:IconExternal"," 3.99% 8.151 5 Vorlage:Str_len"," 3.22% 6.570 4 Vorlage:FormatDate"]},"scribunto":{"limitreport-timeusage":{"value":"0.080","limit":"10.000"},"limitreport-memusage":{"value":4809352,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-86c59b8c7c-b7hg4","timestamp":"20250308232417","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Wirbelst\u00e4rke","url":"https:\/\/de.wikipedia.org\/wiki\/Wirbelst%C3%A4rke","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1143513","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1143513","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-12-14T08:09:13Z","headline":"physikalische Gr\u00f6\u00dfe der Str\u00f6mungs-Mechanik"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10