CINXE.COM
adhesive category (changes) in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> adhesive category (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> adhesive category (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/13037/#Item_5" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #21 to #22: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='category_theory'>Category theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/category+theory'>category theory</a></strong></p> <h2 id='sidebar_concepts'>Concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/category'>category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/functor'>functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/natural+transformation'>natural transformation</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Cat'>Cat</a></p> </li> </ul> <h2 id='sidebar_universal_constructions'>Universal constructions</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/universal+construction'>universal construction</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/representable+functor'>representable functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/adjoint+functor'>adjoint functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/limit'>limit</a>/<a class='existingWikiWord' href='/nlab/show/diff/colimit'>colimit</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/weighted+limit'>weighted limit</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/end'>end</a>/<a class='existingWikiWord' href='/nlab/show/diff/end'>coend</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Kan+extension'>Kan extension</a></p> </li> </ul> </li> </ul> <h2 id='sidebar_theorems'>Theorems</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Yoneda+lemma'>Yoneda lemma</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Isbell+duality'>Isbell duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Grothendieck+construction'>Grothendieck construction</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/adjoint+functor+theorem'>adjoint functor theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monadicity+theorem'>monadicity theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/adjoint+lifting+theorem'>adjoint lifting theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Tannaka+duality'>Tannaka duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Gabriel%E2%80%93Ulmer+duality'>Gabriel-Ulmer duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/small+object+argument'>small object argument</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Freyd-Mitchell+embedding+theorem'>Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/relation+between+type+theory+and+category+theory'>relation between type theory and category theory</a></p> </li> </ul> <h2 id='sidebar_extensions'>Extensions</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/sheaf+and+topos+theory'>sheaf and topos theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/enriched+category+theory'>enriched category theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/higher+category+theory'>higher category theory</a></p> </li> </ul> <h2 id='sidebar_applications'>Applications</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/applications+of+%28higher%29+category+theory'>applications of (higher) category theory</a></li> </ul> <div> <p> <a href='/nlab/edit/category+theory+-+contents'>Edit this sidebar</a> </p> </div></div> </div> </div> <h1 id='adhesive_categories'>Adhesive categories</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a></li><li><a href='#Examples'>Examples</a></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>An <em>adhesive category</em> is a <a class='existingWikiWord' href='/nlab/show/diff/category'>category</a> in which <a class='existingWikiWord' href='/nlab/show/diff/pushout'>pushouts</a> of <a class='existingWikiWord' href='/nlab/show/diff/monomorphism'>monomorphisms</a> exist and “behave more or less as they do in the category of <a class='existingWikiWord' href='/nlab/show/diff/Set'>sets</a>”, or equivalently in any <a class='existingWikiWord' href='/nlab/show/diff/topos'>topos</a>.</p> <h2 id='definition'>Definition</h2> <div class='num_defn'> <h6 id='definition_2'>Definition</h6> <p>The following conditions on a <a class='existingWikiWord' href='/nlab/show/diff/category'>category</a> <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> are equivalent. When they are satisfied, we say that <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> is <strong>adhesive</strong>.</p> <ol> <li> <p><math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> has <a class='existingWikiWord' href='/nlab/show/diff/pullback'>pullbacks</a> and <a class='existingWikiWord' href='/nlab/show/diff/pushout'>pushouts</a> of <a class='existingWikiWord' href='/nlab/show/diff/monomorphism'>monomorphisms</a>, and pushout squares of monomorphisms are also pullback squares and are stable under pullback.</p> </li> <li> <p><math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> has pullbacks, and pushouts of monomorphisms, and the latter are also <a class='existingWikiWord' href='/nlab/show/diff/2-limit'>(bicategorical)</a> pushouts in the <a class='existingWikiWord' href='/nlab/show/diff/bicategory'>bicategory</a> of <a class='existingWikiWord' href='/nlab/show/diff/span'>spans</a> in <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>.</p> </li> <li> <p>(If <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> is small) <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> has pullbacks and pushouts of monomorphisms, and admits a <a class='existingWikiWord' href='/nlab/show/diff/full+and+faithful+functor'>full embedding</a> into a <a class='existingWikiWord' href='/nlab/show/diff/Grothendieck+topos'>Grothendieck topos</a> preserving pullbacks and pushouts of monomorphisms.</p> </li> <li> <p><math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> has pullbacks and pushouts of monomorphisms, and in any cubical diagram:</p> <p><img alt='cube' src='https://i.imgur.com/doD9CSD.png' /></p> <p>if <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X\to Y</annotation></semantics></math> is a monomorphism, the bottom square is a pushout, and the left and back faces are pullbacks, then the top face is a pushout if and only if the front and right face are pullbacks. In other words, pushouts of monomorphisms are <a class='existingWikiWord' href='/nlab/show/diff/van+Kampen+colimit'>van Kampen colimits</a>.</p> </li> </ol> </div> <h2 id='properties'>Properties</h2> <p>Notice that generally <a class='existingWikiWord' href='/nlab/show/diff/monomorphism'>monomorphisms</a> are preserved by <a class='existingWikiWord' href='/nlab/show/diff/pullback'>pullback</a> (see <a href='monomorphism#MonomorphismsArePreservedByPullback'>there</a>) but in a general category they may not need to be preserved by <a class='existingWikiWord' href='/nlab/show/diff/pushout'>pushout</a>. In an adhesive category, however, they are:</p> <div class='num_prop'> <h6 id='proposition'>Proposition</h6> <p>In an adhesive category, suppose given a <a class='existingWikiWord' href='/nlab/show/diff/pushout'>pushout</a> square</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mi>C</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>A</mi></mtd></mtr> <mtr><mtd><mpadded lspace='-100%width' width='0'><mrow><msup><mrow /> <mi>f</mi></msup></mrow></mpadded><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd> <mtd /> <mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo><mpadded width='0'><mrow><msup><mrow /> <mi>g</mi></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>B</mi></mtd> <mtd><munder><mo>⟶</mo><mi>n</mi></munder></mtd> <mtd><mi>D</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'><span> <del class='diffdel'> </del> \array{ C & \overset{m}{\longrightarrow} & A \\ \mathllap{{}^f}\big\downarrow && \big\downarrow\mathrlap{{}^g} \\ B & \underset{n}{\longrightarrow} & D }</span></annotation></semantics></math></div> <p>such that <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/diff/monomorphism'>monomorphism</a>. Then:</p> <ol> <li> <p><math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> is also a monomorphism.</p> </li> <li> <p>The square is also a <a class='existingWikiWord' href='/nlab/show/diff/pullback'>pullback</a> square.</p> </li> <li> <p>The square is also a <a class='existingWikiWord' href='/nlab/show/diff/distributivity+pullback'>distributivity pullback</a> around <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>g</mi><mo>,</mo><mi>m</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(g,m)</annotation></semantics></math>; hence in particular <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><msub><mo>∀</mo> <mi>g</mi></msub><mi>m</mi></mrow><annotation encoding='application/x-tex'>n = \forall_g m</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/diff/universal+quantifier'>universal quantification</a>.</p> </li> </ol> </div> <p>For a proof of the above proposition, see (<a href='#Lack'>Lack, prop. 2.1</a>) and (<a href='#LS1'>Lack-Sobocinski, Lemmas 2.3 and 2.8</a>). The latter Lemma 2.8 states only that <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><msub><mo>∀</mo> <mi>g</mi></msub><mi>m</mi></mrow><annotation encoding='application/x-tex'>n = \forall_g m</annotation></semantics></math> (a weaker universal property since it refers only to other <em>monomorphisms</em> into <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math>), but the proof applies more generally.</p> <div class='num_prop'> <h6 id='proposition_2'>Proposition</h6> <p>An adhesive category with a <a class='existingWikiWord' href='/nlab/show/diff/strict+initial+object'>strict initial object</a> is automatically an <a class='existingWikiWord' href='/nlab/show/diff/extensive+category'>extensive category</a>.</p> </div> <p>We define a <a class='existingWikiWord' href='/nlab/show/diff/pushout+complement'>pushout complement</a> of <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>m:C\to A</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>g</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>g:A\to D</annotation></semantics></math> to be a pair of arrows <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>f:C\to B</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>n:B\to D</annotation></semantics></math> such that <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mi>f</mi><mo>=</mo><mi>g</mi><mi>m</mi></mrow><annotation encoding='application/x-tex'>n f = g m</annotation></semantics></math> and this <a class='existingWikiWord' href='/nlab/show/diff/commutative+square'>commutative square</a> is a <a class='existingWikiWord' href='/nlab/show/diff/pushout'>pushout</a>. The following proposition is crucial in <a class='existingWikiWord' href='/nlab/show/diff/span+rewriting'>double pushout graph rewriting</a>.</p> <div class='num_prop'> <h6 id='proposition_3'>Proposition</h6> <p>In an adhesive category, if <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>m:C\to A</annotation></semantics></math> is mono and <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>g</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>g:A\to D</annotation></semantics></math> is any morphism, then if a pushout complement exists, it is unique up to unique isomorphism.</p> </div> <div class='proof'> <h6 id='proof'>Proof</h6> <p>We give only a sketch; details are in <a href='#LS'>(LS, Lemma 4.5)</a>. If <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>f</mi><mo>,</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(f,n)</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>f</mi><mo>′</mo><mo>,</mo><mi>n</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(f',n')</annotation></semantics></math> are two pushout complements, consider the two pushout squares as morphisms in the <a class='existingWikiWord' href='/nlab/show/diff/arrow+category'>arrow category</a> with target <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math>, and take their pullback. The resulting commutative cube can be viewed as a morphism in the category of commutative squares from the pullback square of <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math> against itself (which is again <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math>, since <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math> is mono) to the pullback square of <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> against <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>n'</annotation></semantics></math>. Denote the vertex of the latter pullback square by <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math>. Applying the van Kampen property in two directions, we find that the maps <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>U</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>U\to B</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>U</mi><mo>→</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>U\to B'</annotation></semantics></math> are both pushouts of <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mn>1</mn> <mi>C</mi></msub></mrow><annotation encoding='application/x-tex'>1_C</annotation></semantics></math>, hence isomorphisms. This gives an isomorphism between the pushout complements; it is unique since <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>n'</annotation></semantics></math> are mono (being pushouts of the mono <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math>).</p> </div> <ins class='diffins'><div class='num_prop'> <h6 id='proposition_4'>Proposition</h6> <p>In an adhesive category, every monomorphism is <a class='existingWikiWord' href='/nlab/show/diff/regular+monomorphism'>regular</a>. In particular, every adhesive category is <a class='existingWikiWord' href='/nlab/show/diff/balanced+category'>balanced</a>.</p> </div></ins><ins class='diffins'> </ins><ins class='diffins'><div class='proof'> <h6 id='proof_2'>Proof</h6> <p>Let <math class='maruku-mathml' display='inline' id='mathml_b11996978112ba0b52833f824f9082b984b8b504_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding='application/x-tex'>m: A \to B</annotation></semantics></math> be a monomorphism. By adhesiveness, the cokernel pair (pushout)</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b11996978112ba0b52833f824f9082b984b8b504_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><mpadded lspace='-100%width' width='0'><mrow><msup><mrow /> <mi>m</mi></msup></mrow></mpadded><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd> <mtd /> <mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo><mpadded width='0'><mrow><msup><mrow /> <mi>u</mi></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>B</mi></mtd> <mtd><munder><mo>⟶</mo><mi>v</mi></munder></mtd> <mtd><mi>P</mi><mo>.</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> \array{ A & \overset{m}{\longrightarrow} & B \\ \mathllap{{}^m}\big\downarrow && \big\downarrow\mathrlap{{}^u} \\ B & \underset{v}{\longrightarrow} & P \rlap{.} } </annotation></semantics></math></div> <p>is a pullback. This exhibits <math class='maruku-mathml' display='inline' id='mathml_b11996978112ba0b52833f824f9082b984b8b504_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math> as an equalizer of <math class='maruku-mathml' display='inline' id='mathml_b11996978112ba0b52833f824f9082b984b8b504_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_b11996978112ba0b52833f824f9082b984b8b504_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>v</mi></mrow><annotation encoding='application/x-tex'>v</annotation></semantics></math>.</p> </div></ins><ins class='diffins'> </ins><h2 id='Examples'>Examples</h2> <p>\begin{example} Any <a class='existingWikiWord' href='/nlab/show/diff/topos'>topos</a> is adhesive (<a href='#LSToposes'>Lack-Sobocisnki</a>). For <a class='existingWikiWord' href='/nlab/show/diff/Grothendieck+topos'>Grothendieck toposes</a> this is easy, because <math class='maruku-mathml' display='inline' id='mathml_63cb033d95fc0f557b7b4ef346b03f74c2c8d40d_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Set</mi></mrow><annotation encoding='application/x-tex'>Set</annotation></semantics></math> is adhesive and adhesivity is a condition on colimits and finite limits, hence preserved by functor categories and left-exact localizations. For <a class='existingWikiWord' href='/nlab/show/diff/topos'>elementary toposes</a> it is a theorem of <a href='#LSToposes'>Lack and Sobocinski</a>.</p> <p>The fact that <a class='existingWikiWord' href='/nlab/show/diff/monomorphism'>monomorphisms</a> are preserved by <a class='existingWikiWord' href='/nlab/show/diff/pushout'>pushouts</a> in toposes plays a central role for <a class='existingWikiWord' href='/nlab/show/diff/Cisinski+model+structure'>Cisinski model structures</a> such as notably the <a class='existingWikiWord' href='/nlab/show/diff/classical+model+structure+on+simplicial+sets'>classical model structure on simplicial sets</a>, where the <a class='existingWikiWord' href='/nlab/show/diff/class'>class</a> of monomorphisms is identified with the class of <a class='existingWikiWord' href='/nlab/show/diff/cofibration'>cofibrations</a> and as such required to be closed under pushout (in particular). \end{example}</p> <p>\begin{example} Some <a class='existingWikiWord' href='/nlab/show/diff/counterexample'>counter-examples</a>:</p> <ul> <li> <p>The <a class='existingWikiWord' href='/nlab/show/diff/1-category'>1-category</a> <a class='existingWikiWord' href='/nlab/show/diff/Cat'>Cat</a> of <a class='existingWikiWord' href='/nlab/show/diff/strict+category'>strict categories</a> and <a class='existingWikiWord' href='/nlab/show/diff/functor'>functors</a> is <em>not</em> adhesive.</p> </li> <li> <p>Neither are the categories of <a class='existingWikiWord' href='/nlab/show/diff/partial+order'>posets</a>, <a class='existingWikiWord' href='/nlab/show/diff/topological+space'>topological spaces</a>, and <a class='existingWikiWord' href='/nlab/show/diff/groupoid'>groupoids</a>.</p> </li> </ul> <p>\end{example} (<a href='#LS'>Lack and Sobocinski, Counterexample 7</a>).</p> <h2 id='related_concepts'>Related concepts</h2> <p>Adhesiveness is an <a class='existingWikiWord' href='/nlab/show/diff/exactness+property'>exactness property</a>, similar to being a <a class='existingWikiWord' href='/nlab/show/diff/regular+category'>regular category</a>, an <a class='existingWikiWord' href='/nlab/show/diff/exact+category'>exact category</a>, or an <a class='existingWikiWord' href='/nlab/show/diff/extensive+category'>extensive category</a>. In particular, it can be phrased in the language of “lex colimits”.</p> <h2 id='references'>References</h2> <ul> <li id='LS1'> <p><a class='existingWikiWord' href='/nlab/show/diff/Stephen+Lack'>Steve Lack</a> and <a class='existingWikiWord' href='/nlab/show/diff/Pawe%C5%82+Soboci%C5%84ski'>Pawel Sobocinski</a>, <em>Adhesive and quasiadhesive categories</em>, RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 3, pp. 511-545, <a href='http://www.numdam.org/item/ITA_2005__39_3_511_0/'>Numdam</a>, <a href='https://www.ioc.ee/~pawel/papers/adhesivejournal.pdf'>author PDF</a></p> </li> <li id='LS'> <p><a class='existingWikiWord' href='/nlab/show/diff/Stephen+Lack'>Steve Lack</a> and <a class='existingWikiWord' href='/nlab/show/diff/Pawe%C5%82+Soboci%C5%84ski'>Pawel Sobocinski</a>, <em>Adhesive categories</em>, In: Walukiewicz I. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2004. Lecture Notes in Computer Science, vol 2987. Springer, Berlin, Heidelberg. doi:<a href='https://doi.org/10.1007/978-3-540-24727-2_20'>10.1007/978-3-540-24727-2_20</a>, <a href='https://www.ioc.ee/~pawel/papers/adhesive.pdf'>author PDF</a></p> </li> <li id='LSToposes'> <p><a class='existingWikiWord' href='/nlab/show/diff/Stephen+Lack'>Steve Lack</a> and <a class='existingWikiWord' href='/nlab/show/diff/Pawe%C5%82+Soboci%C5%84ski'>Pawel Sobocinski</a>, <em>Toposes are adhesive</em>, In: Corradini A., Ehrig H., Montanari U., Ribeiro L., Rozenberg G. (eds) Graph Transformations. ICGT 2006. Lecture Notes in Computer Science, vol 4178. Springer, Berlin, Heidelberg. doi:<a href='https://doi.org/10.1007/11841883_14'>10.1007/11841883_14</a>, <a href='https://www.ioc.ee/~pawel/papers/toposesAdhesive.pdf'>author PDF</a></p> </li> <li id='Lack'> <p><a class='existingWikiWord' href='/nlab/show/diff/Stephen+Lack'>Steve Lack</a>, <em>An embedding theorem for adhesive categories</em>, Theory and Applications of Categories, Vol. 25, 2011, No. 7, pp 180-188. <a href='http://www.tac.mta.ca/tac/volumes/25/7/25-07abs.html'>journal page</a>, arXiv:<a href='https://arxiv.org/abs/1103.0600'>1103.0600</a></p> </li> <li id='GarnerLack12'> <p><a class='existingWikiWord' href='/nlab/show/diff/Richard+Garner'>Richard Garner</a>, <a class='existingWikiWord' href='/nlab/show/diff/Stephen+Lack'>Steve Lack</a>: <em>On the axioms for adhesive and quasiadhesive categories</em>, Theory and Applications of Categories, <strong>27</strong> 3 (2012) 27-46 [[arXiv:1108.2934](http://arxiv.org/abs/1108.2934), <a href='http://www.tac.mta.ca/tac/volumes/27/3/27-03abs.html'>tac:27-03</a>]</p> </li> </ul> <p> </p> </div> <div class="revisedby"> <p> Last revised on October 19, 2023 at 15:02:39. See the <a href="/nlab/history/adhesive+category" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/adhesive+category" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/13037/#Item_5">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/adhesive+category/21" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/adhesive+category" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/adhesive+category" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a> <a href="/nlab/show/adhesive+category/cite" style="color: black">Cite</a> <a href="/nlab/print/adhesive+category" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/adhesive+category" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>