CINXE.COM
Search results for: detectors
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: detectors</title> <meta name="description" content="Search results for: detectors"> <meta name="keywords" content="detectors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="detectors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="detectors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 157</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: detectors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Radiation Hardness Materials Article Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Abou%20El-Azm">S. Abou El-Azm</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Kruchonak"> U. Kruchonak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gostkin"> M. Gostkin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guskov"> A. Guskov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zhemchugov"> A. Zhemchugov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20detectors" title="semiconductor detectors">semiconductor detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20hardness" title=" radiation hardness"> radiation hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=Si" title=" Si"> Si</a>, <a href="https://publications.waset.org/abstracts/search?q=CCE" title=" CCE"> CCE</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V" title=" I-V"> I-V</a>, <a href="https://publications.waset.org/abstracts/search?q=C-V" title=" C-V"> C-V</a> </p> <a href="https://publications.waset.org/abstracts/146949/radiation-hardness-materials-article-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Recent Advances of Photo-Detectors in Single Photon Emission Computed Tomography Imaging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasem%20A.%20Alyazji">Qasem A. Alyazji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main techniques for Positron emission tomography (PET), Single photon emission computed tomography (SPECT) is the development of radiation detectors. The NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes known as the Anger camera, is the most dominant detectors system in PET and SPECT devices. Technological advances in many materials, in addition to the emerging importance of specialized applications such as preclinical imaging and cardiac imaging, have encouraged innovation so that alternatives to the anger camera are now part in alternative imaging systems. In this paper we will discuss the main performance characteristics of detectors devices and scanning developments in both scintillation detectors, semiconductor (solid state) detectors, and Photon Transducers such as photomultiplier tubes (PMTs), position sensitive photomultiplier tubes (PSPMTs), Avalanche photodiodes (APDs) and Silicon photomultiplier (SiPMT). This paper discussed the detectors that showed promising results. This study is a review of recent developments in the detectors used in single photon emission computed tomography (SPECT) imaging system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPECT" title="SPECT">SPECT</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillation" title=" scintillation"> scintillation</a>, <a href="https://publications.waset.org/abstracts/search?q=PMTs" title=" PMTs"> PMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=SiPMT" title=" SiPMT"> SiPMT</a>, <a href="https://publications.waset.org/abstracts/search?q=PSPMTs" title=" PSPMTs"> PSPMTs</a>, <a href="https://publications.waset.org/abstracts/search?q=APDs" title=" APDs"> APDs</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20%28solid%20state%29" title=" semiconductor (solid state)"> semiconductor (solid state)</a> </p> <a href="https://publications.waset.org/abstracts/157985/recent-advances-of-photo-detectors-in-single-photon-emission-computed-tomography-imaging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Comparison of FNTD and OSLD Detectors' Responses to Light Ion Beams Using Monte Carlo Simulations and Exprimental Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemi"> A. Ghasemi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Al2O3:C,Mg fluorescent nuclear track detector (FNTD) and Al2O3:C optically stimulated luminescence detector (OSLD) are becoming two of the applied detectors in ion dosimetry. Therefore, the response of these detectors to hadron beams is highly of interest in radiation therapy (RT) using ion beams. In this study, these detectors' responses to proton and Helium-4 ion beams were compared using Monte Carlo simulations. The calculated data for proton beams were compared with Markus ionization chamber (IC) measurement (in water phantom) from M.D. Anderson proton therapy center. Monte Carlo simulations were performed via the FLUKA code (version 2011.2-17). The detectors were modeled in cylindrical shape at various depths of the water phantom without shading each other for obtaining relative depth dose in the phantom. Mono-energetic parallel ion beams in different incident energies (100 MeV/n to 250 MeV/n) were collided perpendicularly on the phantom surface. For proton beams, the results showed that the simulated detectors have over response relative to IC measurements in water phantom. In all cases, there were good agreements between simulated ion ranges in the water with calculated and experimental results reported by the literature. For proton, maximum peak to entrance dose ratio in the simulated water phantom was 4.3 compared with about 3 obtained from IC measurements. For He-4 ion beams, maximum peak to entrance ratio calculated by both detectors was less than 3.6 in all energies. Generally, it can be said that FLUKA is a good tool to calculate Al2O3:C,Mg FNTD and Al2O3:C OSLD detectors responses to therapeutic proton and He-4 ion beams. It can also calculate proton and He-4 ion ranges with a reasonable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comparison" title="comparison">comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=FNTD%20and%20OSLD%20detectors%20response" title=" FNTD and OSLD detectors response"> FNTD and OSLD detectors response</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20ion%20beams" title=" light ion beams"> light ion beams</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulations" title=" Monte Carlo simulations"> Monte Carlo simulations</a> </p> <a href="https://publications.waset.org/abstracts/7133/comparison-of-fntd-and-osld-detectors-responses-to-light-ion-beams-using-monte-carlo-simulations-and-exprimental-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki%20Ok%20Choi">Ki Ok Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Hong"> Sung Ho Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Suck%20Kim"> Dong Suck Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Mook%20Choi"> Don Mook Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20detector" title="fire detector">fire detector</a>, <a href="https://publications.waset.org/abstracts/search?q=rack" title=" rack"> rack</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20characteristic" title=" response characteristic"> response characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=warehouse" title=" warehouse"> warehouse</a> </p> <a href="https://publications.waset.org/abstracts/56376/an-experimental-study-on-the-optimum-installation-of-fire-detector-for-early-stage-fire-detecting-in-rack-type-warehouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">745</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Statistical Analysis of Natural Images after Applying ICA and ISA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Sheikholharam%20Mashhadi">Peyman Sheikholharam Mashhadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistics" title="statistics">statistics</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20subspace%20analysis" title=" independent subspace analysis"> independent subspace analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phase" title=" phase"> phase</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20images" title=" natural images"> natural images</a> </p> <a href="https://publications.waset.org/abstracts/34292/statistical-analysis-of-natural-images-after-applying-ica-and-isa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Design, Construction and Characterization of a 3He Proportional Counter for Detecting Thermal Neutron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fares">M. Fares</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mameri"> S. Mameri</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Abdlani"> I. Abdlani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Negara"> K. Negara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutron detectors in general, proportional counters gas filling based isotope 3He in particular are going to be essential for monitoring and control of certain nuclear facilities, monitoring of experimentation around neutron beams and channels nuclear research reactors, radiation protection instruments and other tools multifaceted exploration and testing of materials, etc. This work consists of a measurement campaign features two Proportional Counters 3He (3He: LND252/USA CP, CP prototype: 3He LND/DDM). This is to make a comparison study of a CP 3He LND252/USA reference one hand, and in the context of routine periodic monitoring of the characteristics of the detectors for controlling the operation especially for laboratory prototypes. In this paper, we have described the different characteristics of the detectors and the experimental protocols used. Tables of measures have been developed and the different curves were plotted. The experimental campaign at stake: 2 PC 3He were thus characterized: Their characteristics (sensitivity, energy pulse height distribution spectra, gas amplification etc.) Were identified: 01 PC 3He 1'' Type: prototype DEDIN/DDM, 01 PC 3He 1'' Type: LND252/USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PC%203He" title="PC 3He">PC 3He</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20height%20distribution%20spectra" title=" pulse height distribution spectra"> pulse height distribution spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20amplification" title=" gas amplification"> gas amplification</a> </p> <a href="https://publications.waset.org/abstracts/18961/design-construction-and-characterization-of-a-3he-proportional-counter-for-detecting-thermal-neutron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Investigation of Detectability of Orbital Objects/Debris in Geostationary Earth Orbit by Microwave Kinetic Inductance Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Vahedikamal">Saeed Vahedikamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Hepburn"> Ian Hepburn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave Kinetic Inductance Detectors (MKIDs) are considered as one of the most promising photon detectors of the future in many Astronomical applications such as exoplanet detections. The MKID advantages stem from their single photon sensitivity (ranging from UV to optical and near infrared), photon energy resolution and high temporal capability (~microseconds). There has been substantial progress in the development of these detectors and MKIDs with Megapixel arrays is now possible. The unique capability of recording an incident photon and its energy (or wavelength) while also registering its time of arrival to within a microsecond enables an array of MKIDs to produce a four-dimensional data block of x, y, z and t comprising x, y spatial, z axis per pixel spectral and t axis per pixel which is temporal. This offers the possibility that the spectrum and brightness variation for any detected piece of space debris as a function of time might offer a unique identifier or fingerprint. Such a fingerprint signal from any object identified in multiple detections by different observers has the potential to determine the orbital features of the object and be used for their tracking. Modelling performed so far shows that with a 20 cm telescope located at an Astronomical observatory (e.g. La Palma, Canary Islands) we could detect sub cm objects at GEO. By considering a Lambertian sphere with a 10 % reflectivity (albedo of the Moon) we anticipate the following for a GEO object: 10 cm object imaged in a 1 second image capture; 1.2 cm object for a 70 second image integration or 0.65 cm object for a 4 minute image integration. We present details of our modelling and the potential instrument for a dedicated GEO surveillance system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20debris" title="space debris">space debris</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20debris" title=" orbital debris"> orbital debris</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20system" title=" detection system"> detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=observation" title=" observation"> observation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20kinetic%20inductance%20detectors" title=" microwave kinetic inductance detectors"> microwave kinetic inductance detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=MKID" title=" MKID"> MKID</a> </p> <a href="https://publications.waset.org/abstracts/158878/investigation-of-detectability-of-orbital-objectsdebris-in-geostationary-earth-orbit-by-microwave-kinetic-inductance-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyoutae%20Park">Gyoutae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungho%20Han"> Seungho Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungduk%20Kim"> Byungduk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngdo%20Jo"> Youngdo Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsop%20Shim"> Yongsop Shim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeonjae%20Lee"> Yeonjae Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangguk%20Ahn"> Sangguk Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim"> Hiesik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungil%20Park"> Jungil Park </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20improvement" title="accuracy improvement">accuracy improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20gas%20sensor" title=" IR gas sensor"> IR gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20leak" title=" gas leak"> gas leak</a>, <a href="https://publications.waset.org/abstracts/search?q=detector" title=" detector"> detector</a> </p> <a href="https://publications.waset.org/abstracts/47808/research-on-development-and-accuracy-improvement-of-an-explosion-proof-combustible-gas-leak-detector-using-an-ir-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Anomaly Detection with ANN and SVM for Telemedicine Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20Guill%C3%A9n">Edward Guillén</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeisson%20S%C3%A1nchez"> Jeisson Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Omar%20Ramos"> Carlos Omar Ramos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=back-propagation%20neural%20networks" title=" back-propagation neural networks"> back-propagation neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20intrusion%20detection%20systems" title=" network intrusion detection systems"> network intrusion detection systems</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a> </p> <a href="https://publications.waset.org/abstracts/42120/anomaly-detection-with-ann-and-svm-for-telemedicine-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Lead Chalcogenide Quantum Dots for Use in Radiation Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tom%20Nakotte">Tom Nakotte</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongmei%20Luo"> Hongmei Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colloidal%20synthesis" title="colloidal synthesis">colloidal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20chalcogenide" title=" lead chalcogenide"> lead chalcogenide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20detectors" title=" radiation detectors"> radiation detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/93522/lead-chalcogenide-quantum-dots-for-use-in-radiation-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Performance Analysis of SAC-OCDMA System using Different Detectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaya%20A.%20Abd%20El%20Mottaleb">Somaya A. Abd El Mottaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abd%20El%20Aziz"> Ahmed Abd El Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20A.%20Fayed"> Heba A. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Aly">Moustafa H. Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the performance of spectral amplitude coding optical code division multiple access using different detectors at different transmission distances using single photodiode detection technique. Modified double weight codes are used as signature codes. Simulation results show that the system using avalanche photo detector can move distance longer than that using positive intrinsic negative photo detector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avalanche%20photodiode" title="avalanche photodiode">avalanche photodiode</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20double%20weight" title=" modified double weight"> modified double weight</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20access%20technique" title=" multiple access technique"> multiple access technique</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20photodiode." title=" single photodiode. "> single photodiode. </a> </p> <a href="https://publications.waset.org/abstracts/12035/performance-analysis-of-sac-ocdma-system-using-different-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Thermal Neutron Detection Efficiency as a Function of Film Thickness for Front and Back Irradiation Detector Devices Coated with ¹⁰B, ⁶LiF, and Pure Li Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vedant%20Subhash">Vedant Subhash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the physics of the detection of thermal neutrons using thin-film coated semiconductor detectors. The thermal neutron detection efficiency as a function of film thickness is calculated for the front and back irradiation detector devices coated with ¹⁰B, ⁶LiF, and pure Li thin films. The detection efficiency for back irradiation devices is 4.15% that is slightly higher than that for front irradiation detectors, 4.0% for ¹⁰B films of thickness 2.4μm. The theoretically calculated thermal neutron detection efficiency using ¹⁰B film thickness of 1.1 μm for the back irradiation device is 3.0367%, which has an offset of 0.0367% from the experimental value of 3.0%. The detection efficiency values are compared and proved consistent with the given calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection%20efficiency" title="detection efficiency">detection efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20detection" title=" neutron detection"> neutron detection</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20detectors" title=" semiconductor detectors"> semiconductor detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20neutrons" title=" thermal neutrons"> thermal neutrons</a> </p> <a href="https://publications.waset.org/abstracts/133906/thermal-neutron-detection-efficiency-as-a-function-of-film-thickness-for-front-and-back-irradiation-detector-devices-coated-with-1b-6lif-and-pure-li-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Interaction of Metals with Non-Conventional Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20E.%20Tereshatov">Evgeny E. Tereshatov</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Folden"> C. M. Folden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionic liquids and deep eutectic mixtures represent so-called non-conventional solvents. The former, composed of discrete ions, is a salt with a melting temperature below 100°С. The latter, consisting of hydrogen bond donors and acceptors, is a mixture of at least two compounds, resulting in a melting temperature depression in comparison with that of the individual moiety. These systems also can be water-immiscible, which makes them applicable for metal extraction. This work will cover interactions of In, Tl, Ir, and Rh in hydrochloric acid media with eutectic mixtures and Er, Ir, and At in a gas phase with chemically modified α-detectors. The purpose is to study chemical systems based on non-conventional solvents in terms of their interaction with metals. Once promising systems are found, the next step is to modify the surface of α-detectors used in the online element production at cyclotrons to get the detector chemical selectivity. Initially, the metal interactions are studied by means of the liquid-liquid extraction technique. Then appropriate molecules are chemisorbed on the surrogate surface first to understand the coating quality. Finally, a detector is covered with the same molecule, and the metal sorption on such detectors is studied in the online regime. It was found that chemical treatment of the surface can result in 99% coverage with a monolayer formation. This surface is chemically active and can adsorb metals from hydrochloric acid solutions. Similarly, a detector surface was modified and tested during cyclotron-based experiments. Thus, a procedure of detectors functionalization has been developed, and this opens an interesting opportunity of studying chemisorption of elements which do not have stable isotopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanism" title="mechanism">mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=radioisotopes" title=" radioisotopes"> radioisotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20phase%20sorption" title=" gas phase sorption"> gas phase sorption</a> </p> <a href="https://publications.waset.org/abstracts/152945/interaction-of-metals-with-non-conventional-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> A Novel Combination Method for Computing the Importance Map of Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Absetan">Ahmad Absetan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Nooshyar"> Mahdi Nooshyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance map is an image-based measure and is a core part of the resizing algorithm. Importance measures include image gradients, saliency and entropy, as well as high level cues such as face detectors, motion detectors and more. In this work we proposed a new method to calculate the importance map, the importance map is generated automatically using a novel combination of image edge density and Harel saliency measurement. Experiments of different type images demonstrate that our method effectively detects prominent areas can be used in image resizing applications to aware important areas while preserving image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=content-aware%20image%20resizing" title="content-aware image resizing">content-aware image resizing</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20saliency" title=" visual saliency"> visual saliency</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20density" title=" edge density"> edge density</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20warping" title=" image warping"> image warping</a> </p> <a href="https://publications.waset.org/abstracts/35692/a-novel-combination-method-for-computing-the-importance-map-of-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> A Comparative Study of Indoor Radon Concentrations between Dwellings and Workplaces in the Ko Samui District, Surat Thani Province, Southern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanokkan%20Titipornpun">Kanokkan Titipornpun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tripob%20Bhongsuwan"> Tripob Bhongsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Gimsa"> Jan Gimsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ko Samui district of Surat Thani province is located in the high amounts of equivalent uranium in the ground surface that is the source of radon. Our research in the Ko Samui district aimed at comparing the indoor radon concentrations between dwellings and workplaces. Measurements of indoor radon concentrations were carried out in 46 dwellings and 127 workplaces, using CR-39 alpha-track detectors in closed-cup. A total of 173 detectors were distributed in 7 sub-districts. The detectors were placed in bedrooms of dwellings and workrooms of workplaces. All detectors were exposed to airborne radon for 90 days. After exposure, the alpha tracks were made visible by chemical etching before they were manually counted under an optical microscope. The track densities were assumed to be correlated with the radon concentration levels. We found that the radon concentrations could be well described by a log-normal distribution. Most concentrations (37%) were found in the range between 16 and 30 Bq.m<sup>-3</sup>. The radon concentrations in dwellings and workplaces varied from a minimum of 11 Bq.m<sup>-3</sup> to a maximum of 305 Bq.m<sup>-3</sup>. The minimum (11 Bq.m<sup>-3</sup>) and maximum (305 Bq.m<sup>-3</sup>) values of indoor radon concentrations were found in a workplace and a dwelling, respectively. Only for four samples (3%), the indoor radon concentrations were found to be higher than the reference level recommended by the WHO (100 Bq.m<sup>-3</sup>). The overall geometric mean in the surveyed area was <span dir="RTL">32.6±1.65</span> Bq.m<sup>-3</sup>, which was lower than the worldwide average (39 Bq.m<sup>-3</sup>). The statistic comparison of the geometric mean indoor radon concentrations between dwellings and workplaces showed that the geometric mean in dwellings (46.0±1.55 Bq.m<sup>-3</sup>) was significantly higher than in workplaces (<span dir="RTL">28.8</span>±1.58 Bq.m<sup>-3</sup>) at the 0.05 level. Moreover, our study found that the majority of the bedrooms in dwellings had a closed atmosphere, resulting in poorer ventilation than in most of the workplaces that had access to air flow through open doors and windows at daytime. We consider this to be the main reason for the higher geometric mean indoor radon concentration in dwellings compared to workplaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CR-39%20detector" title="CR-39 detector">CR-39 detector</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20radon" title=" indoor radon"> indoor radon</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20in%20dwelling" title=" radon in dwelling"> radon in dwelling</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20in%20workplace" title=" radon in workplace"> radon in workplace</a> </p> <a href="https://publications.waset.org/abstracts/74858/a-comparative-study-of-indoor-radon-concentrations-between-dwellings-and-workplaces-in-the-ko-samui-district-surat-thani-province-southern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Determination of Unknown Radionuclides Using High Purity Germanium Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20G.%20Onuk">O. G. Onuk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Taura"> L. S. Taura</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Eze"> C. M. Eze</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ngaram"> S. M. Ngaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decay chain of radioactive elements in the laboratory and the verification of natural radioactivity of the human body was investigated using the High Purity Germanium (HPGe) detector. Properties of the HPGe detectors were also investigated. The efficiency and energy resolution of HPGe detector used in the laboratory was found to be excellent. The detector was calibrated three times so as to cover a wider energy range. Also the Centroid C of the detector was found to have a linear relationship with the energies of the known gamma-rays. Using the three calibrations of the detector, the energy of an unknown radionuclide was found to follow the decay chain of thorium-232 (232Th) and it was also found that an average adult has about 2.5g Potasium-40 (40K) in the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detector" title="detector">detector</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/83964/determination-of-unknown-radionuclides-using-high-purity-germanium-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Cesarini">E. Cesarini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lorenzini"> M. Lorenzini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Cardarelli"> R. Cardarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chao"> S. Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Coccia"> E. Coccia</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Fafone"> V. Fafone</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Minenkow"> Y. Minenkow</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nardecchia"> I. Nardecchia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Pinto"> I. M. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rocchi"> A. Rocchi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sequino"> V. Sequino</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Taranto"> C. Taranto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti<sub>2</sub>O/SiO<sub>2</sub>), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement" title="mechanical measurement">mechanical measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20coating" title=" optical coating"> optical coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20noise" title=" thermal noise"> thermal noise</a> </p> <a href="https://publications.waset.org/abstracts/45331/measurement-of-acoustic-loss-in-nano-layered-coating-developed-for-thermal-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balgaisha%20G.%20Mukanova">Balgaisha G. Mukanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelbek%20B.%20Utepov"> Yelbek B. Utepov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20G.%20Nazarova"> Aida G. Nazarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alisher%20Z.%20Imanov"> Alisher Z. Imanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20model" title="acoustic model">acoustic model</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival" title=" direction of arrival"> direction of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20source%20problem" title=" inverse source problem"> inverse source problem</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20localization" title=" sound localization"> sound localization</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20noises" title=" urban noises"> urban noises</a> </p> <a href="https://publications.waset.org/abstracts/181894/noise-source-identification-on-urban-construction-sites-using-signal-time-delay-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Directionally-Sensitive Personal Wearable Radiation Dosimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Huu%20Le">Hai Huu Le</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Junor"> Paul Junor</a>, <a href="https://publications.waset.org/abstracts/search?q=Moshi%20Geso"> Moshi Geso</a>, <a href="https://publications.waset.org/abstracts/search?q=Graeme%20O%E2%80%99Keefe"> Graeme O’Keefe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dose%20rate" title="dose rate">dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Geant4%20package" title=" Geant4 package"> Geant4 package</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dosimeter" title=" radiation dosimeter"> radiation dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20source%20direction" title=" radioactive source direction"> radioactive source direction</a> </p> <a href="https://publications.waset.org/abstracts/62933/directionally-sensitive-personal-wearable-radiation-dosimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lae-Jeong%20Park">Lae-Jeong Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20detection" title="pedestrian detection">pedestrian detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20segmentation" title=" color segmentation"> color segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20positive" title=" false positive"> false positive</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/61932/reduction-of-false-positives-in-head-shoulder-detection-based-on-multi-part-color-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulin%20Rao">Yulin Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhixuan%20Li"> Zhixuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20immune%20system" title="artificial immune system">artificial immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20artificial%20intelligence" title=" distributed artificial intelligence"> distributed artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection%20system" title=" intrusion detection system"> intrusion detection system</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/152818/design-of-an-improved-distributed-framework-for-intrusion-detection-system-based-on-artificial-immune-system-and-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Mechanical Study Printed Circuit Boards Bonding for Jefferson Laboratory Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Noto">F. Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20De%20Persio"> F. De Persio</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bellini"> V. Bellini</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Costa.%20F.%20Mammoliti"> G. Costa. F. Mammoliti</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Meddi"> F. Meddi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sutera"> C. Sutera</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Urcioli"> G. M. Urcioli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One plane X and one plane Y of silicon microstrip detectors will constitute the front part of the Super Bigbite Spectrometer that is under construction and that will be installed in the experimental Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory), located in Newport News, Virgina, USA. Each plane will be made up by two nearly identical, 300 μm thick, 10 cm x 10.3 cm wide silicon microstrip detectors with 50 um pitch, whose electronic signals will be transferred to the front-end electronic based on APV25 chips through C-shaped FR4 Printed Circuit Boards (PCB). A total of about 10000 strips are read-out. This paper treats the optimization of the detector support structure, the materials used through a finite element simulation. A very important aspect of the study will also cover the optimization of the bonding parameters between detector and electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title="FEM analysis">FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=bonding" title=" bonding"> bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS%20tracker" title=" SBS tracker"> SBS tracker</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20structure" title=" mechanical structure"> mechanical structure</a> </p> <a href="https://publications.waset.org/abstracts/67695/mechanical-study-printed-circuit-boards-bonding-for-jefferson-laboratory-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Effectiveness of Radon Remedial Action Implemented in a School on the Island of Ischia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Loffredo">F. Loffredo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Quarto"> M. Quarto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pugliese"> M. Pugliese</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mazzella"> A. Mazzella</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20De%20Cicco"> F. De Cicco</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Roca"> V. Roca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to evaluate the efficacy of radon remedial action in a school on the Ischia island, South Italy, affected by indoor radon concentration higher than the value of 500 Bq/m<sup>3</sup>. This value is the limit imposed by the Italian legislation, to above which corrective actions in schools are necessary. Before the application of remedial action, indoor radon concentrations were measured in 9 rooms of the school. The measurements were performed with LR-115 passive alpha detectors (SSNTDs) and E-Perm. The remedial action was conducted in one of the office affected by high radon concentration using a Radonstop paint applied after the construction of a concrete slab under the floor. The effect of remedial action was the reduction of the concentration of radon of 41% and moreover it has demonstrated to be durable over time. The chosen method is cheap and easy to apply and it could be designed for various types of building. This method can be applied to new and existing buildings that show high dose values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E-Perm" title="E-Perm">E-Perm</a>, <a href="https://publications.waset.org/abstracts/search?q=LR%20115%20detectors" title=" LR 115 detectors"> LR 115 detectors</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20remediation" title=" radon remediation"> radon remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=school" title=" school"> school</a> </p> <a href="https://publications.waset.org/abstracts/67302/effectiveness-of-radon-remedial-action-implemented-in-a-school-on-the-island-of-ischia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Development of a Remote Testing System for Performance of Gas Leakage Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyoutae%20Park">Gyoutae Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Woosuk%20Kim"> Woosuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangguk%20Ahn"> Sangguk Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungmo%20Kim"> Seungmo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kim"> Minjun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinhan%20Lee"> Jinhan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngdo%20Jo"> Youngdo Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsam%20Moon"> Jongsam Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim"> Hiesik Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we designed a remote system to test parameters of gas detectors such as gas concentration and initial response time. This testing system is available to measure two gas instruments simultaneously. First of all, we assembled an experimental jig with a square structure. Those parts are included with a glass flask, two high-quality cameras, and two Ethernet modems for transmitting data. This remote gas detector testing system extracts numerals from videos with continually various gas concentrations while LCDs show photographs from cameras. Extracted numeral data are received to a laptop computer through Ethernet modem. And then, the numerical data with gas concentrations and the measured initial response speeds are recorded and graphed. Our remote testing system will be diversely applied on gas detector’s test and will be certificated in domestic and international countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20leak%20detector" title="gas leak detector">gas leak detector</a>, <a href="https://publications.waset.org/abstracts/search?q=inspection%20instrument" title=" inspection instrument"> inspection instrument</a>, <a href="https://publications.waset.org/abstracts/search?q=extracting%20numerals" title=" extracting numerals"> extracting numerals</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a> </p> <a href="https://publications.waset.org/abstracts/65616/development-of-a-remote-testing-system-for-performance-of-gas-leakage-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Potential Applications and Future Prospects of Zinc Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zinc%20oxide" title="Zinc oxide">Zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20devices" title=" piezoelectric devices"> piezoelectric devices</a> </p> <a href="https://publications.waset.org/abstracts/180988/potential-applications-and-future-prospects-of-zinc-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Development of Alpha Spectroscopy Method with Solid State Nuclear Track Detector Using Aluminium Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Dwaikat">Nidal Dwaikat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the development of alpha spectroscopy method with Solid-state nuclear track detectors using aluminum thin films. The resolution of this method is high, and it is able to discriminate between alpha particles at different incident energy. It can measure the exact number of alpha particles at specific energy without needing a calibration of alpha track diameter versus alpha energy. This method was tested by using Cf-252 alpha standard source at energies 5.11 Mev, 3.86 MeV and 2.7 MeV, which produced by the variation of detector -standard source distance. On front side, two detectors were covered with two Aluminum thin films and the third detector was kept uncovered. The thickness of Aluminum thin films was selected carefully (using SRIM 2013) such that one of the films will block the lower two alpha particles (3.86 MeV and 2.7 MeV) and the alpha particles at higher energy (5.11 Mev) can penetrate the film and reach the detector’s surface. The second thin film will block alpha particles at lower energy of 2.7 MeV and allow alpha particles at higher two energies (5.11 Mev and 3.86 MeV) to penetrate and produce tracks. For uncovered detector, alpha particles at three different energies can produce tracks on it. For quality assurance and accuracy, the detectors were mounted on thick enough copper substrates to block exposure from the backside. The tracks on the first detector are due to alpha particles at energy of 5.11 MeV. The difference between the tracks number on the first detector and the tracks number on the second detector is due to alpha particles at energy of 3.8 MeV. Finally, by subtracting the tracks number on the second detector from the tracks number on the third detector (uncovered), we can find the tracks number due to alpha particles at energy 2.7 MeV. After knowing the efficiency calibration factor, we can exactly calculate the activity of standard source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20thin%20film" title="aluminium thin film">aluminium thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20particles" title=" alpha particles"> alpha particles</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20substrate" title=" copper substrate"> copper substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=CR-39%20detector" title=" CR-39 detector"> CR-39 detector</a> </p> <a href="https://publications.waset.org/abstracts/41596/development-of-alpha-spectroscopy-method-with-solid-state-nuclear-track-detector-using-aluminium-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theophilus%20Adjirackor">Theophilus Adjirackor</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederic%20Sam"> Frederic Sam</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Opoku-Ntim"> Irene Opoku-Ntim</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Okoh%20Kpeglo"> David Okoh Kpeglo</a>, <a href="https://publications.waset.org/abstracts/search?q=Prince%20K.%20Gyekye"> Prince K. Gyekye</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20K.%20Quashie"> Frank K. Quashie</a>, <a href="https://publications.waset.org/abstracts/search?q=Kofi%20Ofori"> Kofi Ofori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LR115" title="LR115">LR115</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20concentration" title=" radon concentration"> radon concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=rime%20series" title=" rime series"> rime series</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20goldmine" title=" underground goldmine"> underground goldmine</a> </p> <a href="https://publications.waset.org/abstracts/186013/time-series-analysis-of-radon-concentration-at-different-depths-in-an-underground-goldmine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Dumitriu">A. E. Dumitriu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LHCb%20physics" title="LHCb physics">LHCb physics</a>, <a href="https://publications.waset.org/abstracts/search?q=RIVET%20plug-in" title=" RIVET plug-in"> RIVET plug-in</a>, <a href="https://publications.waset.org/abstracts/search?q=RIVET" title=" RIVET"> RIVET</a>, <a href="https://publications.waset.org/abstracts/search?q=CERN" title=" CERN"> CERN</a> </p> <a href="https://publications.waset.org/abstracts/27948/v0-physics-at-lhcb-rivet-analysis-module-for-z-boson-decay-to-di-electron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Progress in Accuracy, Reliability and Safety in Firedamp Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Lorenzo%20Bayona">José Luis Lorenzo Bayona</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljiljana%20Medic-Pejic"> Ljiljana Medic-Pejic</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Amez%20Arenillas"> Isabel Amez Arenillas</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanca%20Castells%20Somoza"> Blanca Castells Somoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATEX%20standards" title="ATEX standards">ATEX standards</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20detector" title=" gas detector"> gas detector</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20meter" title=" methane meter"> methane meter</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20safety" title=" mining safety"> mining safety</a> </p> <a href="https://publications.waset.org/abstracts/137583/progress-in-accuracy-reliability-and-safety-in-firedamp-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Error Probability of Multi-User Detection Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Babbar">Komal Babbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=code%20division%20multiple%20access" title="code division multiple access">code division multiple access</a>, <a href="https://publications.waset.org/abstracts/search?q=decorrelating" title=" decorrelating"> decorrelating</a>, <a href="https://publications.waset.org/abstracts/search?q=matched%20filter" title=" matched filter"> matched filter</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20mean%20square%20detection%20%28MMSE%29%20detection" title=" minimum mean square detection (MMSE) detection"> minimum mean square detection (MMSE) detection</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20access%20interference%20%28MAI%29" title=" multiple access interference (MAI)"> multiple access interference (MAI)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiuser%20detection%20%28MUD%29" title=" multiuser detection (MUD)"> multiuser detection (MUD)</a> </p> <a href="https://publications.waset.org/abstracts/26329/error-probability-of-multi-user-detection-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detectors&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detectors&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detectors&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detectors&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detectors&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=detectors&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>