CINXE.COM
Search results for: UWB planar antenna
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: UWB planar antenna</title> <meta name="description" content="Search results for: UWB planar antenna"> <meta name="keywords" content="UWB planar antenna"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="UWB planar antenna" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="UWB planar antenna"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 449</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: UWB planar antenna</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Faulty Sensors Detection in Planar Array Antenna Using Pelican Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shafqat%20Ullah%20Khan">Shafqat Ullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Nasir"> Ammar Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using planar antenna array (PAA) in radars, Broadcasting, satellite antennas, and sonar for the detection of targets, Helps provide instant beam pattern control. High flexibility and Adaptability are achieved by multiple beam steering by using a Planar array and are particularly needed in real-life Sanrio’s where the need arises for several high-directivity beams. Faulty sensors in planar arrays generate asymmetry, which leads to service degradation, radiation pattern distortion, and increased levels of sidelobe. The POA, a nature-inspired optimization algorithm, accurately determines faulty sensors within an array, enhancing the reliability and performance of planar array antennas through extensive simulations and experiments. The analysis was done for different types of faults in 7 x 7 and 8 x 8 planar arrays in MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Planar%20antenna%20array" title="Planar antenna array">Planar antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=Pelican%20optimisation%20Algorithm" title=" Pelican optimisation Algorithm"> Pelican optimisation Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a>, <a href="https://publications.waset.org/abstracts/search?q=Faculty%20sensor" title=" Faculty sensor"> Faculty sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Antenna%20arrays" title=" Antenna arrays"> Antenna arrays</a> </p> <a href="https://publications.waset.org/abstracts/186381/faulty-sensors-detection-in-planar-array-antenna-using-pelican-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> CPW-Fed Broadband Circularly Polarized Planar Antenna with Improved Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gnanadeep%20Gudapati">Gnanadeep Gudapati</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Annie%20Grace"> V. Annie Grace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A broadband circular polarization (CP) feature is designed for a CPW-fed planar printed monopole antenna. A rectangle patch and an improved ground plane make up the antenna. The antenna's impedance bandwidth can be increased by adding a vertical stub and a horizontal slit in the ground plane. The measured results show that the proposed antenna has a wide 10-dB return loss bandwidth of 70.2% (4.35GHz, 3.7-8.1GHz) centered at 4.2 GHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPW-fed" title="CPW-fed">CPW-fed</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20polarised" title=" circular polarised"> circular polarised</a>, <a href="https://publications.waset.org/abstracts/search?q=FR4%20epoxy" title=" FR4 epoxy"> FR4 epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=slit%20and%20stub" title=" slit and stub"> slit and stub</a> </p> <a href="https://publications.waset.org/abstracts/144248/cpw-fed-broadband-circularly-polarized-planar-antenna-with-improved-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Benyetho">T. Benyetho</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20El%20Abdellaoui"> L. El Abdellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Terhzaz"> J. Terhzaz</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Bennis"> H. Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ababssi"> N. Ababssi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tajmouati"> A. Tajmouati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tribak"> A. Tribak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Latrach"> M. Latrach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antenna" title="Antenna">Antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=CPW" title=" CPW"> CPW</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM" title=" GSM"> GSM</a>, <a href="https://publications.waset.org/abstracts/search?q=multiband" title=" multiband"> multiband</a> </p> <a href="https://publications.waset.org/abstracts/16952/design-of-a-novel-fractal-multiband-planar-antenna-with-a-cpw-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Design of Compact Dual-Band Planar Antenna for WLAN Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar%20Pandey">Anil Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm<sup>2</sup>. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm<sup>3</sup> is designed on an FR4 substrate with a dielectric constant of 4.4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPW%20antenna" title="CPW antenna">CPW antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-band" title=" dual-band"> dual-band</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20simulation" title=" electromagnetic simulation"> electromagnetic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20local%20area%20network%20%28WLAN%29" title=" wireless local area network (WLAN)"> wireless local area network (WLAN)</a> </p> <a href="https://publications.waset.org/abstracts/85699/design-of-compact-dual-band-planar-antenna-for-wlan-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Wideband Planar Antenna Based on Composite Right/Left-Handed Transmission-Line (CRLH-TL) for Operation across UHF/L/S-Bands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alibakhshikenari">Mohammad Alibakhshikenari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Limiti"> Ernesto Limiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%20S.%20Virdee"> Bal S. Virdee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a miniature wideband antenna using composite right/left-handed transmission-line (CRLH-TL) metamaterial. The proposed planar antenna has a fractional bandwidth of 100% and is designed to operate in several frequency bands from 800MHz to 2.40GHz. The antenna is constructed using just two CRLH-TL unit cells comprising of two T-shaped slots that are inverted. The slots contribute towards generating the series left-handed (LH) capacitance CL. The rectangular patch on which the slots are created is grounded with spiral shaped high impedance stubs that contribute towards LH inductance LL. The antenna has a size of 14×6×1.6mm3 (0.037λ0×0.016λ0× 0.004λ0, where λ0 is free space wavelength at 800MHz). The peak gain and efficiency of the antenna are 1.5 dBi and ~75%, respectively, at 1.6GHz. Proposed antenna is suitable for use in wireless systems working at UHF/L/S-bands, in particular, AMPS, GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000, JCDMA, KPCS, GPS, lower band of WiMAX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miniature%20antenna" title="miniature antenna">miniature antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20right%2Fleft-handed%20transmission%20line%20%28CRLH-TL%29" title=" composite right/left-handed transmission line (CRLH-TL)"> composite right/left-handed transmission line (CRLH-TL)</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband%20antenna" title=" wideband antenna"> wideband antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20transceiver" title=" communication transceiver"> communication transceiver</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a> </p> <a href="https://publications.waset.org/abstracts/64045/wideband-planar-antenna-based-on-composite-rightleft-handed-transmission-line-crlh-tl-for-operation-across-uhfls-bands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Yudhi%20Purba">Raymond Yudhi Purba</a>, <a href="https://publications.waset.org/abstracts/search?q=Levy%20Olivia%20Nur"> Levy Olivia Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Radial%20Anwar"> Radial Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skew%20planar%20wheel" title="skew planar wheel">skew planar wheel</a>, <a href="https://publications.waset.org/abstracts/search?q=cloverleaf" title=" cloverleaf"> cloverleaf</a>, <a href="https://publications.waset.org/abstracts/search?q=first-person%20view" title=" first-person view"> first-person view</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title=" unmanned aerial vehicle"> unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20sweep" title=" parameter sweep"> parameter sweep</a> </p> <a href="https://publications.waset.org/abstracts/139082/skew-planar-wheel-antenna-for-first-person-view-of-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Effect on Bandwidth of Using Double Substrates Based Metamaterial Planar Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smrity%20Dwivedi">Smrity Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper has revealed the effect of double substrates over a bandwidth performance for planar antennas. The used material has its own importance to get minimum return loss and improved directivity. The author has taken double substrates to enhance the efficiency in terms of gain of antenna. Metamaterial based antenna has its own specific structure which increased the performance of antenna. Improved return loss is -20 dB, and the voltage standing wave ratio (VSWR) is 1.2, which is better than single substrate having return loss of -15 dB and VSWR of 1.4. Complete results are obtained using commercial software CST microwave studio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CST%20microwave%20studio" title="CST microwave studio">CST microwave studio</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20loss" title=" return loss"> return loss</a>, <a href="https://publications.waset.org/abstracts/search?q=VSWR" title=" VSWR"> VSWR</a> </p> <a href="https://publications.waset.org/abstracts/64563/effect-on-bandwidth-of-using-double-substrates-based-metamaterial-planar-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adel%20Sennouni">Mohamed Adel Sennouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Zbitou"> Jamal Zbitou</a>, <a href="https://publications.waset.org/abstracts/search?q=Benaissa%20Abboud"> Benaissa Abboud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahed%20Tribak"> Abdelwahed Tribak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bennis"> Hamid Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Latrach"> Mohamed Latrach </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna" title="UWB planar antenna">UWB planar antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=L-shaped%20slots" title=" L-shaped slots"> L-shaped slots</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20applications" title=" wireless applications"> wireless applications</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20band-width" title=" impedance band-width"> impedance band-width</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pattern" title=" radiation pattern"> radiation pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=CST" title=" CST"> CST</a> </p> <a href="https://publications.waset.org/abstracts/16119/compact-ultra-wideband-printed-monopole-antenna-with-inverted-l-shaped-slots-for-data-communication-and-rf-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Multiband Multipolarized Planar Antenna for WLAN/WiMAX Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeeva%20Reddy">Sanjeeva Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vakula"> D. Vakula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single layer, multi-band triangular patch antenna is proposed for WLAN/WiMAX applications with different polarization requirements. This probe feed patch is integrated with arc shaped slit to achieve circular polarized (CP) and linearly polarized (LP) radiation characteristics. The main contribution of antenna is to resonate the frequencies of 2.4 GHz with CP and 3.5 GHz, 5.28 GHz with LP. The design procedure of antenna is described and the performance is validated using measurements. Size of antenna is also reduced and provides stable gain at all resonant frequencies. Proposed structure also provides better enhancement in terms of 10-dB impedance bandwidth, achieved gain of 5.1, 5.6, and 2.9 dBi at respective bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title="circular polarization">circular polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=arc%20shaped%20slit" title=" arc shaped slit"> arc shaped slit</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20band%20antenna" title=" multi band antenna"> multi band antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=triangular%20patch%20antenna" title=" triangular patch antenna"> triangular patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20ratio" title=" axial ratio"> axial ratio</a> </p> <a href="https://publications.waset.org/abstracts/16044/multiband-multipolarized-planar-antenna-for-wlanwimax-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> Multi Antenna Systems for 5G Mobile Phones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20N.%20Khan">Muhammad N. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20O.%20Gillani"> Syed O. Gillani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Jamil"> Mohsin Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarbia%20Iftikhar"> Tarbia Iftikhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20structures%20simulator%20%28HFSS%29" title="high frequency structures simulator (HFSS)">high frequency structures simulator (HFSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=mutli-input%20multi-output%20%28MIMO%29" title=" mutli-input multi-output (MIMO)"> mutli-input multi-output (MIMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=monopole%20antenna" title=" monopole antenna"> monopole antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20antenna" title=" slot antenna"> slot antenna</a> </p> <a href="https://publications.waset.org/abstracts/86862/multi-antenna-systems-for-5g-mobile-phones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> Equivalent Circuit Modelling of Active Reflectarray Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Ismail">M. Y. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Inam"> M. Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Equivalent%20circuit%20modelling" title="Equivalent circuit modelling">Equivalent circuit modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20reflectors" title=" planar reflectors"> planar reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectarray%20antenna" title=" reflectarray antenna"> reflectarray antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN%20diode" title=" PIN diode"> PIN diode</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title=" liquid crystal"> liquid crystal</a> </p> <a href="https://publications.waset.org/abstracts/52038/equivalent-circuit-modelling-of-active-reflectarray-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badar%20Muneer">Badar Muneer</a>, <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Shabir"> Waseem Shabir</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Karim%20Shaikh"> Faisal Karim Shaikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feeding%20network" title="feeding network">feeding network</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20waveguide" title=" laminated waveguide"> laminated waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=PIFA" title=" PIFA"> PIFA</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20slots" title=" transverse slots"> transverse slots</a> </p> <a href="https://publications.waset.org/abstracts/63475/plate-laminated-slotted-waveguide-fed-23-planar-inverted-f-antenna-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Boutejdar">Ahmed Boutejdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bishoy%20I.%20Halim"> Bishoy I. Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumia%20El%20Hani"> Soumia El Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Bellarbi"> Larbi Bellarbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Afyf"> Amal Afyf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm<sup>3</sup>. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20monopole%20antenna" title="planar monopole antenna">planar monopole antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=FR4%20substrate" title=" FR4 substrate"> FR4 substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=HFSS" title=" HFSS"> HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=WiMAX" title=" WiMAX"> WiMAX</a>, <a href="https://publications.waset.org/abstracts/search?q=C%20and%20Ku" title=" C and Ku"> C and Ku</a> </p> <a href="https://publications.waset.org/abstracts/86412/design-of-multiband-microstrip-antenna-using-stepped-cut-method-for-wlanwimax-and-cku-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> A Novel Design of Inset Feed Patch Antenna for Ultra Wide Band Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Aggarwal">Priyanka Aggarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Mangla"> Priyanka Mangla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work has focused on the aspect of UWB antenna design, which is very suitable for portable UWB applications. The design of new UWB antenna faces some challenges. The antenna should be compact, preferably conformal, and low cost for manufacture, and have good electrical performance, such as good matching, directional radiation performance over a wide band, good time response, etc. Keeping these goals in mind a compact and directional compact open-slot antenna was built. The antenna radiating structure is in the form of two exponentially tapered arms that lie on the opposite sides of the substrate. The antenna operates over the frequency band from 2.95 GHz to more than 12.1 GHz. It exhibits a directive radiation performance with a peak gain which is between 5.4 dBi and 8.3 dBi in the specified band. The antenna has linear phase response over the entire UWB frequency range and hence constant group delay which is vital for transmission and reception of sub-nanosecond pulses. Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inset%20feed%20patch%20antenna" title="inset feed patch antenna">inset feed patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20wide%20band" title=" ultra wide band"> ultra wide band</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20performance" title=" radiation performance"> radiation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=antenna" title=" antenna"> antenna</a> </p> <a href="https://publications.waset.org/abstracts/33469/a-novel-design-of-inset-feed-patch-antenna-for-ultra-wide-band-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Complete Tripartite Graphs with Spanning Maximal Planar Subgraphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Severino%20Gervacio">Severino Gervacio</a>, <a href="https://publications.waset.org/abstracts/search?q=Velimor%20Almonte"> Velimor Almonte</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Natalio"> Emmanuel Natalio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple graph is planar if it there is a way of drawing it in the plane without edge crossings. A planar graph which is not a proper spanning subgraph of another planar graph is a maximal planar graph. We prove that for complete tripartite graphs of order at most 9, the only ones that contain a spanning maximal planar subgraph are K1,1,1, K2,2,2, K2,3,3, and K3,3,3. The main result gives a necessary and sufficient condition for the complete tripartite graph Kx,y,z to contain a spanning maximal planar subgraph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complete%20tripartite%20graph" title="complete tripartite graph">complete tripartite graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20planar%20graph" title=" maximal planar graph"> maximal planar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20graph" title=" planar graph"> planar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=subgraph" title=" subgraph"> subgraph</a> </p> <a href="https://publications.waset.org/abstracts/59157/complete-tripartite-graphs-with-spanning-maximal-planar-subgraphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Modified Step Size Patch Array Antenna for UWB Wireless Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Aslani">Hamid Aslani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Radwan"> Ahmed Radwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a single element microstrip antenna is presented for UWB applications by using techniques as partial ground plane and modified the shape of the patch. The antenna is properly designed to have a compact size and constant gain against frequency. The simulated results have done using two EM software and show good agreement with the measured results for the fabricated antenna. Then a designing of two elements patch antenna array for UWB in the frequency band of 3.1-10 GHz is presented in this paper. The array is constructed by means of feeding two omni-directional modified circular patch elements with a modified power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1–10 GHz). Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20wide%20band" title="ultra wide band">ultra wide band</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20performance" title=" radiation performance"> radiation performance</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20miniaturized%20antenna" title=" size miniaturized antenna"> size miniaturized antenna</a> </p> <a href="https://publications.waset.org/abstracts/52829/modified-step-size-patch-array-antenna-for-uwb-wireless-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Compact 3-D Co-Planar Waveguide Fed Dual-Port Ultrawideband-Multiple-Input and Multiple-Output Antenna with WLAN Band-Notched Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Quddus">Asim Quddus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A miniaturized three dimensional co-planar waveguide (CPW) two-port MIMO antenna, exhibiting high isolation and WLAN band-notched characteristics is presented in this paper for ultrawideband (UWB) communication applications. The microstrip patch antenna operates as a single UWB antenna element. The proposed design is a cuboid-shaped structure having compact size of 35 x 27 x 45 mm³. Radiating as well as decoupling structure is placed around cuboidal polystyrene sheet. The radiators are 27 mm apart, placed Face-to-Face in vertical direction. Decoupling structure is placed on the side walls of polystyrene. The proposed antenna consists of an oval shaped radiating patch. A rectangular structure with fillet edges is placed on ground plan to enhance the bandwidth. The proposed antenna exhibits a good impedance match (S11 ≤ -10 dB) over frequency band of 2 GHz – 10.6 GHz. A circular slotted structure is employed as a decoupling structure on substrate, and it is placed on the side walls of polystyrene to enhance the isolation between antenna elements. Moreover, to achieve immunity from WLAN band distortion, a modified, inverted crescent shaped slotted structure is etched on radiating patches to achieve band-rejection characteristics at WLAN frequency band 4.8 GHz – 5.2 GHz. The suggested decoupling structure provides isolation better than 15 dB over the desired UWB spectrum. The envelope correlation coefficient (ECC) and gain for the MIMO antenna are analyzed as well. Finite Element Method (FEM) simulations are carried out in Ansys High Frequency Structural Simulator (HFSS) for the proposed design. The antenna is realized on a Rogers RT/duroid 5880 with thickness 1 mm, relative permittivity ɛr = 2.2. The proposed antenna achieves a stable omni-directional radiation patterns as well, while providing rejection at desired WLAN band. The S-parameters as well as MIMO parameters like ECC are analyzed and the results show conclusively that the design is suitable for portable MIMO-UWB applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-D%20antenna" title="3-D antenna">3-D antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=band-notch" title=" band-notch"> band-notch</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB" title=" UWB"> UWB</a> </p> <a href="https://publications.waset.org/abstracts/66713/compact-3-d-co-planar-waveguide-fed-dual-port-ultrawideband-multiple-input-and-multiple-output-antenna-with-wlan-band-notched-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kampeephat">S. Kampeephat</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krachodnok"> P. Krachodnok</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wongsan"> R. Wongsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20rectangular%20horn%20antenna" title="conventional rectangular horn antenna">conventional rectangular horn antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20band%20gap" title=" electromagnetic band gap"> electromagnetic band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20enhancement" title=" gain enhancement"> gain enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=X-%20and%20Ku-band%20radar" title=" X- and Ku-band radar"> X- and Ku-band radar</a> </p> <a href="https://publications.waset.org/abstracts/12372/efficiency-improvement-for-conventional-rectangular-horn-antenna-by-using-ebg-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Study and Design of Novel Structure of Circularly Polarized Dual Band Microstrip Antenna Fed by Hybrid Coupler for RFID Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Taouzari">M. Taouzari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sardi"> A. Sardi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20El%20Aoufi"> J. El Aoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mouhsen"> Ahmed Mouhsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work is to design a reader antenna fed by 90° hybrid coupler that would ensure a tag which is detected regardless of its orientation for the radio frequency identification system covering the UHF and ISM bands frequencies. Based on this idea, the proposed work is dividing in two parts, first part is about study and design hybrid coupler using the resonators planar called T-and Pi networks operating in commercial bands. In the second part, the proposed antenna fed by the hybrid coupler is designed on FR4 substrate with dielectric permittivity 4.4, thickness dielectric 1.6mm and loss tangent 0.025. The T-slot is inserted in patch of the proposed antenna fed by the hybrid coupler is first designed, optimized and simulated using electromagnetic simulator ADS and then simulated in a full wave simulation software CST Microwave Studio. The simulated antenna by the both softwares achieves the expected performances in terms of matching, pattern radiation, phase shifting, gain and size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20band%20antenna" title="dual band antenna">dual band antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20coupler" title=" hybrid coupler"> hybrid coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pattern" title=" radiation pattern"> radiation pattern</a> </p> <a href="https://publications.waset.org/abstracts/119508/study-and-design-of-novel-structure-of-circularly-polarized-dual-band-microstrip-antenna-fed-by-hybrid-coupler-for-rfid-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Improving the Gain of a Multiband Antenna by Adding an Artificial Magnetic Conductor Metasurface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Bousselmi">Amira Bousselmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a PIFA antenna designed for geolocation applications (GNSS) operating on 1.278 GHz, 2.8 GHz, 5.7 GHz and 10 GHz. To improve the performance of the antenna, an artificial magnetic conductor structure (AMC) was used. Adding the antenna with AMC resulted in a measured gain of 4.78 dBi. The results of simulations and measurements are presented. CST Microwave Studio is used to design and compare antenna performance. An antenna design methodology, design and characterization of the AMC surface are described as well as the simulated and measured performances of the AMC antenna are then discussed. Finally, in Section V, there is a conclusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20multiband" title="antenna multiband">antenna multiband</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20navigation%20system" title=" global navigation system"> global navigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=AMC" title=" AMC"> AMC</a>, <a href="https://publications.waset.org/abstracts/search?q=Galeleo" title=" Galeleo"> Galeleo</a> </p> <a href="https://publications.waset.org/abstracts/150107/improving-the-gain-of-a-multiband-antenna-by-adding-an-artificial-magnetic-conductor-metasurface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Miniaturization of I-Slot Antenna with Improved Efficiency and Gain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mondher%20Labidi">Mondher Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Choubani"> Fethi Choubani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, novel miniaturization technique of antenna is proposed using I-slot. Using this technique, gain of antenna can increased for 4dB (antenna only) to 6.6dB for the proposed I-slot antenna and a frequency shift of about 0.45 GHz to 1 GHz is obtained. Also a reduction of the shape size of the antenna is achieved (about 38 %) to operate in the Wi-Fi (2.45 GHz) band.RF Moreover the frequency shift can be controlled by changing the place or the length of the I-slot. Finally the proposed miniature antenna with an improved radiation efficiency and gain was built and tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slot%20antenna" title="slot antenna">slot antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=miniaturization" title=" miniaturization"> miniaturization</a>, <a href="https://publications.waset.org/abstracts/search?q=RF" title=" RF"> RF</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20equivalent%20circuit%20%28EEC%29" title=" electrical equivalent circuit (EEC)"> electrical equivalent circuit (EEC)</a> </p> <a href="https://publications.waset.org/abstracts/38270/miniaturization-of-i-slot-antenna-with-improved-efficiency-and-gain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Majeed">F. Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Thiel"> D. V. Thiel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahpari"> M. Shahpari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meander%20line%20antenna" title="meander line antenna">meander line antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=RFID" title=" RFID"> RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20ink%20printing" title=" silver ink printing"> silver ink printing</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20matching" title=" impedance matching"> impedance matching</a> </p> <a href="https://publications.waset.org/abstracts/56190/an-electrically-small-silver-ink-printed-fr4-antenna-for-rf-transceiver-chip-cc1101" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Design of Broadband W-Slotted Microstrip Patch Antenna </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20G.%20Nahata">Neeraj G. Nahata</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Bhagat"> K. S. Bhagat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstrip patch antenna widely used in communication area because it offers low profile, narrow bandwidth, high gain, and compact in size. It has big disadvantage of narrow bandwidth. To improve the bandwidth a W-slot technique is used, it is efficient to enhance the bandwidth of antenna. The feeding point of antenna is very important for efficient operation, so coaxial feeding technique is applied to microstrip patch antenna for impedance matching. A broadband W-slot microstrip patch antenna is designed successfully which attains a bandwidth of 22.74% at 10dB return loss with centre frequency of 4.5GHz and also it attains maximum directivity 8.78dBi. It is designed by cutting a W-slot into the patch of antenna, because of this resonant slot, the antenna gives broad bandwidth. This antenna is best suitable for C-band frequency spectrum. The proposed antenna is designed and simulated using IE3D software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broadband" title="broadband">broadband</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=VSWR" title=" VSWR"> VSWR</a>, <a href="https://publications.waset.org/abstracts/search?q=W-slotted%20patch" title=" W-slotted patch"> W-slotted patch</a> </p> <a href="https://publications.waset.org/abstracts/25341/design-of-broadband-w-slotted-microstrip-patch-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Reduction of Planar Transformer AC Resistance Using a Planar Litz Wire Structure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Belloumi">Hamed Belloumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Ammouri"> Aymen Ammouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Kourda"> Ferid Kourda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded litz wires. In order to further illustrate the eddy current effect in different arrangements, a finite-element analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20transformer" title="planar transformer">planar transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20analysis%20%28FEA%29" title=" finite-element analysis (FEA)"> finite-element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20losses" title=" winding losses"> winding losses</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20litz%20wire" title=" planar litz wire"> planar litz wire</a> </p> <a href="https://publications.waset.org/abstracts/29429/reduction-of-planar-transformer-ac-resistance-using-a-planar-litz-wire-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimur%20Rahman">M. Naimur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tariqul%20Islam"> Mohammad Tariqul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20Singh%20Jit%20Singh"> Mandeep Singh Jit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbahiah%20Misran"> Norbahiah Misran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ku-band%20antenna" title="Ku-band antenna">Ku-band antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=psi-shaped%20antenna" title=" psi-shaped antenna"> psi-shaped antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20applications" title=" satellite applications"> satellite applications</a> </p> <a href="https://publications.waset.org/abstracts/91475/depiction-of-a-circulated-double-psi-shaped-microstrip-antenna-for-ku-band-satellite-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> On the Design of Wearable Fractal Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Partap%20Singh%20Pharwaha">Amar Partap Singh Pharwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Rani"> Shweta Rani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BFO" title="BFO">BFO</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20permittivity" title=" electrical permittivity"> electrical permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fractals" title=" fractals"> fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20antenna" title=" wearable antenna"> wearable antenna</a> </p> <a href="https://publications.waset.org/abstracts/31798/on-the-design-of-wearable-fractal-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Dual Reconfigurable Antenna Using Capacitive Coupling Slot and Parasitic Square Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abou%20Al-alaa">M. Abou Al-alaa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Elsadek"> H. A. Elsadek</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Abdallah"> E. A. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Hashish"> E. A. Hashish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A square patch antenna with both frequency and polarization reconfigurability is presented. The antenna consists of a square patch with coplanar feed on the ground plane. On the patch side, there is a parasitic square ring that is responsible for changing the antenna polarization. On the ground plane, there is a rectangular slot. By changing of length of this slot, the antenna resonance frequency can be changed. The antenna operates at 1.57 and 2.45 GHz that used in GPS and Bluetooth applications, respectively. The length of the slot in the proposed antenna is 40 mm, and the antenna operates at the lower frequency (1.57 GHz). By using switches in the ground plane the slot length can be adjust to 24 mm, so the antenna operates at upper frequency (2.45 GHz). Two switches are mounted on the parasitic ring at optimized positions. By switching between the different states of these two switches, the proposed antenna operates with linear polarization (LP) and circular polarization (CP) at each operating frequency. The antenna gain at 1.57 and 2.45 GHz are 5.9 and 7.64 dBi, respectively. The antenna is analyzed using the CST Microwave Studio. The proposed antenna was fabricated and measured. Results comparison shows good agreement. The antenna has applications in several wireless communication systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microstrip%20patch%20antenna" title="microstrip patch antenna">microstrip patch antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20antenna" title=" reconfigurable antenna"> reconfigurable antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20reconfigurability" title=" frequency reconfigurability"> frequency reconfigurability</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20reconfigurability" title=" polarization reconfigurability"> polarization reconfigurability</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitic%20square%20ring" title=" parasitic square ring"> parasitic square ring</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20polarization" title=" linear polarization"> linear polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20polarization" title=" circular polarization "> circular polarization </a> </p> <a href="https://publications.waset.org/abstracts/5893/dual-reconfigurable-antenna-using-capacitive-coupling-slot-and-parasitic-square-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> Directivity and Gain Improvement for Microstrip Array Antenna with Directors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20M.%20Elkamchouchi">Hassan M. Elkamchouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20H.%20Darwish"> Samy H. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20H.%20Elkamchouchi"> Yasser H. Elkamchouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Morsy"> M. E. Morsy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methodology is suggested to design a linear rectangular microstrip array antenna based on Yagi antenna theory. The antenna with different directors' lengths as parasitic elements were designed, simulated, and analyzed using HFSS. The calculus and results illustrate the effectiveness of using specific parasitic elements to improve the directivity and gain for microstrip array antenna. The results have shown that the suggested methodology has the potential to be applied for improving the antenna performance. Maximum radiation intensity (Umax) of the order of 0.47w/st was recorded, directivity of 6.58dB, and gain better than 6.07dB are readily achievable for the antenna that working. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=directivity" title="directivity">directivity</a>, <a href="https://publications.waset.org/abstracts/search?q=director" title=" director"> director</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=gain%20improvment" title=" gain improvment"> gain improvment</a> </p> <a href="https://publications.waset.org/abstracts/46501/directivity-and-gain-improvement-for-microstrip-array-antenna-with-directors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> A Discussion on Electrically Small Antenna Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riki%20H.%20Patel">Riki H. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Arpan%20Desia"> Arpan Desia</a>, <a href="https://publications.waset.org/abstracts/search?q=Trushit%20Upadhayay"> Trushit Upadhayay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand of compact antenna is ever increasing since the inception of wireless communication devices. In the age of wireless communication, requirement of miniaturized antennas is quite high. It is quite often that antenna dimensions are decided based on application based requirement compared to practical antenna constraints. The tradeoff in efficiency and other antenna parameters against to antenna size is always a debatable issue. The article presents detailed review of fundamentals of electrically small antennas and its potential applications. In addition, constraints and challenges of electrically small antennas are also presented in the article. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title="bandwidth">bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=electrically%20small%20antenna" title=" electrically small antenna"> electrically small antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20engineering" title=" communication engineering"> communication engineering</a> </p> <a href="https://publications.waset.org/abstracts/25459/a-discussion-on-electrically-small-antenna-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Swastika Shape Multiband Patch Antenna for Wireless Applications on Low Cost Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Samsuzzaman">Md. Samsuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Islam"> M. T. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Mandeep"> J. S. Mandeep</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Misran"> N. Misran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a compact simple structure modified Swastika shape patch multiband antenna on a substrate of available low cost polymer resin composite material is designed for Wi-Fi and WiMAX applications. The substrate material consists of an epoxy matrix reinforced by woven glass. The designed micro-strip line fed compact antenna comprises of a planar wide square slot ground with four slits and Swastika shape radiation patch with a rectangular slot. The effect of the different substrate materials on the reflection coefficients of the proposed antennas was also analyzed. It can be clearly seen that the proposed antenna provides a wider bandwidth and acceptable return loss value compared to other reported materials. The simulation results exhibits that the antenna has an impedance bandwidth with -10 dB return loss at 3.01-3.89 GHz and 4.88-6.10 GHz which can cover both the WLAN, WiMAX and public safety WLAN bands. The proposed swastika shape antenna was designed and analyzed by using a finite element method based simulator HFSS and designed on a low cost FR4 (polymer resin composite material) printed circuit board. The electrical performances and superior frequency characteristics make the proposed material antenna desirable for wireless communications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin%20polymer" title="epoxy resin polymer">epoxy resin polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=multiband" title=" multiband"> multiband</a>, <a href="https://publications.waset.org/abstracts/search?q=swastika%20shaped" title=" swastika shaped"> swastika shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20slot" title=" wide slot"> wide slot</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN%2FWiMAX" title=" WLAN/WiMAX"> WLAN/WiMAX</a> </p> <a href="https://publications.waset.org/abstracts/6190/swastika-shape-multiband-patch-antenna-for-wireless-applications-on-low-cost-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>