CINXE.COM

Hölder's inequality - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Hölder's inequality - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6f76abf2-fc9d-4c9e-8a65-763517e4e0d6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Hölder's_inequality","wgTitle":"Hölder's inequality","wgCurRevisionId":1256318553,"wgRevisionId":1256318553,"wgArticleId":191538,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","CS1 German-language sources (de)","Articles containing proofs","Inequalities","Probabilistic inequalities","Theorems in functional analysis","Lp spaces"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Hölder's_inequality","wgRelevantArticleId":191538,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[] ,"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q731894","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Hölder&#039;s inequality - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/H%C3%B6lder%27s_inequality"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Hölder_s_inequality rootpage-Hölder_s_inequality skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=H%C3%B6lder%27s+inequality" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=H%C3%B6lder%27s+inequality" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=H%C3%B6lder%27s+inequality" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=H%C3%B6lder%27s+inequality" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Remarks" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Remarks"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Remarks</span> </div> </a> <button aria-controls="toc-Remarks-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Remarks subsection</span> </button> <ul id="toc-Remarks-sublist" class="vector-toc-list"> <li id="toc-Conventions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conventions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Conventions</span> </div> </a> <ul id="toc-Conventions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Estimates_for_integrable_products" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Estimates_for_integrable_products"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Estimates for integrable products</span> </div> </a> <ul id="toc-Estimates_for_integrable_products-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalization_for_probability_measures" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalization_for_probability_measures"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Generalization for probability measures</span> </div> </a> <ul id="toc-Generalization_for_probability_measures-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notable_special_cases" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notable_special_cases"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notable special cases</span> </div> </a> <button aria-controls="toc-Notable_special_cases-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notable special cases subsection</span> </button> <ul id="toc-Notable_special_cases-sublist" class="vector-toc-list"> <li id="toc-Counting_measure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Counting_measure"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Counting measure</span> </div> </a> <ul id="toc-Counting_measure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lebesgue_measure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lebesgue_measure"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Lebesgue measure</span> </div> </a> <ul id="toc-Lebesgue_measure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_measure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_measure"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Probability measure</span> </div> </a> <ul id="toc-Probability_measure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Product_measure" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Product_measure"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Product measure</span> </div> </a> <ul id="toc-Product_measure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vector-valued_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vector-valued_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Vector-valued functions</span> </div> </a> <ul id="toc-Vector-valued_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Proof_of_Hölder&#039;s_inequality" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Proof_of_Hölder&#039;s_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Proof of Hölder's inequality</span> </div> </a> <ul id="toc-Proof_of_Hölder&#039;s_inequality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Extremal_equality" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Extremal_equality"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Extremal equality</span> </div> </a> <button aria-controls="toc-Extremal_equality-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Extremal equality subsection</span> </button> <ul id="toc-Extremal_equality-sublist" class="vector-toc-list"> <li id="toc-Statement" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Statement"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Statement</span> </div> </a> <ul id="toc-Statement-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Remarks_and_examples" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Remarks_and_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Remarks and examples</span> </div> </a> <ul id="toc-Remarks_and_examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalization_with_more_than_two_functions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalization_with_more_than_two_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Generalization with more than two functions</span> </div> </a> <button aria-controls="toc-Generalization_with_more_than_two_functions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalization with more than two functions subsection</span> </button> <ul id="toc-Generalization_with_more_than_two_functions-sublist" class="vector-toc-list"> <li id="toc-Statement_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Statement_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Statement</span> </div> </a> <ul id="toc-Statement_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interpolation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interpolation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Interpolation</span> </div> </a> <ul id="toc-Interpolation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Reverse_Hölder_inequalities" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Reverse_Hölder_inequalities"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Reverse Hölder inequalities</span> </div> </a> <button aria-controls="toc-Reverse_Hölder_inequalities-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Reverse Hölder inequalities subsection</span> </button> <ul id="toc-Reverse_Hölder_inequalities-sublist" class="vector-toc-list"> <li id="toc-Two_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Two_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Two functions</span> </div> </a> <ul id="toc-Two_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiple_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiple_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Multiple functions</span> </div> </a> <ul id="toc-Multiple_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Symmetric_forms_of_Hölder_inequality" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Symmetric_forms_of_Hölder_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Symmetric forms of Hölder inequality</span> </div> </a> <ul id="toc-Symmetric_forms_of_Hölder_inequality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conditional_Hölder_inequality" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Conditional_Hölder_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Conditional Hölder inequality</span> </div> </a> <ul id="toc-Conditional_Hölder_inequality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hölder&#039;s_inequality_for_increasing_seminorms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Hölder&#039;s_inequality_for_increasing_seminorms"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Hölder's inequality for increasing seminorms</span> </div> </a> <ul id="toc-Hölder&#039;s_inequality_for_increasing_seminorms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Distances_based_on_Hölder_inequality" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Distances_based_on_Hölder_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Distances based on Hölder inequality</span> </div> </a> <ul id="toc-Distances_based_on_Hölder_inequality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Hölder's inequality</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 24 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-24" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">24 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Desigualtat_de_H%C3%B6lder" title="Desigualtat de Hölder – Catalan" lang="ca" hreflang="ca" data-title="Desigualtat de Hölder" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/H%C3%B6lderova_nerovnost" title="Hölderova nerovnost – Czech" lang="cs" hreflang="cs" data-title="Hölderova nerovnost" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/H%C3%B6lders_ulighed" title="Hölders ulighed – Danish" lang="da" hreflang="da" data-title="Hölders ulighed" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/H%C3%B6lder-Ungleichung" title="Hölder-Ungleichung – German" lang="de" hreflang="de" data-title="Hölder-Ungleichung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CE%BD%CE%B9%CF%83%CF%8C%CF%84%CE%B7%CF%84%CE%B1_%CE%A7%CE%AD%CE%BB%CE%BD%CF%84%CE%B5%CF%81" title="Ανισότητα Χέλντερ – Greek" lang="el" hreflang="el" data-title="Ανισότητα Χέλντερ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Desigualdad_de_H%C3%B6lder" title="Desigualdad de Hölder – Spanish" lang="es" hreflang="es" data-title="Desigualdad de Hölder" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/H%C3%B6lderren_desberdintza" title="Hölderren desberdintza – Basque" lang="eu" hreflang="eu" data-title="Hölderren desberdintza" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/In%C3%A9galit%C3%A9_de_H%C3%B6lder" title="Inégalité de Hölder – French" lang="fr" hreflang="fr" data-title="Inégalité de Hölder" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%9A%94%EB%8D%94_%EB%B6%80%EB%93%B1%EC%8B%9D" title="횔더 부등식 – Korean" lang="ko" hreflang="ko" data-title="횔더 부등식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Disuguaglianza_di_H%C3%B6lder" title="Disuguaglianza di Hölder – Italian" lang="it" hreflang="it" data-title="Disuguaglianza di Hölder" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%99-%D7%A9%D7%95%D7%95%D7%99%D7%95%D7%9F_%D7%94%D7%9C%D7%93%D7%A8" title="אי-שוויון הלדר – Hebrew" lang="he" hreflang="he" data-title="אי-שוויון הלדר" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/H%C3%B6lder-egyenl%C5%91tlens%C3%A9g" title="Hölder-egyenlőtlenség – Hungarian" lang="hu" hreflang="hu" data-title="Hölder-egyenlőtlenség" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ongelijkheid_van_H%C3%B6lder" title="Ongelijkheid van Hölder – Dutch" lang="nl" hreflang="nl" data-title="Ongelijkheid van Hölder" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%AB%E3%83%80%E3%83%BC%E3%81%AE%E4%B8%8D%E7%AD%89%E5%BC%8F" title="ヘルダーの不等式 – Japanese" lang="ja" hreflang="ja" data-title="ヘルダーの不等式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Nier%C3%B3wno%C5%9B%C4%87_H%C3%B6ldera" title="Nierówność Höldera – Polish" lang="pl" hreflang="pl" data-title="Nierówność Höldera" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Desigualdade_de_H%C3%B6lder" title="Desigualdade de Hölder – Portuguese" lang="pt" hreflang="pt" data-title="Desigualdade de Hölder" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Inegalitatea_H%C3%B6lder" title="Inegalitatea Hölder – Romanian" lang="ro" hreflang="ro" data-title="Inegalitatea Hölder" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%93%D1%91%D0%BB%D1%8C%D0%B4%D0%B5%D1%80%D0%B0" title="Неравенство Гёльдера – Russian" lang="ru" hreflang="ru" data-title="Неравенство Гёльдера" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/H%C3%B6lderin_ep%C3%A4yht%C3%A4l%C3%B6" title="Hölderin epäyhtälö – Finnish" lang="fi" hreflang="fi" data-title="Hölderin epäyhtälö" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/H%C3%B6lders_olikhet" title="Hölders olikhet – Swedish" lang="sv" hreflang="sv" data-title="Hölders olikhet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/H%C3%B6lder_E%C5%9Fitsizli%C4%9Fi" title="Hölder Eşitsizliği – Turkish" lang="tr" hreflang="tr" data-title="Hölder Eşitsizliği" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D1%96%D0%B2%D0%BD%D1%96%D1%81%D1%82%D1%8C_%D0%93%D0%B5%D0%BB%D1%8C%D0%B4%D0%B5%D1%80%D0%B0" title="Нерівність Гельдера – Ukrainian" lang="uk" hreflang="uk" data-title="Нерівність Гельдера" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/B%E1%BA%A5t_%C4%91%E1%BA%B3ng_th%E1%BB%A9c_H%C3%B6lder" title="Bất đẳng thức Hölder – Vietnamese" lang="vi" hreflang="vi" data-title="Bất đẳng thức Hölder" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%B5%AB%E5%B0%94%E5%BE%B7%E4%B8%8D%E7%AD%89%E5%BC%8F" title="赫尔德不等式 – Chinese" lang="zh" hreflang="zh" data-title="赫尔德不等式" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q731894#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/H%C3%B6lder%27s_inequality" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:H%C3%B6lder%27s_inequality" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/H%C3%B6lder%27s_inequality"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/H%C3%B6lder%27s_inequality"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/H%C3%B6lder%27s_inequality" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/H%C3%B6lder%27s_inequality" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;oldid=1256318553" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=H%C3%B6lder%27s_inequality&amp;id=1256318553&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FH%25C3%25B6lder%2527s_inequality"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FH%25C3%25B6lder%2527s_inequality"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=H%C3%B6lder%27s_inequality&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q731894" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Inequality between integrals in Lp spaces</div> <p>In <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a>, <b>Hölder's inequality</b>, named after <a href="/wiki/Otto_H%C3%B6lder" title="Otto Hölder">Otto Hölder</a>, is a fundamental <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequality</a> between <a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">integrals</a> and an indispensable tool for the study of <a href="/wiki/Lp_space" title="Lp space"><span class="texhtml"><i>L<sup>p</sup></i></span> spaces</a>. </p> <style data-mw-deduplicate="TemplateStyles:r1110004140">.mw-parser-output .math_theorem{margin:1em 2em;padding:0.5em 1em 0.4em;border:1px solid #aaa;overflow:hidden}@media(max-width:500px){.mw-parser-output .math_theorem{margin:1em 0em;padding:0.5em 0.5em 0.4em}}</style><div class="math_theorem" style=""> <p><strong class="theorem-name">Hölder's inequality</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>Let <span class="texhtml">(<i>S</i>, Σ, <i>μ</i>)</span> be a <a href="/wiki/Measure_space" title="Measure space">measure space</a> and let <span class="texhtml"><i>p</i>, <i>q</i> ∈</span> <span class="texhtml">&#91;1, ∞&#93;</span> with <span class="texhtml">1/<i>p</i> + 1/<i>q</i> = 1</span>. Then for all <a href="/wiki/Measurable_function" title="Measurable function">measurable</a> <a href="/wiki/Real_number" title="Real number">real</a>- or <a href="/wiki/Complex_number" title="Complex number">complex</a>-valued <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">functions</a> <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> on <span class="texhtml mvar" style="font-style:italic;">S</span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|fg\|_{1}\leq \|f\|_{p}\|g\|_{q}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|fg\|_{1}\leq \|f\|_{p}\|g\|_{q}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcc6ef64b19122c3944cfee255b4f7cbd9f9afd9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.611ex; height:3.009ex;" alt="{\displaystyle \|fg\|_{1}\leq \|f\|_{p}\|g\|_{q}.}"></span> </p><p>If, in addition, <span class="texhtml"><i>p</i>, <i>q</i> ∈</span> <span class="texhtml">(1, ∞)</span> and <span class="texhtml"><i>f</i> ∈ <i>L<sup>p</sup></i>(<i>μ</i>)</span> and <span class="texhtml"><i>g</i> ∈ <i>L<sup>q</sup></i>(<i>μ</i>)</span>, then Hölder's inequality becomes an equality if and only if <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#124;<sup><i>p</i></sup></span> and <span class="texhtml">|<i>g</i>|<sup><i>q</i></sup></span> are <a href="/wiki/Linear_dependence" class="mw-redirect" title="Linear dependence">linearly dependent</a> in <span class="texhtml"><i>L</i><sup>1</sup>(<i>μ</i>)</span>, meaning that there exist real numbers <span class="texhtml"><i>α</i>, <i>β</i> ≥ 0</span>, not both of them zero, such that <span class="texhtml"><i>α</i>|<i>f</i>&#8202;|<sup><i>p</i></sup> = <i>β</i> |<i>g</i>|<sup><i>q</i></sup></span> <span class="texhtml mvar" style="font-style:italic;">μ</span>-<a href="/wiki/Almost_everywhere" title="Almost everywhere">almost everywhere</a>. </p> </div> <p>The numbers <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> above are said to be <b><a href="/wiki/H%C3%B6lder_conjugates" class="mw-redirect" title="Hölder conjugates">Hölder conjugates</a></b> of each other. The special case <span class="texhtml"><i>p</i> = <i>q</i> = 2</span> gives a form of the <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Hölder's inequality holds even if <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>fg</i></span>&#x2016;<sub>1</sub></span> is <a href="/wiki/Infinity" title="Infinity">infinite</a>, the right-hand side also being infinite in that case. Conversely, if <span class="texhtml mvar" style="font-style:italic;">f</span> is in <span class="texhtml"><i>L<sup>p</sup></i>(<i>μ</i>)</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> is in <span class="texhtml"><i>L<sup>q</sup></i>(<i>μ</i>)</span>, then the <a href="/wiki/Pointwise_product" class="mw-redirect" title="Pointwise product">pointwise product</a> <span class="texhtml"><i>fg</i></span> is in <span class="texhtml"><i>L</i><sup>1</sup>(<i>μ</i>)</span>. </p><p>Hölder's inequality is used to prove the <a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a>, which is the <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a> in the space <span class="texhtml"><i>L<sup>p</sup></i>(<i>μ</i>)</span>, and also to establish that <span class="texhtml"><i>L<sup>q</sup></i>(<i>μ</i>)</span> is the <a href="/wiki/Dual_space" title="Dual space">dual space</a> of <span class="texhtml"><i>L<sup>p</sup></i>(<i>μ</i>)</span> for <span class="texhtml"><i>p</i> ∈</span> <span class="texhtml">&#91;1, ∞)</span>. </p><p>Hölder's inequality (in a slightly different form) was first found by <a href="/wiki/Leonard_James_Rogers" title="Leonard James Rogers">Leonard James&#32;Rogers</a>&#160;(<a href="#CITEREFRogers1888">1888</a>). Inspired by Rogers' work, <a href="#CITEREFHölder1889">Hölder (1889)</a> gave another proof as part of a work developing the concept of <a href="/wiki/Convex_function" title="Convex function">convex and concave functions</a> and introducing <a href="/wiki/Jensen%27s_inequality" title="Jensen&#39;s inequality">Jensen's inequality</a>,<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> which was in turn named for work of <a href="/wiki/Johan_Jensen_(mathematician)" title="Johan Jensen (mathematician)">Johan Jensen</a> building on Hölder's work.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Remarks">Remarks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=1" title="Edit section: Remarks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Conventions">Conventions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=2" title="Edit section: Conventions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The brief statement of Hölder's inequality uses some conventions. </p> <ul><li>In the definition of Hölder conjugates, <span class="texhtml">1/∞</span> means zero.</li> <li>If <span class="texhtml"><i>p</i>, <i>q</i> ∈</span> <span class="texhtml">&#91;1, ∞)</span>, then <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub></span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub></span> stand for the (possibly infinite) expressions</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;\left(\int _{S}|f|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\\&amp;\left(\int _{S}|g|^{q}\,\mathrm {d} \mu \right)^{\frac {1}{q}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;\left(\int _{S}|f|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\\&amp;\left(\int _{S}|g|^{q}\,\mathrm {d} \mu \right)^{\frac {1}{q}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f651a34a2fbf41522b5807945bad4270cc70b1cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:15.597ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}&amp;\left(\int _{S}|f|^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\\&amp;\left(\int _{S}|g|^{q}\,\mathrm {d} \mu \right)^{\frac {1}{q}}\end{aligned}}}"></span></dd></dl></dd></dl> <ul><li>If <span class="texhtml"><i>p</i> = ∞</span>, then <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub>∞</sub></span> stands for the <a href="/wiki/Essential_supremum" class="mw-redirect" title="Essential supremum">essential supremum</a> of <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#124;</span>, similarly for <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub>∞</sub></span>.</li> <li>The notation <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub></span> with <span class="texhtml">1 ≤ <i>p</i> ≤ ∞</span> is a slight abuse, because in general it is only a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> if <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub></span> is finite and <span class="texhtml mvar" style="font-style:italic;">f</span> is considered as <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence class</a> of <span class="texhtml mvar" style="font-style:italic;">μ</span>-almost everywhere equal functions. If <span class="texhtml"><i>f</i> ∈ <i>L<sup>p</sup></i>(<i>μ</i>)</span> and <span class="texhtml"><i>g</i> ∈ <i>L<sup>q</sup></i>(<i>μ</i>)</span>, then the notation is adequate.</li> <li>On the right-hand side of Hölder's inequality, 0 × ∞ as well as ∞ × 0 means&#160;0. Multiplying <span class="texhtml"><i>a</i> &gt; 0</span> with ∞ gives&#160;∞.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Estimates_for_integrable_products">Estimates for integrable products</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=3" title="Edit section: Estimates for integrable products"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As above, let <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> denote measurable real- or complex-valued functions defined on <span class="texhtml mvar" style="font-style:italic;">S</span>. If <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>fg</i></span>&#x2016;<sub>1</sub></span> is finite, then the pointwise products of <span class="texhtml mvar" style="font-style:italic;">f</span> with <span class="texhtml mvar" style="font-style:italic;">g</span> and its <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a> function are <span class="texhtml mvar" style="font-style:italic;">μ</span>-integrable, the estimate </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\biggl |}\int _{S}f{\bar {g}}\,\mathrm {d} \mu {\biggr |}\leq \int _{S}|fg|\,\mathrm {d} \mu =\|fg\|_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>g</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\biggl |}\int _{S}f{\bar {g}}\,\mathrm {d} \mu {\biggr |}\leq \int _{S}|fg|\,\mathrm {d} \mu =\|fg\|_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31679727fec22b75637ec6b17d854a63d64a270d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.957ex; height:5.676ex;" alt="{\displaystyle {\biggl |}\int _{S}f{\bar {g}}\,\mathrm {d} \mu {\biggr |}\leq \int _{S}|fg|\,\mathrm {d} \mu =\|fg\|_{1}}"></span></dd></dl> <p>and the similar one for <span class="texhtml"><i>fg</i></span> hold, and Hölder's inequality can be applied to the right-hand side. In particular, if <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are in the <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <span class="texhtml"><i>L</i><sup>2</sup>(<i>μ</i>)</span>, then Hölder's inequality for <span class="texhtml"><i>p</i> = <i>q</i> = 2</span> implies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\langle f,g\rangle |\leq \|f\|_{2}\|g\|_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\langle f,g\rangle |\leq \|f\|_{2}\|g\|_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9284bb6d211cb837eedb26daa9d1b6af570a49e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.43ex; height:2.843ex;" alt="{\displaystyle |\langle f,g\rangle |\leq \|f\|_{2}\|g\|_{2},}"></span></dd></dl> <p>where the angle brackets refer to the <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> of <span class="texhtml"><i>L</i><sup>2</sup>(<i>μ</i>)</span>. This is also called <a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a>, but requires for its statement that <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub>2</sub></span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub>2</sub></span> are finite to make sure that the inner product of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> is well defined. We may recover the original inequality (for the case <span class="texhtml"><i>p</i> = 2</span>) by using the functions <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#124;</span> and <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#124;</span> in place of <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Generalization_for_probability_measures">Generalization for probability measures</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=4" title="Edit section: Generalization for probability measures"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml">(<i>S</i>, Σ, <i>μ</i>)</span> is a <a href="/wiki/Probability_space" title="Probability space">probability space</a>, then <span class="texhtml"><i>p</i>, <i>q</i> ∈</span> <span class="texhtml">&#91;1, ∞&#93;</span> just need to satisfy <span class="texhtml">1/<i>p</i> + 1/<i>q</i> ≤ 1</span>, rather than being Hölder conjugates. A combination of Hölder's inequality and <a href="/wiki/Jensen%27s_inequality" title="Jensen&#39;s inequality">Jensen's inequality</a> implies that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|fg\|_{1}\leq \|f\|_{p}\|g\|_{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|fg\|_{1}\leq \|f\|_{p}\|g\|_{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e28d83cf178b11d13511df21e58e73eaea39f67d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.964ex; height:3.009ex;" alt="{\displaystyle \|fg\|_{1}\leq \|f\|_{p}\|g\|_{q}}"></span></dd></dl> <p>for all measurable real- or complex-valued functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> on&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Notable_special_cases">Notable special cases</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=5" title="Edit section: Notable special cases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the following cases assume that <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> are in the <a href="/wiki/Open_Interval" class="mw-redirect" title="Open Interval">open interval</a> <span class="texhtml">(1,∞)</span> with <span class="texhtml">1/<i>p</i> + 1/<i>q</i> = 1</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Counting_measure">Counting measure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=6" title="Edit section: Counting measure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, when the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,\dots ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,\dots ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b98091026e0b10ee08a7c77e229c649f81b0a05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.06ex; height:2.843ex;" alt="{\displaystyle \{1,\dots ,n\}}"></span> with the <a href="/wiki/Counting_measure" title="Counting measure">counting measure</a>, we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}|x_{k}\,y_{k}|\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{p}{\biggr )}^{\frac {1}{p}}{\biggl (}\sum _{k=1}^{n}|y_{k}|^{q}{\biggr )}^{\frac {1}{q}}{\text{ for all }}(x_{1},\ldots ,x_{n}),(y_{1},\ldots ,y_{n})\in \mathbb {R} ^{n}{\text{ or }}\mathbb {C} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}|x_{k}\,y_{k}|\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{p}{\biggr )}^{\frac {1}{p}}{\biggl (}\sum _{k=1}^{n}|y_{k}|^{q}{\biggr )}^{\frac {1}{q}}{\text{ for all }}(x_{1},\ldots ,x_{n}),(y_{1},\ldots ,y_{n})\in \mathbb {R} ^{n}{\text{ or }}\mathbb {C} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51309213f744c4e59302d55d4a64fbe03e06749" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:85.017ex; height:7.676ex;" alt="{\displaystyle \sum _{k=1}^{n}|x_{k}\,y_{k}|\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{p}{\biggr )}^{\frac {1}{p}}{\biggl (}\sum _{k=1}^{n}|y_{k}|^{q}{\biggr )}^{\frac {1}{q}}{\text{ for all }}(x_{1},\ldots ,x_{n}),(y_{1},\ldots ,y_{n})\in \mathbb {R} ^{n}{\text{ or }}\mathbb {C} ^{n}.}"></span></dd></dl> <p>Often the following practical form of this is used, for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,s)\in \mathbb {R} _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,s)\in \mathbb {R} _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/774bbdada96a542365f7742ce585277b86f97418" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.012ex; height:2.843ex;" alt="{\displaystyle (r,s)\in \mathbb {R} _{+}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\biggl (}\sum _{k=1}^{n}|x_{k}|^{r}\,|y_{k}|^{s}{\biggr )}^{r+s}\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{r+s}{\biggr )}^{r}{\biggl (}\sum _{k=1}^{n}|y_{k}|^{r+s}{\biggr )}^{s}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>+</mo> <mi>s</mi> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>+</mo> <mi>s</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>+</mo> <mi>s</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\biggl (}\sum _{k=1}^{n}|x_{k}|^{r}\,|y_{k}|^{s}{\biggr )}^{r+s}\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{r+s}{\biggr )}^{r}{\biggl (}\sum _{k=1}^{n}|y_{k}|^{r+s}{\biggr )}^{s}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/623d2afbeed6a3776b8464aa646b4528b8e30418" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:54.275ex; height:7.009ex;" alt="{\displaystyle {\biggl (}\sum _{k=1}^{n}|x_{k}|^{r}\,|y_{k}|^{s}{\biggr )}^{r+s}\leq {\biggl (}\sum _{k=1}^{n}|x_{k}|^{r+s}{\biggr )}^{r}{\biggl (}\sum _{k=1}^{n}|y_{k}|^{r+s}{\biggr )}^{s}.}"></span></dd></dl> <p>For more than two sums, the following generalisation (<a href="#CITEREFChen2014">Chen (2014)</a>) holds, with real positive exponents <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72fde940918edf84caf3d406cc7d31949166820f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.155ex; height:2.509ex;" alt="{\displaystyle \lambda _{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{a}+\lambda _{b}+\cdots +\lambda _{z}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{a}+\lambda _{b}+\cdots +\lambda _{z}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15faf222cd970d7bb22e25c9b3acc339c508273c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.612ex; height:2.509ex;" alt="{\displaystyle \lambda _{a}+\lambda _{b}+\cdots +\lambda _{z}=1}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}|a_{k}|^{\lambda _{a}}\,|b_{k}|^{\lambda _{b}}\cdots |z_{k}|^{\lambda _{z}}\leq {\biggl (}\sum _{k=1}^{n}|a_{k}|{\biggr )}^{\lambda _{a}}{\biggl (}\sum _{k=1}^{n}|b_{k}|{\biggr )}^{\lambda _{b}}\cdots {\biggl (}\sum _{k=1}^{n}|z_{k}|{\biggr )}^{\lambda _{z}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </msup> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}|a_{k}|^{\lambda _{a}}\,|b_{k}|^{\lambda _{b}}\cdots |z_{k}|^{\lambda _{z}}\leq {\biggl (}\sum _{k=1}^{n}|a_{k}|{\biggr )}^{\lambda _{a}}{\biggl (}\sum _{k=1}^{n}|b_{k}|{\biggr )}^{\lambda _{b}}\cdots {\biggl (}\sum _{k=1}^{n}|z_{k}|{\biggr )}^{\lambda _{z}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/493c335acb098a93bd7f76ca63ba2efb09da2823" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:70.367ex; height:7.176ex;" alt="{\displaystyle \sum _{k=1}^{n}|a_{k}|^{\lambda _{a}}\,|b_{k}|^{\lambda _{b}}\cdots |z_{k}|^{\lambda _{z}}\leq {\biggl (}\sum _{k=1}^{n}|a_{k}|{\biggr )}^{\lambda _{a}}{\biggl (}\sum _{k=1}^{n}|b_{k}|{\biggr )}^{\lambda _{b}}\cdots {\biggl (}\sum _{k=1}^{n}|z_{k}|{\biggr )}^{\lambda _{z}}.}"></span></dd></dl> <p>Equality holds iff <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a_{1}|:|a_{2}|:\cdots :|a_{n}|=|b_{1}|:|b_{2}|:\cdots :|b_{n}|=\cdots =|z_{1}|:|z_{2}|:\cdots :|z_{n}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>:</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a_{1}|:|a_{2}|:\cdots :|a_{n}|=|b_{1}|:|b_{2}|:\cdots :|b_{n}|=\cdots =|z_{1}|:|z_{2}|:\cdots :|z_{n}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2d0205c65f7d40be7105873709f5694b6e6d335" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:69.172ex; height:2.843ex;" alt="{\displaystyle |a_{1}|:|a_{2}|:\cdots :|a_{n}|=|b_{1}|:|b_{2}|:\cdots :|b_{n}|=\cdots =|z_{1}|:|z_{2}|:\cdots :|z_{n}|}"></span>. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0090da3845ac28c0c7142ed894e7bb0641ebcccc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:2.176ex;" alt="{\displaystyle S=\mathbb {N} }"></span> with the counting measure, then we get Hölder's inequality for <a href="/wiki/Sequence_space" title="Sequence space">sequence spaces</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{\infty }|x_{k}\,y_{k}|\leq {\biggl (}\sum _{k=1}^{\infty }|x_{k}|^{p}{\biggr )}^{\frac {1}{p}}\left(\sum _{k=1}^{\infty }|y_{k}|^{q}\right)^{\frac {1}{q}}{\text{ for all }}(x_{k})_{k\in \mathbb {N} },(y_{k})_{k\in \mathbb {N} }\in \mathbb {R} ^{\mathbb {N} }{\text{ or }}\mathbb {C} ^{\mathbb {N} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;for all&#xA0;</mtext> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;or&#xA0;</mtext> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{\infty }|x_{k}\,y_{k}|\leq {\biggl (}\sum _{k=1}^{\infty }|x_{k}|^{p}{\biggr )}^{\frac {1}{p}}\left(\sum _{k=1}^{\infty }|y_{k}|^{q}\right)^{\frac {1}{q}}{\text{ for all }}(x_{k})_{k\in \mathbb {N} },(y_{k})_{k\in \mathbb {N} }\in \mathbb {R} ^{\mathbb {N} }{\text{ or }}\mathbb {C} ^{\mathbb {N} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0567a30728c85eefe0e9ac65c3a31c444ddaf51e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:76.841ex; height:8.676ex;" alt="{\displaystyle \sum _{k=1}^{\infty }|x_{k}\,y_{k}|\leq {\biggl (}\sum _{k=1}^{\infty }|x_{k}|^{p}{\biggr )}^{\frac {1}{p}}\left(\sum _{k=1}^{\infty }|y_{k}|^{q}\right)^{\frac {1}{q}}{\text{ for all }}(x_{k})_{k\in \mathbb {N} },(y_{k})_{k\in \mathbb {N} }\in \mathbb {R} ^{\mathbb {N} }{\text{ or }}\mathbb {C} ^{\mathbb {N} }.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Lebesgue_measure">Lebesgue measure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=7" title="Edit section: Lebesgue measure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is a measurable subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> with the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> are measurable real- or complex-valued functions on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>, then Hölder's inequality is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{S}{\bigl |}f(x)g(x){\bigr |}\,\mathrm {d} x\leq {\biggl (}\int _{S}|f(x)|^{p}\,\mathrm {d} x{\biggr )}^{\frac {1}{p}}{\biggl (}\int _{S}|g(x)|^{q}\,\mathrm {d} x{\biggr )}^{\frac {1}{q}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{S}{\bigl |}f(x)g(x){\bigr |}\,\mathrm {d} x\leq {\biggl (}\int _{S}|f(x)|^{p}\,\mathrm {d} x{\biggr )}^{\frac {1}{p}}{\biggl (}\int _{S}|g(x)|^{q}\,\mathrm {d} x{\biggr )}^{\frac {1}{q}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/453f28af99d705e4810f2a441070f8cc15d44d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.055ex; height:7.176ex;" alt="{\displaystyle \int _{S}{\bigl |}f(x)g(x){\bigr |}\,\mathrm {d} x\leq {\biggl (}\int _{S}|f(x)|^{p}\,\mathrm {d} x{\biggr )}^{\frac {1}{p}}{\biggl (}\int _{S}|g(x)|^{q}\,\mathrm {d} x{\biggr )}^{\frac {1}{q}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Probability_measure">Probability measure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=8" title="Edit section: Probability measure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the <a href="/wiki/Probability_space" title="Probability space">probability space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fe79822858dff27fa267adc203788218c917516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.549ex; height:2.843ex;" alt="{\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} ),}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad9faf1fd4a61d36d7f8a2f3204f3805a43c0d4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {E} }"></span> denote the <a href="/wiki/Expected_value" title="Expected value">expectation operator</a>. For real- or complex-valued <a href="/wiki/Random_variable" title="Random variable">random variables</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9e6a34b6c6b77b92a65f692aad0f65b10f5bf26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \Omega ,}"></span> Hölder's inequality reads </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} [|XY|]\leqslant \left(\mathbb {E} {\bigl [}|X|^{p}{\bigr ]}\right)^{\frac {1}{p}}\left(\mathbb {E} {\bigl [}|Y|^{q}{\bigr ]}\right)^{\frac {1}{q}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">]</mo> <mo>&#x2A7D;<!-- ⩽ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} [|XY|]\leqslant \left(\mathbb {E} {\bigl [}|X|^{p}{\bigr ]}\right)^{\frac {1}{p}}\left(\mathbb {E} {\bigl [}|Y|^{q}{\bigr ]}\right)^{\frac {1}{q}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dd0a121fff59e9834e8096b7c5856aab8a1944b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.739ex; height:4.343ex;" alt="{\displaystyle \mathbb {E} [|XY|]\leqslant \left(\mathbb {E} {\bigl [}|X|^{p}{\bigr ]}\right)^{\frac {1}{p}}\left(\mathbb {E} {\bigl [}|Y|^{q}{\bigr ]}\right)^{\frac {1}{q}}.}"></span></dd></dl> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1&lt;r&lt;s&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&lt;</mo> <mi>r</mi> <mo>&lt;</mo> <mi>s</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1&lt;r&lt;s&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e1b0842638b3890b3876d07533c5fb639dd5e24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.921ex; height:2.176ex;" alt="{\displaystyle 1&lt;r&lt;s&lt;\infty }"></span> and define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\tfrac {s}{r}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>s</mi> <mi>r</mi> </mfrac> </mstyle> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\tfrac {s}{r}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80a8058028a8c338e0dc057e7d3be0ffa38249ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-left: -0.089ex; width:6.611ex; height:3.009ex;" alt="{\displaystyle p={\tfrac {s}{r}}.}"></span> Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q={\tfrac {p}{p-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>p</mi> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q={\tfrac {p}{p-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab0e8377008c9ea8f89f833599da7c3dc4aa0d5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.932ex; height:3.843ex;" alt="{\displaystyle q={\tfrac {p}{p-1}}}"></span> is the Hölder conjugate of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88532f4eab1d4cef71ef96c0f8c98cac36fd9257" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.906ex; height:2.009ex;" alt="{\displaystyle p.}"></span> Applying Hölder's inequality to the random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |X|^{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |X|^{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbcebd42ec19a6eb7327775ace476abbe144fa8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.247ex; height:3.009ex;" alt="{\displaystyle |X|^{r}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{\Omega }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{\Omega }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/847eb3ecc0f217a25dd564d40be2656a69024a55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.581ex; height:2.509ex;" alt="{\displaystyle 1_{\Omega }}"></span> we obtain </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} {\bigl [}|X|^{r}{\bigr ]}\leqslant \left(\mathbb {E} {\bigl [}|X|^{s}{\bigr ]}\right)^{\frac {r}{s}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>&#x2A7D;<!-- ⩽ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>r</mi> <mi>s</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} {\bigl [}|X|^{r}{\bigr ]}\leqslant \left(\mathbb {E} {\bigl [}|X|^{s}{\bigr ]}\right)^{\frac {r}{s}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd851f8c44f4192b9ba15761127d566b226a4ff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.073ex; height:4.009ex;" alt="{\displaystyle \mathbb {E} {\bigl [}|X|^{r}{\bigr ]}\leqslant \left(\mathbb {E} {\bigl [}|X|^{s}{\bigr ]}\right)^{\frac {r}{s}}.}"></span></dd></dl> <p>In particular, if the <span class="texhtml mvar" style="font-style:italic;">s</span><sup>th</sup> absolute <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moment</a> is finite, then the <span class="texhtml mvar" style="font-style:italic;">r</span><sup>&#160;th</sup> absolute moment is finite, too. (This also follows from <a href="/wiki/Jensen%27s_inequality" title="Jensen&#39;s inequality">Jensen's inequality</a>.) </p> <div class="mw-heading mw-heading3"><h3 id="Product_measure">Product measure</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=9" title="Edit section: Product measure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For two <a href="/wiki/%CE%A3-finite_measure" title="Σ-finite measure">σ-finite measure</a> spaces <span class="texhtml">(<i>S</i><sub>1</sub>, Σ<sub>1</sub>, <i>μ</i><sub>1</sub>)</span> and <span class="texhtml">(<i>S</i><sub>2</sub>, Σ<sub>2</sub>, <i>μ</i><sub>2</sub>)</span> define the <a href="/wiki/Product_measure_space" class="mw-redirect" title="Product measure space">product measure space</a> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=S_{1}\times S_{2},\quad \Sigma =\Sigma _{1}\otimes \Sigma _{2},\quad \mu =\mu _{1}\otimes \mu _{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2297;<!-- ⊗ --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=S_{1}\times S_{2},\quad \Sigma =\Sigma _{1}\otimes \Sigma _{2},\quad \mu =\mu _{1}\otimes \mu _{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29b5fd618d732da0add320259205fa299207844d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.09ex; height:2.676ex;" alt="{\displaystyle S=S_{1}\times S_{2},\quad \Sigma =\Sigma _{1}\otimes \Sigma _{2},\quad \mu =\mu _{1}\otimes \mu _{2},}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">S</span> is the <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a> of <span class="texhtml"><i>S</i><sub>1</sub></span> and <span class="texhtml"><i>S</i><sub>2</sub></span>, the <span class="nowrap"><a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a> <span class="texhtml">Σ</span></span> arises as <a href="/wiki/Product_%CF%83-algebra" class="mw-redirect" title="Product σ-algebra">product σ-algebra</a> of <span class="texhtml">Σ<sub>1</sub></span> and <span class="texhtml">Σ<sub>2</sub></span>, and <span class="texhtml mvar" style="font-style:italic;">μ</span> denotes the <a href="/wiki/Product_measure" title="Product measure">product measure</a> of <span class="texhtml"><i>μ</i><sub>1</sub></span> and <span class="texhtml"><i>μ</i><sub>2</sub></span>. Then <a href="/wiki/Fubini%27s_theorem#Tonelli.27s_theorem" title="Fubini&#39;s theorem">Tonelli's theorem</a> allows us to rewrite Hölder's inequality using <a href="/wiki/Iterated_integral" title="Iterated integral">iterated integrals</a>: If&#160;<span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> are <span class="nowrap"><span class="texhtml">Σ</span>-measurable</span> real- or complex-valued functions on the Cartesian product&#160;<span class="texhtml mvar" style="font-style:italic;">S</span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{S_{1}}\int _{S_{2}}|f(x,y)\,g(x,y)|\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\leq \left(\int _{S_{1}}\int _{S_{2}}|f(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\right)^{\frac {1}{p}}\left(\int _{S_{1}}\int _{S_{2}}|g(x,y)|^{q}\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\right)^{\frac {1}{q}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{S_{1}}\int _{S_{2}}|f(x,y)\,g(x,y)|\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\leq \left(\int _{S_{1}}\int _{S_{2}}|f(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\right)^{\frac {1}{p}}\left(\int _{S_{1}}\int _{S_{2}}|g(x,y)|^{q}\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\right)^{\frac {1}{q}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/618f2dccb0578824ba9cfb54eb4b4390213dcbb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:112.112ex; height:7.343ex;" alt="{\displaystyle \int _{S_{1}}\int _{S_{2}}|f(x,y)\,g(x,y)|\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\leq \left(\int _{S_{1}}\int _{S_{2}}|f(x,y)|^{p}\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\right)^{\frac {1}{p}}\left(\int _{S_{1}}\int _{S_{2}}|g(x,y)|^{q}\,\mu _{2}(\mathrm {d} y)\,\mu _{1}(\mathrm {d} x)\right)^{\frac {1}{q}}.}"></span></dd></dl> <p>This can be generalized to more than two <span class="nowrap">σ-finite</span> measure spaces. </p> <div class="mw-heading mw-heading3"><h3 id="Vector-valued_functions">Vector-valued functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=10" title="Edit section: Vector-valued functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml">(<i>S</i>, Σ, <i>μ</i>)</span> denote a <span class="nowrap">σ-finite</span> measure space and suppose that <span class="texhtml"><i>f</i> = (<i>f</i><sub>1</sub>, ..., <i>f<sub>n</sub></i>)</span> and <span class="texhtml"><i>g</i> = (<i>g</i><sub>1</sub>, ..., <i>g<sub>n</sub></i>)</span> are <span class="texhtml">Σ</span>-measurable functions on <span class="texhtml mvar" style="font-style:italic;">S</span>, taking values in the <span class="texhtml mvar" style="font-style:italic;">n</span>-dimensional real- or complex Euclidean space. By taking the product with the counting measure on <span class="texhtml">{1, ..., <i>n</i>}</span>, we can rewrite the above product measure version of Hölder's inequality in the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{S}\sum _{k=1}^{n}|f_{k}(x)\,g_{k}(x)|\,\mu (\mathrm {d} x)\leq \left(\int _{S}\sum _{k=1}^{n}|f_{k}(x)|^{p}\,\mu (\mathrm {d} x)\right)^{\frac {1}{p}}\left(\int _{S}\sum _{k=1}^{n}|g_{k}(x)|^{q}\,\mu (\mathrm {d} x)\right)^{\frac {1}{q}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{S}\sum _{k=1}^{n}|f_{k}(x)\,g_{k}(x)|\,\mu (\mathrm {d} x)\leq \left(\int _{S}\sum _{k=1}^{n}|f_{k}(x)|^{p}\,\mu (\mathrm {d} x)\right)^{\frac {1}{p}}\left(\int _{S}\sum _{k=1}^{n}|g_{k}(x)|^{q}\,\mu (\mathrm {d} x)\right)^{\frac {1}{q}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f4a6a2cb22f8a6012813f805d6178cf0bb23aa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:81.11ex; height:8.676ex;" alt="{\displaystyle \int _{S}\sum _{k=1}^{n}|f_{k}(x)\,g_{k}(x)|\,\mu (\mathrm {d} x)\leq \left(\int _{S}\sum _{k=1}^{n}|f_{k}(x)|^{p}\,\mu (\mathrm {d} x)\right)^{\frac {1}{p}}\left(\int _{S}\sum _{k=1}^{n}|g_{k}(x)|^{q}\,\mu (\mathrm {d} x)\right)^{\frac {1}{q}}.}"></span></dd></dl> <p>If the two integrals on the right-hand side are finite, then equality holds if and only if there exist real numbers <span class="texhtml"><i>α</i>, <i>β</i> ≥ 0</span>, not both of them zero, such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \left(|f_{1}(x)|^{p},\ldots ,|f_{n}(x)|^{p}\right)=\beta \left(|g_{1}(x)|^{q},\ldots ,|g_{n}(x)|^{q}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \left(|f_{1}(x)|^{p},\ldots ,|f_{n}(x)|^{p}\right)=\beta \left(|g_{1}(x)|^{q},\ldots ,|g_{n}(x)|^{q}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30276c38b5843be0800bc02d17ea410631155a7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.569ex; height:3.009ex;" alt="{\displaystyle \alpha \left(|f_{1}(x)|^{p},\ldots ,|f_{n}(x)|^{p}\right)=\beta \left(|g_{1}(x)|^{q},\ldots ,|g_{n}(x)|^{q}\right),}"></span></dd></dl> <p>for <span class="texhtml mvar" style="font-style:italic;">μ</span>-almost all <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">S</span>. </p><p>This finite-dimensional version generalizes to functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> taking values in a <a href="/wiki/Normed_space" class="mw-redirect" title="Normed space">normed space</a> which could be for example a <a href="/wiki/Sequence_space" title="Sequence space">sequence space</a> or an <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Proof_of_Hölder's_inequality"><span id="Proof_of_H.C3.B6lder.27s_inequality"></span>Proof of Hölder's inequality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=11" title="Edit section: Proof of Hölder&#039;s inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are several proofs of Hölder's inequality; the main idea in the following is <a href="/wiki/Young%27s_inequality_for_products" title="Young&#39;s inequality for products">Young's inequality for products</a>. </p> <style data-mw-deduplicate="TemplateStyles:r1174254338">.mw-parser-output .math_proof{border:thin solid #aaa;margin:1em 2em;padding:0.5em 1em 0.4em}@media(max-width:500px){.mw-parser-output .math_proof{margin:1em 0;padding:0.5em 0.5em 0.4em}}</style><div class="math_proof" style=""><strong>Proof</strong> <p>If <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> = 0</span>, then <span class="texhtml mvar" style="font-style:italic;">f</span> is zero <span class="texhtml mvar" style="font-style:italic;">μ</span>-almost everywhere, and the product <span class="texhtml"><i>fg</i></span> is zero <span class="texhtml mvar" style="font-style:italic;">μ</span>-almost everywhere, hence the left-hand side of Hölder's inequality is zero. The same is true if <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub> = 0</span>. Therefore, we may assume <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> &gt; 0</span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub> &gt; 0</span> in the following. </p><p>If <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> = ∞</span> or <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub> = ∞</span>, then the right-hand side of Hölder's inequality is infinite. Therefore, we may assume that <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub></span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub></span> are in <span class="texhtml">(0, ∞)</span>. </p><p>If <span class="texhtml"><i>p</i> = ∞</span> and <span class="texhtml"><i>q</i> = 1</span>, then <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>fg</i></span>&#124; ≤ &#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub>∞</sub> &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#124;</span> almost everywhere and Hölder's inequality follows from the monotonicity of the Lebesgue integral. Similarly for <span class="texhtml"><i>p</i> = 1</span> and <span class="texhtml"><i>q</i> = ∞</span>. Therefore, we may assume <span class="texhtml"><i>p</i>, <i>q</i> ∈</span> <span class="texhtml">(1,∞)</span>. </p><p>Dividing <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> by <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub></span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub></span>, respectively, we can assume that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}=\|g\|_{q}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}=\|g\|_{q}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d1409a992773d324107bc1d64ef33bfc54c0e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.098ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}=\|g\|_{q}=1.}"></span></dd></dl> <p>We now use <a href="/wiki/Young%27s_inequality_for_products" title="Young&#39;s inequality for products">Young's inequality for products</a>, which states that whenever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953a97b9fe7d257c9666fb3cf6bf75380295e2cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:3.362ex; height:2.009ex;" alt="{\displaystyle p,q}"></span> are in <span class="texhtml">(1,∞)</span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff66949e963cd56cc66808c26aa25f186ac40c69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.105ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab\leq {\frac {a^{p}}{p}}+{\frac {b^{q}}{q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mi>q</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab\leq {\frac {a^{p}}{p}}+{\frac {b^{q}}{q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8117b2cae75fd974d72c6044c6c788c60df586fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:14.114ex; height:5.843ex;" alt="{\displaystyle ab\leq {\frac {a^{p}}{p}}+{\frac {b^{q}}{q}}}"></span></dd></dl> <p>for all nonnegative <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span>, where equality is achieved if and only if <span class="texhtml"><i>a<sup>p</sup></i> = <i>b<sup>q</sup></i></span>. Hence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f(s)g(s)|\leq {\frac {|f(s)|^{p}}{p}}+{\frac {|g(s)|^{q}}{q}},\qquad s\in S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mi>q</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f(s)g(s)|\leq {\frac {|f(s)|^{p}}{p}}+{\frac {|g(s)|^{q}}{q}},\qquad s\in S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3dac616fdd42f9862d9f02038d04d7c79fa2cb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.684ex; height:6.176ex;" alt="{\displaystyle |f(s)g(s)|\leq {\frac {|f(s)|^{p}}{p}}+{\frac {|g(s)|^{q}}{q}},\qquad s\in S.}"></span></dd></dl> <p>Integrating both sides gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|fg\|_{1}\leq {\frac {\|f\|_{p}^{p}}{p}}+{\frac {\|g\|_{q}^{q}}{q}}={\frac {1}{p}}+{\frac {1}{q}}=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> </mrow> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> </mrow> <mi>q</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|fg\|_{1}\leq {\frac {\|f\|_{p}^{p}}{p}}+{\frac {\|g\|_{q}^{q}}{q}}={\frac {1}{p}}+{\frac {1}{q}}=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0a6e7babc96a0b26c5db6dd2a557b6dd0c2ed93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.328ex; height:6.343ex;" alt="{\displaystyle \|fg\|_{1}\leq {\frac {\|f\|_{p}^{p}}{p}}+{\frac {\|g\|_{q}^{q}}{q}}={\frac {1}{p}}+{\frac {1}{q}}=1,}"></span></dd></dl> <p>which proves the claim. </p><p>Under the assumptions <span class="texhtml"><i>p</i> ∈</span> <span class="texhtml">(1, ∞)</span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> = &#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub></span>, equality holds if and only if <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#124;<sup><i>p</i></sup> = &#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#124;<sup><i>q</i></sup></span> almost everywhere. More generally, if <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub></span> and <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub></span> are in <span class="texhtml">(0, ∞)</span>, then Hölder's inequality becomes an equality if and only if there exist real numbers <span class="texhtml"><i>α</i>, <i>β</i> &gt; 0</span>, namely </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\|g\|_{q}^{q},\qquad \beta =\|f\|_{p}^{p},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msubsup> <mo>,</mo> <mspace width="2em" /> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\|g\|_{q}^{q},\qquad \beta =\|f\|_{p}^{p},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1042340820d8390f2a04f9c7c6334b9ca90be8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.435ex; height:3.176ex;" alt="{\displaystyle \alpha =\|g\|_{q}^{q},\qquad \beta =\|f\|_{p}^{p},}"></span></dd></dl> <p>such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha |f|^{p}=\beta |g|^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha |f|^{p}=\beta |g|^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa6966619e8ab0f4489fdafd4dbf654ce16b6c0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.948ex; height:3.009ex;" alt="{\displaystyle \alpha |f|^{p}=\beta |g|^{q}}"></span>&#160;&#160;&#160;<i>μ</i>-almost everywhere&#160;&#160;&#160;(*).</dd></dl> <p>The case <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> = 0</span> corresponds to <span class="texhtml"><i>β</i> = 0</span> in (*). The case <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub> = 0</span> corresponds to <span class="texhtml"><i>α</i> = 0</span> in (*). </p> </div> <p>Alternative proof using Jensen's inequality: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>The function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\mapsto x^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\mapsto x^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f72ef9f7692b1b55c635323f2287d96b1d8cec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:2.343ex;" alt="{\displaystyle x\mapsto x^{p}}"></span> on <span class="texhtml">(0,∞)</span> is convex because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf93c1353080a21b276e79058d82c19c40310653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p\geq 1}"></span>, so by Jensen's inequality, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int h\mathrm {d} \nu \leq \left(\int h^{p}\mathrm {d} \nu \right)^{\frac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int h\mathrm {d} \nu \leq \left(\int h^{p}\mathrm {d} \nu \right)^{\frac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c00538b6ed828fc92cc7218fa648a844e63b5afe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.207ex; height:7.176ex;" alt="{\displaystyle \int h\mathrm {d} \nu \leq \left(\int h^{p}\mathrm {d} \nu \right)^{\frac {1}{p}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">ν</span> is any probability distribution and <span class="texhtml mvar" style="font-style:italic;"><i>h</i></span> any <span class="texhtml mvar" style="font-style:italic;">ν</span>-measurable function. Let <span class="texhtml mvar" style="font-style:italic;">μ</span> be any measure, and <span class="texhtml mvar" style="font-style:italic;">ν</span> the distribution whose density w.r.t. <span class="texhtml mvar" style="font-style:italic;">μ</span> is proportional to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69ee9c40a26dc6500e58cd9d33bd70c86defd8c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.107ex; height:2.676ex;" alt="{\displaystyle g^{q}}"></span>, i.e. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \nu ={\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\mathrm {d} \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \nu ={\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\mathrm {d} \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05247f3ce23f067294531aa63a071dfb0d007358" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.147ex; height:6.343ex;" alt="{\displaystyle \mathrm {d} \nu ={\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\mathrm {d} \mu }"></span></dd></dl> <p>Hence we have, using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff66949e963cd56cc66808c26aa25f186ac40c69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.105ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}"></span>, hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(1-q)+q=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(1-q)+q=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a22bfed235d41f686413c701288cc85ff79943ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:16.311ex; height:2.843ex;" alt="{\displaystyle p(1-q)+q=0}"></span>, and letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h=fg^{1-q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <mi>f</mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h=fg^{1-q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d71d1095107bb54b35cc2d77a9f992496a4af0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.923ex; height:3.009ex;" alt="{\displaystyle h=fg^{1-q}}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int fg\,\mathrm {d} \mu =&amp;\left(\int g^{q}\,\mathrm {d} \mu \right)\int \underbrace {fg^{1-q}} _{h}\underbrace {{\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\mathrm {d} \mu } _{\mathrm {d} \nu }\\\leq &amp;\left(\int g^{q}\mathrm {d} \mu \right)\left(\int \underbrace {f^{p}g^{p(1-q)}} _{h^{p}}\underbrace {{\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\,\mathrm {d} \mu } _{\mathrm {d} \nu }\right)^{\frac {1}{p}}\\=&amp;\left(\int g^{q}\,\mathrm {d} \mu \right)\left(\int {\frac {f^{p}}{\int g^{q}\,\mathrm {d} \mu }}\,\mathrm {d} \mu \right)^{\frac {1}{p}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>&#x222B;<!-- ∫ --></mo> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>f</mi> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mrow> </msup> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </munder> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> </mrow> </munder> </mtd> </mtr> <mtr> <mtd> <mo>&#x2264;<!-- ≤ --></mo> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> </munder> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> </mrow> </munder> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> </mtd> <mtd> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\int fg\,\mathrm {d} \mu =&amp;\left(\int g^{q}\,\mathrm {d} \mu \right)\int \underbrace {fg^{1-q}} _{h}\underbrace {{\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\mathrm {d} \mu } _{\mathrm {d} \nu }\\\leq &amp;\left(\int g^{q}\mathrm {d} \mu \right)\left(\int \underbrace {f^{p}g^{p(1-q)}} _{h^{p}}\underbrace {{\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\,\mathrm {d} \mu } _{\mathrm {d} \nu }\right)^{\frac {1}{p}}\\=&amp;\left(\int g^{q}\,\mathrm {d} \mu \right)\left(\int {\frac {f^{p}}{\int g^{q}\,\mathrm {d} \mu }}\,\mathrm {d} \mu \right)^{\frac {1}{p}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5814c515a3aee6c183b365a9e7bf45c2e0a63cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.141ex; margin-bottom: -0.197ex; width:50.443ex; height:33.843ex;" alt="{\displaystyle {\begin{aligned}\int fg\,\mathrm {d} \mu =&amp;\left(\int g^{q}\,\mathrm {d} \mu \right)\int \underbrace {fg^{1-q}} _{h}\underbrace {{\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\mathrm {d} \mu } _{\mathrm {d} \nu }\\\leq &amp;\left(\int g^{q}\mathrm {d} \mu \right)\left(\int \underbrace {f^{p}g^{p(1-q)}} _{h^{p}}\underbrace {{\frac {g^{q}}{\int g^{q}\,\mathrm {d} \mu }}\,\mathrm {d} \mu } _{\mathrm {d} \nu }\right)^{\frac {1}{p}}\\=&amp;\left(\int g^{q}\,\mathrm {d} \mu \right)\left(\int {\frac {f^{p}}{\int g^{q}\,\mathrm {d} \mu }}\,\mathrm {d} \mu \right)^{\frac {1}{p}}.\end{aligned}}}"></span></dd></dl> <p>Finally, we get </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int fg\,\mathrm {d} \mu \leq \left(\int f^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\left(\int g^{q}\,\mathrm {d} \mu \right)^{\frac {1}{q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int fg\,\mathrm {d} \mu \leq \left(\int f^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\left(\int g^{q}\,\mathrm {d} \mu \right)^{\frac {1}{q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4f03c8fe1ad6daaea0a9589295bca9df67443c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.284ex; height:7.176ex;" alt="{\displaystyle \int fg\,\mathrm {d} \mu \leq \left(\int f^{p}\,\mathrm {d} \mu \right)^{\frac {1}{p}}\left(\int g^{q}\,\mathrm {d} \mu \right)^{\frac {1}{q}}}"></span></dd></dl> <p>This assumes that <span class="texhtml"><i>f</i>, <i>g</i></span> are real and non-negative, but the extension to complex functions is straightforward (use the modulus of <span class="texhtml"><i>f</i>, <i>g</i></span>). It also assumes that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p},\|g\|_{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p},\|g\|_{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5a8d2e0010883a9d6e67e634aa10a4d61d7714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.126ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p},\|g\|_{q}}"></span> are neither null nor infinity, and that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q&gt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>&gt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q&gt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f1c855a5cef063040771fb0260cd94fcb03f045" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.623ex; height:2.509ex;" alt="{\displaystyle p,q&gt;1}"></span>: all these assumptions can also be lifted as in the proof above. </p> </div> <p>We could also bypass use of both Young's and Jensen's inequalities. The proof below also explains why and where the Hölder exponent comes in naturally. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>As in the previous proof, it suffices to prove </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{X}|h|\mathrm {d} \nu \leq \left(\int _{X}|h|^{p}\mathrm {d} \nu \right)^{\frac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2264;<!-- ≤ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{X}|h|\mathrm {d} \nu \leq \left(\int _{X}|h|^{p}\mathrm {d} \nu \right)^{\frac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a5a49e2b71941293492cd0eb1d249ea235dc738" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.257ex; height:7.176ex;" alt="{\displaystyle \int _{X}|h|\mathrm {d} \nu \leq \left(\int _{X}|h|^{p}\mathrm {d} \nu \right)^{\frac {1}{p}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu (X)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu (X)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96e491a71b4deebf8debb11763331f9e6ea21b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.282ex; height:2.843ex;" alt="{\displaystyle \nu (X)=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>-measurable (real or complex) function on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. To prove this, we must bound <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |h|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |h|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99efa0a994571eb5826e23fab002a46571d3cfa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.633ex; height:2.843ex;" alt="{\displaystyle |h|}"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |h|^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |h|^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/915ade6aee4b79126202d2e9e7745c3601da4474" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.692ex; height:3.009ex;" alt="{\displaystyle |h|^{p}}"></span>. There is no constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> that will make <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |h(x)|~\leq ~C|h(x)|^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2264;<!-- ≤ --></mo> <mtext>&#xA0;</mtext> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |h(x)|~\leq ~C|h(x)|^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab11780b3f4afd6dbff1915437e2c655d263e445" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.629ex; height:3.009ex;" alt="{\displaystyle |h(x)|~\leq ~C|h(x)|^{p}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80d24be5f0eb4a9173da6038badc8659546021d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x&gt;0}"></span>. Hence, we seek an inequality of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |h(x)|~\leq ~a'|h(x)|^{p}+b',\quad for\quad all\quad x&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2264;<!-- ≤ --></mo> <mtext>&#xA0;</mtext> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mi>o</mi> <mi>r</mi> <mspace width="1em" /> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mspace width="1em" /> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |h(x)|~\leq ~a'|h(x)|^{p}+b',\quad for\quad all\quad x&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/587dd639a0f3cd564b63121b5aa8a5de45c16966" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.963ex; height:3.009ex;" alt="{\displaystyle |h(x)|~\leq ~a&#039;|h(x)|^{p}+b&#039;,\quad for\quad all\quad x&gt;0}"></span></dd></dl> <p>for suitable choices of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cb64c0f02687512818f37839ce23ee049c37743" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.915ex; height:2.509ex;" alt="{\displaystyle a&#039;}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cee8dc8bb1c6c5c94066d54504f57177d11883c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.682ex; height:2.509ex;" alt="{\displaystyle b&#039;}"></span>. </p><p>We wish to obtain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A:=\|f\|_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>:=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A:=\|f\|_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/105dcc48b2064ab9bae992b615d15bea82fdf12b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.151ex; height:3.009ex;" alt="{\displaystyle A:=\|f\|_{p}}"></span> on the right-hand side after integrating this inequality. By trial and error, we see that the inequality we wish should have the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |h(x)|~\leq ~aA^{1-p}|h(x)|^{p}+bA,\quad for\quad all\quad x&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2264;<!-- ≤ --></mo> <mtext>&#xA0;</mtext> <mi>a</mi> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>A</mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mi>o</mi> <mi>r</mi> <mspace width="1em" /> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mspace width="1em" /> <mi>x</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |h(x)|~\leq ~aA^{1-p}|h(x)|^{p}+bA,\quad for\quad all\quad x&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f776392bc628bba7a88144b42eea81d508065dc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.886ex; height:3.176ex;" alt="{\displaystyle |h(x)|~\leq ~aA^{1-p}|h(x)|^{p}+bA,\quad for\quad all\quad x&gt;0,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span> are non-negative and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a8061cad08a2f1206af42fb3e0389fcf4353e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.329ex; height:2.343ex;" alt="{\displaystyle a+b=1}"></span>. Indeed, the integral of the right-hand side is precisely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>. So, it remains to prove that such an inequality does hold with the right choice of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e77948cd629e270b0016a07b180865208c471c77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.908ex; height:2.509ex;" alt="{\displaystyle a,b.}"></span> </p><p>The inequality we seek would follow from: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {y}{A}}~\leq ~a({\tfrac {y}{a}})^{p}+b,\quad for\quad all\quad y&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>y</mi> <mi>A</mi> </mfrac> </mstyle> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2264;<!-- ≤ --></mo> <mtext>&#xA0;</mtext> <mi>a</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>y</mi> <mi>a</mi> </mfrac> </mstyle> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mi>o</mi> <mi>r</mi> <mspace width="1em" /> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mspace width="1em" /> <mi>y</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {y}{A}}~\leq ~a({\tfrac {y}{a}})^{p}+b,\quad for\quad all\quad y&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eaada07df1356bfd1aefeeeb70401743cdd7ef8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:36.107ex; height:3.676ex;" alt="{\displaystyle {\tfrac {y}{A}}~\leq ~a({\tfrac {y}{a}})^{p}+b,\quad for\quad all\quad y&gt;0,}"></span></dd></dl> <p>which, in turn, is equivalent to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (*)\quad z~\leq ~az^{p}+b,\quad for\quad all\quad z&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">)</mo> <mspace width="1em" /> <mi>z</mi> <mtext>&#xA0;</mtext> <mo>&#x2264;<!-- ≤ --></mo> <mtext>&#xA0;</mtext> <mi>a</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mi>o</mi> <mi>r</mi> <mspace width="1em" /> <mi>a</mi> <mi>l</mi> <mi>l</mi> <mspace width="1em" /> <mi>z</mi> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (*)\quad z~\leq ~az^{p}+b,\quad for\quad all\quad z&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81341e48bb84be9ef19bf5000baef7e32b102a19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.928ex; height:2.843ex;" alt="{\displaystyle (*)\quad z~\leq ~az^{p}+b,\quad for\quad all\quad z&gt;0.}"></span></dd></dl> <p>It turns out there is one and only one choice of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181523deba732fda302fd176275a0739121d3bc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.261ex; height:2.509ex;" alt="{\displaystyle a,b}"></span>, subject to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a8061cad08a2f1206af42fb3e0389fcf4353e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.329ex; height:2.343ex;" alt="{\displaystyle a+b=1}"></span>, that makes this true: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a={\tfrac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a={\tfrac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95d59aad17b8579feb1495f8dac7100501effa70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.991ex; height:3.676ex;" alt="{\displaystyle a={\tfrac {1}{p}}}"></span> and, necessarily, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=1-{\tfrac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=1-{\tfrac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ef649819a5d3f27ac862023c8525ffe1922c99f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.762ex; height:3.676ex;" alt="{\displaystyle b=1-{\tfrac {1}{p}}}"></span>. (This is where Hölder conjugate exponent is born!) This completes the proof of the inequality at the first paragraph of this proof. Proof of Hölder's inequality follows from this as in the previous proof. Alternatively, we can deduce Young's inequality and then resort to the first proof given above. Young's inequality follows from the inequality (*) above by choosing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z={\tfrac {a}{b^{q-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>a</mi> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z={\tfrac {a}{b^{q-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f06b18c5fcf44f13284dcd2afe6888e5bb69cbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.212ex; height:3.676ex;" alt="{\displaystyle z={\tfrac {a}{b^{q-1}}}}"></span> and multiplying both sides by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42b3b8b2a7eefaae5f63691ff97156fc088fb6e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.986ex; height:2.343ex;" alt="{\displaystyle b^{q}}"></span>. </p> </div> <div class="mw-heading mw-heading2"><h2 id="Extremal_equality">Extremal equality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=12" title="Edit section: Extremal equality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Statement">Statement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=13" title="Edit section: Statement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that <span class="texhtml">1 ≤ <i>p</i> &lt; ∞</span> and let <span class="texhtml mvar" style="font-style:italic;">q</span> denote the Hölder conjugate. Then for every <span class="texhtml"><i>f</i> ∈ <i>L<sup>p</sup></i>(<i>μ</i>)</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}=\max \left\{\left|\int _{S}fg\,\mathrm {d} \mu \right|:g\in L^{q}(\mu ),\|g\|_{q}\leq 1\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mo movablelimits="true" form="prefix">max</mo> <mrow> <mo>{</mo> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>|</mo> </mrow> <mo>:</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}=\max \left\{\left|\int _{S}fg\,\mathrm {d} \mu \right|:g\in L^{q}(\mu ),\|g\|_{q}\leq 1\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1358f454818dbee73c356dd1c1d8734ffc474326" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.136ex; height:6.176ex;" alt="{\displaystyle \|f\|_{p}=\max \left\{\left|\int _{S}fg\,\mathrm {d} \mu \right|:g\in L^{q}(\mu ),\|g\|_{q}\leq 1\right\},}"></span></dd></dl> <p>where max indicates that there actually is a <span class="texhtml mvar" style="font-style:italic;">g</span> maximizing the right-hand side. When <span class="texhtml"><i>p</i> = ∞</span> and if each set <span class="texhtml mvar" style="font-style:italic;">A</span> in the <span class="nowrap">σ-field</span> <span class="texhtml">Σ</span> with <span class="texhtml"><i>μ</i>(<i>A</i>) = ∞</span> contains a subset <span class="texhtml"><i>B</i> ∈ Σ</span> with <span class="texhtml">0 &lt; <i>μ</i>(<i>B</i>) &lt; ∞</span> (which is true in particular when <span class="texhtml mvar" style="font-style:italic;">μ</span> is <span class="nowrap"><a href="/wiki/%CE%A3-finite" class="mw-redirect" title="Σ-finite">σ-finite</a></span>), then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{\infty }=\sup \left\{\left|\int _{S}fg\,\mathrm {d} \mu \right|:g\in L^{1}(\mu ),\|g\|_{1}\leq 1\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <mo movablelimits="true" form="prefix">sup</mo> <mrow> <mo>{</mo> <mrow> <mrow> <mo>|</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>|</mo> </mrow> <mo>:</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{\infty }=\sup \left\{\left|\int _{S}fg\,\mathrm {d} \mu \right|:g\in L^{1}(\mu ),\|g\|_{1}\leq 1\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdc1ee7bd01f90a957b8e392b8e80e016bad3e18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.259ex; height:6.176ex;" alt="{\displaystyle \|f\|_{\infty }=\sup \left\{\left|\int _{S}fg\,\mathrm {d} \mu \right|:g\in L^{1}(\mu ),\|g\|_{1}\leq 1\right\}.}"></span></dd></dl> <p>Proof of the extremal equality: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>By Hölder's inequality, the integrals are well defined and, for <span class="texhtml">1 ≤ <i>p</i> ≤ ∞</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|\leq \int _{S}|fg|\,\mathrm {d} \mu \leq \|f\|_{p},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|\leq \int _{S}|fg|\,\mathrm {d} \mu \leq \|f\|_{p},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50f68360a3c235578e0140e34f7848ea49d913fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.99ex; height:5.843ex;" alt="{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|\leq \int _{S}|fg|\,\mathrm {d} \mu \leq \|f\|_{p},}"></span></dd></dl> <p>hence the left-hand side is always bounded above by the right-hand side. </p><p>Conversely, for <span class="texhtml">1 ≤ <i>p</i> ≤ ∞</span>, observe first that the statement is obvious when <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> = 0</span>. Therefore, we assume <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub><i>p</i></sub> &gt; 0</span> in the following. </p><p>If <span class="texhtml">1 ≤ <i>p</i> &lt; ∞</span>, define <span class="texhtml mvar" style="font-style:italic;">g</span> on <span class="texhtml mvar" style="font-style:italic;">S</span> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)={\begin{cases}\|f\|_{p}^{1-p}\,|f(x)|^{p}/f(x)&amp;{\text{if }}f(x)\not =0,\\0&amp;{\text{otherwise.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2260;</mo> <mn>0</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)={\begin{cases}\|f\|_{p}^{1-p}\,|f(x)|^{p}/f(x)&amp;{\text{if }}f(x)\not =0,\\0&amp;{\text{otherwise.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb40a097472362955938f8dad545dbb77a53dc9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:42.936ex; height:6.176ex;" alt="{\displaystyle g(x)={\begin{cases}\|f\|_{p}^{1-p}\,|f(x)|^{p}/f(x)&amp;{\text{if }}f(x)\not =0,\\0&amp;{\text{otherwise.}}\end{cases}}}"></span></dd></dl> <p>By checking the cases <span class="texhtml"><i>p</i> = 1</span> and <span class="texhtml">1 &lt; <i>p</i> &lt; ∞</span> separately, we see that <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub><i>q</i></sub> = 1</span> and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{S}fg\,\mathrm {d} \mu =\|f\|_{p}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{S}fg\,\mathrm {d} \mu =\|f\|_{p}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3c94a9f4638d5340afc2c5c2f7fa6a84e6f9bfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.856ex; height:5.676ex;" alt="{\displaystyle \int _{S}fg\,\mathrm {d} \mu =\|f\|_{p}.}"></span></dd></dl> <p>It remains to consider the case <span class="texhtml"><i>p</i> = ∞</span>. For <span class="texhtml"><i>ε</i> ∈</span> <span class="texhtml">(0, 1)</span> define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\left\{x\in S:|f(x)|&gt;(1-\varepsilon )\|f\|_{\infty }\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&gt;</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\left\{x\in S:|f(x)|&gt;(1-\varepsilon )\|f\|_{\infty }\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b430a59c3a18d2acb76720d06d70da762a762d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.991ex; height:2.843ex;" alt="{\displaystyle A=\left\{x\in S:|f(x)|&gt;(1-\varepsilon )\|f\|_{\infty }\right\}.}"></span></dd></dl> <p>Since <span class="texhtml mvar" style="font-style:italic;">f</span> is measurable, <span class="texhtml"><i>A</i> ∈ Σ</span>. By the definition of <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub>∞</sub></span> as the <a href="/wiki/Essential_supremum" class="mw-redirect" title="Essential supremum">essential supremum</a> of <span class="texhtml mvar" style="font-style:italic;">f</span> and the assumption <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i>&#8202;</span>&#x2016;<sub>∞</sub> &gt; 0</span>, we have <span class="texhtml"><i>μ</i>(<i>A</i>) &gt; 0</span>. Using the additional assumption on the <span class="nowrap">σ-field</span> <span class="texhtml">Σ</span> if necessary, there exists a subset <span class="texhtml"><i>B</i> ∈ Σ</span> of <span class="texhtml mvar" style="font-style:italic;">A</span> with <span class="texhtml">0 &lt; <i>μ</i>(<i>B</i>) &lt; ∞</span>. Define <span class="texhtml mvar" style="font-style:italic;">g</span> on <span class="texhtml mvar" style="font-style:italic;">S</span> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)={\begin{cases}{\frac {1-\varepsilon }{\mu (B)}}{\frac {\|f\|_{\infty }}{f(x)}}&amp;{\text{if }}x\in B,\\0&amp;{\text{otherwise.}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if&#xA0;</mtext> </mrow> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise.</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)={\begin{cases}{\frac {1-\varepsilon }{\mu (B)}}{\frac {\|f\|_{\infty }}{f(x)}}&amp;{\text{if }}x\in B,\\0&amp;{\text{otherwise.}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0e5dbde259a6b2867ef3ea231245db329df9383" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.761ex; height:7.509ex;" alt="{\displaystyle g(x)={\begin{cases}{\frac {1-\varepsilon }{\mu (B)}}{\frac {\|f\|_{\infty }}{f(x)}}&amp;{\text{if }}x\in B,\\0&amp;{\text{otherwise.}}\end{cases}}}"></span></dd></dl> <p>Then <span class="texhtml mvar" style="font-style:italic;">g</span> is well-defined, measurable and <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i>(<i>x</i>)</span>&#124; ≤ 1/<i>μ</i>(<i>B</i>)</span> for <span class="texhtml"><i>x</i> ∈ <i>B</i></span>, hence <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#x2016;<sub>1</sub> ≤ 1</span>. Furthermore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|=\int _{B}{\frac {1-\varepsilon }{\mu (B)}}\|f\|_{\infty }\,\mathrm {d} \mu =(1-\varepsilon )\|f\|_{\infty }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> </mrow> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B5;<!-- ε --></mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|=\int _{B}{\frac {1-\varepsilon }{\mu (B)}}\|f\|_{\infty }\,\mathrm {d} \mu =(1-\varepsilon )\|f\|_{\infty }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe167e4773db407e13d1811611380e3b89d9f460" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.602ex; height:6.176ex;" alt="{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|=\int _{B}{\frac {1-\varepsilon }{\mu (B)}}\|f\|_{\infty }\,\mathrm {d} \mu =(1-\varepsilon )\|f\|_{\infty }.}"></span></dd></dl> </div> <div class="mw-heading mw-heading3"><h3 id="Remarks_and_examples">Remarks and examples</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=14" title="Edit section: Remarks and examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The equality for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42846cbf8fc7db1ff19e51d0d43ca84c249b062b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:6.681ex; height:2.009ex;" alt="{\displaystyle p=\infty }"></span> fails whenever there exists a set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> of infinite measure in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>-field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> with that has no subset <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\in \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\in \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2b9b1f1a6c811c631d544e305634d268959d802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.283ex; height:2.176ex;" alt="{\displaystyle B\in \Sigma }"></span> that satisfies: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\mu (B)&lt;\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\mu (B)&lt;\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d809abd6f37af50514c0af87df255854c53030" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.305ex; height:2.843ex;" alt="{\displaystyle 0&lt;\mu (B)&lt;\infty .}"></span> (the simplest example is the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>-field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> containing just the empty set and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0bcd8516b165aaacb234616d7d2d23478a35be7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.146ex; height:2.509ex;" alt="{\displaystyle S,}"></span> and the measure <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu (S)=\infty .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu (S)=\infty .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3aba3e4954df1d5a39e96cf66e2c0b0cd8059779" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.779ex; height:2.843ex;" alt="{\displaystyle \mu (S)=\infty .}"></span>) Then the <a href="/wiki/Indicator_function" title="Indicator function">indicator function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1a15eaa9285cd4654e86a76f3318c6ab2aad95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle 1_{A}}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|1_{A}\|_{\infty }=1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|1_{A}\|_{\infty }=1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/905b9fdf17c62bfbfbf48bfddc89d8118d4698e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.735ex; height:2.843ex;" alt="{\displaystyle \|1_{A}\|_{\infty }=1,}"></span> but every <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in L^{1}(\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in L^{1}(\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/472c025b6d22b3c7256c42872380f888200c07fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.805ex; height:3.176ex;" alt="{\displaystyle g\in L^{1}(\mu )}"></span> has to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>-almost everywhere constant on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2746026864cc5896e3e52443a1c917be2df9d8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.39ex; height:2.509ex;" alt="{\displaystyle A,}"></span> because it is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>-measurable, and this constant has to be zero, because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span>-integrable. Therefore, the above supremum for the indicator function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1a15eaa9285cd4654e86a76f3318c6ab2aad95d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle 1_{A}}"></span> is zero and the extremal equality fails.</li> <li>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=\infty ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=\infty ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcf616a43b37b2de8dae9af2cf7ec5828055c51f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.328ex; height:2.009ex;" alt="{\displaystyle p=\infty ,}"></span> the supremum is in general not attained. As an example, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\mathbb {N} ,\Sigma ={\mathcal {P}}(\mathbb {N} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo>,</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">P</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\mathbb {N} ,\Sigma ={\mathcal {P}}(\mathbb {N} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2beec27cf7de65383b9fa34ff73de1f2179b1d93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.277ex; height:2.843ex;" alt="{\displaystyle S=\mathbb {N} ,\Sigma ={\mathcal {P}}(\mathbb {N} )}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> the counting measure. Define:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}f:\mathbb {N} \to \mathbb {R} \\f(n)={\frac {n-1}{n}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>f</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}f:\mathbb {N} \to \mathbb {R} \\f(n)={\frac {n-1}{n}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7938d67a37c9b59ee31f91e4376f46366d0cfbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.362ex; margin-bottom: -0.309ex; width:13.999ex; height:6.509ex;" alt="{\displaystyle {\begin{cases}f:\mathbb {N} \to \mathbb {R} \\f(n)={\frac {n-1}{n}}\end{cases}}}"></span></dd></dl></dd></dl> <dl><dd>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{\infty }=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{\infty }=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df06dd759c12ccb14c9db787d422c2cf8ad1d30b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.387ex; height:2.843ex;" alt="{\displaystyle \|f\|_{\infty }=1.}"></span> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g\in L^{1}(\mu ,\mathbb {N} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g\in L^{1}(\mu ,\mathbb {N} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/410874844cdf2a629b97f9e51a595d86e48a7e00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.517ex; height:3.176ex;" alt="{\displaystyle g\in L^{1}(\mu ,\mathbb {N} )}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;\|g\|_{1}\leqslant 1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2A7D;<!-- ⩽ --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;\|g\|_{1}\leqslant 1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c415fe25514cc967171212c30f1f0c486cd4acfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.664ex; height:2.843ex;" alt="{\displaystyle 0&lt;\|g\|_{1}\leqslant 1,}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> denote the smallest natural number with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(m)\neq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(m)\neq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b356ca620b62fbba3735507f97f7f3533ea45060" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.873ex; height:2.843ex;" alt="{\displaystyle g(m)\neq 0.}"></span> Then</dd></dl> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|\leqslant {\frac {m-1}{m}}|g(m)|+\sum _{n=m+1}^{\infty }|g(n)|=\|g\|_{1}-{\frac {|g(m)|}{m}}&lt;1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>|</mo> </mrow> <mo>&#x2A7D;<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>m</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mi>m</mi> </mfrac> </mrow> <mo>&lt;</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|\leqslant {\frac {m-1}{m}}|g(m)|+\sum _{n=m+1}^{\infty }|g(n)|=\|g\|_{1}-{\frac {|g(m)|}{m}}&lt;1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1866235cd88b635794a2f5328d4200388fea2070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:63.065ex; height:7.009ex;" alt="{\displaystyle \left|\int _{S}fg\,\mathrm {d} \mu \right|\leqslant {\frac {m-1}{m}}|g(m)|+\sum _{n=m+1}^{\infty }|g(n)|=\|g\|_{1}-{\frac {|g(m)|}{m}}&lt;1.}"></span></dd></dl></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Applications">Applications</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=15" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The extremal equality is one of the ways for proving the triangle inequality <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i><sub>1</sub> + <i>f</i><sub>2</sub></span>&#x2016;<sub><i>p</i></sub> ≤ &#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i><sub>1</sub></span>&#x2016;<sub><i>p</i></sub> + &#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f</i><sub>2</sub></span>&#x2016;<sub><i>p</i></sub></span> for all <span class="texhtml"><i>f</i><sub>1</sub></span> and <span class="texhtml"><i>f</i><sub>2</sub></span> in <span class="texhtml"><i>L<sup>p</sup></i>(<i>μ</i>)</span>, see <a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a>.</li> <li>Hölder's inequality implies that every <span class="texhtml"><i>f</i> ∈ <i>L<sup>p</sup></i>(<i>μ</i>)</span> defines a bounded (or continuous) linear functional <span class="texhtml"><i>κ<sub>f</sub></i></span> on <span class="texhtml"><i>L<sup>q</sup></i>(<i>μ</i>)</span> by the formula</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \kappa _{f}(g)=\int _{S}fg\,\mathrm {d} \mu ,\qquad g\in L^{q}(\mu ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BA;<!-- κ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mi>f</mi> <mi>g</mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mspace width="2em" /> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \kappa _{f}(g)=\int _{S}fg\,\mathrm {d} \mu ,\qquad g\in L^{q}(\mu ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/038560636c82c16b37d993a50fc24cb9c208cd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.012ex; height:5.676ex;" alt="{\displaystyle \kappa _{f}(g)=\int _{S}fg\,\mathrm {d} \mu ,\qquad g\in L^{q}(\mu ).}"></span></dd></dl></dd> <dd>The extremal equality (when true) shows that the norm of this functional <span class="texhtml"><i>κ<sub>f</sub></i></span> as element of the <a href="/wiki/Continuous_dual_space" class="mw-redirect" title="Continuous dual space">continuous dual space</a> <span class="texhtml"><i>L<sup>q</sup></i>(<i>μ</i>)<sup>*</sup></span> coincides with the norm of <span class="texhtml mvar" style="font-style:italic;">f</span> in <span class="texhtml"><i>L<sup>p</sup></i>(<i>μ</i>)</span> (see also the <span class="nowrap"><a href="/wiki/L%5Ep-space" class="mw-redirect" title="L^p-space"><span class="texhtml"><i>L<sup>p</sup></i></span>-space</a></span> article).</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Generalization_with_more_than_two_functions">Generalization with more than two functions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=16" title="Edit section: Generalization with more than two functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Statement_2">Statement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=17" title="Edit section: Statement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that <span class="texhtml"><i>r</i> ∈</span> <span class="texhtml">(0, ∞&#93;</span> and <span class="texhtml"><i>p</i><sub>1</sub>, ..., <i>p<sub>n</sub></i> ∈ </span> <span class="texhtml">(0, ∞&#93;</span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}{\frac {1}{p_{k}}}={\frac {1}{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}{\frac {1}{p_{k}}}={\frac {1}{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a82a6494221943f4a64f2c2355086921acf0d6ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.933ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}{\frac {1}{p_{k}}}={\frac {1}{r}}}"></span></dd></dl> <p>where 1/∞ is interpreted as 0 in this equation. Then for all measurable real or complex-valued functions <span class="texhtml"><i>f</i><sub>1</sub>, ..., <i>f</i><sub><i>n</i></sub></span> defined on <span class="texhtml mvar" style="font-style:italic;">S</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\prod _{k=1}^{n}f_{k}\right\|_{r}\leq \prod _{k=1}^{n}\left\|f_{k}\right\|_{p_{k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\prod _{k=1}^{n}f_{k}\right\|_{r}\leq \prod _{k=1}^{n}\left\|f_{k}\right\|_{p_{k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42f03db423c82a17587875b34cb6fb5a51d55275" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.81ex; height:7.343ex;" alt="{\displaystyle \left\|\prod _{k=1}^{n}f_{k}\right\|_{r}\leq \prod _{k=1}^{n}\left\|f_{k}\right\|_{p_{k}}}"></span></dd></dl> <p>where we interpret any product with a factor of ∞ as ∞ if all factors are positive, but the product is 0 if any factor is 0. </p><p>In particular, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{k}\in L^{p_{k}}(\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{k}\in L^{p_{k}}(\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b29e4112286bd23ead873991946c421c00fab1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.781ex; height:2.843ex;" alt="{\displaystyle f_{k}\in L^{p_{k}}(\mu )}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\in \{1,\ldots ,n\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\in \{1,\ldots ,n\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0dcf7c7527acf692e46c59dad5243e6bab8b482" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.112ex; height:2.843ex;" alt="{\displaystyle k\in \{1,\ldots ,n\}}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \prod _{k=1}^{n}f_{k}\in L^{r}(\mu ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \prod _{k=1}^{n}f_{k}\in L^{r}(\mu ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/670677755358bd7642c25100436608850b858ef9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.84ex; height:6.843ex;" alt="{\displaystyle \prod _{k=1}^{n}f_{k}\in L^{r}(\mu ).}"></span> </p><p><b>Note:</b> For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\in (0,1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\in (0,1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5288506300f757507bfa548872909699085a0b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.704ex; height:2.843ex;" alt="{\displaystyle r\in (0,1),}"></span> contrary to the notation, <span class="texhtml">&#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">.</span>&#x2016;<sub><i>r</i></sub></span> is in general not a norm because it doesn't satisfy the <a href="/wiki/Triangle_inequality" title="Triangle inequality">triangle inequality</a>. </p><p>Proof of the generalization: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>We use Hölder's inequality and <a href="/wiki/Mathematical_induction" title="Mathematical induction">mathematical induction</a>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span> then the result is immediate. Let us now pass from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd0b0f32b28f51962943ee9ede4fb34198a2521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.398ex; height:2.343ex;" alt="{\displaystyle n-1}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e59df02a9f67a5da3c220f1244c99a46cc4eb1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.042ex; height:1.676ex;" alt="{\displaystyle n.}"></span> Without loss of generality assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1}\leq \cdots \leq p_{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1}\leq \cdots \leq p_{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f619c8672cfd882a57e734ae94e59cd6f491c12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:14.268ex; height:2.343ex;" alt="{\displaystyle p_{1}\leq \cdots \leq p_{n}.}"></span> </p><p><b>Case 1:</b> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}=\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}=\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daf5b9855e9b46cbc3c0e361094f011831806e6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.9ex; height:2.009ex;" alt="{\displaystyle p_{n}=\infty }"></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n-1}{\frac {1}{p_{k}}}={\frac {1}{r}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n-1}{\frac {1}{p_{k}}}={\frac {1}{r}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa26c63c3ae69e9032a593ff1ce96673d6bc7e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.58ex; height:7.343ex;" alt="{\displaystyle \sum _{k=1}^{n-1}{\frac {1}{p_{k}}}={\frac {1}{r}}.}"></span></dd></dl> <p>Pulling out the essential supremum of <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>f<sub>n</sub></i></span>&#124;</span> and using the induction hypothesis, we get </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left\|f_{1}\cdots f_{n}\right\|_{r}&amp;\leq \left\|f_{1}\cdots f_{n-1}\right\|_{r}\left\|f_{n}\right\|_{\infty }\\&amp;\leq \left\|f_{1}\right\|_{p_{1}}\cdots \left\|f_{n-1}\right\|_{p_{n-1}}\left\|f_{n}\right\|_{\infty }.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left\|f_{1}\cdots f_{n}\right\|_{r}&amp;\leq \left\|f_{1}\cdots f_{n-1}\right\|_{r}\left\|f_{n}\right\|_{\infty }\\&amp;\leq \left\|f_{1}\right\|_{p_{1}}\cdots \left\|f_{n-1}\right\|_{p_{n-1}}\left\|f_{n}\right\|_{\infty }.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21661cab80fc20e730d44de18bce0663e943375d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:42.821ex; height:6.843ex;" alt="{\displaystyle {\begin{aligned}\left\|f_{1}\cdots f_{n}\right\|_{r}&amp;\leq \left\|f_{1}\cdots f_{n-1}\right\|_{r}\left\|f_{n}\right\|_{\infty }\\&amp;\leq \left\|f_{1}\right\|_{p_{1}}\cdots \left\|f_{n-1}\right\|_{p_{n-1}}\left\|f_{n}\right\|_{\infty }.\end{aligned}}}"></span></dd></dl> <p><b>Case 2:</b> If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{n}&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{n}&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a369f063b2ce3ac6f4cd5ad8fa1f0738ff407a88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.9ex; height:2.176ex;" alt="{\displaystyle p_{n}&lt;\infty }"></span> then necessarily <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r&lt;\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r&lt;\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64446ff4bad5ef2a5517891452e8c091673a340e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.471ex; height:1.843ex;" alt="{\displaystyle r&lt;\infty }"></span> as well, and then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p:={\frac {p_{n}}{p_{n}-r}},\qquad q:={\frac {p_{n}}{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>q</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>r</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p:={\frac {p_{n}}{p_{n}-r}},\qquad q:={\frac {p_{n}}{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13d39a043709de1ec8e418e82a2a4e11b4d973a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-left: -0.089ex; width:25.835ex; height:5.343ex;" alt="{\displaystyle p:={\frac {p_{n}}{p_{n}-r}},\qquad q:={\frac {p_{n}}{r}}}"></span></dd></dl> <p>are Hölder conjugates in <span class="texhtml">(1, ∞)</span>. Application of Hölder's inequality gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\||f_{1}\cdots f_{n-1}|^{r}\,|f_{n}|^{r}\right\|_{1}\leq \left\||f_{1}\cdots f_{n-1}|^{r}\right\|_{p}\,\left\||f_{n}|^{r}\right\|_{q}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\||f_{1}\cdots f_{n-1}|^{r}\,|f_{n}|^{r}\right\|_{1}\leq \left\||f_{1}\cdots f_{n-1}|^{r}\right\|_{p}\,\left\||f_{n}|^{r}\right\|_{q}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cbee98f5837399959b28980575b19ca0a196ca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:48.68ex; height:3.343ex;" alt="{\displaystyle \left\||f_{1}\cdots f_{n-1}|^{r}\,|f_{n}|^{r}\right\|_{1}\leq \left\||f_{1}\cdots f_{n-1}|^{r}\right\|_{p}\,\left\||f_{n}|^{r}\right\|_{q}.}"></span></dd></dl> <p>Raising to the power <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ab96580d23ec5eff6bb0e666531eccb7a8035d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.374ex; height:2.843ex;" alt="{\displaystyle 1/r}"></span> and rewriting, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f_{1}\cdots f_{n}\|_{r}\leq \|f_{1}\cdots f_{n-1}\|_{pr}\|f_{n}\|_{qr}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mi>r</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> <mi>r</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f_{1}\cdots f_{n}\|_{r}\leq \|f_{1}\cdots f_{n-1}\|_{pr}\|f_{n}\|_{qr}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999e6f2240c222cf09d5f9ecf8ba31419654ccb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.78ex; height:3.009ex;" alt="{\displaystyle \|f_{1}\cdots f_{n}\|_{r}\leq \|f_{1}\cdots f_{n-1}\|_{pr}\|f_{n}\|_{qr}.}"></span></dd></dl> <p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qr=p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mi>r</mi> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qr=p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23d32c1f8bce48d47c554fb21b98941fb799fcba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.605ex; height:2.009ex;" alt="{\displaystyle qr=p_{n}}"></span> and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n-1}{\frac {1}{p_{k}}}={\frac {1}{r}}-{\frac {1}{p_{n}}}={\frac {p_{n}-r}{rp_{n}}}={\frac {1}{pr}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mrow> <mrow> <mi>r</mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>p</mi> <mi>r</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n-1}{\frac {1}{p_{k}}}={\frac {1}{r}}-{\frac {1}{p_{n}}}={\frac {p_{n}-r}{rp_{n}}}={\frac {1}{pr}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04eabc8c1eaca29e1e6221187b9be5833945ed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.009ex; height:7.343ex;" alt="{\displaystyle \sum _{k=1}^{n-1}{\frac {1}{p_{k}}}={\frac {1}{r}}-{\frac {1}{p_{n}}}={\frac {p_{n}-r}{rp_{n}}}={\frac {1}{pr}},}"></span></dd></dl> <p>the claimed inequality now follows by using the induction hypothesis. </p> </div> <div class="mw-heading mw-heading3"><h3 id="Interpolation">Interpolation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=18" title="Edit section: Interpolation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>p</i><sub>1</sub>, ..., <i>p</i><sub><i>n</i></sub> ∈</span> <span class="texhtml">(0, ∞&#93;</span> and let <span class="texhtml"><i>θ</i><sub>1</sub>, ..., <i>θ</i><sub><i>n</i></sub> ∈ (0, 1)</span> denote weights with <span class="texhtml"><i>θ</i><sub>1</sub> + ... + <i>θ<sub>n</sub></i> = 1</span>. Define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> as the weighted <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a>, that is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p}}=\sum _{k=1}^{n}{\frac {\theta _{k}}{p_{k}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p}}=\sum _{k=1}^{n}{\frac {\theta _{k}}{p_{k}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/983c48e40d55dc3e861e95fd52e9f3ffd51aaef4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.587ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{p}}=\sum _{k=1}^{n}{\frac {\theta _{k}}{p_{k}}}.}"></span></dd></dl> <p>Given measurable real- or complex-valued functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a585492f646ca803bc408103a0c705dd67ab8b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.509ex;" alt="{\displaystyle f_{k}}"></span> on <span class="texhtml mvar" style="font-style:italic;">S</span>, then the above generalization of Hölder's inequality gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\||f_{1}|^{\theta _{1}}\cdots |f_{n}|^{\theta _{n}}\right\|_{p}\leq \left\||f_{1}|^{\theta _{1}}\right\|_{\frac {p_{1}}{\theta _{1}}}\cdots \left\||f_{n}|^{\theta _{n}}\right\|_{\frac {p_{n}}{\theta _{n}}}=\|f_{1}\|_{p_{1}}^{\theta _{1}}\cdots \|f_{n}\|_{p_{n}}^{\theta _{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\||f_{1}|^{\theta _{1}}\cdots |f_{n}|^{\theta _{n}}\right\|_{p}\leq \left\||f_{1}|^{\theta _{1}}\right\|_{\frac {p_{1}}{\theta _{1}}}\cdots \left\||f_{n}|^{\theta _{n}}\right\|_{\frac {p_{n}}{\theta _{n}}}=\|f_{1}\|_{p_{1}}^{\theta _{1}}\cdots \|f_{n}\|_{p_{n}}^{\theta _{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ebc5bd03e072804a2eb2336122a216334bce537" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:65.583ex; height:5.343ex;" alt="{\displaystyle \left\||f_{1}|^{\theta _{1}}\cdots |f_{n}|^{\theta _{n}}\right\|_{p}\leq \left\||f_{1}|^{\theta _{1}}\right\|_{\frac {p_{1}}{\theta _{1}}}\cdots \left\||f_{n}|^{\theta _{n}}\right\|_{\frac {p_{n}}{\theta _{n}}}=\|f_{1}\|_{p_{1}}^{\theta _{1}}\cdots \|f_{n}\|_{p_{n}}^{\theta _{n}}.}"></span></dd></dl> <p>In particular, taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}=\cdots =f_{n}=:f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=:</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}=\cdots =f_{n}=:f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31d386e9c5bb62e231e89bbcefbc287125486563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.495ex; height:2.509ex;" alt="{\displaystyle f_{1}=\cdots =f_{n}=:f}"></span> gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}\leqslant \prod _{k=1}^{n}\|f\|_{p_{k}}^{\theta _{k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>&#x2A7D;<!-- ⩽ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}\leqslant \prod _{k=1}^{n}\|f\|_{p_{k}}^{\theta _{k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb647d5f845a8a1af0b8735352e3a8e13a77f702" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.287ex; height:6.843ex;" alt="{\displaystyle \|f\|_{p}\leqslant \prod _{k=1}^{n}\|f\|_{p_{k}}^{\theta _{k}}.}"></span></dd></dl> <p>Specifying further <span class="texhtml"><i>θ</i><sub>1</sub> = <i>θ</i></span> and <span class="texhtml"><i>θ</i><sub>2</sub> = 1-<i>θ</i></span>, in the case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=2,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=2,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4014eb4f6564eccaacc683fc9ff882da482c5268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.302ex; height:2.509ex;" alt="{\displaystyle n=2,}"></span> we obtain the <a href="/wiki/Riesz-Thorin_theorem" class="mw-redirect" title="Riesz-Thorin theorem">interpolation</a> result </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Littlewood's inequality</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd99b5990112c07aaf5f8e5a10ea7677f7abae89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.099ex; height:2.843ex;" alt="{\displaystyle \theta \in (0,1)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p_{\theta }}}={\frac {\theta }{p_{1}}}+{\frac {1-\theta }{p_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p_{\theta }}}={\frac {\theta }{p_{1}}}+{\frac {1-\theta }{p_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7e76013155295d9fedb7fc194fe56b6620d67e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.937ex; height:5.843ex;" alt="{\displaystyle {\frac {1}{p_{\theta }}}={\frac {\theta }{p_{1}}}+{\frac {1-\theta }{p_{0}}}}"></span>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p_{\theta }}\leqslant \|f\|_{p_{1}}^{\theta }\cdot \|f\|_{p_{0}}^{1-\theta },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mrow> </msub> <mo>&#x2A7D;<!-- ⩽ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msubsup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p_{\theta }}\leqslant \|f\|_{p_{1}}^{\theta }\cdot \|f\|_{p_{0}}^{1-\theta },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea1f390233d49eddfc3025b921f1a3aebb2432a3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.079ex; height:3.343ex;" alt="{\displaystyle \|f\|_{p_{\theta }}\leqslant \|f\|_{p_{1}}^{\theta }\cdot \|f\|_{p_{0}}^{1-\theta },}"></span> </p> </div> <p>An application of Hölder gives </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1110004140"><div class="math_theorem" style=""> <p><strong class="theorem-name">Lyapunov's inequality</strong><span class="theoreme-tiret">&#160;&#8212;&#160;</span>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=(1-\theta )p_{0}+\theta p_{1},\qquad \theta \in (0,1),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=(1-\theta )p_{0}+\theta p_{1},\qquad \theta \in (0,1),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c04df3e652eb437409af81152244899856cdf510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:35.063ex; height:2.843ex;" alt="{\displaystyle p=(1-\theta )p_{0}+\theta p_{1},\qquad \theta \in (0,1),}"></span> then </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\||f_{0}|^{\frac {p_{0}(1-\theta )}{p}}\cdot |f_{1}|^{\frac {p_{1}\theta }{p}}\right\|_{p}^{p}\leq \|f_{0}\|_{p_{0}}^{p_{0}(1-\theta )}\|f_{1}\|_{p_{1}}^{p_{1}\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> <mi>p</mi> </mfrac> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mi>p</mi> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo>&#x2264;<!-- ≤ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\||f_{0}|^{\frac {p_{0}(1-\theta )}{p}}\cdot |f_{1}|^{\frac {p_{1}\theta }{p}}\right\|_{p}^{p}\leq \|f_{0}\|_{p_{0}}^{p_{0}(1-\theta )}\|f_{1}\|_{p_{1}}^{p_{1}\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc42de5a49da030ecf8a523e9c46b084e1966edb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.953ex; height:6.843ex;" alt="{\displaystyle \left\||f_{0}|^{\frac {p_{0}(1-\theta )}{p}}\cdot |f_{1}|^{\frac {p_{1}\theta }{p}}\right\|_{p}^{p}\leq \|f_{0}\|_{p_{0}}^{p_{0}(1-\theta )}\|f_{1}\|_{p_{1}}^{p_{1}\theta }}"></span> </p><p>and in particular </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}^{p}\leqslant \|f\|_{p_{0}}^{p_{0}(1-\theta )}\cdot \|f\|_{p_{1}}^{p_{1}\theta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo>&#x2A7D;<!-- ⩽ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}^{p}\leqslant \|f\|_{p_{0}}^{p_{0}(1-\theta )}\cdot \|f\|_{p_{1}}^{p_{1}\theta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44f216ff28dd68db70f1ef3bb82e90ce213b175e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.998ex; height:3.676ex;" alt="{\displaystyle \|f\|_{p}^{p}\leqslant \|f\|_{p_{0}}^{p_{0}(1-\theta )}\cdot \|f\|_{p_{1}}^{p_{1}\theta }.}"></span> </p> </div> <p>Both Littlewood and Lyapunov imply that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{p_{0}}\cap L^{p_{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> <mo>&#x2229;<!-- ∩ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{p_{0}}\cap L^{p_{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efd521eb22526fd7caa671370d0ab3702ceeecd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.649ex; height:2.676ex;" alt="{\displaystyle f\in L^{p_{0}}\cap L^{p_{1}}}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L^{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L^{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/886e75c9dd0ab24fb24d63c312fb04110a9b0f75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.761ex; height:2.676ex;" alt="{\displaystyle f\in L^{p}}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{0}&lt;p&lt;p_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&lt;</mo> <mi>p</mi> <mo>&lt;</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{0}&lt;p&lt;p_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c5c7619b7c4369df15c9c0ae90c70474fa85e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:12.55ex; height:2.176ex;" alt="{\displaystyle p_{0}&lt;p&lt;p_{1}.}"></span><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Reverse_Hölder_inequalities"><span id="Reverse_H.C3.B6lder_inequalities"></span>Reverse Hölder inequalities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=19" title="Edit section: Reverse Hölder inequalities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Two_functions">Two functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=20" title="Edit section: Two functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that <span class="texhtml"><i>p</i> ∈ (1, ∞)</span> and that the measure space <span class="texhtml">(<i>S</i>, Σ, <i>μ</i>)</span> satisfies <span class="texhtml"><i>μ</i>(<i>S</i>) &gt; 0</span>. Then for all measurable real- or complex-valued functions <span class="texhtml mvar" style="font-style:italic;">f</span> and <span class="texhtml mvar" style="font-style:italic;">g</span> on <span class="texhtml mvar" style="font-style:italic;">S</span> such that <span class="texhtml"><i>g</i>(<i>s</i>) ≠ 0</span> for <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">μ</span>-almost</span> all <span class="texhtml"><i>s</i> ∈ <i>S</i></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|fg\|_{1}\geqslant \|f\|_{\frac {1}{p}}\,\|g\|_{\frac {-1}{p-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2A7E;<!-- ⩾ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msub> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|fg\|_{1}\geqslant \|f\|_{\frac {1}{p}}\,\|g\|_{\frac {-1}{p-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7dc01196e88d929fed503b7461de77f6e99c17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.135ex; height:4.509ex;" alt="{\displaystyle \|fg\|_{1}\geqslant \|f\|_{\frac {1}{p}}\,\|g\|_{\frac {-1}{p-1}}.}"></span></dd></dl> <p>If </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|fg\|_{1}&lt;\infty \quad {\text{and}}\quad \|g\|_{\frac {-1}{p-1}}&gt;0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msub> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|fg\|_{1}&lt;\infty \quad {\text{and}}\quad \|g\|_{\frac {-1}{p-1}}&gt;0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/342e96f2470023f610f2625a9d6b8120a0041a26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.382ex; height:4.509ex;" alt="{\displaystyle \|fg\|_{1}&lt;\infty \quad {\text{and}}\quad \|g\|_{\frac {-1}{p-1}}&gt;0,}"></span></dd></dl> <p>then the reverse Hölder inequality is an equality if and only if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exists \alpha \geqslant 0\quad |f|=\alpha |g|^{\frac {-p}{p-1}}\qquad \mu {\text{-almost everywhere}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2A7E;<!-- ⩾ --></mo> <mn>0</mn> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msup> <mspace width="2em" /> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>-almost everywhere</mtext> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists \alpha \geqslant 0\quad |f|=\alpha |g|^{\frac {-p}{p-1}}\qquad \mu {\text{-almost everywhere}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd1e46a158b1c3a1ec2ebd133a4e3c5d2e8041c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.533ex; height:4.509ex;" alt="{\displaystyle \exists \alpha \geqslant 0\quad |f|=\alpha |g|^{\frac {-p}{p-1}}\qquad \mu {\text{-almost everywhere}}.}"></span></dd></dl> <p><b>Note:</b> The expressions: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{\frac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{\frac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/228274068d48ff9fcefd9660b87c1d4fb5de4075" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:5.343ex; height:4.176ex;" alt="{\displaystyle \|f\|_{\frac {1}{p}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|g\|_{\frac {-1}{p-1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|g\|_{\frac {-1}{p-1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ad9a0859895fe274520b7194b2c7fe6e083fd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:7.533ex; height:4.509ex;" alt="{\displaystyle \|g\|_{\frac {-1}{p-1}},}"></span> </p><p>are not norms, they are just compact notations for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\int _{S}|f|^{\frac {1}{p}}\,\mathrm {d} \mu \right)^{p}\quad {\text{and}}\quad \left(\int _{S}|g|^{\frac {-1}{p-1}}\,\mathrm {d} \mu \right)^{-(p-1)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>S</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\int _{S}|f|^{\frac {1}{p}}\,\mathrm {d} \mu \right)^{p}\quad {\text{and}}\quad \left(\int _{S}|g|^{\frac {-1}{p-1}}\,\mathrm {d} \mu \right)^{-(p-1)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4658c9a660cffdc3fc81774fc8bc195cb21bf2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:44.932ex; height:6.676ex;" alt="{\displaystyle \left(\int _{S}|f|^{\frac {1}{p}}\,\mathrm {d} \mu \right)^{p}\quad {\text{and}}\quad \left(\int _{S}|g|^{\frac {-1}{p-1}}\,\mathrm {d} \mu \right)^{-(p-1)}.}"></span></dd></dl> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">Proof of the reverse Hölder inequality (hidden, click show to reveal.)</div><div class="hidden-content mw-collapsible-content" style=""> <p>Note that <span class="texhtml mvar" style="font-style:italic;">p</span> and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q:={\frac {p}{p-1}}\in (1,\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>:=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>p</mi> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q:={\frac {p}{p-1}}\in (1,\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bec621fc598ce2171272c47b2430d42745b6f71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:19.993ex; height:5.343ex;" alt="{\displaystyle q:={\frac {p}{p-1}}\in (1,\infty )}"></span></dd></dl> <p>are Hölder conjugates. Application of Hölder's inequality gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left\||f|^{\frac {1}{p}}\right\|_{1}&amp;=\left\||fg|^{\frac {1}{p}}\,|g|^{-{\frac {1}{p}}}\right\|_{1}\\&amp;\leqslant \left\||fg|^{\frac {1}{p}}\right\|_{p}\left\||g|^{-{\frac {1}{p}}}\right\|_{q}\\&amp;=\|fg\|_{1}^{\frac {1}{p}}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{\frac {p-1}{p}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2A7D;<!-- ⩽ --></mo> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msubsup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msubsup> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>p</mi> </mfrac> </mrow> </msubsup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left\||f|^{\frac {1}{p}}\right\|_{1}&amp;=\left\||fg|^{\frac {1}{p}}\,|g|^{-{\frac {1}{p}}}\right\|_{1}\\&amp;\leqslant \left\||fg|^{\frac {1}{p}}\right\|_{p}\left\||g|^{-{\frac {1}{p}}}\right\|_{q}\\&amp;=\|fg\|_{1}^{\frac {1}{p}}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{\frac {p-1}{p}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f295513d7bf9745cde6a2103252a1360cdfb2505" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.671ex; width:29.625ex; height:18.509ex;" alt="{\displaystyle {\begin{aligned}\left\||f|^{\frac {1}{p}}\right\|_{1}&amp;=\left\||fg|^{\frac {1}{p}}\,|g|^{-{\frac {1}{p}}}\right\|_{1}\\&amp;\leqslant \left\||fg|^{\frac {1}{p}}\right\|_{p}\left\||g|^{-{\frac {1}{p}}}\right\|_{q}\\&amp;=\|fg\|_{1}^{\frac {1}{p}}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{\frac {p-1}{p}}\end{aligned}}}"></span></dd></dl> <p>Raising to the power <span class="texhtml mvar" style="font-style:italic;">p</span> gives us: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\||f|^{\frac {1}{p}}\right\|_{1}^{p}\leqslant \|fg\|_{1}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{p-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <mo>&#x2A7D;<!-- ⩽ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\||f|^{\frac {1}{p}}\right\|_{1}^{p}\leqslant \|fg\|_{1}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{p-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf2a6d8036893d80dda0832d25563a96cb6bbf5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.554ex; height:6.509ex;" alt="{\displaystyle \left\||f|^{\frac {1}{p}}\right\|_{1}^{p}\leqslant \|fg\|_{1}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{p-1}.}"></span></dd></dl> <p>Therefore: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\||f|^{\frac {1}{p}}\right\|_{1}^{p}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{-(p-1)}\leqslant \|fg\|_{1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msubsup> <msubsup> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msup> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>&#x2A7D;<!-- ⩽ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\||f|^{\frac {1}{p}}\right\|_{1}^{p}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{-(p-1)}\leqslant \|fg\|_{1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aaa5991672151d674f84dea5988d0ebca5e43b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.112ex; height:6.676ex;" alt="{\displaystyle \left\||f|^{\frac {1}{p}}\right\|_{1}^{p}\left\||g|^{\frac {-1}{p-1}}\right\|_{1}^{-(p-1)}\leqslant \|fg\|_{1}.}"></span></dd></dl> <p>Now we just need to recall our notation. </p> Since <span class="texhtml mvar" style="font-style:italic;">g</span> is not almost everywhere equal to the zero function, we can have equality if and only if there exists a constant <span class="texhtml"><i>α</i> ≥ 0</span> such that <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>fg</i></span>&#124; = <i>α</i>&#8202;&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>g</i></span>&#124;<sup>−<i>q</i>/<i>p</i></sup></span> almost everywhere. Solving for the absolute value of <span class="texhtml mvar" style="font-style:italic;">f</span> gives the claim.</div></div> <div class="mw-heading mw-heading3"><h3 id="Multiple_functions">Multiple functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=21" title="Edit section: Multiple functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Reverse Hölder inequality (above) can be generalized to the case of multiple functions if all but one conjugate is negative. That is, </p> <dl><dd>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},...,p_{m-1}&lt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&lt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},...,p_{m-1}&lt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba03fa0ea969ad69c8dc703f462bfe3b345c7b65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:16.689ex; height:2.509ex;" alt="{\displaystyle p_{1},...,p_{m-1}&lt;0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{m}\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{m}\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/588246bf77f8ee1bd1099fe7a1bb69470dd193db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:7.453ex; height:2.509ex;" alt="{\displaystyle p_{m}\in \mathbb {R} }"></span> be such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{m}{\frac {1}{p_{k}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{m}{\frac {1}{p_{k}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e393f1d704ea87c53244f106052920ff1186897" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.097ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{m}{\frac {1}{p_{k}}}=1}"></span> (hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;p_{m}&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;p_{m}&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b055aca1027891fe9ead2a6e349fa0fcc04193" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.366ex; height:2.509ex;" alt="{\displaystyle 0&lt;p_{m}&lt;1}"></span>). Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a585492f646ca803bc408103a0c705dd67ab8b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.228ex; height:2.509ex;" alt="{\displaystyle f_{k}}"></span> be measurable functions for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=1,...,m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=1,...,m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a881a5e7b0fe567adb437c393c019bc0afbaccf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.682ex; height:2.509ex;" alt="{\displaystyle k=1,...,m}"></span>. Then</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\prod _{k=1}^{m}f_{k}\right\|_{1}\geq \prod _{k=1}^{m}\left\|f_{k}\right\|_{p_{k}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mrow> <mo symmetric="true">&#x2016;</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\prod _{k=1}^{m}f_{k}\right\|_{1}\geq \prod _{k=1}^{m}\left\|f_{k}\right\|_{p_{k}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71e058491baab5a169f3d4c522af0010a9b78d81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:22.537ex; height:7.343ex;" alt="{\displaystyle \left\|\prod _{k=1}^{m}f_{k}\right\|_{1}\geq \prod _{k=1}^{m}\left\|f_{k}\right\|_{p_{k}}.}"></span></dd></dl> <p>This follows from the symmetric form of the Hölder inequality (see below). </p> <div class="mw-heading mw-heading2"><h2 id="Symmetric_forms_of_Hölder_inequality"><span id="Symmetric_forms_of_H.C3.B6lder_inequality"></span>Symmetric forms of Hölder inequality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=22" title="Edit section: Symmetric forms of Hölder inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It was observed by <a href="/wiki/J%C3%A1nos_Acz%C3%A9l_(mathematician)" title="János Aczél (mathematician)">Aczél</a> and <a href="/wiki/Edwin_F._Beckenbach" title="Edwin F. Beckenbach">Beckenbach</a><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> that Hölder's inequality can be put in a more symmetric form, at the price of introducing an extra vector (or function): </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f=(f(1),\dots ,f(m)),g=(g(1),\dots ,g(m)),h=(h(1),\dots ,h(m))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mi>g</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mi>h</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f=(f(1),\dots ,f(m)),g=(g(1),\dots ,g(m)),h=(h(1),\dots ,h(m))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18b9aaa528132a42f21f1291d11c71bcc6d230ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.991ex; height:2.843ex;" alt="{\displaystyle f=(f(1),\dots ,f(m)),g=(g(1),\dots ,g(m)),h=(h(1),\dots ,h(m))}"></span> be vectors with positive entries and such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(i)g(i)h(i)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(i)g(i)h(i)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28edfee109dfbec83333940e5e9ebf88020fc095" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.83ex; height:2.843ex;" alt="{\displaystyle f(i)g(i)h(i)=1}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q,r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q,r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04bd013a2bae7bf9b04fbf84a70479a2af3bf278" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.445ex; height:2.009ex;" alt="{\displaystyle p,q,r}"></span> are nonzero real numbers such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}+{\frac {1}{r}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>r</mi> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}+{\frac {1}{r}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c916a5ad930f2e981afab95a6cc5013814dd9761" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:15.944ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}+{\frac {1}{r}}=0}"></span>, then: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}\|g\|_{q}\|h\|_{r}\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>h</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}\|g\|_{q}\|h\|_{r}\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d0fd232051f1f7674df9129e1e5b9f16764f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.991ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}\|g\|_{q}\|h\|_{r}\geq 1}"></span> if all but one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q,r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q,r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04bd013a2bae7bf9b04fbf84a70479a2af3bf278" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.445ex; height:2.009ex;" alt="{\displaystyle p,q,r}"></span> are positive;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f\|_{p}\|g\|_{q}\|h\|_{r}\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>f</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>h</mi> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f\|_{p}\|g\|_{q}\|h\|_{r}\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e20e6b6a14657041ba7c39fc7687d5c18a81f75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.991ex; height:3.009ex;" alt="{\displaystyle \|f\|_{p}\|g\|_{q}\|h\|_{r}\leq 1}"></span> if all but one of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q,r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q,r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04bd013a2bae7bf9b04fbf84a70479a2af3bf278" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.445ex; height:2.009ex;" alt="{\displaystyle p,q,r}"></span> are negative.</li></ul> <p>The standard Hölder inequality follows immediately from this symmetric form (and in fact is easily seen to be equivalent to it). The symmetric statement also implies the reverse Hölder inequality (see above). </p><p>The result can be extended to multiple vectors: </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1},\dots ,f_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1},\dots ,f_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ffaca6f126cfa337cfae1e0550e95362483dd5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.729ex; height:2.509ex;" alt="{\displaystyle f_{1},\dots ,f_{n}}"></span> be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> vectors in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a87a024931038d1858dc22e8a194e5978c3412e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.353ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{m}}"></span> with positive entries and such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{1}(i)\dots f_{n}(i)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>&#x2026;<!-- … --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{1}(i)\dots f_{n}(i)=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5c2b5ffd169b00edcc8b2c015b758179939d26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.533ex; height:2.843ex;" alt="{\displaystyle f_{1}(i)\dots f_{n}(i)=1}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},\dots ,p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},\dots ,p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a90efd8373125c90affd49557696138859c165a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:9.879ex; height:2.009ex;" alt="{\displaystyle p_{1},\dots ,p_{n}}"></span> are nonzero real numbers such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p_{1}}}+\dots +{\frac {1}{p_{n}}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p_{1}}}+\dots +{\frac {1}{p_{n}}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82930a0a84e9f889584eee1a7f41f0d515c4e73c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.949ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{p_{1}}}+\dots +{\frac {1}{p_{n}}}=0}"></span>, then: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f_{1}\|_{p_{1}}\dots \|f_{n}\|_{p_{n}}\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f_{1}\|_{p_{1}}\dots \|f_{n}\|_{p_{n}}\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2e272918c4b9e90d4ecdc7e49d4c3280d95b69f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.874ex; height:3.009ex;" alt="{\displaystyle \|f_{1}\|_{p_{1}}\dots \|f_{n}\|_{p_{n}}\geq 1}"></span> if all but one of the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bab39399bf5424f25d957cdc57c84a0622626d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.059ex; height:2.009ex;" alt="{\displaystyle p_{i}}"></span> are positive;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|f_{1}\|_{p_{1}}\dots \|f_{n}\|_{p_{n}}\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|f_{1}\|_{p_{1}}\dots \|f_{n}\|_{p_{n}}\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3193d1acad116dfd87930fbdaa65c6a19153fcde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.874ex; height:3.009ex;" alt="{\displaystyle \|f_{1}\|_{p_{1}}\dots \|f_{n}\|_{p_{n}}\leq 1}"></span> if all but one of the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bab39399bf5424f25d957cdc57c84a0622626d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.059ex; height:2.009ex;" alt="{\displaystyle p_{i}}"></span> are negative.</li></ul> <p>As in the standard Hölder inequalities, there are corresponding statements for infinite sums and integrals. </p> <div class="mw-heading mw-heading2"><h2 id="Conditional_Hölder_inequality"><span id="Conditional_H.C3.B6lder_inequality"></span>Conditional Hölder inequality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=23" title="Edit section: Conditional Hölder inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml">(Ω, <span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1053af9e662ceaf56c4455f90e0f67273422eded" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.42ex; height:2.176ex;" alt="{\displaystyle \mathbb {P} }"></span>)</span> be a probability space, <span class="texhtml"><span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">G</span> ⊂ <span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, &#39;Tex Gyre Chorus&#39;, cursive, serif;">F</span></span> a <span class="nowrap">sub-<a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a></span>, and <span class="texhtml"><i>p</i>, <i>q</i> ∈</span> <span class="texhtml">(1, ∞)</span> Hölder conjugates, meaning that <span class="texhtml">1/<i>p</i> + 1/<i>q</i> = 1</span>. Then for all real- or complex-valued random variables <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> on&#160;<span class="texhtml">Ω</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}\leq {\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}}\,{\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}\qquad \mathbb {P} {\text{-almost surely.}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>-almost surely.</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}\leq {\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}}\,{\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}\qquad \mathbb {P} {\text{-almost surely.}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6089e918b0a4facc49f7cedbf332e697a1628b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:63.227ex; height:4.343ex;" alt="{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}\leq {\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}}\,{\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}\qquad \mathbb {P} {\text{-almost surely.}}}"></span></dd></dl> <p><b>Remarks:</b> </p> <ul><li>If a non-negative random variable <span class="texhtml mvar" style="font-style:italic;">Z</span> has infinite <a href="/wiki/Expected_value" title="Expected value">expected value</a>, then its <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditional expectation</a> is defined by</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} [Z|{\mathcal {G}}]=\sup _{n\in \mathbb {N} }\,\mathbb {E} [\min\{Z,n\}|{\mathcal {G}}]\quad {\text{a.s.}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mo stretchy="false">[</mo> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">sup</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mrow> </munder> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mo stretchy="false">[</mo> <mo movablelimits="true" form="prefix">min</mo> <mo fence="false" stretchy="false">{</mo> <mi>Z</mi> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo stretchy="false">]</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>a.s.</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} [Z|{\mathcal {G}}]=\sup _{n\in \mathbb {N} }\,\mathbb {E} [\min\{Z,n\}|{\mathcal {G}}]\quad {\text{a.s.}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4a4a866e15be4bdc2156438f9cf3d1a5db57683" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:34.825ex; height:4.509ex;" alt="{\displaystyle \mathbb {E} [Z|{\mathcal {G}}]=\sup _{n\in \mathbb {N} }\,\mathbb {E} [\min\{Z,n\}|{\mathcal {G}}]\quad {\text{a.s.}}}"></span></dd></dl></dd></dl> <ul><li>On the right-hand side of the conditional Hölder inequality, 0 times ∞ as well as ∞ times 0 means&#160;0. Multiplying <span class="texhtml"><i>a</i> &gt; 0</span> with ∞ gives&#160;∞.</li></ul> <p>Proof of the conditional Hölder inequality: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1174254338"><div class="math_proof" style=""><strong>Proof</strong> <p>Define the random variables </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U={\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}},\qquad V={\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mo>,</mo> <mspace width="2em" /> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U={\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}},\qquad V={\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e9e39640f4dc158a566bee7b5696f5140631f0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.401ex; height:4.343ex;" alt="{\displaystyle U={\bigl (}\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{p}},\qquad V={\bigl (}\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}{\bigr )}^{\frac {1}{q}}}"></span></dd></dl> <p>and note that they are measurable with respect to the <span class="nowrap">sub-σ-algebra</span>. Since </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} {\bigl [}|X|^{p}1_{\{U=0\}}{\bigr ]}=\mathbb {E} {\bigl [}1_{\{U=0\}}\underbrace {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}} _{=\,U^{p}}{\bigr ]}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>U</mi> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo fence="false" stretchy="false">{</mo> <mi>U</mi> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> <mspace width="thinmathspace" /> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} {\bigl [}|X|^{p}1_{\{U=0\}}{\bigr ]}=\mathbb {E} {\bigl [}1_{\{U=0\}}\underbrace {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}} _{=\,U^{p}}{\bigr ]}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69905a3f486cbf984d99a2f968dcaf08195f637e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:42.367ex; height:6.843ex;" alt="{\displaystyle \mathbb {E} {\bigl [}|X|^{p}1_{\{U=0\}}{\bigr ]}=\mathbb {E} {\bigl [}1_{\{U=0\}}\underbrace {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}} _{=\,U^{p}}{\bigr ]}=0,}"></span></dd></dl> <p>it follows that <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>X</i></span>&#124; = 0</span> a.s. on the set <span class="texhtml">{<i>U</i> = 0}</span>. Similarly, <span class="texhtml">&#124;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>Y</i></span>&#124; = 0</span> a.s. on the set <span class="texhtml">{<i>V</i> = 0}</span>, hence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}=0\qquad {\text{a.s. on }}\{U=0\}\cup \{V=0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>a.s. on&#xA0;</mtext> </mrow> <mo fence="false" stretchy="false">{</mo> <mi>U</mi> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>V</mi> <mo>=</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}=0\qquad {\text{a.s. on }}\{U=0\}\cup \{V=0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e863f914e038ef3ab57ac04eaae91d3ff6da6550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.182ex; height:3.176ex;" alt="{\displaystyle \mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}=0\qquad {\text{a.s. on }}\{U=0\}\cup \{V=0\}}"></span></dd></dl> <p>and the conditional Hölder inequality holds on this set. On the set </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{U=\infty ,V&gt;0\}\cup \{U&gt;0,V=\infty \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>U</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mi>V</mi> <mo>&gt;</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo>&#x222A;<!-- ∪ --></mo> <mo fence="false" stretchy="false">{</mo> <mi>U</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mi>V</mi> <mo>=</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{U=\infty ,V&gt;0\}\cup \{U&gt;0,V=\infty \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff7679c44f7822bc830d4f15a3b76af339302f28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.806ex; height:2.843ex;" alt="{\displaystyle \{U=\infty ,V&gt;0\}\cup \{U&gt;0,V=\infty \}}"></span></dd></dl> <p>the right-hand side is infinite and the conditional Hölder inequality holds, too. Dividing by the right-hand side, it therefore remains to show that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}\leq 1\qquad {\text{a.s. on the set }}H:=\{0&lt;U&lt;\infty ,\,0&lt;V&lt;\infty \}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <mrow> <mi>U</mi> <mi>V</mi> </mrow> </mfrac> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mn>1</mn> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>a.s. on the set&#xA0;</mtext> </mrow> <mi>H</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>&lt;</mo> <mi>U</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mn>0</mn> <mo>&lt;</mo> <mi>V</mi> <mo>&lt;</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}\leq 1\qquad {\text{a.s. on the set }}H:=\{0&lt;U&lt;\infty ,\,0&lt;V&lt;\infty \}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/456a39a139248e5750c23688a36b7b3aeb750aff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:68.076ex; height:6.176ex;" alt="{\displaystyle {\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}\leq 1\qquad {\text{a.s. on the set }}H:=\{0&lt;U&lt;\infty ,\,0&lt;V&lt;\infty \}.}"></span></dd></dl> <p>This is done by verifying that the inequality holds after integration over an arbitrary </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\in {\mathcal {G}},\quad G\subset H.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>G</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>H</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\in {\mathcal {G}},\quad G\subset H.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/943100890264e29b86fe4dbbd4e22b4f94a4f782" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.052ex; height:2.509ex;" alt="{\displaystyle G\in {\mathcal {G}},\quad G\subset H.}"></span></dd></dl> <p>Using the measurability of <span class="texhtml mvar" style="font-style:italic;">U, V, 1<sub><i>G</i></sub></span> with respect to the <span class="nowrap">sub-σ-algebra</span>, the rules for conditional expectations, Hölder's inequality and <span class="texhtml">1/<i>p</i> + 1/<i>q</i> = 1</span>, we see that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbb {E} {\biggl [}{\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}1_{G}{\biggr ]}&amp;=\mathbb {E} {\biggl [}\mathbb {E} {\biggl [}{\frac {|XY|}{UV}}1_{G}{\bigg |}\,{\mathcal {G}}{\biggr ]}{\biggr ]}\\&amp;=\mathbb {E} {\biggl [}{\frac {|X|}{U}}1_{G}\cdot {\frac {|Y|}{V}}1_{G}{\biggr ]}\\&amp;\leq {\biggl (}\mathbb {E} {\biggl [}{\frac {|X|^{p}}{U^{p}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}{\frac {|Y|^{q}}{V^{q}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&amp;={\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}}{U^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}}{V^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&amp;=\mathbb {E} {\bigl [}1_{G}{\bigr ]}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <mrow> <mi>U</mi> <mi>V</mi> </mrow> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mi>U</mi> <mi>V</mi> </mrow> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.047em" minsize="2.047em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mi>U</mi> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mi>V</mi> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mrow> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mfrac> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;a.s. on&#xA0;</mtext> </mrow> <mi>G</mi> </mrow> </munder> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">[</mo> </mrow> </mrow> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>Y</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em">|</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">G</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mrow> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> </mfrac> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>=</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;a.s. on&#xA0;</mtext> </mrow> <mi>G</mi> </mrow> </munder> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">]</mo> </mrow> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>G</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbb {E} {\biggl [}{\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}1_{G}{\biggr ]}&amp;=\mathbb {E} {\biggl [}\mathbb {E} {\biggl [}{\frac {|XY|}{UV}}1_{G}{\bigg |}\,{\mathcal {G}}{\biggr ]}{\biggr ]}\\&amp;=\mathbb {E} {\biggl [}{\frac {|X|}{U}}1_{G}\cdot {\frac {|Y|}{V}}1_{G}{\biggr ]}\\&amp;\leq {\biggl (}\mathbb {E} {\biggl [}{\frac {|X|^{p}}{U^{p}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}{\frac {|Y|^{q}}{V^{q}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&amp;={\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}}{U^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}}{V^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&amp;=\mathbb {E} {\bigl [}1_{G}{\bigr ]}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82ea3e2364949d7450d60a5bb32972aadc0db999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -16.671ex; width:67.935ex; height:34.509ex;" alt="{\displaystyle {\begin{aligned}\mathbb {E} {\biggl [}{\frac {\mathbb {E} {\bigl [}|XY|{\big |}\,{\mathcal {G}}{\bigr ]}}{UV}}1_{G}{\biggr ]}&amp;=\mathbb {E} {\biggl [}\mathbb {E} {\biggl [}{\frac {|XY|}{UV}}1_{G}{\bigg |}\,{\mathcal {G}}{\biggr ]}{\biggr ]}\\&amp;=\mathbb {E} {\biggl [}{\frac {|X|}{U}}1_{G}\cdot {\frac {|Y|}{V}}1_{G}{\biggr ]}\\&amp;\leq {\biggl (}\mathbb {E} {\biggl [}{\frac {|X|^{p}}{U^{p}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}{\frac {|Y|^{q}}{V^{q}}}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&amp;={\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|X|^{p}{\big |}\,{\mathcal {G}}{\bigr ]}}{U^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{p}}{\biggl (}\mathbb {E} {\biggl [}\underbrace {\frac {\mathbb {E} {\bigl [}|Y|^{q}{\big |}\,{\mathcal {G}}{\bigr ]}}{V^{p}}} _{=\,1{\text{ a.s. on }}G}1_{G}{\biggr ]}{\biggr )}^{\frac {1}{q}}\\&amp;=\mathbb {E} {\bigl [}1_{G}{\bigr ]}.\end{aligned}}}"></span></dd></dl> </div> <div class="mw-heading mw-heading2"><h2 id="Hölder's_inequality_for_increasing_seminorms"><span id="H.C3.B6lder.27s_inequality_for_increasing_seminorms"></span>Hölder's inequality for increasing seminorms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=24" title="Edit section: Hölder&#039;s inequality for increasing seminorms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">S</span> be a set and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(S,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(S,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af98c3836b470981ca93830e74a252192a875ce6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.761ex; height:2.843ex;" alt="{\displaystyle F(S,\mathbb {C} )}"></span> be the space of all complex-valued functions on <span class="texhtml mvar" style="font-style:italic;">S</span>. Let <span class="texhtml mvar" style="font-style:italic;">N</span> be an increasing <a href="/wiki/Seminorm" title="Seminorm">seminorm</a> on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(S,\mathbb {C} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(S,\mathbb {C} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd68c466f8c0bfd98060a635b8f051d56bfc6c96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.408ex; height:2.843ex;" alt="{\displaystyle F(S,\mathbb {C} ),}"></span> meaning that, for all real-valued functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g\in F(S,\mathbb {C} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g\in F(S,\mathbb {C} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d74d481d6da431bd48c7129cd46fabbe1e59d57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.031ex; height:2.843ex;" alt="{\displaystyle f,g\in F(S,\mathbb {C} )}"></span> we have the following implication (the seminorm is also allowed to attain the value ∞): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall s\in S\quad f(s)\geqslant g(s)\geqslant 0\qquad \Rightarrow \qquad N(f)\geqslant N(g).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>s</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> <mspace width="1em" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2A7E;<!-- ⩾ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2A7E;<!-- ⩾ --></mo> <mn>0</mn> <mspace width="2em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="2em" /> <mi>N</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>&#x2A7E;<!-- ⩾ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall s\in S\quad f(s)\geqslant g(s)\geqslant 0\qquad \Rightarrow \qquad N(f)\geqslant N(g).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6d938d26ac12d5f938f31c2cdf0ca49127d92be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.389ex; height:2.843ex;" alt="{\displaystyle \forall s\in S\quad f(s)\geqslant g(s)\geqslant 0\qquad \Rightarrow \qquad N(f)\geqslant N(g).}"></span></dd></dl> <p>Then: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall f,g\in F(S,\mathbb {C} )\qquad N(|fg|)\leqslant {\bigl (}N(|f|^{p}){\bigr )}^{\frac {1}{p}}{\bigl (}N(|g|^{q}){\bigr )}^{\frac {1}{q}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo stretchy="false">)</mo> <mspace width="2em" /> <mi>N</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>&#x2A7D;<!-- ⩽ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>N</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> </mrow> <mi>N</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>g</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>q</mi> </mfrac> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall f,g\in F(S,\mathbb {C} )\qquad N(|fg|)\leqslant {\bigl (}N(|f|^{p}){\bigr )}^{\frac {1}{p}}{\bigl (}N(|g|^{q}){\bigr )}^{\frac {1}{q}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffad3de394c08dabc683f963d49f60c9022e9768" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:53.785ex; height:4.343ex;" alt="{\displaystyle \forall f,g\in F(S,\mathbb {C} )\qquad N(|fg|)\leqslant {\bigl (}N(|f|^{p}){\bigr )}^{\frac {1}{p}}{\bigl (}N(|g|^{q}){\bigr )}^{\frac {1}{q}},}"></span></dd></dl> <p>where the numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are Hölder conjugates.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p><b>Remark:</b> If <span class="texhtml">(<i>S</i>, Σ, <i>μ</i>)</span> is a <a href="/wiki/Measure_space" title="Measure space">measure space</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N(f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N(f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b194d5f5224286392d8ba0e3311170b3ed502c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.152ex; height:2.843ex;" alt="{\displaystyle N(f)}"></span> is the upper Lebesgue integral of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940e58aa437f429f47fd743a819e41fedaa1ff9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.572ex; height:2.843ex;" alt="{\displaystyle |f|}"></span> then the restriction of <span class="texhtml mvar" style="font-style:italic;">N</span> to all <span class="nowrap"><span class="texhtml">Σ</span>-measurable</span> functions gives the usual version of Hölder's inequality. </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Distances_based_on_Hölder_inequality"><span id="Distances_based_on_H.C3.B6lder_inequality"></span>Distances based on Hölder inequality</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=25" title="Edit section: Distances based on Hölder inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Hölder inequality can be used to define statistical dissimilarity measures<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> between probability distributions. Those Hölder divergences are projective: They do not depend on the normalization factor of densities. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=26" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz inequality</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a></li> <li><a href="/wiki/Jensen%27s_inequality" title="Jensen&#39;s inequality">Jensen's inequality</a></li> <li><a href="/wiki/Young%27s_inequality_for_products" title="Young&#39;s inequality for products">Young's inequality for products</a></li> <li><a href="/wiki/Clarkson%27s_inequalities" title="Clarkson&#39;s inequalities">Clarkson's inequalities</a></li> <li><a href="/wiki/Brascamp%E2%80%93Lieb_inequality" title="Brascamp–Lieb inequality">Brascamp–Lieb inequality</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=27" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFRoman2008">Roman 2008</a>, p. 303 §12</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMaligranda1998" class="citation cs2">Maligranda, Lech (1998), "Why Hölder's inequality should be called Rogers' inequality", <i>Mathematical Inequalities &amp; Applications</i>, <b>1</b> (1): 69–83, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.7153%2Fmia-01-05">10.7153/mia-01-05</a></span>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1492911">1492911</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Inequalities+%26+Applications&amp;rft.atitle=Why+H%C3%B6lder%27s+inequality+should+be+called+Rogers%27+inequality&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=69-83&amp;rft.date=1998&amp;rft_id=info%3Adoi%2F10.7153%2Fmia-01-05&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1492911%23id-name%3DMR&amp;rft.aulast=Maligranda&amp;rft.aufirst=Lech&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuessabSchmeisser2013" class="citation cs2">Guessab, A.; Schmeisser, G. (2013), "Necessary and sufficient conditions for the validity of Jensen's inequality", <i>Archiv der Mathematik</i>, <b>100</b> (6): 561–570, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00013-013-0522-3">10.1007/s00013-013-0522-3</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3069109">3069109</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253600514">253600514</a>, <q>under the additional assumption that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ''}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2033;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ''}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce142194a489f1fcf6249b52ca9a3bd79bafa289" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.657ex; height:3.009ex;" alt="{\displaystyle \varphi &#039;&#039;}"></span> exists, this inequality was already obtained by Hölder in 1889</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Archiv+der+Mathematik&amp;rft.atitle=Necessary+and+sufficient+conditions+for+the+validity+of+Jensen%27s+inequality&amp;rft.volume=100&amp;rft.issue=6&amp;rft.pages=561-570&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3069109%23id-name%3DMR&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253600514%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00013-013-0522-3&amp;rft.aulast=Guessab&amp;rft.aufirst=A.&amp;rft.au=Schmeisser%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWojtaszczyk1991" class="citation book cs1">Wojtaszczyk, P. (1991). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/books/banach-spaces-for-analysts/7647AD5BB01A5ABBC96789F74DDE8A2F"><i>Banach Spaces for Analysts</i></a>. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-56675-9" title="Special:BookSources/978-0-521-56675-9"><bdi>978-0-521-56675-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Banach+Spaces+for+Analysts&amp;rft.place=Cambridge&amp;rft.series=Cambridge+Studies+in+Advanced+Mathematics&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1991&amp;rft.isbn=978-0-521-56675-9&amp;rft.aulast=Wojtaszczyk&amp;rft.aufirst=P.&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Fbanach-spaces-for-analysts%2F7647AD5BB01A5ABBC96789F74DDE8A2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeckenbach1980" class="citation book cs1">Beckenbach, E. F. (1980). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-3-0348-6324-7"><i>General inequalities 2</i></a>. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique. Vol.&#160;47. Birkhäuser Basel. pp.&#160;145–150. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-0348-6324-7">10.1007/978-3-0348-6324-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-7643-1056-1" title="Special:BookSources/978-3-7643-1056-1"><bdi>978-3-7643-1056-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+inequalities+2&amp;rft.series=International+Series+of+Numerical+Mathematics+%2F+Internationale+Schriftenreihe+zur+Numerischen+Mathematik+%2F+S%C3%A9rie+Internationale+d%27Analyse+Num%C3%A9rique&amp;rft.pages=145-150&amp;rft.pub=Birkh%C3%A4user+Basel&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-0348-6324-7&amp;rft.isbn=978-3-7643-1056-1&amp;rft.aulast=Beckenbach&amp;rft.aufirst=E.+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F978-3-0348-6324-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">For a proof see (<a href="#CITEREFTrèves1967">Trèves 1967</a>, Lemma&#160;20.1, pp.&#160;205–206).</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenSunMarchand-Maillet2017" class="citation journal cs1">Nielsen, Frank; Sun, Ke; Marchand-Maillet, Stephane (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fe19030122">"On Hölder projective divergences"</a>. <i>Entropy</i>. <b>3</b> (19): 122. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1701.03916">1701.03916</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Entrp..19..122N">2017Entrp..19..122N</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fe19030122">10.3390/e19030122</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Entropy&amp;rft.atitle=On+H%C3%B6lder+projective+divergences&amp;rft.volume=3&amp;rft.issue=19&amp;rft.pages=122&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1701.03916&amp;rft_id=info%3Adoi%2F10.3390%2Fe19030122&amp;rft_id=info%3Abibcode%2F2017Entrp..19..122N&amp;rft.aulast=Nielsen&amp;rft.aufirst=Frank&amp;rft.au=Sun%2C+Ke&amp;rft.au=Marchand-Maillet%2C+Stephane&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fe19030122&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=28" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrinshpan2010" class="citation cs2">Grinshpan, A. Z. (2010), "Weighted inequalities and negative binomials", <i>Advances in Applied Mathematics</i>, <b>45</b> (4): 564–606, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.aam.2010.04.004">10.1016/j.aam.2010.04.004</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Applied+Mathematics&amp;rft.atitle=Weighted+inequalities+and+negative+binomials&amp;rft.volume=45&amp;rft.issue=4&amp;rft.pages=564-606&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1016%2Fj.aam.2010.04.004&amp;rft.aulast=Grinshpan&amp;rft.aufirst=A.+Z.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardyLittlewoodPólya1934" class="citation cs2"><a href="/wiki/Godfrey_Harold_Hardy" class="mw-redirect" title="Godfrey Harold Hardy">Hardy, G. H.</a>; <a href="/wiki/John_Edensor_Littlewood" title="John Edensor Littlewood">Littlewood, J. E.</a>; <a href="/wiki/George_P%C3%B3lya" title="George Pólya">Pólya, G.</a> (1934), <i>Inequalities</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, pp.&#160;XII+314, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-521-35880-9" title="Special:BookSources/0-521-35880-9"><bdi>0-521-35880-9</bdi></a>, <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:60.0169.01">60.0169.01</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0010.10703">0010.10703</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Inequalities&amp;rft.pages=XII%2B314&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1934&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0010.10703%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A60.0169.01%23id-name%3DJFM&amp;rft.isbn=0-521-35880-9&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft.au=Littlewood%2C+J.+E.&amp;rft.au=P%C3%B3lya%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHölder1889" class="citation cs2 cs1-prop-foreign-lang-source"><a href="/wiki/Otto_H%C3%B6lder" title="Otto Hölder">Hölder, O.</a> (1889), <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?GDZPPN00252421X">"Ueber einen Mittelwertsatz"</a>, <i>Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen</i>, Band (in German), <b>1889</b> (2): 38–47, <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:21.0260.07">21.0260.07</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nachrichten+von+der+K%C3%B6nigl.+Gesellschaft+der+Wissenschaften+und+der+Georg-Augusts-Universit%C3%A4t+zu+G%C3%B6ttingen&amp;rft.atitle=Ueber+einen+Mittelwertsatz&amp;rft.volume=1889&amp;rft.issue=2&amp;rft.pages=38-47&amp;rft.date=1889&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A21.0260.07%23id-name%3DJFM&amp;rft.aulast=H%C3%B6lder&amp;rft.aufirst=O.&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FGDZPPN00252421X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>. Available at <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090908025223/http://www.digizeitschriften.de/index.php?id=64&amp;L=2">Digi Zeitschriften</a>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuptsov2001" class="citation cs2">Kuptsov, L. P. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Hölder_inequality">"Hölder inequality"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=H%C3%B6lder+inequality&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft.aulast=Kuptsov&amp;rft.aufirst=L.+P.&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DH%C3%B6lder_inequality&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNariciBeckenstein2011" class="citation book cs1">Narici, Lawrence; Beckenstein, Edward (2011). <i>Topological Vector Spaces</i>. Pure and applied mathematics (Second&#160;ed.). Boca Raton, FL: CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1584888666" title="Special:BookSources/978-1584888666"><bdi>978-1584888666</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/144216834">144216834</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces&amp;rft.place=Boca+Raton%2C+FL&amp;rft.series=Pure+and+applied+mathematics&amp;rft.edition=Second&amp;rft.pub=CRC+Press&amp;rft.date=2011&amp;rft_id=info%3Aoclcnum%2F144216834&amp;rft.isbn=978-1584888666&amp;rft.aulast=Narici&amp;rft.aufirst=Lawrence&amp;rft.au=Beckenstein%2C+Edward&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRogers1888" class="citation cs2"><a href="/wiki/Leonard_James_Rogers" title="Leonard James Rogers">Rogers, L. J.</a> (February 1888), <a rel="nofollow" class="external text" href="https://archive.org/stream/messengermathem01unkngoog#page/n183/mode/1up">"An extension of a certain theorem in inequalities"</a>, <i><a href="/wiki/Messenger_of_Mathematics" title="Messenger of Mathematics">Messenger of Mathematics</a></i>, New Series, <b>XVII</b> (10): 145–150, <a href="/wiki/JFM_(identifier)" class="mw-redirect" title="JFM (identifier)">JFM</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:20.0254.02">20.0254.02</a>, archived from <a rel="nofollow" class="external text" href="https://archive.org/details/messengermathem01unkngoog">the original</a> on August 21, 2007</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Messenger+of+Mathematics&amp;rft.atitle=An+extension+of+a+certain+theorem+in+inequalities&amp;rft.volume=XVII&amp;rft.issue=10&amp;rft.pages=145-150&amp;rft.date=1888-02&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A20.0254.02%23id-name%3DJFM&amp;rft.aulast=Rogers&amp;rft.aufirst=L.+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmessengermathem01unkngoog&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoman2008" class="citation cs2"><a href="/wiki/Steven_Roman" title="Steven Roman">Roman, Stephen</a> (2008), <i>Advanced Linear Algebra</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a> (Third&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-72828-5" title="Special:BookSources/978-0-387-72828-5"><bdi>978-0-387-72828-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Linear+Algebra&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=Third&amp;rft.pub=Springer&amp;rft.date=2008&amp;rft.isbn=978-0-387-72828-5&amp;rft.aulast=Roman&amp;rft.aufirst=Stephen&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrèves1967" class="citation cs2">Trèves, François (1967), <i>Topological Vector Spaces, Distributions and Kernels</i>, Pure and Applied Mathematics. A Series of Monographs and Textbooks, vol.&#160;25, New York, London: Academic Press, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0225131">0225131</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0171.10402">0171.10402</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces%2C+Distributions+and+Kernels&amp;rft.place=New+York%2C+London&amp;rft.series=Pure+and+Applied+Mathematics.+A+Series+of+Monographs+and+Textbooks&amp;rft.pub=Academic+Press&amp;rft.date=1967&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0171.10402%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0225131%23id-name%3DMR&amp;rft.aulast=Tr%C3%A8ves&amp;rft.aufirst=Fran%C3%A7ois&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrèves2006" class="citation book cs1"><a href="/wiki/Fran%C3%A7ois_Tr%C3%A8ves" title="François Trèves">Trèves, François</a> (2006) [1967]. <i>Topological Vector Spaces, Distributions and Kernels</i>. Mineola, N.Y.: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-45352-1" title="Special:BookSources/978-0-486-45352-1"><bdi>978-0-486-45352-1</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/853623322">853623322</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Topological+Vector+Spaces%2C+Distributions+and+Kernels&amp;rft.place=Mineola%2C+N.Y.&amp;rft.pub=Dover+Publications&amp;rft.date=2006&amp;rft_id=info%3Aoclcnum%2F853623322&amp;rft.isbn=978-0-486-45352-1&amp;rft.aulast=Tr%C3%A8ves&amp;rft.aufirst=Fran%C3%A7ois&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=H%C3%B6lder%27s_inequality&amp;action=edit&amp;section=29" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChen2014" class="citation cs2">Chen, Evan (2014), <a rel="nofollow" class="external text" href="https://web.evanchen.cc/handouts/Ineq/en.pdf"><i>A Brief Introduction to Olympiad Inequalities</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Brief+Introduction+to+Olympiad+Inequalities&amp;rft.date=2014&amp;rft.aulast=Chen&amp;rft.aufirst=Evan&amp;rft_id=https%3A%2F%2Fweb.evanchen.cc%2Fhandouts%2FIneq%2Fen.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuttler2007" class="citation cs2">Kuttler, Kenneth (2007), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080807175104/http://www.math.byu.edu/~klkuttle/Linearalgebra.pdf"><i>An Introduction to Linear Algebra</i></a> <span class="cs1-format">(PDF)</span>, Online e-book in PDF format, Brigham Young University, archived from <a rel="nofollow" class="external text" href="http://www.math.byu.edu/~klkuttle/Linearalgebra.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2008-08-07<span class="reference-accessdate">, retrieved <span class="nowrap">2008-03-26</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+Linear+Algebra&amp;rft.pub=Online+e-book+in+PDF+format%2C+Brigham+Young+University&amp;rft.date=2007&amp;rft.aulast=Kuttler&amp;rft.aufirst=Kenneth&amp;rft_id=http%3A%2F%2Fwww.math.byu.edu%2F~klkuttle%2FLinearalgebra.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLohwater1982" class="citation cs2">Lohwater, Arthur (1982), <a rel="nofollow" class="external text" href="http://www.mediafire.com/file/1mw1tkgozzu"><i>Introduction to Inequalities</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Inequalities&amp;rft.date=1982&amp;rft.aulast=Lohwater&amp;rft.aufirst=Arthur&amp;rft_id=http%3A%2F%2Fwww.mediafire.com%2Ffile%2F1mw1tkgozzu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li> <li>Archived at <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211211/kxQiKaIuyOg">Ghostarchive</a> and the <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131025042637/http://www.youtube.com/watch?v=kxQiKaIuyOg&amp;list=PL7BBBB7E2F4C5B19F">Wayback Machine</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTisdell2012" class="citation cs2">Tisdell, Chris (2012), <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=kxQiKaIuyOg"><i>Holder's Inequality</i></a>, YouTube</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Holder%27s+Inequality&amp;rft.pub=YouTube&amp;rft.date=2012&amp;rft.aulast=Tisdell&amp;rft.aufirst=Chris&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DkxQiKaIuyOg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AH%C3%B6lder%27s+inequality" class="Z3988"></span>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Lp_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lp_spaces" title="Template:Lp spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lp_spaces" title="Template talk:Lp spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lp_spaces" title="Special:EditPage/Template:Lp spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Lp_spaces" style="font-size:114%;margin:0 4em"><a href="/wiki/Lp_space" title="Lp space">Lp spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a>&#160;&amp;&#160;<a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a> <ul><li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a></li></ul></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a></li> <li><a href="/wiki/Sequence_space" title="Sequence space">Sequence spaces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L1_space" class="mw-redirect" title="L1 space"><i>L</i><sup>1</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integrable_function" class="mw-redirect" title="Integrable function">Integrable function</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Taxicab_geometry" title="Taxicab geometry">Taxicab geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L2_space" class="mw-redirect" title="L2 space"><i>L</i><sup>2</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bessel%27s_inequality" title="Bessel&#39;s inequality">Bessel's</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz</a></li> <li><a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval&#39;s identity">Parseval's identity</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Square-integrable_function" title="Square-integrable function">Square-integrable function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L-infinity" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bounded_function" title="Bounded function">Bounded function</a></li> <li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></li> <li><a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">Infimum and supremum</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">Essential</a></li></ul></li> <li><a href="/wiki/Uniform_norm" title="Uniform norm">Uniform norm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">Convergence almost everywhere</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">Convergence in measure</a></li> <li><a href="/wiki/Function_space" title="Function space">Function space</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Locally_integrable_function" title="Locally integrable function">Locally integrable function</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a></li> <li><a href="/wiki/Symmetric_decreasing_rearrangement" title="Symmetric decreasing rearrangement">Symmetric decreasing rearrangement</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inequalities</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babenko%E2%80%93Beckner_inequality" title="Babenko–Beckner inequality">Babenko–Beckner</a></li> <li><a href="/wiki/Chebyshev%27s_inequality" title="Chebyshev&#39;s inequality">Chebyshev's</a></li> <li><a href="/wiki/Clarkson%27s_inequalities" title="Clarkson&#39;s inequalities">Clarkson's</a></li> <li><a href="/wiki/Hanner%27s_inequalities" title="Hanner&#39;s inequalities">Hanner's</a></li> <li><a href="/wiki/Hausdorff%E2%80%93Young_inequality" title="Hausdorff–Young inequality">Hausdorff–Young</a></li> <li><a class="mw-selflink selflink">Hölder's</a></li> <li><a href="/wiki/Markov%27s_inequality" title="Markov&#39;s inequality">Markov's</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski</a></li> <li><a href="/wiki/Young%27s_convolution_inequality" title="Young&#39;s convolution inequality">Young's convolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Results</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Marcinkiewicz_interpolation_theorem" title="Marcinkiewicz interpolation theorem">Marcinkiewicz interpolation theorem</a></li> <li><a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue</a></li> <li><a href="/wiki/Riesz%E2%80%93Fischer_theorem" title="Riesz–Fischer theorem">Riesz–Fischer theorem</a></li> <li><a href="/wiki/Riesz%E2%80%93Thorin_theorem" title="Riesz–Thorin theorem">Riesz–Thorin theorem</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman&#39;s reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale&#39;s random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications&#160;&amp;&#160;related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Lorentz_space" title="Lorentz space">Lorentz space</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinorm</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev space</a></li> <li><a href="/wiki/*-algebra" title="*-algebra">*-algebra</a> <ul><li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Measure_theory" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Measure_theory" title="Template:Measure theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Measure_theory" title="Template talk:Measure theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Measure_theory" title="Special:EditPage/Template:Measure theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Measure_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">Measure theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_continuity" title="Absolute continuity">Absolute continuity</a>&#160;<a href="/wiki/Absolute_continuity_(measure_theory)" class="mw-redirect" title="Absolute continuity (measure theory)">of measures</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li></ul></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Atom_(measure_theory)" title="Atom (measure theory)">Atom</a></li> <li><a href="/wiki/Baire_set" title="Baire set">Baire set</a></li> <li><a href="/wiki/Borel_set" title="Borel set">Borel set</a> <ul><li><a href="/wiki/Borel_equivalence_relation" title="Borel equivalence relation">equivalence relation</a></li></ul></li> <li><a href="/wiki/Standard_Borel_space" title="Standard Borel space">Borel space</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_criterion" title="Carathéodory&#39;s criterion">Carathéodory's criterion</a></li> <li><a href="/wiki/Cylindrical_%CF%83-algebra" title="Cylindrical σ-algebra">Cylindrical σ-algebra</a> <ul><li><a href="/wiki/Cylinder_set" title="Cylinder set">Cylinder set</a></li></ul></li> <li><a href="/wiki/Dynkin_system" title="Dynkin system">𝜆-system</a></li> <li><a href="/wiki/Essential_range" title="Essential range">Essential range</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">infimum/supremum</a></li></ul></li> <li><a href="/wiki/Locally_measurable_set" class="mw-redirect" title="Locally measurable set">Locally measurable</a></li> <li><a href="/wiki/Pi-system" title="Pi-system"><span class="texhtml mvar" style="font-style:italic;">π</span>-system</a></li> <li><a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a></li> <li><a href="/wiki/Non-measurable_set" title="Non-measurable set">Non-measurable set</a> <ul><li><a href="/wiki/Vitali_set" title="Vitali set">Vitali set</a></li></ul></li> <li><a href="/wiki/Null_set" title="Null set">Null set</a></li> <li><a href="/wiki/Support_(measure_theory)" title="Support (measure theory)">Support</a></li> <li><a href="/wiki/Transverse_measure" title="Transverse measure">Transverse measure</a></li> <li><a href="/wiki/Universally_measurable_set" title="Universally measurable set">Universally measurable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_measure" class="mw-redirect" title="Atomic measure">Atomic</a></li> <li><a href="/wiki/Baire_measure" title="Baire measure">Baire</a></li> <li><a href="/wiki/Banach_measure" title="Banach measure">Banach</a></li> <li><a href="/wiki/Besov_measure" title="Besov measure">Besov</a></li> <li><a href="/wiki/Borel_measure" title="Borel measure">Borel</a></li> <li><a href="/wiki/Brown_measure" title="Brown measure">Brown</a></li> <li><a href="/wiki/Complex_measure" title="Complex measure">Complex</a></li> <li><a href="/wiki/Complete_measure" title="Complete measure">Complete</a></li> <li><a href="/wiki/Content_(measure_theory)" title="Content (measure theory)">Content</a></li> <li>(<a href="/wiki/Logarithmically_concave_measure" title="Logarithmically concave measure">Logarithmically</a>)&#160;<a href="/wiki/Convex_measure" title="Convex measure">Convex</a></li> <li><a href="/wiki/Decomposable_measure" title="Decomposable measure">Decomposable</a></li> <li><a href="/wiki/Discrete_measure" title="Discrete measure">Discrete</a></li> <li><a href="/wiki/Equivalence_(measure_theory)" title="Equivalence (measure theory)">Equivalent</a></li> <li><a href="/wiki/Finite_measure" title="Finite measure">Finite</a></li> <li><a href="/wiki/Inner_measure" title="Inner measure">Inner</a></li> <li>(<a href="/wiki/Quasi-invariant_measure" title="Quasi-invariant measure">Quasi-</a>)&#160;<a href="/wiki/Invariant_measure" title="Invariant measure">Invariant</a></li> <li><a href="/wiki/Locally_finite_measure" title="Locally finite measure">Locally finite</a></li> <li><a href="/wiki/Maximising_measure" title="Maximising measure">Maximising</a></li> <li><a href="/wiki/Metric_outer_measure" title="Metric outer measure">Metric outer</a></li> <li><a href="/wiki/Outer_measure" title="Outer measure">Outer</a></li> <li><a href="/wiki/Perfect_measure" title="Perfect measure">Perfect</a></li> <li><a href="/wiki/Pre-measure" title="Pre-measure">Pre-measure</a></li> <li>(<a href="/wiki/Sub-probability_measure" title="Sub-probability measure">Sub-</a>)&#160;<a href="/wiki/Probability_measure" title="Probability measure">Probability</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Radon_measure" title="Radon measure">Radon</a></li> <li><a href="/wiki/Random_measure" title="Random measure">Random</a></li> <li><a href="/wiki/Regular_measure" title="Regular measure">Regular</a> <ul><li><a href="/wiki/Borel_regular_measure" title="Borel regular measure">Borel regular</a></li> <li><a href="/wiki/Inner_regular_measure" class="mw-redirect" title="Inner regular measure">Inner regular</a></li> <li><a href="/wiki/Outer_regular_measure" class="mw-redirect" title="Outer regular measure">Outer regular</a></li></ul></li> <li><a href="/wiki/Saturated_measure" title="Saturated measure">Saturated</a></li> <li><a href="/wiki/Set_function" title="Set function">Set function</a></li> <li><a href="/wiki/%CE%A3-finite_measure" title="Σ-finite measure">σ-finite</a></li> <li><a href="/wiki/S-finite_measure" title="S-finite measure">s-finite</a></li> <li><a href="/wiki/Signed_measure" title="Signed measure">Signed</a></li> <li><a href="/wiki/Singular_measure" title="Singular measure">Singular</a></li> <li><a href="/wiki/Spectral_measure" class="mw-redirect" title="Spectral measure">Spectral</a></li> <li><a href="/wiki/Strictly_positive_measure" title="Strictly positive measure">Strictly positive</a></li> <li><a href="/wiki/Tightness_of_measures" title="Tightness of measures">Tight</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Measures_(measure_theory)" title="Category:Measures (measure theory)">Particular measures</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Counting_measure" title="Counting measure">Counting</a></li> <li><a href="/wiki/Dirac_measure" title="Dirac measure">Dirac</a></li> <li><a href="/wiki/Euler_measure" title="Euler measure">Euler</a></li> <li><a href="/wiki/Gaussian_measure" title="Gaussian measure">Gaussian</a></li> <li><a href="/wiki/Haar_measure" title="Haar measure">Haar</a></li> <li><a href="/wiki/Harmonic_measure" title="Harmonic measure">Harmonic</a></li> <li><a href="/wiki/Hausdorff_measure" title="Hausdorff measure">Hausdorff</a></li> <li><a href="/wiki/Intensity_measure" title="Intensity measure">Intensity</a></li> <li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a> <ul><li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">Infinite-dimensional</a></li></ul></li> <li><a href="/wiki/Positive_real_numbers#Logarithmic_measure" title="Positive real numbers">Logarithmic</a></li> <li><a href="/wiki/Product_measure" title="Product measure">Product</a> <ul><li><a href="/wiki/Projection_(measure_theory)" title="Projection (measure theory)">Projections</a></li></ul></li> <li><a href="/wiki/Pushforward_measure" title="Pushforward measure">Pushforward</a></li> <li><a href="/wiki/Spherical_measure" title="Spherical measure">Spherical measure</a></li> <li><a href="/wiki/Tangent_measure" title="Tangent measure">Tangent</a></li> <li><a href="/wiki/Trivial_measure" title="Trivial measure">Trivial</a></li> <li><a href="/wiki/Young_measure" title="Young measure">Young</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a> <ul><li><a href="/wiki/Bochner_measurable_function" title="Bochner measurable function">Bochner</a></li> <li><a href="/wiki/Strongly_measurable_function" title="Strongly measurable function">Strongly</a></li> <li><a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a></li></ul></li> <li>Convergence: <a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">almost everywhere</a></li> <li><a href="/wiki/Convergence_of_measures" title="Convergence of measures">of measures</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">in measure</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">of random variables</a> <ul><li><a href="/wiki/Convergence_in_distribution" class="mw-redirect" title="Convergence in distribution">in distribution</a></li> <li><a href="/wiki/Convergence_in_probability" class="mw-redirect" title="Convergence in probability">in probability</a></li></ul></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a></li> <li>Random: <a href="/wiki/Random_compact_set" title="Random compact set">compact set</a></li> <li><a href="/wiki/Random_element" title="Random element">element</a></li> <li><a href="/wiki/Random_measure" title="Random measure">measure</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">process</a></li> <li><a href="/wiki/Random_variable" title="Random variable">variable</a></li> <li><a href="/wiki/Multivariate_random_variable" title="Multivariate random variable">vector</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued measure</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_measure_theory" title="Category:Theorems in measure theory">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carath%C3%A9odory%27s_extension_theorem" title="Carathéodory&#39;s extension theorem">Carathéodory's extension theorem</a></li> <li>Convergence theorems <ul><li><a href="/wiki/Dominated_convergence_theorem" title="Dominated convergence theorem">Dominated</a></li> <li><a href="/wiki/Monotone_convergence_theorem" title="Monotone convergence theorem">Monotone</a></li> <li><a href="/wiki/Vitali_convergence_theorem" title="Vitali convergence theorem">Vitali</a></li></ul></li> <li>Decomposition theorems <ul><li><a href="/wiki/Hahn_decomposition_theorem" title="Hahn decomposition theorem">Hahn</a></li> <li><a href="/wiki/Jordan_decomposition_theorem" class="mw-redirect" title="Jordan decomposition theorem">Jordan</a></li> <li><a href="/wiki/Maharam%27s_theorem" title="Maharam&#39;s theorem">Maharam's</a></li></ul></li> <li><a href="/wiki/Egorov%27s_theorem" title="Egorov&#39;s theorem">Egorov's</a></li> <li><a href="/wiki/Fatou%27s_lemma" title="Fatou&#39;s lemma">Fatou's lemma</a></li> <li><a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's</a> <ul><li><a href="/wiki/Fubini%E2%80%93Tonelli_theorem" class="mw-redirect" title="Fubini–Tonelli theorem">Fubini–Tonelli</a></li></ul></li> <li><a class="mw-selflink selflink">Hölder's inequality</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a></li> <li><a href="/wiki/Radon%E2%80%93Nikodym_theorem" title="Radon–Nikodym theorem">Radon–Nikodym</a></li> <li><a href="/wiki/Riesz%E2%80%93Markov%E2%80%93Kakutani_representation_theorem" title="Riesz–Markov–Kakutani representation theorem">Riesz–Markov–Kakutani representation theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Disintegration_theorem" title="Disintegration theorem">Disintegration theorem</a> <ul><li><a href="/wiki/Lifting_theory" title="Lifting theory">Lifting theory</a></li></ul></li> <li><a href="/wiki/Lebesgue%27s_density_theorem" title="Lebesgue&#39;s density theorem">Lebesgue's density theorem</a></li> <li><a href="/wiki/Lebesgue_differentiation_theorem" title="Lebesgue differentiation theorem">Lebesgue differentiation theorem</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's theorem</a></li> <li><a href="/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" title="Vitali–Hahn–Saks theorem">Vitali–Hahn–Saks theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman&#39;s reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale&#39;s random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications&#160;&amp;&#160;related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_analysis" title="Convex analysis">Convex analysis</a></li> <li><a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">Descriptive set theory</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Functional_analysis_(topics_–_glossary)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Functional_analysis" title="Template:Functional analysis"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Functional_analysis" title="Template talk:Functional analysis"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Functional_analysis" title="Special:EditPage/Template:Functional analysis"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Functional_analysis_(topics_–_glossary)" style="font-size:114%;margin:0 4em"><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a>&#160;(<a href="/wiki/List_of_functional_analysis_topics" title="List of functional analysis topics">topics</a> – <a href="/wiki/Glossary_of_functional_analysis" title="Glossary of functional analysis">glossary</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Spaces</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a></li> <li><a href="/wiki/Besov_space" title="Besov space">Besov</a></li> <li><a href="/wiki/Fr%C3%A9chet_space" title="Fréchet space">Fréchet</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert</a></li> <li><a href="/wiki/H%C3%B6lder_space" class="mw-redirect" title="Hölder space">Hölder</a></li> <li><a href="/wiki/Nuclear_space" title="Nuclear space">Nuclear</a></li> <li><a href="/wiki/Orlicz_space" title="Orlicz space">Orlicz</a></li> <li><a href="/wiki/Schwartz_space" title="Schwartz space">Schwartz</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev</a></li> <li><a href="/wiki/Topological_vector_space" title="Topological vector space">Topological vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Properties</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Barrelled_space" title="Barrelled space">Barrelled</a></li> <li><a href="/wiki/Complete_topological_vector_space" title="Complete topological vector space">Complete</a></li> <li><a href="/wiki/Dual_space" title="Dual space">Dual</a> (<a href="/wiki/Dual_space#Algebraic_dual_space" title="Dual space">Algebraic</a> / <a href="/wiki/Dual_space#Continuous_dual_space" title="Dual space">Topological</a>)</li> <li><a href="/wiki/Locally_convex_topological_vector_space" title="Locally convex topological vector space">Locally convex</a></li> <li><a href="/wiki/Reflexive_space" title="Reflexive space">Reflexive</a></li> <li><a href="/wiki/Separable_space" title="Separable space">Separable</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hahn%E2%80%93Banach_theorem" title="Hahn–Banach theorem">Hahn–Banach</a></li> <li><a href="/wiki/Riesz_representation_theorem" title="Riesz representation theorem">Riesz representation</a></li> <li><a href="/wiki/Closed_graph_theorem_(functional_analysis)" title="Closed graph theorem (functional analysis)">Closed graph</a></li> <li><a href="/wiki/Uniform_boundedness_principle" title="Uniform boundedness principle">Uniform boundedness principle</a></li> <li><a href="/wiki/Kakutani_fixed-point_theorem#Infinite-dimensional_generalizations" title="Kakutani fixed-point theorem">Kakutani fixed-point</a></li> <li><a href="/wiki/Krein%E2%80%93Milman_theorem" title="Krein–Milman theorem">Krein–Milman</a></li> <li><a href="/wiki/Min-max_theorem" title="Min-max theorem">Min–max</a></li> <li><a href="/wiki/Gelfand%E2%80%93Naimark_theorem" title="Gelfand–Naimark theorem">Gelfand–Naimark</a></li> <li><a href="/wiki/Banach%E2%80%93Alaoglu_theorem" title="Banach–Alaoglu theorem">Banach–Alaoglu</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Operators</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjoint_operator" class="mw-redirect" title="Adjoint operator">Adjoint</a></li> <li><a href="/wiki/Bounded_operator" title="Bounded operator">Bounded</a></li> <li><a href="/wiki/Compact_operator" title="Compact operator">Compact</a></li> <li><a href="/wiki/Hilbert%E2%80%93Schmidt_operator" title="Hilbert–Schmidt operator">Hilbert–Schmidt</a></li> <li><a href="/wiki/Normal_operator" title="Normal operator">Normal</a></li> <li><a href="/wiki/Nuclear_operator" title="Nuclear operator">Nuclear</a></li> <li><a href="/wiki/Trace_class" title="Trace class">Trace class</a></li> <li><a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">Transpose</a></li> <li><a href="/wiki/Unbounded_operator" title="Unbounded operator">Unbounded</a></li> <li><a href="/wiki/Unitary_operator" title="Unitary operator">Unitary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebras</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_algebra" title="Banach algebra">Banach algebra</a></li> <li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Spectrum_of_a_C*-algebra" title="Spectrum of a C*-algebra">Spectrum of a C*-algebra</a></li> <li><a href="/wiki/Operator_algebra" title="Operator algebra">Operator algebra</a></li> <li><a href="/wiki/Group_algebra_of_a_locally_compact_group" title="Group algebra of a locally compact group">Group algebra of a locally compact group</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Open problems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Invariant_subspace_problem" title="Invariant subspace problem">Invariant subspace problem</a></li> <li><a href="/wiki/Mahler%27s_conjecture" class="mw-redirect" title="Mahler&#39;s conjecture">Mahler's conjecture</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hardy_space" title="Hardy space">Hardy space</a></li> <li><a href="/wiki/Spectral_theory_of_ordinary_differential_equations" title="Spectral theory of ordinary differential equations">Spectral theory of ordinary differential equations</a></li> <li><a href="/wiki/Heat_kernel" title="Heat kernel">Heat kernel</a></li> <li><a href="/wiki/Index_theorem" class="mw-redirect" title="Index theorem">Index theorem</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Functional_calculus" title="Functional calculus">Functional calculus</a></li> <li><a href="/wiki/Integral_operator" title="Integral operator">Integral operator</a></li> <li><a href="/wiki/Jones_polynomial" title="Jones polynomial">Jones polynomial</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a></li> <li><a href="/wiki/Distribution_(mathematics)" title="Distribution (mathematics)">Distribution</a> (or <a href="/wiki/Generalized_function" title="Generalized function">Generalized functions</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Advanced topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approximation_property" title="Approximation property">Approximation property</a></li> <li><a href="/wiki/Balanced_set" title="Balanced set">Balanced set</a></li> <li><a href="/wiki/Choquet_theory" title="Choquet theory">Choquet theory</a></li> <li><a href="/wiki/Weak_topology" title="Weak topology">Weak topology</a></li> <li><a href="/wiki/Banach%E2%80%93Mazur_distance" class="mw-redirect" title="Banach–Mazur distance">Banach–Mazur distance</a></li> <li><a href="/wiki/Tomita%E2%80%93Takesaki_theory" title="Tomita–Takesaki theory">Tomita–Takesaki theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Functional_analysis" title="Category:Functional analysis">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6b7f745dd4‐779sj Cached time: 20241125133800 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.957 seconds Real time usage: 1.249 seconds Preprocessor visited node count: 12629/1000000 Post‐expand include size: 196214/2097152 bytes Template argument size: 56916/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 85467/5000000 bytes Lua time usage: 0.391/10.000 seconds Lua memory usage: 6651571/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 785.450 1 -total 23.04% 180.942 182 Template:Math 21.14% 166.023 6 Template:Navbox 17.65% 138.652 12 Template:Citation 17.21% 135.193 1 Template:Reflist 16.19% 127.138 1 Template:Lp_spaces 12.68% 99.563 1 Template:Short_description 9.40% 73.847 6 Template:Math_proof 9.13% 71.736 2 Template:Pagetype 7.13% 56.034 2 Template:Harvtxt --> <!-- Saved in parser cache with key enwiki:pcache:idhash:191538-0!canonical and timestamp 20241125133800 and revision id 1256318553. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Hölder%27s_inequality&amp;oldid=1256318553">https://en.wikipedia.org/w/index.php?title=Hölder%27s_inequality&amp;oldid=1256318553</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Inequalities" title="Category:Inequalities">Inequalities</a></li><li><a href="/wiki/Category:Probabilistic_inequalities" title="Category:Probabilistic inequalities">Probabilistic inequalities</a></li><li><a href="/wiki/Category:Theorems_in_functional_analysis" title="Category:Theorems in functional analysis">Theorems in functional analysis</a></li><li><a href="/wiki/Category:Lp_spaces" title="Category:Lp spaces">Lp spaces</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 9 November 2024, at 09:42<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=H%C3%B6lder%27s_inequality&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-688fc9465-s6jrc","wgBackendResponseTime":169,"wgPageParseReport":{"limitreport":{"cputime":"0.957","walltime":"1.249","ppvisitednodes":{"value":12629,"limit":1000000},"postexpandincludesize":{"value":196214,"limit":2097152},"templateargumentsize":{"value":56916,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":85467,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 785.450 1 -total"," 23.04% 180.942 182 Template:Math"," 21.14% 166.023 6 Template:Navbox"," 17.65% 138.652 12 Template:Citation"," 17.21% 135.193 1 Template:Reflist"," 16.19% 127.138 1 Template:Lp_spaces"," 12.68% 99.563 1 Template:Short_description"," 9.40% 73.847 6 Template:Math_proof"," 9.13% 71.736 2 Template:Pagetype"," 7.13% 56.034 2 Template:Harvtxt"]},"scribunto":{"limitreport-timeusage":{"value":"0.391","limit":"10.000"},"limitreport-memusage":{"value":6651571,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBeckenbach1980\"] = 1,\n [\"CITEREFChen2014\"] = 1,\n [\"CITEREFGrinshpan2010\"] = 1,\n [\"CITEREFGuessabSchmeisser2013\"] = 1,\n [\"CITEREFHardyLittlewoodPólya1934\"] = 1,\n [\"CITEREFHölder1889\"] = 1,\n [\"CITEREFKuttler2007\"] = 1,\n [\"CITEREFLohwater1982\"] = 1,\n [\"CITEREFMaligranda1998\"] = 1,\n [\"CITEREFNielsenSunMarchand-Maillet2017\"] = 1,\n [\"CITEREFRogers1888\"] = 1,\n [\"CITEREFRoman2008\"] = 1,\n [\"CITEREFTisdell2012\"] = 1,\n [\"CITEREFTrèves1967\"] = 1,\n [\"CITEREFWojtaszczyk1991\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 6,\n [\"=\"] = 29,\n [\"Abs\"] = 14,\n [\"Cbignore\"] = 3,\n [\"Citation\"] = 12,\n [\"Cite book\"] = 2,\n [\"Cite journal\"] = 1,\n [\"Closed-closed\"] = 2,\n [\"Closed-open\"] = 2,\n [\"DEFAULTSORT:Holder's inequality\"] = 1,\n [\"Functional analysis\"] = 1,\n [\"Hair space\"] = 24,\n [\"Harv\"] = 1,\n [\"Harvnb\"] = 1,\n [\"Harvs\"] = 1,\n [\"Harvtxt\"] = 2,\n [\"Hidden\"] = 1,\n [\"Lp spaces\"] = 1,\n [\"Math\"] = 165,\n [\"Math proof\"] = 6,\n [\"Math theorem\"] = 3,\n [\"Mathcal\"] = 3,\n [\"Measure theory\"] = 1,\n [\"Mset\"] = 3,\n [\"Mvar\"] = 86,\n [\"Narici Beckenstein Topological Vector Spaces\"] = 1,\n [\"Norm\"] = 37,\n [\"Nowrap\"] = 13,\n [\"Open-closed\"] = 3,\n [\"Open-open\"] = 10,\n [\"Reflist\"] = 1,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Trèves François Topological vector spaces, distributions and kernels\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-6b7f745dd4-779sj","timestamp":"20241125133800","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"H\u00f6lder's inequality","url":"https:\/\/en.wikipedia.org\/wiki\/H%C3%B6lder%27s_inequality","sameAs":"http:\/\/www.wikidata.org\/entity\/Q731894","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q731894","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-03-04T04:08:14Z","dateModified":"2024-11-09T09:42:41Z","headline":"inequality between integrals in Lp spaces"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10