CINXE.COM
Search results for: spice simulation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: spice simulation</title> <meta name="description" content="Search results for: spice simulation"> <meta name="keywords" content="spice simulation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spice simulation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spice simulation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5079</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spice simulation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5079</span> The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakrim%20Abderrazak">Lakrim Abderrazak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahri%20Driss"> Tahri Driss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20power%20MOSFET" title="SiC power MOSFET">SiC power MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20electro-thermal%20model" title=" DC electro-thermal model"> DC electro-thermal model</a>, <a href="https://publications.waset.org/abstracts/search?q=ABM%20Spice%20library" title=" ABM Spice library"> ABM Spice library</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20modelling" title=" SPICE modelling"> SPICE modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioural%20model" title=" behavioural model"> behavioural model</a>, <a href="https://publications.waset.org/abstracts/search?q=C2M0025120D%20CREE." title=" C2M0025120D CREE."> C2M0025120D CREE.</a> </p> <a href="https://publications.waset.org/abstracts/20601/the-dc-behavioural-electrothermal-model-of-silicon-carbide-power-mosfets-under-spice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5078</span> Prospective Visitors' Perception towards Spice Tourism: With Reference to Spice Gardens in Kolonna Divisional Secretariat Division of Ratnapura District in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malkanthi%20S.%20H.%20P.">Malkanthi S. H. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishana%20A.%20S.%20F."> Ishana A. S. F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivashankar%20P."> Sivashankar P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted to study prospective visitors’ expectation and future behavior regarding agro tourism destinations in spice gardens (spice tourism) in Kolonna. A field survey was conducted for the 40 randomly selected local and foreign visitors who have come to visit three famous tourism destinations in Kolonna namely “Maduwanwela Walawwa”, “Wawulpane Limestone cave” and “Panamure Eth gala” during three month of time period from February to April 2014. Descriptive and Chi square statistical tests were used to analyze the data. The results revealed that 98% of visitors were willing to visit the spice tourism destinations. Furthermore, visitors with urban residency, higher education level and employment opportunities revealed an association with having awareness on agro tourism. Moreover, visitors having higher age, higher level of education and higher amount of monthly income revealed an association with the willingness to visit spice tourism destinations. Nevertheless, out of eight demographic factors, three factors; gender, occupation and income had significant effect on willingness to purchase spice products from Kolonna. According to research findings it can be concluded that there are large number of perspective visitors for spice tourism and they are middle aged, educated and having significant monthly income and they are also very much interest to visit spice tourism destinations and buy spice products (high demand). Therefore, it is significantly beneficial to establish spice tourism destinations in spice gardens by successful spice cultivating farmers or owners as an extra income earning activity in Kolonna area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro%20tourism" title="agro tourism">agro tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=spice%20gardens" title=" spice gardens"> spice gardens</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=prospective%20visitors" title=" prospective visitors"> prospective visitors</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/20077/prospective-visitors-perception-towards-spice-tourism-with-reference-to-spice-gardens-in-kolonna-divisional-secretariat-division-of-ratnapura-district-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5077</span> Quality Management in Spice Paprika Production as a Synergy of Internal and External Quality Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%89.%20K%C3%B3nya">É. Kónya</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Szab%C3%B3"> E. Szabó</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Bata-Vid%C3%A1cs"> I. Bata-Vidács</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20De%C3%A1k"> T. Deák</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ottucs%C3%A1k"> M. Ottucsák</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ad%C3%A1nyi"> N. Adányi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sz%C3%A9k%C3%A1cs"> A. Székács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spice paprika is a major spice commodity in the European Union (EU), produced locally and imported from non-EU countries, reported not only for chemical and microbiological contamination, but also for fraud. The effective interaction between producers’ quality management practices and government and EU activities is described on the example of spice paprika production and control in Hungary, a country of leading spice paprika producer and per capita consumer in Europe. To demonstrate the importance of various contamination factors in the Hungarian production and EU trade of spice paprika, several aspects concerning food safety of this commodity are presented. Alerts in the Rapid Alert System for Food and Feed (RASFF) of the EU between 2005 and 2013, as well as Hungarian state inspection results on spice paprika in 2004 are discussed, and quality non-compliance claims regarding spice paprika among EU member states are summarized in by means of network analysis. Quality assurance measures established along the spice paprika production technology chain at the leading Hungarian spice paprika manufacturer, Kalocsai Fűszerpaprika Zrt. are surveyed with main critical control points identified. The structure and operation of the Hungarian state food safety inspection system is described. Concerted performance of the latter two quality management systems illustrates the effective interaction between internal (manufacturer) and external (state) quality control measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spice%20paprika" title="spice paprika">spice paprika</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=reporting%20mechanisms" title=" reporting mechanisms"> reporting mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=RASFF" title=" RASFF"> RASFF</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerable%20points" title=" vulnerable points"> vulnerable points</a>, <a href="https://publications.waset.org/abstracts/search?q=HACCP" title=" HACCP"> HACCP</a> </p> <a href="https://publications.waset.org/abstracts/49176/quality-management-in-spice-paprika-production-as-a-synergy-of-internal-and-external-quality-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5076</span> Food Safety Aspects of Pesticide Residues in Spice Paprika</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sz.%20Kl%C3%A1tyik">Sz. Klátyik</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Darvas"> B. Darvas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M%C3%B6rtl"> M. Mörtl</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ottucs%C3%A1k"> M. Ottucsák</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tak%C3%A1cs"> E. Takács</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B%C3%A1n%C3%A1ti"> H. Bánáti</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Simon"> L. Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gyurcs%C3%B3"> G. Gyurcsó</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sz%C3%A9k%C3%A1cs"> A. Székács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental and health safety of condiments used for spicing food products in food processing or by culinary means receive relatively low attention, even though possible contamination of spices may affect food quality and safety. Contamination surveys mostly focus on microbial contaminants or their secondary metabolites, mycotoxins. Chemical contaminants, particularly pesticide residues, however, are clearly substantial factors in the case of given condiments in the Capsicum family including spice paprika and chilli. To assess food safety and support the quality of the Hungaricum product spice paprika, the pesticide residue status of spice paprika and chilli is assessed on the basis of reported pesticide contamination cases and non-compliances in the Rapid Alert System for Food and Feed of the European Union since 1998. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spice%20paprika" title="spice paprika">spice paprika</a>, <a href="https://publications.waset.org/abstracts/search?q=Capsicum" title=" Capsicum"> Capsicum</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=RASFF" title=" RASFF"> RASFF</a> </p> <a href="https://publications.waset.org/abstracts/46930/food-safety-aspects-of-pesticide-residues-in-spice-paprika" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5075</span> Evaluation of the Nutritional Potential of a Developed Spice Formulation for nah poh (An Emulsion-Based Gravy): Physicochemical and Techno-Functional Characterisations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djiazet%20St%C3%A8ve">Djiazet Stève</a>, <a href="https://publications.waset.org/abstracts/search?q=Mezajoug%20Kenfack%20Laurette%20Blandine"> Mezajoug Kenfack Laurette Blandine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Pullakhandam"> Ravi Pullakhandam</a>, <a href="https://publications.waset.org/abstracts/search?q=Bethala%20L.%20A.%20Prabhavathi%20Devi"> Bethala L. A. Prabhavathi Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tchiegang%20Clerg%C3%A9"> Tchiegang Clergé</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathapkumar%20Halady%20Shetty"> Prathapkumar Halady Shetty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nutritional potential of a developed spice formulation for nah poh was evaluated. It was found that when spices were used for the formulation for nah poh, the concentration of some nutrients is diluted while that of some of them increases. The proportion of unsaturated fats was estimated to be 76.2% of the total fat content while the chemical score varied between 31 to 39%. The contents of some essential minerals of nutritional interest in mg are as follows for 100g of spice: 2372.474 ± 0.007 for potassium, 16.447 ± 0.010 for iron, 4.772 ± 0.005 for zinc, 0.537 ± 0.001 for cupper, 0.138 ± 0.005 for selenium, and 112.954 ± 0.003 for manganese. This study shows that the consumption of these spices in the form of formulation significantly contributes to meet the mineral requirements of the populations whose food habits regularly require these spices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spice%20formulation" title="spice formulation">spice formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=characterisation" title=" characterisation"> characterisation</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20potential" title=" nutritional potential"> nutritional potential</a>, <a href="https://publications.waset.org/abstracts/search?q=nah%20poh" title=" nah poh"> nah poh</a>, <a href="https://publications.waset.org/abstracts/search?q=techno%20functional%20properties" title=" techno functional properties"> techno functional properties</a> </p> <a href="https://publications.waset.org/abstracts/142085/evaluation-of-the-nutritional-potential-of-a-developed-spice-formulation-for-nah-poh-an-emulsion-based-gravy-physicochemical-and-techno-functional-characterisations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5074</span> SPICE Modeling for Evaluation of Distribution System Reliability Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Srinivas">G. N. Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Raju"> K. Raju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Markov processes for determining the reliability indices of distribution system. The continuous Markov modeling is applied to a complex radial distribution system and electrical equivalent circuits are developed for the modeling. In general PSPICE is being used for electrical and electronic circuits and various applications of power system like fault analysis, transient analysis etc. In this paper, the SPICE modeling equivalent circuits which are developed are applied in a novel way to Distribution System reliability analysis. These circuits are simulated using PSPICE software to obtain the state probabilities, the basic and performance indices. Thus the basic indices and the performance indices obtained by this method are compared with those obtained by FMEA technique. The application of the concepts presented in this paper are illustrated and analyzed for IEEE-Roy Billinton Test System (RBTS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Model" title=" Markov Model"> Markov Model</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20indices" title=" reliability indices"> reliability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=spice%20simulation" title=" spice simulation "> spice simulation </a> </p> <a href="https://publications.waset.org/abstracts/2903/spice-modeling-for-evaluation-of-distribution-system-reliability-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5073</span> A Review of the Nutritional, Health and Medicinal Benefits of Selected Endangered Food Spice Crops in South Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poly-Mbah%20C.%20P.">Poly-Mbah C. P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Offor%20J.%20I."> Offor J. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyeneke%20E.%20N."> Onyeneke E. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Poly-Mbah%20J.%20C."> Poly-Mbah J. C.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many food spice crops are being endangered into extinction in Nigeria because of climate change as well as deforestation occasioned by population pressure and urbanization and also due to neglect of research and agronomic attention. This review was aimed at identifying the nutritional and health benefits of these endangered aromatic food spice crops. The findings of this review will help to popularize their cultivation and increase research efforts made in the agronomy of these food spice species. Nine aromatic food spice crop species identified to be facing the danger of extinction include: Guinea pepper ( Piper guineensis), Utazi ( Gongronema latifolium), Hoary or Thai lemon basil ( Ocimum africanum), Mint basil ( Ocimum gratissimum), Whole country onions( Afrostyrax lepidophyllus), Jansa ( Cussonia bateri), Negro pepper ( Xylopia aethiopica), Ataiko or Orima (Afromomium Danielle), Aidan (Tetrapleura tetraptera). Findings from this review revealed that these species are capable of improving the nutrition and health of the rural dwellers but yet, are minimally cultivated. This paper also reviewed research made in the agronomy of these identified threatened food spice crops in the semi-urban Southeastern Nigeria environment and discovered that there is little research attention on them. The availability of these food spice crop species was discovered to come from collections made from nearby bushes and forests. This paper therefore recommends that agronomic packages such as pre-planting, planting and post-planting requirements be investigated and recommended in order to initiate and increase the cultivation of the selected endangered food spice crops as well as their productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=review" title="review">review</a>, <a href="https://publications.waset.org/abstracts/search?q=endangered" title=" endangered"> endangered</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20spice%20crops" title=" food spice crops"> food spice crops</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Eastern%20Nigeria" title=" South Eastern Nigeria"> South Eastern Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/170999/a-review-of-the-nutritional-health-and-medicinal-benefits-of-selected-endangered-food-spice-crops-in-south-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5072</span> Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Jassim%20Motlak">Hassan Jassim Motlak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo-OTA%20used%20CMOS%20CFOA" title="pseudo-OTA used CMOS CFOA">pseudo-OTA used CMOS CFOA</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20power%20CFOA" title=" low power CFOA"> low power CFOA</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20CFOA" title=" high-performance CFOA"> high-performance CFOA</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20CFOA" title=" novel CFOA"> novel CFOA</a> </p> <a href="https://publications.waset.org/abstracts/2597/design-of-cmos-cfoa-based-on-pseudo-operational-transconductance-amplifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5071</span> Designing and Simulation of a CMOS Square Root Analog Multiplier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Kaboli">Milad Kaboli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new CMOS low voltage current-mode four-quadrant analog multiplier based on the squarer circuit with voltage output is presented. The proposed circuit is composed of a pair of current subtractors, a pair differential-input V-I converters and a pair of voltage squarers. The circuit was simulated using HSPICE simulator in standard 0.18 μm CMOS level 49 MOSIS (BSIM3 V3.2 SPICE-based). Simulation results show the performance of the proposed circuit and experimental results are given to confirm the operation. This topology of multiplier results in a high-frequency capability with low power consumption. The multiplier operates for a power supply ±1.2V. The simulation results of analog multiplier demonstrate a THD of 0.65% in 10MHz, a −3dB bandwidth of 1.39GHz, and a maximum power consumption of 7.1mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analog%20processing%20circuit" title="analog processing circuit">analog processing circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=WTA" title=" WTA"> WTA</a>, <a href="https://publications.waset.org/abstracts/search?q=LTA" title=" LTA"> LTA</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage" title=" low voltage"> low voltage</a> </p> <a href="https://publications.waset.org/abstracts/8028/designing-and-simulation-of-a-cmos-square-root-analog-multiplier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5070</span> Antimicrobial Functions of Some Spice Extracts Such as Sumac, Cumin, Black Pepper and Red Pepper on the Growth of Common Food-Borne Pathogens and Their Biogenic Amine Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20%C3%96zogul">Fatih Özogul</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmeray%20Kuley%20Boga"> Esmeray Kuley Boga</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Kuley"> Ferhat Kuley</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20%C3%96zogul"> Yesim Özogul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of diethyl ether extract of spices (sumac, cumin, black pepper and red pepper) on growth of Staphylococcus aureus, Salmonella Paratyphi A, Klebsiella pneumoniae, Enterococcus faecalis, Camplylobacter jejuni, Aeromonas hydrophila, Pseudomonas aeruginosa and Yersinia enterocolitica and their biogenic amine production were investigated in tyrosine decarboxylase broth. Sumac extract generally had the highest activity to inhibit bacterial growth compared to other extracts, although antimicrobial effect of extracts used varied depending on bacterial strains. Sumac extract resulted in 3.34 and 2.54 log reduction for Y. enterocolitica and Camp. jejuni growth, whilst red pepper extract induced 0.65, 0.41 and 0.34 log reduction for growth of Y. enterocolitica, S. Paratyphi A and Staph. aureus, respectively. Spice extracts significantly inhibited ammonia production by bacteria (P < 0.05). Eleven and nine fold reduction on ammonia production by S. Paratyphi A and Staph. aureus were observed in the presence of sumac extract. Dopamine, agmatine, tyramine, serotonin and TMA were main amines produced by bacteria. Tyramine production by food-borne-pathogens was more than 10 mg/L, whereas histamine accumulated below 52 mg/L. The effect of spice extracts on biogenic amine production varied depending on amino acid decarboxylase broth, spice type, bacterial strains and specific amine, although cumin extract generally increased biogenic amine production by bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20amines" title=" biogenic amines"> biogenic amines</a>, <a href="https://publications.waset.org/abstracts/search?q=food-borne%20pathogens" title=" food-borne pathogens"> food-borne pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=spice%20extracts" title=" spice extracts"> spice extracts</a> </p> <a href="https://publications.waset.org/abstracts/72668/antimicrobial-functions-of-some-spice-extracts-such-as-sumac-cumin-black-pepper-and-red-pepper-on-the-growth-of-common-food-borne-pathogens-and-their-biogenic-amine-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5069</span> SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Lakrim">A. Lakrim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tahri"> D. Tahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20MPS%20diode" title="SiC MPS diode">SiC MPS diode</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-thermal" title=" electro-thermal"> electro-thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20model" title=" SPICE model"> SPICE model</a>, <a href="https://publications.waset.org/abstracts/search?q=behavioral%20macro-model" title=" behavioral macro-model"> behavioral macro-model</a> </p> <a href="https://publications.waset.org/abstracts/11540/sic-merged-pin-and-schottky-mps-power-diodes-electrothermal-modeling-in-spice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5068</span> Ancient Malay and Spice Trade Routes: A Study of Ancient Malay from the Perspectives of Linguistics and Archaeology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Totok%20Suhardijanto">Totok Suhardijanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ninie%20Susanti%20Tedjowasono"> Ninie Susanti Tedjowasono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the relationship between the distribution of Ancient Malay inscriptions and Spice Trade Route, especially in the relation with material cultures that accompany them, to understand how Malay could spread out around the archipelago beyond its original native-speakers’ region. The archipelago was known as the Spice Islands from the very beginning of the first century due to mace, cloves, and nutmeg that were originally exclusively found there. According to the Indian record, since the 2nd century, there has been a contact established between Indian and Indonesian people. A Chinese document from 3rd Century has mentioned Wangka (now widely known as Bangka) an island near Sumatra where some Chinese expeditions had visited. All of these records supported the existence of a maritime trade system and route between the archipelago and other countries during the first millennium. This paper will discuss first the Ancient Malay inscription spread around the archipelago from the perspectives of language variation and writing system style. Analyzing language variations of inscriptions certainly is not as easy as studying current spoken language variations in modern sociolinguistics. A huge amount of data is available for such kind of studies. On the contrary, in language variation research with inscription texts as an object, data is insufficient. Other resources will be needed to support the linguistic analysis. For this reason, this research made use of epigraphical evidence in the surrounding areas of the inscriptions to explain the variation of language and writing style. The research next expands the analysis to figure out the relationship between language variation and inscriptions distribution to the Spice Trade Route that spreads from the Molucca Sea to Mediterranian Sea. Data in this research consists of six different inscriptions: Kedukan Bukit, Koto Kapur, Dapunta Salendra, Sang Hyang Wintang, Ligor, and Laguna from the 7th-9th Century and found in Sumatra, Jawa, and the Philippines. In addition, as a comparative resource, this research also used Hikayat Tanjung Tanah, the first-founded Ancient Malay manuscript. In language analysis, we conduct a sociolinguistic method to explore the language variation and writing style of the inscriptions. For dealing with archaeological data, we conducted a hermeneutic method to analyze the possible meaning and social uses of the data. Language variations and writing system style in this research can be classified into two main groups. The language, epigraphical, and archaeological evidence explain that Ancient Malay had been widely used in the Eastern area of Spice Trade Route because it played an important role in the region as a lingua franca between people from different ethnic groups with different languages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ancient%20Malay" title="Ancient Malay">Ancient Malay</a>, <a href="https://publications.waset.org/abstracts/search?q=Spice%20trade%20route" title=" Spice trade route"> Spice trade route</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20variation" title=" language variation"> language variation</a>, <a href="https://publications.waset.org/abstracts/search?q=writing%20system%20variation" title=" writing system variation"> writing system variation</a> </p> <a href="https://publications.waset.org/abstracts/80645/ancient-malay-and-spice-trade-routes-a-study-of-ancient-malay-from-the-perspectives-of-linguistics-and-archaeology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5067</span> The Therapeutic Rise of Turmeric: From Spice to Medicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merzak%20Siham">Merzak Siham</a>, <a href="https://publications.waset.org/abstracts/search?q=Benguerine%20Zohra"> Benguerine Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%20Tayeb%20Fatima"> Si Tayeb Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzian%20Chaimaa%20Affaf"> Bouzian Chaimaa Affaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Jou%20Siham"> Jou Siham</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkessam%20Nafissa"> Belkessam Nafissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Medicinal plants, particularly spices, are essential for pharmacological research due to their health benefits. This study focuses on Curcuma longa, a spice recognized for its therapeutic properties. Materials and Methods: This study is based on a thorough search conducted on Google Scholar, PubMed, and ScienceDirect. From an initial selection of 25 articles, five were chosen to extract relevant information on Curcuma longa. Results and Discussions: Clinical studies have indicated that curcumin is well tolerated at doses up to 12 g/day. Its anti-rheumatic efficacy was compared to phenylbutazone in 18 individuals. Each participant received a daily dose of either 1200 mg of curcumin or 300 mg of phenylbutazone for 2 weeks. Curcumin was well tolerated at this dose and demonstrated activity comparable to phenylbutazone. Additionally, a study on 62 patients showed that curcumin sustainably relieved symptoms without toxicity. Its effects included reduced itching, lesions, and pain. In ten volunteers, administering 500 mg of curcumin for seven days resulted in a 33% decrease in lipid peroxidation, a 29% increase in HDL cholesterol, and a 12% decrease in total cholesterol. It is important to note that curcumin is a potent, selective inhibitor of phosphorylase kinase, an increased marker in psoriasis. Conclusion: Curcumin is promising as a future drug for various diseases, but its bioavailability must be improved through techniques such as nano encapsulation. Additionally, exploring chemical derivatives of curcumin could lead to more potent and targeted molecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turmeric" title="turmeric">turmeric</a>, <a href="https://publications.waset.org/abstracts/search?q=spice" title=" spice"> spice</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacological%20activities." title=" pharmacological activities."> pharmacological activities.</a> </p> <a href="https://publications.waset.org/abstracts/187066/the-therapeutic-rise-of-turmeric-from-spice-to-medicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5066</span> Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20M.%20de%20Freitas">Felipe M. de Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%8Dcaro%20V.%20Soares"> Ícaro V. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20L.%20L.%20Fortes"> Lucas L. L. Fortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20T.%20M.%20Gon%C3%A7alves"> Sandro T. M. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Arsula%20D.%20C.%20Resende"> Úrsula D. C. Resende</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting%20system" title="energy harvesting system">energy harvesting system</a>, <a href="https://publications.waset.org/abstracts/search?q=LE-FDTD" title=" LE-FDTD"> LE-FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=rectenna" title=" rectenna"> rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=rectifier" title=" rectifier"> rectifier</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20systems" title=" wireless power systems"> wireless power systems</a> </p> <a href="https://publications.waset.org/abstracts/107124/design-of-an-ultra-high-frequency-rectifier-for-wireless-power-systems-by-using-finite-difference-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5065</span> Designing Equivalent Model of Floating Gate Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birinderjit%20Singh%20Kalyan">Birinderjit Singh Kalyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Inderpreet%20Kaur"> Inderpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh%20Sohi"> Balwinder Singh Sohi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an equivalent model for floating gate transistor has been proposed. Using the floating gate voltage value, capacitive coupling coefficients has been found at different bias conditions. The amount of charge present on the gate has been then calculated using the transient models of hot electron programming and Fowler-Nordheim Tunnelling. The proposed model can be extended to the transient conditions as well. The SPICE equivalent model is designed and current-voltage characteristics and Transfer characteristics are comparatively analysed. The dc current-voltage characteristics, as well as dc transfer characteristics, have been plotted for an FGMOS with W/L=0.25μm/0.375μm, the inter-poly capacitance of 0.8fF for both programmed and erased states. The Comparative analysis has been made between the present model and capacitive coefficient coupling methods which were already available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FGMOS" title="FGMOS">FGMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20gate%20transistor" title=" floating gate transistor"> floating gate transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20coupling%20coefficient" title=" capacitive coupling coefficient"> capacitive coupling coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20model" title=" SPICE model"> SPICE model</a> </p> <a href="https://publications.waset.org/abstracts/30822/designing-equivalent-model-of-floating-gate-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5064</span> 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phinyo%20Mueangmeesap">Phinyo Mueangmeesap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverter%20simulation" title="inverter simulation">inverter simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM%20signal" title=" PWM signal"> PWM signal</a>, <a href="https://publications.waset.org/abstracts/search?q=single-phase%20inverter" title=" single-phase inverter"> single-phase inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20inverter" title=" sinusoidal inverter"> sinusoidal inverter</a> </p> <a href="https://publications.waset.org/abstracts/58872/156vdc-to-110vac-sinusoidal-inverter-simulation-and-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5063</span> Power MOSFET Models Including Quasi-Saturation Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghafour%20Galadi">Abdelghafour Galadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20MOSFET" title="power MOSFET">power MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=drift%20layer" title=" drift layer"> drift layer</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-saturation%20effect" title=" quasi-saturation effect"> quasi-saturation effect</a>, <a href="https://publications.waset.org/abstracts/search?q=SPICE%20model" title=" SPICE model"> SPICE model</a> </p> <a href="https://publications.waset.org/abstracts/54686/power-mosfet-models-including-quasi-saturation-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5062</span> Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20Gomez-Casseres">Andrés Gomez-Casseres</a>, <a href="https://publications.waset.org/abstracts/search?q=Rub%C3%A9n%20Contreras"> Rubén Contreras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20current%20control" title="average current control">average current control</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title=" boost converter"> boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20tuning" title=" electrical tuning"> electrical tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/83269/batteryless-dcm-boost-converter-for-kinetic-energy-harvesting-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">766</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5061</span> Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Rawat">Monika Rawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kumar"> Rahul Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IBIS" title="IBIS">IBIS</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20integrity" title=" signal integrity"> signal integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=open-drain%20buffer" title=" open-drain buffer"> open-drain buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20voltage%20differential%20signaling" title=" low voltage differential signaling"> low voltage differential signaling</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20modelling" title=" behavior modelling"> behavior modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20simulation" title=" transient simulation"> transient simulation</a> </p> <a href="https://publications.waset.org/abstracts/82740/analog-input-output-buffer-information-specification-modelling-techniques-for-single-ended-inter-integrated-circuit-and-differential-low-voltage-differential-signaling-io-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5060</span> Adapting Grain Crop Cleaning Equipment for Sesame and Other Emerging Spice Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramadas%20Narayanan">Ramadas Narayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Surya%20Bhattrai"> Surya Bhattrai</a>, <a href="https://publications.waset.org/abstracts/search?q=Vu%20Hoan"> Vu Hoan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threshing and cleaning are crucial post-harvest procedures that are carried out to separate the grain or seed from the harvested plant and eliminate any potential contaminants or foreign debris. After harvesting, threshing and cleaning are necessary for the clean seeds to guarantee high quality and acceptable for consumption or further processing. For mechanised production, threshing can be conducted in a thresher. Afterwards, the seeds are to be cleaned in dedicated seed-cleaning facilities. This research investigates the effectiveness of Kimseed cleaning equipment MK3, designed for grain crops for processing new crops such as sesame, fennel and kalonji. Subsequently, systematic trials were conducted to adapt the equipment to the applications in sesame and spice crops. It was done to develop methods for mechanising harvest and post-harvest operations. For sesame, it is recommended to have t a two-step process in the cleaning machine to remove large and small contaminants. The first step is to remove the large contaminants, and the second is to remove the smaller ones. The optimal parameters for cleaning fennel are a shaker frequency of 6.0 to 6.5 Hz and an airflow of 1.0 to 1.5 m/s. The optimal parameters for cleaning kalonji are a shaker frequency of 5.5Hz to 6.0 Hz and airflow of 1.0 to under 1.5m/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20mechanisation" title="sustainable mechanisation">sustainable mechanisation</a>, <a href="https://publications.waset.org/abstracts/search?q=sead%20cleaning%20process" title=" sead cleaning process"> sead cleaning process</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20setting" title=" optimal setting"> optimal setting</a>, <a href="https://publications.waset.org/abstracts/search?q=shaker%20frequency" title=" shaker frequency"> shaker frequency</a> </p> <a href="https://publications.waset.org/abstracts/172258/adapting-grain-crop-cleaning-equipment-for-sesame-and-other-emerging-spice-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5059</span> Simulation Programs to Education of Crisis Management Members</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Barta">Jiri Barta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure" title=" critical infrastructure"> critical infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=dangerous%20substance" title=" dangerous substance"> dangerous substance</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20programs" title=" simulation programs"> simulation programs</a> </p> <a href="https://publications.waset.org/abstracts/18144/simulation-programs-to-education-of-crisis-management-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5058</span> A Saturation Attack Simulation on a Navy Warship Based on Discrete-Event Simulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yawei%20Liang">Yawei Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threat from cruise missiles is among the most dangerous considerations to a warship in the modern era: anti-ship cruise missiles are fast, accurate, and extremely destructive. In this paper, the goal was to use an object-orientated environment to program a simulation to model a scenario in which a lone frigate is attacked by a wave of missiles fired at given intervals. The parameters of the simulation are modified to examine the relationships between different variables in the situation, and an analysis is performed on various aspects of the defending ship’s equipment. Finally, the results are presented, along with a brief discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=naval%20resource%20management" title=" naval resource management"> naval resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=weapon-target%20allocation%2Fassignment" title=" weapon-target allocation/assignment"> weapon-target allocation/assignment</a> </p> <a href="https://publications.waset.org/abstracts/159439/a-saturation-attack-simulation-on-a-navy-warship-based-on-discrete-event-simulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5057</span> Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Taher">Mohammed T. Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ghani"> Usman Ghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Khan"> Ahmed S. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation-based%20teaching" title="simulation-based teaching">simulation-based teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hands-on%20learning" title=" hands-on learning"> hands-on learning</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback-based%20learning" title=" feedback-based learning"> feedback-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffolding" title=" scaffolding"> scaffolding</a> </p> <a href="https://publications.waset.org/abstracts/41173/simulation-versus-hands-on-learning-methodologies-a-comparative-study-for-engineering-and-technology-curricula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5056</span> Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim<sup>®</sup> Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim<sup>®</sup> Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unisim%20design" title=" unisim design"> unisim design</a> </p> <a href="https://publications.waset.org/abstracts/42425/modelling-and-simulation-of-the-freezing-systems-and-heat-pumps-using-unisim-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5055</span> Distributed Actor System for Traffic Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Wang">Han Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuoxian%20Dai"> Zhuoxian Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Zhu"> Zhe Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Zhang"> Hui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Zeng"> Zhenyu Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actor%20system" title="actor system">actor system</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20system" title=" distributed system"> distributed system</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20simulation" title=" traffic simulation"> traffic simulation</a> </p> <a href="https://publications.waset.org/abstracts/128664/distributed-actor-system-for-traffic-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5054</span> Optimizing Coal Yard Management Using Discrete Event Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iqbal%20Felani">Iqbal Felani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Coal-Fired Power Plant has some integrated facilities to handle coal from three separated coal yards to eight units power plant’s bunker. But nowadays the facilities are not reliable enough for supporting the system. Management planned to invest some facilities to increase the reliability. They also had a plan to make single spesification of coal used all of the units, called Single Quality Coal (SQC). This simulation would compare before and after improvement with two scenarios i.e First In First Out (FIFO) and Last In First Out (LIFO). Some parameters like stay time, reorder point and safety stock is determined by the simulation. Discrete event simulation based software, Flexsim 5.0, is used to help the simulation. Based on the simulation, Single Quality Coal with FIFO scenario has the shortest staytime with 8.38 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coal%20Yard%20Management" title="Coal Yard Management">Coal Yard Management</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20event%20simulation%20First%20In%20First%20Out" title=" Discrete event simulation First In First Out"> Discrete event simulation First In First Out</a>, <a href="https://publications.waset.org/abstracts/search?q=Last%20In%20First%20Out." title=" Last In First Out. "> Last In First Out. </a> </p> <a href="https://publications.waset.org/abstracts/20725/optimizing-coal-yard-management-using-discrete-event-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">677</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5053</span> Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20M.%20de%20Freitas">Felipe M. de Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Icaro%20V.%20Soares"> Icaro V. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20L.%20L.%20Fortes"> Lucas L. L. Fortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20T.%20M.%20Gon%C3%A7alves"> Sandro T. M. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Arsula%20D.%20C.%20Resende"> Úrsula D. C. Resende</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20circuits" title="hybrid circuits">hybrid circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=LE-FDTD" title=" LE-FDTD"> LE-FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20element" title=" lumped element"> lumped element</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a> </p> <a href="https://publications.waset.org/abstracts/107123/parametric-analysis-of-lumped-devices-modeling-using-finite-difference-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5052</span> Object-Oriented Programming for Modeling and Simulation of Systems in Physiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez%20de%20Canete">J. Fernandez de Canete</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object-oriented modeling is spreading in the current simulation of physiological systems through the use of the individual components of the model and its interconnections to define the underlying dynamic equations. In this paper, we describe the use of both the SIMSCAPE and MODELICA simulation environments in the object-oriented modeling of the closed-loop cardiovascular system. The performance of the controlled system was analyzed by simulation in light of the existing hypothesis and validation tests previously performed with physiological data. The described approach represents a valuable tool in the teaching of physiology for graduate medical students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20modeling" title="object-oriented modeling">object-oriented modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMSCAPE%20simulation%20language" title=" SIMSCAPE simulation language"> SIMSCAPE simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=MODELICA%20simulation%20language" title=" MODELICA simulation language"> MODELICA simulation language</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20system" title=" cardiovascular system"> cardiovascular system</a> </p> <a href="https://publications.waset.org/abstracts/28645/object-oriented-programming-for-modeling-and-simulation-of-systems-in-physiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5051</span> Architecture Design of the Robots Operability Assessment Simulation Testbed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Yeong%20Choi">Sang Yeong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Sung%20Park"> Woo Sung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the architecture design of the robot operability assessment simulation testbed (called "ROAST") for the resolution of robot operability problems occurred during interactions between human operators and robots. The basic idea of the ROAST architecture design is to enable the easy composition of legacy or new simulation models according to its purpose. ROAST architecture is based on IEEE1516 High Level Architecture (HLA) of defense modeling and simulation. The ROAST architecture is expected to provide the foundation framework for the easy construction of a simulation testbed to order to assess the robot operability during the robotic system design. Some of ROAST implementations and its usefulness are demonstrated through a simple illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20system" title="robotic system">robotic system</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation" title=" modeling and simulation"> modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20architecture" title=" simulation architecture"> simulation architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=operability%20assessment" title=" operability assessment"> operability assessment</a> </p> <a href="https://publications.waset.org/abstracts/54046/architecture-design-of-the-robots-operability-assessment-simulation-testbed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5050</span> Role of Discrete Event Simulation in the Assessment and Selection of the Potential Reconfigurable Manufacturing Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Raza">Mohsin Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Arne%20Bilberg"> Arne Bilberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Ditlev%20Brun%C3%B8"> Thomas Ditlev Brunø</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann-Louise%20Andersen"> Ann-Louise Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Filip%20SK%C3%A4rin"> Filip SKärin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shifting from a dedicated or flexible manufacturing system to a reconfigurable manufacturing system (RMS) requires a significant amount of time, money, and effort. Therefore, it is vital to verify beforehand that the potential reconfigurable solution will be able to achieve the organizational objectives. Discrete event simulation offers the opportunity of assessing several reconfigurable alternatives against the set objectives. This study signifies the importance of using discrete-event simulation as a tool to verify several reconfiguration options. Two different industrial cases have been presented in the study to elaborate on the role of discrete event simulation in the implementation methodology of RMSs. The study concluded that discrete event simulation is one of the important tools to consider in the RMS implementation methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20manufacturing%20system" title="reconfigurable manufacturing system">reconfigurable manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title=" discrete event simulation"> discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tecnomatix%20plant%20simulation" title=" Tecnomatix plant simulation"> Tecnomatix plant simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=RMS" title=" RMS"> RMS</a> </p> <a href="https://publications.waset.org/abstracts/150254/role-of-discrete-event-simulation-in-the-assessment-and-selection-of-the-potential-reconfigurable-manufacturing-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=169">169</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=170">170</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spice%20simulation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>