CINXE.COM

Search results for: aflatoxin M1

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aflatoxin M1</title> <meta name="description" content="Search results for: aflatoxin M1"> <meta name="keywords" content="aflatoxin M1"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aflatoxin M1" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aflatoxin M1"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 41</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aflatoxin M1</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Mycoflora and Aflatoxin Contamination of Kokoro: A Nigerian Maize Snack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20Onifade">D. A. Onifade </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kokoro is maize snack which is very popular among poor masses in Nigeria who consume it along with gari(a cassava product) as lunch on a regular basis. In this study, fungal contaminants of kokoro were characterized and its aflatoxin content determined. A total of 30 fungal isolates were obtained from kokoro samples and they belong to 3 different species. Aspergillus flavus had the highest frequency of occurrence of 73.33% while Penicillium species had the lowest (6.66%). Different concentration of aflatoxin B1 was detected in some of the kokoro samples analyzed. Sample D had the highest concentration of 7.25 parts per billion (ppb). The lowest concentration detected was 0.06 ppb in sample P. No aflatoxin G1 and G2 was detected in all the kokoro samples with exception of sample P which contained 2.54 ppb aflatoxin G1.According to international standards some of the kokoro samples are not suitable for human consumption because of high-level aflatoxin which was above the recommended level. Therefore, production of kokoro should be standardized and appropriate packaging materials utilized to prevent the growth of aflatoxigenic fungi. This is to safeguard the health of many poor Nigerians who consume it on a regular basis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kokoro" title="kokoro">kokoro</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20snack" title=" maize snack"> maize snack</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title=" aflatoxin"> aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=mould" title=" mould"> mould</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/18960/mycoflora-and-aflatoxin-contamination-of-kokoro-a-nigerian-maize-snack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Comparison of Aflatoxin B1 Levels in Iranian and Indian Spices by ELISA Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sasan%20Mozaffari%20Nejad">Amir Sasan Mozaffari Nejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to detect the presence of aflatoxin B1 (AFB1) in 36 samples of spices from Iran and India that was included of chilli powder (n=12), black pepper powder (n=12) and whole black pepper (n=12). Enzyme-linked immunosorbent assay (ELISA) method was used for analysing the samples. Aflatoxin B1 was found in all the spices samples, the concentration of AFB1 in Iranian samples was ranged from 63.16 to 626.81 ng/kg and in Indian samples was ranged from 31.15 to 245.94 ng/kg. The mean of AFB1 concentration in the chilli powder was significantly higher (P < 0.05) than the whole and powdered black pepper. However, none of the samples exceeded the maximum prescribed limit i.e. 5 µg/kg of European Union regulations for aflatoxin B1. The occurrence of AFB1 in spices samples could be a potential hazard for public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20B1" title="Aflatoxin B1">Aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=chilli" title=" chilli"> chilli</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/2110/comparison-of-aflatoxin-b1-levels-in-iranian-and-indian-spices-by-elisa-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Aflatoxin Contamination of Abattoir Wastes in Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Gbadebo">A. F. Gbadebo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Atanda"> O. O. Atanda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Adetunji"> M. C. Adetunji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the level of aflatoxin contamination of abattoir wastes in Ogun State, Nigeria, due to continued complaints of poor hygiene of abattoir centers in the states as a result of improper disposal of abattoir wastes. Wastes from the three senatorial districts of the state were evaluated for their levels of aflatoxin contamination. The moisture content, total plate count, fungal counts, percentage frequency of fungal occurrence as well as the level of aflatoxin contamination of the abattoir wastes were determined by standard methods. The moisture content of the wastes ranged between 79.10-87.46 %, total plate count from 1.37-3.27×10³cfu/ml, and fungal counts from 2.73-3.30×10²cfu/ml. Four fungal species: Aspergillus niger, Aspergillus flavus, Aspergillus ochraceus, and Penicillium citrinum were isolated from the wastes, with Aspergillus flavus having the highest percentage frequency of occurrence of 29.76%. The aflatoxin content of the samples was found to range between 3.20-4.80 µg/kg. These findings showed that abattoir wastes from Ogun State are contaminated with aflatoxins and pose a health risk to humans and animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abattoir%20wastes" title="abattoir wastes">abattoir wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title=" aflatoxin"> aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogun%20state" title=" Ogun state"> Ogun state</a> </p> <a href="https://publications.waset.org/abstracts/156770/aflatoxin-contamination-of-abattoir-wastes-in-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> New Challenge: Reduction of Aflatoxin M1 Residues in Cow’s Milk by MilBond Dietary Hydrated Sodium Calcium Aluminosilicate (HSCAS) and Its Effect on Milk Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aly%20Salwa">A. Aly Salwa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Diekmann"> H. Diekmann</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hafiz%20Ragaa"> S. Hafiz Ragaa</a>, <a href="https://publications.waset.org/abstracts/search?q=DG%20Abo%20Elhassan"> DG Abo Elhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to evaluate the effect of Milbond (HSCAS) on aflatoxin M1 in artificially contaminated cows milk. Chemisorption compounds used in this experiment were MIlBond, hydrated sodium calcium aluminosilicate (HSCAS). Raw cow milk were artificially exposed to aflatoxin M1 in a concentration of 100 ppb) with addition of Nilbond at 0.5, 1, 2 and 3 % at room temperature for 30 minutes. Aflatoxin M1 was decreased more than 95% by HSCAS at 2%. Milk composition consist of protein, fat, lactose, solid non fat and total solid were affected by addition of some adsorbents were not significantly affected (p 0.05). Tthis method did not involve degrading the toxin, milk may be free from toxin degradation products and is safe for consumption. In addition, the added material may be easily separated from milk after the substance adsorbs the toxin. Thus, this method should be developed by further researches for determining effects of these compounds on functional properties of milk. The ability of hydrated sodium calcium aluminosilicate to prevent or reduce the level of aflatoxin MI residues in milk is critically needed. This finding has important implications, because milk is ultimately consumed by humans and animals, and the reduction of aflatoxin contamination in the milk could have an important impact on their health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrated%20sodium%20calcium%20aluminium%20silicate" title=" Hydrated sodium calcium aluminium silicate"> Hydrated sodium calcium aluminium silicate</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20cow%20milk" title=" raw cow milk"> raw cow milk</a> </p> <a href="https://publications.waset.org/abstracts/24505/new-challenge-reduction-of-aflatoxin-m1-residues-in-cows-milk-by-milbond-dietary-hydrated-sodium-calcium-aluminosilicate-hscas-and-its-effect-on-milk-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Health Burden of Disease Assessment for Minimizing Aflatoxin Exposure in Peanuts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Pei%20Ling">Min-Pei Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin is a fungal secondary metabolite with high toxicity capable of contaminating various types of food crops. It has been identified as a Group 1 human carcinogen by the International Agency for Research on Cancer. Chronic aflatoxin exposure has caused a worldwide public food safety concern. Peanuts and peanut products are the major sources of aflatoxin exposure. Therefore, some reduction interventions have been developed to minimize contamination through the peanut production chain. The purpose of this study is to estimate the efficacy of interventions in reducing the health impact of hepatocellular carcinoma caused by aflatoxin contamination in peanuts. The estimated total disability-adjusted life-years (DALYs) was calculated using FDA-iRISK online software. Six aflatoxin reduction strategies were evaluated, including good agricultural practice (GAP), biocontrol, Purdue Improved Crop Storage packaging, basic processing, ozonolysis, and ultraviolet irradiation. The results indicated that basic processing could prevent huge public health loss of 4,079.7–21,833 total DALYs per year, which accounted for 39.6% of all decreased total DALYs. GAP and biocontrol were both effective strategies in the farm field, while the other three interventions were limited in reducing total DALYs. In conclusion, this study could help farmers, processing plants, and government policymakers to alleviate aflatoxin contamination issues in the peanut production chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20burden" title=" health burden"> health burden</a>, <a href="https://publications.waset.org/abstracts/search?q=disability-adjusted%20life-years" title=" disability-adjusted life-years"> disability-adjusted life-years</a>, <a href="https://publications.waset.org/abstracts/search?q=peanuts" title=" peanuts"> peanuts</a> </p> <a href="https://publications.waset.org/abstracts/102924/health-burden-of-disease-assessment-for-minimizing-aflatoxin-exposure-in-peanuts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> The Effects of Production, Transportation and Storage Conditions on Mold Growth in Compound Feeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Cetinkaya">N. Cetinkaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to determine the critical control points during the production, transportation and storage conditions of compound feeds to be used in the Hazard Analysis Critical Control Point (HACCP) feed safety management system. A total of 40 feed samples were taken after 20 and 40 days of storage periods from the 10 dairy and 10 beef cattle farms following the transportation of the compound feeds from the factory. In addition, before transporting the feeds from factory immediately after production of dairy and beef cattle compound feeds, 10 from each total 20 samples were taken as 0 day. In all feed samples, chemical composition and total aflatoxin levels were determined. The aflatoxin levels in all feed samples with the exception of 2 dairy cattle feeds were below the maximum acceptable level. With the increase in storage period in dairy feeds, the aflatoxin levels were increased to 4.96 ppb only in a BS8 dairy farm. This value is below the maximum permissible level (10 ppb) in beef cattle feed. The aflatoxin levels of dairy feed samples taken after production varied between 0.44 and 2.01 ppb. Aflatoxin levels were found to be between 0.89 and 3.01 ppb in dairy cattle feeds taken on the 20<sup>th</sup> day of storage at 10 dairy cattle farm. On the 40<sup>th</sup> day, feed aflatoxin levels in the same dairy cattle farm were found between 1.12 and 7.83 ppb. The aflatoxin levels were increased to 7.83 and 6.31 ppb in 2 dairy farms, after a storage period of 40 days. These obtained aflatoxin values are above the maximum permissible level in dairy cattle feeds. The 40 days storage in pellet form in the HACCP feed safety management system can be considered as a critical control point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=beef%20cattle%20feed" title=" beef cattle feed"> beef cattle feed</a>, <a href="https://publications.waset.org/abstracts/search?q=compound%20feed" title=" compound feed"> compound feed</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle%20feed" title=" dairy cattle feed"> dairy cattle feed</a>, <a href="https://publications.waset.org/abstracts/search?q=HACCP" title=" HACCP"> HACCP</a> </p> <a href="https://publications.waset.org/abstracts/90397/the-effects-of-production-transportation-and-storage-conditions-on-mold-growth-in-compound-feeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Enzyme Linked Immuno Sorbent Assay Based Detection of Aflatoxin M1 and Ochratoxin A in Raw Milk in Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Moudgil">Pallavi Moudgil</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Bedi"> J. S. Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Aulakh"> R. S. Aulakh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20S.%20Gill"> J. P. S. Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxins in milk are of major public health concern. The present study was envisaged with an aim to monitor the occurrence of aflatoxin M1 and ochratoxin A in raw milk samples collected from individual animals from dairy farms located in Punjab (India). A total of 168 raw milk samples were collected and analysed using competitive ELISA kits. Out of these, 9 (5.4%) samples were found positive for aflatoxin M1 with the mean concentration of 0.006-0.13 ng/ml and 2 (1.2%) samples exceeded the established maximum residue limit of 0.05 ng/ml established by the European Union. For ochratoxin A, 2 (0.1%) samples were found positive with the mean concentration of 0.61-0.83 ng/ml with both the samples below the established maximum residue limit of 2 ng/ml. The results showed that the milk of dairy cattle is safe with respect to ochratoxin A contamination but occurrence of aflatoxin M1 above maximum residue limit suggested that feed contaminated with mycotoxins might have been offered to dairy cattle that can pose serious health risks to consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20M1" title="Aflatoxin M1">Aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks"> health risks</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20residue%20limit" title=" maximum residue limit"> maximum residue limit</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ochratoxin%20A" title=" Ochratoxin A"> Ochratoxin A</a> </p> <a href="https://publications.waset.org/abstracts/65718/enzyme-linked-immuno-sorbent-assay-based-detection-of-aflatoxin-m1-and-ochratoxin-a-in-raw-milk-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Activity of Resveratrol on the Influence of Aflatoxin B1 on the Testes of Sprague Dawley Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20D.%20Omur">Ali D. Omur</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Apaydin%20Yildirim"> Betul Apaydin Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20S.%20Saglam"> Yavuz S. Saglam</a>, <a href="https://publications.waset.org/abstracts/search?q=Selim%20Comakli"> Selim Comakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Ozkaraca"> Mustafa Ozkaraca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Twenty-eight male Sprague Dawley rats (aged 3 months) were used in the study. The animals were given feed and water as ad libitum. Sprague Dawley rats were randomly divided into 4 groups as 7 rats in each group. Aflatoxin B1 (7.5 μg/200 g), resveratrol (60 mg/kg) was administered to rats in groups other than the control group. At the end of the 16th day, blood, semen and tissue specimens were taken by decapitation under ether anesthesia. The effects of aflatoxin B1 and resveratrol on spermatological, pathological and biochemical parameters were determined in rats. When we evaluate the spermatological parameters, it is understood that resveratrol has a statistically significant difference in terms of sperm motility and viability (membrane integrity) compared to the control group and aflatoxin B1 administration groups, indicating a protective effect on spermatological parameters (groups: control, resveratrol, aflatoxin B1 and Afb1 + res; respectively, values of motility: 71,42 ± 0,52b, 72,85 ± 1, 48c , 60,71 ± 1,30a, 57,14 ± 2, 40a; values of viability: 63,85 ± 1,33b, 70,42 ± 2,61c, 55,00 ± 1,54a, 56,57 ± 0,89a. In terms of pathological parameters -histopathological examination- in the control and resveratrol groups, seminiferous tubules were observed to be in normal structure. In the group treated with aflatoxin, the regular structure of the spermatogenic cells deteriorated, and the seminiferous tubules became necrotic and degenerative. In the group treated with Afb1 + res, the decreasing of necrotic and degenerative changes were determined compared with in the group treated with aflatoxin. As immunohistochemical examination, cleaved caspase 3 expression was found to be very low in the control and resveratrol groups. Cleaved caspase 3 expression was severely exacerbated in seminiferous tubules in aflatoxin group but cleaved caspase 3 expression level decreased in Afb1 + res. In the biochemical direction, resveratrol has been shown to inhibit the adverse effects of aflatoxin on antioxidant levels (GSH-mmol/L, CAT-kU/L, GPx-U/mL, SOD-EU/mL) and to show a protective effect. For this purpose, the use of resveratrol with antioxidant activity was investigated in preventing or ameliorating damage to aflatoxin B1. It has been concluded that resveratrol effectively prevents the aflatoxin-induced testicular damage and lipid peroxidation. It has also been shown that resveratrol has protective effects on sperm motility and viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20B1" title="Aflatoxin B1">Aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a>, <a href="https://publications.waset.org/abstracts/search?q=resveratrol" title=" resveratrol"> resveratrol</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm" title=" sperm"> sperm</a> </p> <a href="https://publications.waset.org/abstracts/83772/activity-of-resveratrol-on-the-influence-of-aflatoxin-b1-on-the-testes-of-sprague-dawley-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Efficacy of a Zeolite as a Detoxifier in Broiler Feed Contaminated with Aflatoxin B1 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Stevens">R. Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=W.L.%20Bryden"> W.L. Bryden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to determine the efficacy of zeolite in preventing the adverse effects of aflatoxin B1 (AFB1) in broilers. A total of 540 one-day-old Ross chicks were randomly divided into nine treatments, with four replicate pens per treatment and 15 chicks per pen. The treatments included 3 Levels of AFB1 (0,1and 2 mg/kg diet) and 3 levels of zeolite (0, 1.5 and 3 %) in a 3 ×3 factorial arrangement. The experimental treatments commenced on d 7 post-hatch. A starter diet was provided from d 1 to 14, a grower diet from d 15 to 28 and a finisher diet from d 29 to d 49. Diets were based on corn and soybeans and formulated to meet the bird's requirements. The evaluated parameters were as follows: Bodyweight, daily gain, feed intake (FI), feed conversion (FC), relative weights of organs (carcass, liver, heart and abdominal fat) and clinical biochemistry parameters: alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Bodyweight, daily gain and FC were significantly (P<0.05) impaired by aflatoxin. Relative weights of the liver and heart were also affected. The addition of zeolite (1.5 and 3 %) to the contaminated diets ameliorated the effects of aflatoxin, especially at the higher level of inclusion. These data demonstrate that this specific sorbent (zeolite) can protect against the toxicity of AFB1in young broiler chicks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/118633/efficacy-of-a-zeolite-as-a-detoxifier-in-broiler-feed-contaminated-with-aflatoxin-b1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> The Determination of Aflatoxins in Paddy and Milled Fractions of Rice in Guyana: Preliminary Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donna%20M.%20Morrison">Donna M. Morrison</a>, <a href="https://publications.waset.org/abstracts/search?q=Lambert%20Chester"> Lambert Chester</a>, <a href="https://publications.waset.org/abstracts/search?q=Coretta%20A.%20N.%20Samuels"> Coretta A. N. Samuels</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20R.%20Ledoux"> David R. Ledoux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A survey was conducted in the five rice-growing regions in Guyana to determine the presence of aflatoxins in multiple fractions of rice in June/October 2015 growing season. The fractions were paddy, steamed paddy, cargo rice, white rice and parboiled rice. Samples were analyzed by High Performance Liquid Chromatography. A subset of the samples was further analyzed by enzyme-linked immunosorbent assay (ELISA) for concurrence. All analyses were conducted at the University of Missouri, USA. Of the 186 samples tested, 16 had aflatoxin concentrations greater than 20 ppb the recommended limit for aflatoxins in food according to the United States Food and Drug Administration. An additional three samples had aflatoxin B<sub>1</sub>&nbsp;concentrations greater than the European Union Commission maximum levels for aflatoxin B<sub>1</sub>&nbsp;in rice at 5 &micro;g/kg and total aflatoxins (B<sub>1</sub>, B<sub>2</sub>, G<sub>1</sub>&nbsp;and G<sub>2</sub>) at 10 &micro;g/kg. The survey indicates that there is no widespread aflatoxin problem in rice in Guyana. The incidence of aflatoxins appears to be localized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme-linked%20immunosorbent%20assay%20%28ELISA%29" title=" enzyme-linked immunosorbent assay (ELISA)"> enzyme-linked immunosorbent assay (ELISA)</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography%20%28HPLC%29" title=" high-performance liquid chromatography (HPLC)"> high-performance liquid chromatography (HPLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20fractions" title=" rice fractions"> rice fractions</a> </p> <a href="https://publications.waset.org/abstracts/58517/the-determination-of-aflatoxins-in-paddy-and-milled-fractions-of-rice-in-guyana-preliminary-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Chronic Aflatoxin Exposure During Pregnancy Is Associated With Lower Fetal Growth Trajectories: A Prospective Cohort Study in Rural Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tesfamariam">K. Tesfamariam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gebreyesus"> S. Gebreyesus</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lachat"> C. Lachat</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kolsteren"> P. Kolsteren</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Saeger"> S. De Saeger</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Boevre"> M. De Boevre</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Argaw"> A. Argaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi, which are ubiquitously present in the food supplies of low- and middle-income countries. Studies of maternal aflatoxin exposure and fetal outcomes are mainly focused on size at birth and the effect on intrauterine fetal growth has not been assessed using repeated longitudinal fetal biometry across gestation. Therefore, this study intends to assess the association between chronic aflatoxin exposure during pregnancy and fetal growth trajectories in a rural Ethiopian setting. In a prospective cohort study, we enrolled 492 pregnant women. A phlebotomist collected 5 mL of a venous blood sample from eligible women before 28 completed weeks of gestation and aflatoxin B1-lysine concentration was determined using liquid chromatography-tandem mass spectrometry. The mean (±SD) gestational age was 19.1 (3.71) weeks at enrollment, and 28.5 (3.51) and 34.5 (2.44) weeks of gestation at the second and third rounds of ultrasound measurements, respectively. Estimated fetal weight was expressed in centiles using the INTERGROWTH-21st reference. We fitted a multivariable linear mixed-effects model to estimate the rate of fetal growth between aflatoxin-exposed (i.e., aflatoxin B1-lysine concentration above or equal to the limit of detection) and non-exposed mothers in the study. Mothers had a mean (±SD) age of 26.0 (4.58) years. The median (P25, P75) serum AFB1-lysine concentration was 12.6 (0.93, 96.9) pg/mg albumin, and aflatoxin exposure was observed in 86.6% of maternal blood samples. Eighty-five percent of the women enrolled provided at least two ultrasound measurements for analysis. On average, the aflatoxin-exposed group had a significantly lower change over time in fetal weight-for-gestational age centile than the unexposed group (ß = -1.01 centiles/week, 95% CI: -1.87, -0.15, p = 0.02). Chronic maternal AF exposure is associated with lower fetal weight gain over time. Our findings emphasize the importance of nutrition-sensitive strategies to mitigate dietary aflatoxin exposure as well as adopting food safety measures in low-income settings, particularly during the fetal period of development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20growth" title=" fetal growth"> fetal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=low-income%20setting" title=" low-income setting"> low-income setting</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a> </p> <a href="https://publications.waset.org/abstracts/153140/chronic-aflatoxin-exposure-during-pregnancy-is-associated-with-lower-fetal-growth-trajectories-a-prospective-cohort-study-in-rural-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Post Harvest Fungi Diversity and Level of Aflatoxin Contamination in Stored Maize: Cases of Kitui, Nakuru and Trans-Nzoia Counties in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gachara%20Grace">Gachara Grace</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebira%20Anthony"> Kebira Anthony</a>, <a href="https://publications.waset.org/abstracts/search?q=Harvey%20Jagger"> Harvey Jagger</a>, <a href="https://publications.waset.org/abstracts/search?q=Wainaina%20James"> Wainaina James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin contamination of maize in Africa poses a major threat to food security and the health of many African people. In Kenya, aflatoxin contamination of maize is high due to the environmental, agricultural and socio-economic factors. Many studies have been conducted to understand the scope of the problem, especially at pre-harvest level. This research was carried out to gather scientific information on the fungi population, diversity and aflatoxin level during the post-harvest period. The study was conducted in three geographical locations of; Kitui, Kitale and Nakuru. Samples were collected from storage structures of farmers and transported to the Biosciences eastern and central Africa (BecA), International Livestock and Research Institute (ILRI) hub laboratories. Mycoflora was recovered using the direct plating method. A total of five fungal genera (Aspergillus, Penicillium, Fusarium, Rhizopus and Bssyochlamys spp.) were isolated from the stored maize samples. The most common fungal species that were isolated from the three study sites included A. flavus at 82.03% followed by A.niger and F.solani at 49% and 26% respectively. The aflatoxin producing fungi A. flavus was recovered in 82.03% of the samples. Aflatoxin levels were analysed on both the maize samples and in vitro. Most of the A. flavus isolates recorded a high level of aflatoxin when they were analysed for presence of aflatoxin B1 using ELISA. In Kitui, all the samples (100%) had aflatoxin levels above 10ppb with a total aflatoxin mean of 219.2ppb. In Kitale, only 3 samples (n=39) had their aflatoxin levels less than 10ppb while in Nakuru, the total aflatoxin mean level of this region was 239.7ppb. When individual samples were analysed using Vicam fluorometer method, aflatoxin analysis revealed that most of the samples (58.4%) had been contaminated. The means were significantly different (p=0.00<0.05) in all the three locations. Genetic relationships of A. flavus isolates were determined using 13 Simple Sequence Repeats (SSRs) markers. The results were used to generate a phylogenetic tree using DARwin5 software program. A total of 5 distinct clusters were revealed among the genotypes. The isolates appeared to cluster separately according to the geographical locations. Principal Coordinates Analysis (PCoA) of the genetic distances among the 91 A. flavus isolates explained over 50.3% of the total variation when two coordinates were used to cluster the isolates. Analysis of Molecular Variance (AMOVA) showed a high variation of 87% within populations and 13% among populations. This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya. The influence of aflatoxins on human populations in Kenya demonstrates a clear need for tools to manage contamination of locally produced maize. Food basket surveys for aflatoxin contamination should be conducted on a regular basis. This would assist in obtaining reliable data on aflatoxin incidence in different food crops. This would go a long way in defining control strategies for this menace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20flavus" title=" Aspergillus flavus"> Aspergillus flavus</a>, <a href="https://publications.waset.org/abstracts/search?q=genotyping" title=" genotyping"> genotyping</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a> </p> <a href="https://publications.waset.org/abstracts/45935/post-harvest-fungi-diversity-and-level-of-aflatoxin-contamination-in-stored-maize-cases-of-kitui-nakuru-and-trans-nzoia-counties-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> The Use of Beneficial Microorganisms from Diverse Environments for the Management of Aflatoxin in Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Twizeyimana">Mathias Twizeyimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Urmila%20Adhikari"> Urmila Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Julius%20P.%20Sserumaga"> Julius P. Sserumaga</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ingham"> David Ingham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of aflatoxins (naturally occurring toxins produced by certain fungi, most importantly Aspergillus flavus and A. parasiticus) relies mostly on the use of best cultural practices and, in some cases, the use of the biological control consisting of atoxigenic strains inhibiting the toxigenic strains through competition resulting in considerable toxin reduction. At AgBiome, we have built a core collection of over 100,000 fully sequenced microbes from diverse environments and employ both the microbes and their sequences in the discovery of new biological products for disease and pest control. The most common approach to finding beneficial microbes consists of isolating microorganisms from samples collected from diverse environments, selecting antagonistic strains through empirical screening, studying modes of action, and stabilization through the formulation of selected microbial isolates. A total of 608 diverse bacterial strains were screened using a high-throughput assay (48-well assay) to identify strains that inhibit toxigenic A. flavus growth on maize kernels. Active strains in 48-well assay had their pathogen inhibiting activity confirmed using the Flask Assay and were concurrently tested for their ability to reduce the aflatoxin content in maize grains. Strains with best growth inhibition and reduction of aflatoxin were tested in the greenhouse and field trials. From the field trials, three bacterial strains, AFS000009 (Pseudomonas chlororaphis), AFS032321 (Bacillus subtilis), AFS024683 (Bacillus velezensis), had aflatoxin concentrations (ppb) values that were significantly lower than those of inoculated control. The identification of biological products with high efficacy in inhibiting pathogen growth and eventually reducing the aflatoxin content will provide a valuable alternative to control strategies used in aflatoxin contamination management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism%20bacteria" title=" microorganism bacteria"> microorganism bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=beneficial%20microbes" title=" beneficial microbes"> beneficial microbes</a> </p> <a href="https://publications.waset.org/abstracts/162388/the-use-of-beneficial-microorganisms-from-diverse-environments-for-the-management-of-aflatoxin-in-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Detection of Aflatoxin B1 Producing Aspergillus flavus Genes from Maize Feed Using Loop-Mediated Isothermal Amplification (LAMP) Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sontana%20Mimapan">Sontana Mimapan</a>, <a href="https://publications.waset.org/abstracts/search?q=Phattarawadee%20Wattanasuntorn"> Phattarawadee Wattanasuntorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Phanom%20Saijit"> Phanom Saijit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin contamination in maize, one of several agriculture crops grown for livestock feeding, is still a problem throughout the world mainly under hot and humid weather conditions like Thailand. In this study Aspergillus flavus (A. Flavus), the key fungus for aflatoxin production especially aflatoxin B1 (AFB1), isolated from naturally infected maize were identified and characterized according to colony morphology and PCR using ITS, Beta-tubulin and calmodulin genes. The strains were analysed for the presence of four aflatoxigenic biosynthesis genes in relation to their capability to produce AFB1, Ver1, Omt1, Nor1, and aflR. Aflatoxin production was then confirmed using immunoaffinity column technique. A loop-mediated isothermal amplification (LAMP) was applied as an innovative technique for rapid detection of target nucleic acid. The reaction condition was optimized at 65C for 60 min. and calcein flurescent reagent was added before amplification. The LAMP results showed clear differences between positive and negative reactions in end point analysis under daylight and UV light by the naked eye. In daylight, the samples with AFB1 producing A. Flavus genes developed a yellow to green color, but those without the genes retained the orange color. When excited with UV light, the positive samples become visible by bright green fluorescence. LAMP reactions were positive after addition of purified target DNA until dilutions of 10⁻⁶. The reaction products were then confirmed and visualized with 1% agarose gel electrophoresis. In this regards, 50 maize samples were collected from dairy farms and tested for the presence of four aflatoxigenic biosynthesis genes using LAMP technique. The results were positive in 18 samples (36%) but negative in 32 samples (64%). All of the samples were rechecked by PCR and the results were the same as LAMP, indicating 100% specificity. Additionally, when compared with the immunoaffinity column-based aflatoxin analysis, there was a significant correlation between LAMP results and aflatoxin analysis (r= 0.83, P < 0.05) which suggested that positive maize samples were likely to be a high- risk feed. In conclusion, the LAMP developed in this study can provide a simple and rapid approach for detecting AFB1 producing A. Flavus genes from maize and appeared to be a promising tool for the prediction of potential aflatoxigenic risk in livestock feedings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20B1" title="Aflatoxin B1">Aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20flavus%20genes" title=" Aspergillus flavus genes"> Aspergillus flavus genes</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=loop-mediated%20isothermal%20amplification" title=" loop-mediated isothermal amplification"> loop-mediated isothermal amplification</a> </p> <a href="https://publications.waset.org/abstracts/59075/detection-of-aflatoxin-b1-producing-aspergillus-flavus-genes-from-maize-feed-using-loop-mediated-isothermal-amplification-lamp-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinyi%20Zhao">Xinyi Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Furong%20Tian"> Furong Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20B1" title="aflatoxin B1">aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20of%20detection" title=" limit of detection"> limit of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticle" title=" gold nanoparticle"> gold nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20flow%20immunochromatographic%20strips" title=" lateral flow immunochromatographic strips"> lateral flow immunochromatographic strips</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a> </p> <a href="https://publications.waset.org/abstracts/139268/the-comparation-of-limits-of-detection-of-lateral-flow-immunochromatographic-strips-of-different-types-of-mycotoxins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> The Effects of Molecular and Climatic Variability on the Occurrence of Aspergillus Species and Aflatoxin Production in Commercial Maize from Different Agro-climatic Regions in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nji%20Queenta%20Ngum">Nji Queenta Ngum</a>, <a href="https://publications.waset.org/abstracts/search?q=Mwanza%20Mulunda"> Mwanza Mulunda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Most African research reports on the frequent aflatoxin contamination of various foodstuffs, with researchers rarely specifying which of the Aspergillus species are present in these commodities. Numerous research works provide evidence of the ability of fungi to grow, thrive, and interact with other crop species and focus on the fact that these processes are largely affected by climatic variables. South Africa is a water-stressed country with high spatio-temporal rainfall variability; moreover, temperatures have been projected to rise at a rate twice the global rate. This weather pattern change may lead to crop stress encouraging mold contamination with subsequent mycotoxin production. In this study, the biodiversity and distribution of Aspergillus species with their corresponding toxins in maize from six distinct maize producing regions with different weather patterns in South Africa were investigated. Materials And Methods By applying cultural and molecular methods, a total of 1028 maize samples from six distinct agro-climatic regions were examined for contamination by the Aspergillus species while the high performance liquid chromatography (HPLC) method was applied to analyse the level of contamination by aflatoxins. Results About 30% of the overall maize samples were contaminated by at least one Aspergillus species. Less than 30% (28.95%) of the 228 isolates subjected to the aflatoxigenic test was found to possess at least one of the aflatoxin biosynthetic genes. Furthermore, almost 20% were found to be contaminated with aflatoxins, with mean total aflatoxin concentration levels of 64.17 ppb. Amongst the contaminated samples, 59.02% had mean total aflatoxin concentration levels above the SA regulatory limit of 20ppb for animals and 10 for human consumption. Conclusion In this study, climate variables (rainfall reduction) were found to significantly (p<0.001) influence the occurrence of the Aspergillus species (especially Aspergillus fumigatus) and the production of aflatoxin in South Africa commercial maize by maize variety, year of cultivation as well as the agro-climatic region in which the maize is cultivated. This included, amongst others, a reduction in the average annual rainfall of the preceding year to about 21.27 mm, and, as opposed to other regions whose average maximum rainfall ranged between 37.24 – 44.1 mm, resulted in a significant increase in the aflatoxin contamination of maize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspergillus%20species" title="aspergillus species">aspergillus species</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title=" aflatoxins"> aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC%20and%20PCR%20techniques" title=" HPLC and PCR techniques"> HPLC and PCR techniques</a> </p> <a href="https://publications.waset.org/abstracts/171630/the-effects-of-molecular-and-climatic-variability-on-the-occurrence-of-aspergillus-species-and-aflatoxin-production-in-commercial-maize-from-different-agro-climatic-regions-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Relationship between Feeding Type and the Occurrence of Aflatoxin M1 in Milk of High Yielding Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Sumanasekara">G. S. Sumanasekara</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20P.%20B.%20Weerasingheg"> W. M. P. B. Weerasingheg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major problem associated with concentrate feeds used for feeding cattle is declining quality by contamination with Aflatoxins. Objective: The aim of the study was to detect levels of Aflatoxin M1(AFM1) in cow milk , AFM1 levels present in milk related to different feed types and to identify the relationship between feed type and Aflatoxin M1 in milk. Design: cross sectional study design. Milk samples from each farm assessed for presence of AFM1 using High Performance Liquid Chromatographic method. Setting: Ten dairy farms located in Nuwara-Eliya district were randomly selected.AFM1 analysis was done using High Performance Liquid Chromatography(HPLC). Results: The results indicated that AFM1 was present in 50% of samples. Coconut poonac shown the most significant relationship among individual feeds having a correlation of 0.65 and P value of 0.042 . Among feed combinations, coconut poonac and beer pulp combination showed the highest correlation of 0.77 and P value of 0.05. Grasses had shown a very poor relationship with the AFM1 occurrence in milk (r=0.053, P=0.885). Relationship between overall concentrate feeds in the study and AFM1 in milk, it was clear that they had a significant relationship having correlation of 0.65 and P value of 0.042. Majority of samples lied between 0-10 ng L-1 of AFM1 and one sample exceeded above 30 ng L-1. Two samples had AFM1 concentrations between 22-32 ng L-1. One sample lied between 32-42ng L-1, did not exceed the EU recommended level of 50 ng L-1. The presence of AFM1 in milk under various management and feeding conditions is yet to be investigated in Sri Lanka. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=aspergillus" title=" aspergillus"> aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle%20feed" title=" cattle feed"> cattle feed</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrates" title=" concentrates"> concentrates</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20milk" title=" cow milk"> cow milk</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20perforamance%20liquid%20chromatography" title=" high perforamance liquid chromatography"> high perforamance liquid chromatography</a> </p> <a href="https://publications.waset.org/abstracts/39317/relationship-between-feeding-type-and-the-occurrence-of-aflatoxin-m1-in-milk-of-high-yielding-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> The Use of Microbiological Methods to Reduce Aflatoxin M1 in Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Goncalves">Bruna Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Henck"> Jennifer Henck</a>, <a href="https://publications.waset.org/abstracts/search?q=Romulo%20Uliana"> Romulo Uliana</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliana%20Kamimura"> Eliana Kamimura</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Oliveira"> Carlos Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Corassin"> Carlos Corassin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies have shown evidence of human exposure to aflatoxin M1 due to the consumption of contaminated milk and dairy products (mainly cheeses). This poses a great risk to public health, since milk and milk products are frequently consumed by a portion of the population considered immunosuppressed, children and the elderly. Knowledge of the negative impacts of aflatoxins on health and economics has led to investigations of strategies to prevent their formation in food, as well as to eliminate, inactivate or reduce the bioavailability of these toxins in contaminated products This study evaluated the effect of microbiological methods using lactic acid bacteria on aflatoxin M1 (AFM1) reduction in Minas Frescal cheese (typical Brazilian product, being among the most consumed cheeses in Brazil) spiked with 1 µg/L AFM1. Inactivated lactic acid bacteria (0,5%, v/v de L. rhamnosus e L. lactis) were added during the cheese production process. Nine cheeses were produced, divided into three treatments: negative controls (without AFM1 or lactic acid bacteria), positive controls (AFM1 only), and lactic acid bacteria + AFM1. Samples of cheese were collected on days 2, 10, 20 and 30 after the date of production and submitted to composition analyses and determination of AFM1 by high-performance liquid chromatography. The reductions of AFM1 in cheese by lactic acid bacteria at the end of the trial indicate a potential application of inactivated lactic acid bacteria in reducing the bioavailability of AFM1 in Minas frescal cheese without physical-chemical and microbiological modifications during the 30-day experimental period. The authors would like to thank São Paulo Research Foundation – FAPESP (grants #2017/20081-6 and #2017/19683-1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=minas%20frescal%20cheese" title=" minas frescal cheese"> minas frescal cheese</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a> </p> <a href="https://publications.waset.org/abstracts/103815/the-use-of-microbiological-methods-to-reduce-aflatoxin-m1-in-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kottaridi%20Klimentia">Kottaridi Klimentia</a>, <a href="https://publications.waset.org/abstracts/search?q=Demopoulos%20Vasilis"> Demopoulos Vasilis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidiropoulos%20Anastasios"> Sidiropoulos Anastasios</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihara%20Diego"> Ihara Diego</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaidis%20Vasileios"> Nikolaidis Vasileios</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonopoulos%20Dimitrios"> Antonopoulos Dimitrios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20spp." title=" Aspergillus spp."> Aspergillus spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=dried%20figs" title=" dried figs"> dried figs</a>, <a href="https://publications.waset.org/abstracts/search?q=k-nearest%20neighbors" title=" k-nearest neighbors"> k-nearest neighbors</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/141738/a-risk-assessment-tool-for-the-contamination-of-aflatoxins-on-dried-figs-based-on-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Methods of Detoxification of Nuts With Aflatoxin B1 Contamination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auteleyeva%20Laura">Auteleyeva Laura</a>, <a href="https://publications.waset.org/abstracts/search?q=Maikanov%20Balgabai"> Maikanov Balgabai</a>, <a href="https://publications.waset.org/abstracts/search?q=Smagulova%20Ayana"> Smagulova Ayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuts" title="nuts">nuts</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20B1" title=" aflatoxin B1"> aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=my" title=" my"> my</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a> </p> <a href="https://publications.waset.org/abstracts/169128/methods-of-detoxification-of-nuts-with-aflatoxin-b1-contamination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> The Effect of Probiotic Bacteria on Aflatoxin M1 Detoxification in Phosphate Buffer Saline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeyra%20Sevim">Sumeyra Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsum%20Gizem%20Topal"> Gulsum Gizem Topal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercan%20Merve%20Tengilimoglu-Metin"> Mercan Merve Tengilimoglu-Metin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mevlude%20Kizil"> Mevlude Kizil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin M1 (AFM1) is a major toxic and carcinogenic molecule in milk and milk products. Therefore, it poses a risk for public health. Probiotics can be biological agent to remove AFM1. The aim of this study is to evaluate the effect of probiotic bacteria on AFM1 detoxification in phosphate buffer saline. The PBS samples artificially contaminated with AFM1 at concentration 100 pg/ml were prepared with probiotics bacteria that including monoculture (L. plantarum, B. bifidum ATCC, B. animalis ATCC 27672) and binary culture (L. bulgaricus + S. thermophiles, B. bifidum ATCC + B. animalis ATCC 27672, L. plantarum+B. bifidum ATCC, L. plantarum+ B. animalis ATCC 27672). The samples were incubated at 37°C for 4 hours and stored for 1, 5 and 10 days. The toxin was measured by the ELISA. The highest levels of AFM1 binding ability (63.6%) in PBS were detected yoghurt starter bacteria, while L. plantarum had the lowest levels of AFM1 binding ability (35.5%) in PBS. In addition, it was found that there was significant effect of storage on AFM1 binding ability in all groups except the one including B. animalis (p < 0.05). Consequently, results demonstrate that AFM1 detoxification by probiotic bacteria has a potential application to reduce toxin concentrations in yoghurt. Moreover, probiotic strains can react with itself as synergic or antagonist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/60083/the-effect-of-probiotic-bacteria-on-aflatoxin-m1-detoxification-in-phosphate-buffer-saline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Assessment of Milk Quality in Vehari: Evaluation of Public Health Concerns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Farhan%20Saeed">Muhammad Farhan Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Aslam%20Khan"> Waheed Aslam Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem"> Muhammad Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Iftikhar%20Ahmad"> Iftikhar Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakir%20Ali"> Zakir Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk is an important and fundamental nutrition source of human diet. In Pakistan, the milk used by the consumer is of low quality and is often contaminated due to the lack of quality controls. Mycotoxins produced from molds which contaminate the agriculture commodities of animal feed. Mycotoxins are poisons which affect the animals when they consume contaminated feeds. Aflatoxin AFM1 is naturally occurring form of mycotoxins in milk which is carcinogenic. To assess public awareness regarding milk Aflatoxin contamination, a population-based survey using a questionnaire was carried out from general public and from farmers of both rural and urban areas. It was revealed from the data that people of rural area were more satisfied about quality of available milk but the awareness level about milk contamination was found lower in both areas. Total 297 samples of milk were collected from rural (n=156) and urban (n=141) areas of district Vehari during June-July 2015. Milk samples were collected from three different point sources; farmer, milkman and milkshop. These point sources had three types of dairy milk including cow milk, buffalo milk and mixed milk. After performing ELISA test 18 samples with positive ELISA results were maintain per source for further analysis for aflatoxin M1 (AFM1) by High Performance Liquid Chromatography (HPLC). Higher percentages of samples were found exceeding the permissible limit for urban area. In rural area about 15% samples and from urban area about 35% samples were exceeded the permissible limit of AFM1 with 0.05µg/kg set by European Union. From urban areas about 55% of buffalo, 33% of cows and 17% of mixed milk samples were exceeded the permissible AFM1 level as compared with 17%, 11% and 17% for milk samples from rural areas respectively. Samples from urban areas 33%, 44% and 28% were exceeded the permissible AFM1 level for farmer, milkman and of milk shop respectively as compared with 28% and 17% of farmer and milkman’s samples from rural areas respectively. The presence of AFM1 in milk samples demands the implementation of strict regulations and also urges the need for continuous monitoring of milk and milk products in order to minimize the health hazards. Regulations regarding aflatoxins contamination and adulteration should be strictly imposed to prevent health problems related to milk quality. Permissible limits for aflatoxin should be enforced strongly in Pakistan so that economic loss due to aflatoxin contamination can be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vehari" title="Vehari">Vehari</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxins%20AFM1" title=" aflatoxins AFM1"> aflatoxins AFM1</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/59052/assessment-of-milk-quality-in-vehari-evaluation-of-public-health-concerns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Prevalence, Level and Health Risk Assessment of Mycotoxins in the Fried Poultry Eggs from Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharaf%20S.%20Omar">Sharaf S. Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, level and prevalence of deoxynivalenol (DON), aflatoxin B1 AFB1), zearalenone (ZEN), and ochratoxin A (OTA) in fried poultry eggs in Jordan was investigated. Poultry egg samples (n = 250) were collected. The level of DON, AFB1, ZEN and OTA in the white and yolk of poultry eggs was measured using LC-MS-MS. The health risk assessment was calculated using Margin of Exposures (MOEs) for AFB1 and OTA and hazard index (HI) for ZEN and DON. The highest prevalence in yolk and white of eggs was related to ZEN (96.56%) and OTA (97.44%), respectively. Also, the highest level in white and yolk was related to DON (1.07µg/kg) and DON (1.65 µg/kg), respectively. Level of DON in the yolk of eggs was significantly higher than white of eggs (P-value < 0.05). Risk assessment indicated that exposed population are at high risk of AFB1 (MOEs < 10,000) in fried poultry eggs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycotoxins%202" title="mycotoxins 2">mycotoxins 2</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20b1" title=" aflatoxin b1"> aflatoxin b1</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20egg" title=" poultry egg"> poultry egg</a> </p> <a href="https://publications.waset.org/abstracts/163115/prevalence-level-and-health-risk-assessment-of-mycotoxins-in-the-fried-poultry-eggs-from-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Ability of Bentonite-lactobacillus Rhamnosus GAF06 Mixture to Mitigate Aflatoxin M1 Damages in Balb/C Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Aloui">Amina Aloui</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalila%20Ben%20Salah-Abb%C3%A8s"> Jalila Ben Salah-Abbès</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Zinedine"> Abdellah Zinedine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amar%20Riba"> Amar Riba</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Durand"> Noel Durand</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Brabet"> Catherine Brabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Montet"> Didier Montet</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Abb%C3%A8s"> Samir Abbès</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxin contamination of food and feed-isa globaconcern, both economically and for public health. Aflatoxin M1 (AFM1) is the principal hydroxylated metabolite of aflatoxin B1. It is frequently found in milk and other dairy products. It is responsible for the development of hepatocellular carcinoma and immunotoxic in humans and animals. The reduction of its bioavailabilitybecomesa great demand in order to protect human and animal health. The use of probiotic bacteria and clay are demonstrated to be able to bind AFM1 in vitro. This study aimed to investigate, in vivo, the activity of two-component mixture: L. rhamnosusGAF06 (LR) and bentonite for reducing the oxidative stress and the histological alterationsinduced by AFM1 in the liver andkidneys. For the experiment, male mice were divided into 7 groups (6 mice/group) and treated, orally, by AFM1, alone or in combination with LR and/or bentonite, for 10 days as follows: group 1 control, group 2 treated with LR alone (2.108 CFU/ml), group 3 treated with bentonite alone (1g/kg), group 4 treated with AFM1 alone (100μg/kg), group 5 co-treated with LR+AFM1, group 6 co-treated with bentonite+AFM1, group 7 co-treated with bentonite+LR+AFM1. At the end of the treatment, the mice were sacrificed, and the livers and kidneys were collected for histological assays. Intracellular antioxidant activities and lipid peroxidation were also studied. The results showed that AFM1causeddamage in liver and kidney tissues, being evidence of hepatotoxicity and nephrotoxicity marked by necrotic cells. It increased the MDA level and decreased the antioxidant enzyme activities (SOD) in both organs. In contrast, the co-treatment with AFM1 plus LR and/or bentonitesignificantly improved the hepatic and renal tissues, regulated kidney, and liver antioxidant enzyme activities. This improvement was more remarkable with the administration of LR-bentonite mixture with AFM1.LR and bentonite alone showed to be safe during the treatment. This mixture can be a promising candidate for future applications in biotechnological processes that aimed to detoxify AFM1in food and feed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20rhamnosus%20GAF06" title=" L. rhamnosus GAF06"> L. rhamnosus GAF06</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=prevention" title=" prevention"> prevention</a> </p> <a href="https://publications.waset.org/abstracts/145449/ability-of-bentonite-lactobacillus-rhamnosus-gaf06-mixture-to-mitigate-aflatoxin-m1-damages-in-balbc-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Effect of Inulin on Aflatoxin M1 Binding Ability of Probiotic Bacteria in Yoghurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumeyra%20Sevim">Sumeyra Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsum%20Gizem%20Topal"> Gulsum Gizem Topal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercan%20Merve%20Tengilimoglu-Metin"> Mercan Merve Tengilimoglu-Metin</a>, <a href="https://publications.waset.org/abstracts/search?q=Banu%20Sancak"> Banu Sancak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mevlude%20Kizil"> Mevlude Kizil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin M1 (AFM1) represents mutagenic, carcinogenic, hepatotoxic and immunosuppressive properties, and shows adverse effect on human health. Recently the use of probiotics are focused on AFM1 detoxification because of the fact that probiotic strains have a binding ability to AFM1. Moreover, inulin is a prebiotic to improve the ability of probiotic bacteria. Therefore, the aim of the study is to investigate the effect of inulin on AFM1 binding ability of some probiotic bacteria. Yoghurt samples were manufactured by using skim milk powder artificially contaminated with AFM1 at concentration 100 pg/ml. Different samples were prepared for the study as: first sample consists of yoghurt starter bacteria (L. bulgaricus and S. thermophilus), the second sample consists of starter and L. plantarum, starter and B. bifidum ATCC were added to the third sample, starter and B. animalis ATCC 27672 were added to the forth sample, and the fifth sample is a binary culture consisted of starter and B. bifidum and B. animalis. Moreover, the same work groups were prepared with inulin (4%). The samples were incubated at 42°C for 4 hours, then stored for three different time interval (1,5 and 10 days). The toxin was measured by the ELISA. When inulin was added to work groups, there was significant change on AFM1 binding ability at least one sample in all groups except the one with L. plantarum (p<0.05). The highest levels of AFM1 binding ability (68.7%) in samples with inulin were found in the group which B. bifidum was added, whereas the lowest levels of AFM1 binding ability (44.4%) in samples with inulin was found in the fifth sample. The most impressive effect of inulin was found on B.bifidum. In this study, it was obtained that there was a significant effect of storage on AFM1 binding ability in the all groups with inulin except the one with L. plantarum (p<0.05). Consequently, results show that AFM1 detoxification by probiotics have a potential application to reduce toxin concentrations in yoghurt. Besides, inulin has different effects on AFM1 binding ability of each probiotic bacteria strain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=inulin" title=" inulin"> inulin</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a> </p> <a href="https://publications.waset.org/abstracts/60080/the-effect-of-inulin-on-aflatoxin-m1-binding-ability-of-probiotic-bacteria-in-yoghurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Detection of Total Aflatoxin in Flour of Wheat and Maize Samples in Albania Using ELISA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aferdita%20Dinaku">Aferdita Dinaku</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonida%20Canaj"> Jonida Canaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxins are potentially toxic metabolites produced by certain kinds of fungi (molds) that are found naturally all over the world; they can contaminate food crops and pose a serious health threat to humans by mutagenic and carcinogenic effects. Several types of aflatoxin (14 or more) occur in nature. In Albanian nutrition, cereals (especially wheat and corn) are common ingredients in some traditional meals. This study aimed to investigate the presence of aflatoxins in the flour of wheat and maize that are consumed in Albania’s markets. The samples were collected randomly in different markets in Albania and detected by the ELISA method, measured in 450 nm. The concentration of total aflatoxins was analyzed by enzyme-linked immunosorbent assay (ELISA), and they were ranged between 0.05-1.09 ppb. However, the screened mycotoxin levels in the samples were lower than the maximum permissible limits of European Commission No 1881/2006 (4 μg/kg). The linearity of calibration curves was good for total aflatoxins (B1, B2, G1, G2, M1) (R²=0.99) in the concentration range 0.005-4.05 ppb. The samples were analyzed in two replicated measurements and for each sample, the standard deviation (statistical parameter) is calculated. The results showed that the flour samples are safe, but the necessity of performing such tests is necessary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA%20technique" title=" ELISA technique"> ELISA technique</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20contamination" title=" food contamination"> food contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=flour" title=" flour"> flour</a> </p> <a href="https://publications.waset.org/abstracts/132620/detection-of-total-aflatoxin-in-flour-of-wheat-and-maize-samples-in-albania-using-elisa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Determination of Aflatoxins in Edible-Medicinal Plant Samples by HPLC with Fluorescence Detector and KOBRA-Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isil%20Gazioglu">Isil Gazioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulselam%20Ertas"> Abdulselam Ertas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxins (AFs) are secondary toxic metabolites of Aspergillus flavus and A. parasiticus. AFs can be absorbed through the skin. Potent carcinogens like AFs should be completely absent from cosmetics, this can be achieved by careful quality control of the raw plant materials. Regulatory limits for aflatoxins have been established in many countries, and reliable testing methodology is needed to implement and enforce the regulatory limits. In this study, ten medicinal plant samples (Bundelia tournefortti, Capsella bursa-pastoris, Carduus tenuiflorus, Cardaria draba, Malva neglecta, Malvella sharardiana, Melissa officinalis, Sideritis libanotica, Stakys thirkei, Thymus nummularius) were investigated for aflatoxin (AF) contaminations by employing an HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 70% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with Kobra-Cell and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all medicinal plant samples. The results revealed that five (50%) of samples were contaminated with AFs. The association between particular samples and the AF contaminated could not be determined due to the low frequency of positive samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20B1" title="aflatoxin B1">aflatoxin B1</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-FLD" title=" HPLC-FLD"> HPLC-FLD</a>, <a href="https://publications.waset.org/abstracts/search?q=KOBRA-Cell" title=" KOBRA-Cell"> KOBRA-Cell</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxin" title=" mycotoxin "> mycotoxin </a> </p> <a href="https://publications.waset.org/abstracts/24145/determination-of-aflatoxins-in-edible-medicinal-plant-samples-by-hplc-with-fluorescence-detector-and-kobra-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Efficacy of Ginger (Zingiber officinale) and a Zeolite (Hydrated Sodium Calcium Aluminosilicate) in the Amelioration of Aflatoxicosis in Broilers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Stevens">Ryan Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20L.%20Bryden"> Wayne L. Bryden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focused on the effects of ginger and a zeolite (toxin binder) in reducing the toxic effects of aflatoxin B1 (AFB1) in broiler chickens 7 to 49 days of age. The chicks were maintained normally until experimental diets were introduced on day 7 post-hatching. Nine hundred and thirty six, 7-d-old broiler chickens were randomly assigned to 18 treatment groups; each group had four replicates, each with 13 chickens. The experimental groups or diets had factorial combinations of the following; AFB1 0, 1 and 2 mg/kg diet, ginger 0 and 5g/kg diet, and zeolite 0, 15 and 30 g/kg diet. Diets were based on corn and soybean meal and a starter diet was fed from 1 to 14 days, a grower diet from15 to 28 days and a finisher diet was provided from day 29 until the end of the experiment. Both dietary levels of AFB1 decreased (P<0.05) body weight and feed conversion, and increased relative liver weights. Independent dietary inclusion of ginger or zeolite restored chick performance when diets contained 1mg/kg but not at 2mg/kg. Supplementation of zeolite together with ginger improved performance of birds fed contaminated diets. Interestingly, adding ginger to the control diet that was not contaminated with AFB1 improved (P<0.05) performance. Our results suggest that toxin binders and ginger can provide protection against the negative effects of AFB1 on performance of broiler chicks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler" title=" broiler"> broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite" title=" zeolite"> zeolite</a> </p> <a href="https://publications.waset.org/abstracts/107285/efficacy-of-ginger-zingiber-officinale-and-a-zeolite-hydrated-sodium-calcium-aluminosilicate-in-the-amelioration-of-aflatoxicosis-in-broilers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Effects of Bacteria on Levels of AFM1 in Phosphate Buffer at Different Level of Energy Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Elgerbi">Ali M. Elgerbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Obied%20A.%20Alwan"> Obied A. Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-Taher%20O.%20Alzwei"> Al-Taher O. Alzwei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahim%20A.%20Elouzi"> Abdurrahim A. Elouzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The binding of AFM1 to bacteria in phosphate buffer solution depended on many factors such as: availability of energy, incubation period, species and strain of bacteria. Increase in concentration of sugar showed higher removal of AFM1 and faster than in phosphate buffer alone. With 1.0% glucose lactic acid bacteria and bifidobacteria showed toxin removal ranging from 7.7 to 39.7% whereas with 10.0% glucose the percentage removal was 21.8 to 45.4% at 96 hours of incubation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1" title="aflatoxin M1">aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria" title=" bifidobacteria "> bifidobacteria </a>, <a href="https://publications.waset.org/abstracts/search?q=binding" title=" binding"> binding</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20buffer" title=" phosphate buffer "> phosphate buffer </a> </p> <a href="https://publications.waset.org/abstracts/19875/effects-of-bacteria-on-levels-of-afm1-in-phosphate-buffer-at-different-level-of-energy-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> From the Perspective of a Veterinarian: The Future of Plant Raw Materials Used in the Feeding of Farm Animals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ertu%C4%9Frul%20Y%C4%B1lmaz">Ertuğrul Yılmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important occupational groups in the food chain from farm to fork is a veterinary medicine. This occupational group, which has important duties in the prevention of many zoonotic diseases and in public health, takes place in many critical control points from soil to our kitchen. It has important duties from mycotoxins transmitted from the soil to slaughterhouses or milk processing facilities. Starting from the soil, which constitutes 70% of mycotoxin contamination, up to the TMR made from raw materials obtained from the soil, there are all critical control points from feeding to slaughterhouses and milk production enterprises. We can take the precaution of mycotoxins such as Aflatoxin B1, Ochratoxin, Zearalenone, and Fumonisin, which we encounter on farms while in the field. It has been reported that aflatoxin B1 is a casenerogen and passes into milk in studies. It is likely that many mycotoxins pose significant threats to public health and will turn out to be even more dangerous over time. Even raw material storage and TMR preparation are very important for public health. The danger of fumonisin accumulating in the liver will be understood over time. Zoonotic diseases are also explained with examples. In this study, how important veterinarians are in terms of public health is explained with examples. In the two-year mycotoxin screenings, fumonisin mycotoxin was found to be very high in corn and corn by-products, and it was determined that it accumulated in the liver for a long time and remained cornic in animals. It has been determined that mycotoxins are present in all livestock feeds, poultry feeds, and raw materials, not alone, but in double-triple form. Starting from the end, mycotoxin scans should be carried out from feed to raw materials and from raw materials to soil. In this way, we prevent the transmission of mycotoxins to animals and from animals to humans. Liver protectors such as toxin binders, beta-glucan, mannan oligosaccharides, activated carbon, prebiotics, and silymarin were used in certain proportions in the total mixed ratio, and positive results were obtained. Humidity and temperature controls of raw material silos were made at certain intervals. Necropsy was performed on animals that died as a result of mycotoxicosis, and macroscopic photographs were taken of the organs. We have determined that the mycotoxin screening in experimental animals and the feeds made without detecting the presence and amount of bacterial factors affect the results of the project to be made. For this, a series of precautionary plans have been created, starting from the production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title="mycotoxins">mycotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20safety" title=" feed safety"> feed safety</a>, <a href="https://publications.waset.org/abstracts/search?q=processes" title=" processes"> processes</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a> </p> <a href="https://publications.waset.org/abstracts/161271/from-the-perspective-of-a-veterinarian-the-future-of-plant-raw-materials-used-in-the-feeding-of-farm-animals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aflatoxin%20M1&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10