CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 52 results for author: <span class="mathjax">Febbraro, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Febbraro, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Febbraro%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Febbraro, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01393">arXiv:2409.01393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01393">pdf</a>, <a href="https://arxiv.org/format/2409.01393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.110.015801">10.1103/PhysRevC.110.015801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.110.015801">10.1103/PhysRevC.110.015801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strength measurement of the $E_伪^{lab}$ = 830 keV resonance in $^{22}\rm{Ne}(伪,n)^{25}\rm{Mg}$ reaction using a stilbene detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shahina"> Shahina</a>, <a href="/search/?searchtype=author&amp;query=deBoer%2C+R+J">R. J. deBoer</a>, <a href="/search/?searchtype=author&amp;query=Gorres%2C+J">J. Gorres</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+R">R. Fang</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Kelmar%2C+R">R. Kelmar</a>, <a href="/search/?searchtype=author&amp;query=Matney%2C+M">M. Matney</a>, <a href="/search/?searchtype=author&amp;query=Manukyan%2C+K">K. Manukyan</a>, <a href="/search/?searchtype=author&amp;query=Nattress%2C+J+T">J. T. Nattress</a>, <a href="/search/?searchtype=author&amp;query=Robles%2C+E">E. Robles</a>, <a href="/search/?searchtype=author&amp;query=Ruland%2C+T+J">T. J. Ruland</a>, <a href="/search/?searchtype=author&amp;query=King%2C+T+T">T. T. King</a>, <a href="/search/?searchtype=author&amp;query=Sanchez%2C+A">A. Sanchez</a>, <a href="/search/?searchtype=author&amp;query=Sidhu%2C+R+S">R. S. Sidhu</a>, <a href="/search/?searchtype=author&amp;query=Stech%2C+E">E. Stech</a>, <a href="/search/?searchtype=author&amp;query=Wiescher%2C+M">M. Wiescher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01393v1-abstract-short" style="display: inline;"> The interplay between the $^{22}$Ne$(伪,纬)^{26}$Mg and the competing $^{22}$Ne$(伪,n)^{25}$Mg reactions determines the efficiency of the latter as a neutron source at the temperatures of stellar helium burning. In both cases, the rates are dominated by the $伪$-cluster resonance at 830 keV. This resonance plays a particularly important role in determining the strength of the neutron flux for both the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01393v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01393v1-abstract-full" style="display: none;"> The interplay between the $^{22}$Ne$(伪,纬)^{26}$Mg and the competing $^{22}$Ne$(伪,n)^{25}$Mg reactions determines the efficiency of the latter as a neutron source at the temperatures of stellar helium burning. In both cases, the rates are dominated by the $伪$-cluster resonance at 830 keV. This resonance plays a particularly important role in determining the strength of the neutron flux for both the weak and main $s$-process as well as the $n$-process. Recent experimental studies based on transfer reactions suggest that the neutron and $纬$-ray strengths for this resonance are approximately equal. In this study, the $^{22}$Ne$(伪,n)^{25}$Mg resonance strength has been remeasured and found to be similar to the previous direct studies. This reinforces an 830 keV resonance strength that is approximately a factor of three larger for the $^{22}$Ne$(伪,n)^{25}$Mg reaction than for the $^{22}$Ne$(伪,纬)^{26}$Mg reaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01393v1-abstract-full').style.display = 'none'; document.getElementById('2409.01393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 110, 015801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17119">arXiv:2403.17119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17119">pdf</a>, <a href="https://arxiv.org/format/2403.17119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum enhanced distributed phase sensing with a truncated SU(1,1) interferometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hong%2C+S">Seongjin Hong</a>, <a href="/search/?searchtype=author&amp;query=Feldman%2C+M+A">Matthew A. Feldman</a>, <a href="/search/?searchtype=author&amp;query=Marvinney%2C+C+E">Claire E. Marvinney</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+D">Donghwa Lee</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+C">Changhyoup Lee</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M+T">Michael T. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Marino%2C+A+M">Alberto M. Marino</a>, <a href="/search/?searchtype=author&amp;query=Pooser%2C+R+C">Raphael C. Pooser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17119v1-abstract-short" style="display: inline;"> In recent years, distributed quantum sensing has gained interest for a range of applications requiring networks of sensors, from global-scale clock synchronization to high energy physics. In particular, a network of entangled sensors can improve not only the sensitivity beyond the shot noise limit, but also enable a Heisenberg scaling with the number of sensors. Here, using bright entangled twin b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17119v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17119v1-abstract-full" style="display: none;"> In recent years, distributed quantum sensing has gained interest for a range of applications requiring networks of sensors, from global-scale clock synchronization to high energy physics. In particular, a network of entangled sensors can improve not only the sensitivity beyond the shot noise limit, but also enable a Heisenberg scaling with the number of sensors. Here, using bright entangled twin beams, we theoretically and experimentally demonstrate the detection of a linear combination of two distributed phases beyond the shot noise limit with a truncated SU(1,1) interferometer. We experimentally demonstrate a quantum noise reduction of 1.7 dB and a classical 3 dB signal-to-noise ratio improvement over the separable sensing approach involving two truncated SU(1,1) interferometers. Additionally, we theoretically extend the use of a truncated SU(1,1) interferometer to a multi-phase-distributed sensing scheme that leverages entanglement as a resource to achieve a quantum improvement in the scaling with the number of sensors in the network. Our results pave the way for developing quantum enhanced sensor networks that can achieve an entanglement-enhanced sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17119v1-abstract-full').style.display = 'none'; document.getElementById('2403.17119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13032">arXiv:2311.13032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13032">pdf</a>, <a href="https://arxiv.org/format/2311.13032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Accessing new physics with an undoped, cryogenic CsI CEvNS detector for COHERENT at the SNS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Bouabid%2C+R">R. Bouabid</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=da+Silva%2C+V">V. da Silva</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Erlandson%2C+A">A. Erlandson</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Hakenm%C3%BCller%2C+J">J. Hakenm眉ller</a>, <a href="/search/?searchtype=author&amp;query=Heath%2C+M+R">M. R. Heath</a>, <a href="/search/?searchtype=author&amp;query=Hedges%2C+S">S. Hedges</a>, <a href="/search/?searchtype=author&amp;query=Johnson%2C+B+A">B. A. Johnson</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13032v1-abstract-short" style="display: inline;"> We consider the potential for a 10-kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model. Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13032v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13032v1-abstract-full" style="display: none;"> We consider the potential for a 10-kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model. Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We considered tests of several beyond-the-standard-model scenarios such as neutrino non-standard interactions and accelerator-produced dark matter. This detector&#39;s performance was also studied for relevant questions in nuclear physics and neutrino astronomy, namely the weak charge distribution of CsI nuclei and detection of neutrinos from a core-collapse supernova. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13032v1-abstract-full').style.display = 'none'; document.getElementById('2311.13032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10208">arXiv:2307.10208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10208">pdf</a>, <a href="https://arxiv.org/format/2307.10208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> COHERENT Collaboration data release from the measurements of CsI[Na] response to nuclear recoils </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10208v1-abstract-short" style="display: inline;"> Description of the data release 10.13139/OLCF/1969085 (https://doi.ccs.ornl.gov/ui/doi/426) from the measurements of the CsI[Na] response to low energy nuclear recoils by the COHERENT collaboration. The release corresponds to the results published in &#34;D. Akimov et al 2022 JINST 17 P10034&#34;. We share the data in the form of raw ADC waveforms, provide benchmark values, and share plots to enhance the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10208v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10208v1-abstract-full" style="display: none;"> Description of the data release 10.13139/OLCF/1969085 (https://doi.ccs.ornl.gov/ui/doi/426) from the measurements of the CsI[Na] response to low energy nuclear recoils by the COHERENT collaboration. The release corresponds to the results published in &#34;D. Akimov et al 2022 JINST 17 P10034&#34;. We share the data in the form of raw ADC waveforms, provide benchmark values, and share plots to enhance the transparency and reproducibility of our results. This document describes the contents of the data release as well as guidance on the use of the data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10208v1-abstract-full').style.display = 'none'; document.getElementById('2307.10208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19594">arXiv:2305.19594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19594">pdf</a>, <a href="https://arxiv.org/format/2305.19594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.221801">10.1103/PhysRevLett.131.221801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Electron-Neutrino Charged-Current Cross Sections on ${}^{127}$I with the COHERENT NaI$谓$E detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Bouabid%2C+R">R. Bouabid</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Germer%2C+A+C">A. C. Germer</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19594v2-abstract-short" style="display: inline;"> Using an 185-kg NaI[Tl] array, COHERENT has measured the inclusive electron-neutrino charged-current cross section on ${}^{127}$I with pion decay-at-rest neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory. Iodine is one the heaviest targets for which low-energy ($\leq$ 50 MeV) inelastic neutrino-nucleus processes have been measured, and this is the first measureme&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19594v2-abstract-full').style.display = 'inline'; document.getElementById('2305.19594v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19594v2-abstract-full" style="display: none;"> Using an 185-kg NaI[Tl] array, COHERENT has measured the inclusive electron-neutrino charged-current cross section on ${}^{127}$I with pion decay-at-rest neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory. Iodine is one the heaviest targets for which low-energy ($\leq$ 50 MeV) inelastic neutrino-nucleus processes have been measured, and this is the first measurement of its inclusive cross section. After a five-year detector exposure, COHERENT reports a flux-averaged cross section for electron neutrinos of $9.2^{+2.1}_{-1.8} \times 10^{-40}$ cm$^2$. This corresponds to a value that is $\sim$41% lower than predicted using the MARLEY event generator with a measured Gamow-Teller strength distribution. In addition, the observed visible spectrum from charged-current scattering on $^{127}$I has been measured between 10 and 55 MeV, and the exclusive zero-neutron and one-or-more-neutron emission cross sections are measured to be $5.2^{+3.4}_{-3.1} \times 10^{-40}$ and $2.2^{+3.5}_{-2.2} \times 10^{-40}$ cm$^2$, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19594v2-abstract-full').style.display = 'none'; document.getElementById('2305.19594v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 221801 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19422">arXiv:2305.19422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19422">pdf</a>, <a href="https://arxiv.org/format/2305.19422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.212701">10.1103/PhysRevLett.130.212701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First direct measurement constraining the $^{34}$Ar($伪$,p)$^{37}$K reaction cross section for mixed hydrogen and helium burning in accreting neutron stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Browne%2C+J">J. Browne</a>, <a href="/search/?searchtype=author&amp;query=Chipps%2C+K+A">K. A. Chipps</a>, <a href="/search/?searchtype=author&amp;query=Schmidt%2C+K">K. Schmidt</a>, <a href="/search/?searchtype=author&amp;query=Schatz%2C+H">H. Schatz</a>, <a href="/search/?searchtype=author&amp;query=Ahn%2C+S">S. Ahn</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Montes%2C+F">F. Montes</a>, <a href="/search/?searchtype=author&amp;query=Ong%2C+W+J">W. J. Ong</a>, <a href="/search/?searchtype=author&amp;query=Greife%2C+U">U. Greife</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J">J. Allen</a>, <a href="/search/?searchtype=author&amp;query=Bardayan%2C+D+W">D. W. Bardayan</a>, <a href="/search/?searchtype=author&amp;query=Blackmon%2C+J+C">J. C. Blackmon</a>, <a href="/search/?searchtype=author&amp;query=Blankstein%2C+D">D. Blankstein</a>, <a href="/search/?searchtype=author&amp;query=Cha%2C+S">S. Cha</a>, <a href="/search/?searchtype=author&amp;query=Chae%2C+K+Y">K. Y. Chae</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+M+R">M. R. Hall</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+K+L">K. L. Jones</a>, <a href="/search/?searchtype=author&amp;query=Kontos%2C+A">A. Kontos</a>, <a href="/search/?searchtype=author&amp;query=Meisel%2C+Z">Z. Meisel</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P+D">P. D. O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Schmitt%2C+K+T">K. T. Schmitt</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+K">K. Smith</a>, <a href="/search/?searchtype=author&amp;query=Smith%2C+M+S">M. S. Smith</a>, <a href="/search/?searchtype=author&amp;query=Thompson%2C+P">P. Thompson</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19422v1-abstract-short" style="display: inline;"> The rate of the final step in the astrophysical $伪$p-process, the $^{34}$Ar($伪$,\textit{p})$^{37}$K reaction, suffers from large uncertainties due to lack of experimental data, despite having a considerable impact on the observable light curves of x-ray bursts and the composition of the ashes of hydrogen and helium burning on accreting neutron stars. We present the first direct measurement constra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19422v1-abstract-full').style.display = 'inline'; document.getElementById('2305.19422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19422v1-abstract-full" style="display: none;"> The rate of the final step in the astrophysical $伪$p-process, the $^{34}$Ar($伪$,\textit{p})$^{37}$K reaction, suffers from large uncertainties due to lack of experimental data, despite having a considerable impact on the observable light curves of x-ray bursts and the composition of the ashes of hydrogen and helium burning on accreting neutron stars. We present the first direct measurement constraining the $^{34}$Ar($伪$,p)$^{37}$K reaction cross section, using the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target. The combined cross section for the $^{34}$Ar,Cl($伪$,p)$^{37}$K,Ar reaction is found to agree well with Hauser-Feshbach predictions. The $^{34}$Ar($伪$,2p)$^{36}$Ar cross section, which can be exclusively attributed to the $^{34}$Ar beam component, also agrees to within the typical uncertainties quoted for statistical models. This indicates the applicability of the statistical model for predicting astrophysical ($伪$,p) reaction rates in this part of the $伪$p process, in contrast to earlier findings from indirect reaction studies indicating orders-of-magnitude discrepancies. This removes a significant uncertainty in models of hydrogen and helium burning on accreting neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19422v1-abstract-full').style.display = 'none'; document.getElementById('2305.19422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130 (2023) 212701 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11295">arXiv:2212.11295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11295">pdf</a>, <a href="https://arxiv.org/format/2212.11295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.072001">10.1103/PhysRevD.108.072001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of ${}^{nat}$Pb($谓_e$,X$n$) production with a stopped-pion neutrino source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belling%2C+S+W">S. W. Belling</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Bouabid%2C+R">R. Bouabid</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a> , et al. (62 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11295v2-abstract-short" style="display: inline;"> Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), the COHERENT collaboration has studied the Pb($谓_e$,X$n$) process with a lead neutrino-induced-neutron (NIN) detector. Data from this detector are fit jointly with previously collected COHERENT data on this process. A combined analysis of the two datasets yields a cross section that is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11295v2-abstract-full').style.display = 'inline'; document.getElementById('2212.11295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11295v2-abstract-full" style="display: none;"> Using neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), the COHERENT collaboration has studied the Pb($谓_e$,X$n$) process with a lead neutrino-induced-neutron (NIN) detector. Data from this detector are fit jointly with previously collected COHERENT data on this process. A combined analysis of the two datasets yields a cross section that is $0.29^{+0.17}_{-0.16}$ times that predicted by the MARLEY event generator using experimentally-measured Gamow-Teller strength distributions, consistent with no NIN events at 1.8$蟽$. This is the first inelastic neutrino-nucleus process COHERENT has studied, among several planned exploiting the high flux of low-energy neutrinos produced at the SNS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11295v2-abstract-full').style.display = 'none'; document.getElementById('2212.11295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures, version accepted by Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 072001 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11099">arXiv:2212.11099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11099">pdf</a>, <a href="https://arxiv.org/format/2212.11099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Adams%2C+C">C. Adams</a>, <a href="/search/?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/?searchtype=author&amp;query=Andreoiu%2C+C">C. Andreoiu</a>, <a href="/search/?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J+A+A">J. A. A. Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone</a>, <a href="/search/?searchtype=author&amp;query=Axani%2C+S+N">S. N. Axani</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/?searchtype=author&amp;query=Burlac%2C+N">N. Burlac</a>, <a href="/search/?searchtype=author&amp;query=Caden%2C+E">E. Caden</a> , et al. (207 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11099v1-abstract-short" style="display: inline;"> This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11099v1-abstract-full" style="display: none;"> This White Paper, prepared for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting related to the 2023 Nuclear Physics Long Range Plan, makes the case for double beta decay as a critical component of the future nuclear physics program. The major experimental collaborations and many theorists have endorsed this white paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11099v1-abstract-full').style.display = 'none'; document.getElementById('2212.11099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">white paper submitted for the Fundamental Symmetries, Neutrons, and Neutrinos Town Meeting in support of the US Nuclear Physics Long Range Planning Process</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06298">arXiv:2209.06298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06298">pdf</a>, <a href="https://arxiv.org/format/2209.06298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2022.137446">10.1016/j.physletb.2022.137446 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> E2 Rotational Invariants of $0^+_1$ and $2^+_1$ states for $^{106}$Cd: the Emergence of Collective Rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gray%2C+T+J">T. J. Gray</a>, <a href="/search/?searchtype=author&amp;query=Allmond%2C+J+M">J. M. Allmond</a>, <a href="/search/?searchtype=author&amp;query=Janssens%2C+R+V+F">R. V. F. Janssens</a>, <a href="/search/?searchtype=author&amp;query=Korten%2C+W">W. Korten</a>, <a href="/search/?searchtype=author&amp;query=Stuchbery%2C+A+E">A. E. Stuchbery</a>, <a href="/search/?searchtype=author&amp;query=Wood%2C+J+L">J. L. Wood</a>, <a href="/search/?searchtype=author&amp;query=Ayangeakaa%2C+A+D">A. D. Ayangeakaa</a>, <a href="/search/?searchtype=author&amp;query=Bottoni%2C+S">S. Bottoni</a>, <a href="/search/?searchtype=author&amp;query=Bucher%2C+B+M">B. M. Bucher</a>, <a href="/search/?searchtype=author&amp;query=Campbell%2C+C+M">C. M. Campbell</a>, <a href="/search/?searchtype=author&amp;query=Carpenter%2C+M+P">M. P. Carpenter</a>, <a href="/search/?searchtype=author&amp;query=Crawford%2C+H+L">H. L. Crawford</a>, <a href="/search/?searchtype=author&amp;query=David%2C+H">H. David</a>, <a href="/search/?searchtype=author&amp;query=Doherty%2C+D">D. Doherty</a>, <a href="/search/?searchtype=author&amp;query=Fallon%2C+P">P. Fallon</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M+T">M. T. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Gross%2C+C+J">C. J. Gross</a>, <a href="/search/?searchtype=author&amp;query=Komorowska%2C+M">M. Komorowska</a>, <a href="/search/?searchtype=author&amp;query=Kondev%2C+F+G">F. G. Kondev</a>, <a href="/search/?searchtype=author&amp;query=Lauritsen%2C+T">T. Lauritsen</a>, <a href="/search/?searchtype=author&amp;query=Macchiavelli%2C+A+O">A. O. Macchiavelli</a>, <a href="/search/?searchtype=author&amp;query=Napiorkowsi%2C+P">P. Napiorkowsi</a>, <a href="/search/?searchtype=author&amp;query=Padilla-Rodal%2C+E">E. Padilla-Rodal</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06298v1-abstract-short" style="display: inline;"> The collective structure of $^{106}$Cd is elucidated by multi-step Coulomb excitation of a 3.849 MeV/$A$ beam of $^{106}$Cd on a 1.1 mg/cm$^2$ $^{208}$Pb target using GRETINA-CHICO2 at ATLAS. Fourteen $E2$ matrix elements were obtained. The nucleus $^{106}$Cd is a prime example of emergent collectivity that possesses a simple structure: it is free of complexity caused by shape coexistence and has&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06298v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06298v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06298v1-abstract-full" style="display: none;"> The collective structure of $^{106}$Cd is elucidated by multi-step Coulomb excitation of a 3.849 MeV/$A$ beam of $^{106}$Cd on a 1.1 mg/cm$^2$ $^{208}$Pb target using GRETINA-CHICO2 at ATLAS. Fourteen $E2$ matrix elements were obtained. The nucleus $^{106}$Cd is a prime example of emergent collectivity that possesses a simple structure: it is free of complexity caused by shape coexistence and has a small, but collectively active number of valence nucleons. This work follows in a long and currently active quest to answer the fundamental question of the origin of nuclear collectivity and deformation, notably in the cadmium isotopes. The results are discussed in terms of phenomenological models, the shell model, and Kumar-Cline sums of $E2$ matrix elements. The ${\langle 0_2^+ ||E2||2_1^+ \rangle}$ matrix element is determined for the first time, providing a total, converged measure of the electric quadrupole strength, $\langle Q^2 \rangle$, of the first-excited $2_1^+$ level relative to the $0_1^+$ ground state, which does not show an increase as expected of harmonic and anharmonic vibrations. Strong evidence for triaxial shapes in weakly collective nuclei is indicated; collective vibrations are excluded. This is contrary to the only other cadmium result of this kind in $^{114}$Cd by C. Fahlander et al., Nucl. Phys. A485, 327 (1988), which is complicated by low-lying shape coexistence near midshell. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06298v1-abstract-full').style.display = 'none'; document.getElementById('2209.06298v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02883">arXiv:2209.02883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02883">pdf</a>, <a href="https://arxiv.org/format/2209.02883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Physics Opportunities in the ORNL Spallation Neutron Source Second Target Station Era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Bodur%2C+B">B. Bodur</a>, <a href="/search/?searchtype=author&amp;query=Bross%2C+A">A. Bross</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Gardiner%2C+S">S. Gardiner</a>, <a href="/search/?searchtype=author&amp;query=Gonzalez-Diaz%2C+D">D. Gonzalez-Diaz</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Heath%2C+M+R">M. R. Heath</a>, <a href="/search/?searchtype=author&amp;query=Hedges%2C+S">S. Hedges</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/?searchtype=author&amp;query=Major%2C+A">A. Major</a>, <a href="/search/?searchtype=author&amp;query=Markoff%2C+D+M">D. M. Markoff</a>, <a href="/search/?searchtype=author&amp;query=Newby%2C+J">J. Newby</a>, <a href="/search/?searchtype=author&amp;query=Parno%2C+D+S">D. S. Parno</a>, <a href="/search/?searchtype=author&amp;query=Pershey%2C+D">D. Pershey</a>, <a href="/search/?searchtype=author&amp;query=Rapp%2C+R">R. Rapp</a>, <a href="/search/?searchtype=author&amp;query=Salvat%2C+D+J">D. J. Salvat</a>, <a href="/search/?searchtype=author&amp;query=Scholberg%2C+K">K. Scholberg</a>, <a href="/search/?searchtype=author&amp;query=Strigari%2C+L">L. Strigari</a>, <a href="/search/?searchtype=author&amp;query=Suh%2C+B">B. Suh</a>, <a href="/search/?searchtype=author&amp;query=Tayloe%2C+R">R. Tayloe</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02883v1-abstract-short" style="display: inline;"> The Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) First Target Station (FTS), used by the COHERENT experiment, provides an intense and extremely high-quality source of pulsed stopped-pion neutrinos, with energies up to about 50 MeV. Upgrades to the SNS are planned, including a Second Target Station (STS), which will approximately double the expected neutrino flux while maint&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02883v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02883v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02883v1-abstract-full" style="display: none;"> The Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) First Target Station (FTS), used by the COHERENT experiment, provides an intense and extremely high-quality source of pulsed stopped-pion neutrinos, with energies up to about 50 MeV. Upgrades to the SNS are planned, including a Second Target Station (STS), which will approximately double the expected neutrino flux while maintaining quality similar to the FTS source. Furthermore, additional space for ten-tonne scale detectors may be available. We describe here exciting opportunities for neutrino physics, other particle and nuclear physics, and detector development using the FTS and STS neutrino sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02883v1-abstract-full').style.display = 'none'; document.getElementById('2209.02883v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures, Snowmass contribution</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05449">arXiv:2208.05449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05449">pdf</a>, <a href="https://arxiv.org/format/2208.05449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167392">10.1016/j.nima.2022.167392 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CLARION2-TRINITY: a Compton-suppressed HPGe and GAGG:Ce-Si-Si array for absolute cross-section measurements with heavy ions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gray%2C+T+J">T. J. Gray</a>, <a href="/search/?searchtype=author&amp;query=Allmond%2C+J+M">J. M. Allmond</a>, <a href="/search/?searchtype=author&amp;query=Dowling%2C+D+T">D. T. Dowling</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=King%2C+T+T">T. T. King</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Stracener%2C+D+W">D. W. Stracener</a>, <a href="/search/?searchtype=author&amp;query=Ajayi%2C+S">S. Ajayi</a>, <a href="/search/?searchtype=author&amp;query=Aragon%2C+J">J. Aragon</a>, <a href="/search/?searchtype=author&amp;query=Baby%2C+L">L. Baby</a>, <a href="/search/?searchtype=author&amp;query=Barber%2C+P">P. Barber</a>, <a href="/search/?searchtype=author&amp;query=Benetti%2C+C">C. Benetti</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharya%2C+S">S. Bhattacharya</a>, <a href="/search/?searchtype=author&amp;query=Boisseau%2C+R">R. Boisseau</a>, <a href="/search/?searchtype=author&amp;query=Gibbons%2C+J">J. Gibbons</a>, <a href="/search/?searchtype=author&amp;query=Tabor%2C+S+L">S. L. Tabor</a>, <a href="/search/?searchtype=author&amp;query=Tripathi%2C+V">V. Tripathi</a>, <a href="/search/?searchtype=author&amp;query=Wibisono%2C+C">C. Wibisono</a>, <a href="/search/?searchtype=author&amp;query=Wiedenhoever%2C+I">I. Wiedenhoever</a>, <a href="/search/?searchtype=author&amp;query=Bignell%2C+L">L. Bignell</a>, <a href="/search/?searchtype=author&amp;query=Gerathy%2C+M+S+M">M. S. M. Gerathy</a>, <a href="/search/?searchtype=author&amp;query=Lane%2C+G">G. Lane</a>, <a href="/search/?searchtype=author&amp;query=McKie%2C+L+J">L. J. McKie</a>, <a href="/search/?searchtype=author&amp;query=Mitchell%2C+A+J">A. J. Mitchell</a>, <a href="/search/?searchtype=author&amp;query=Pope%2C+J">J. Pope</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05449v1-abstract-short" style="display: inline;"> The design and performance of a new Compton-suppressed HPGe and charged-particle array, CLARION2-TRINITY, are described. The TRINITY charged-particle array is comprised of 64 Cerium-doped Gadolinium Aluminium Gallium Garnet (GAGG:Ce) crystals configured into five rings spanning 7-54 degrees, and two annular silicon detectors that can shadow or extend the angular coverage to backward angles with mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05449v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05449v1-abstract-full" style="display: none;"> The design and performance of a new Compton-suppressed HPGe and charged-particle array, CLARION2-TRINITY, are described. The TRINITY charged-particle array is comprised of 64 Cerium-doped Gadolinium Aluminium Gallium Garnet (GAGG:Ce) crystals configured into five rings spanning 7-54 degrees, and two annular silicon detectors that can shadow or extend the angular coverage to backward angles with minimal $纬$-ray attenuation. GAGG:Ce is a non-hygroscopic, bright, and relatively fast scintillator with a light distribution well matched to SiPMs. Count rates up to 40 kHz per crystal are sustainable. Fundamental characteristics of GAGG:Ce are measured and presented, including light- and heavy-ion particle identification (PID) capability, pulse-height defects, radiation hardness, and emission spectra. The CLARION2 array consists of up to 16 Compton-suppressed HPGe Clover detectors ($\approx4\%$ efficiency at 1 MeV) configured into four rings (eight HPGe crystal rings) using a non-Archimedean geometry that suppresses back-to-back coincident 511-keV gamma rays. The entire array is instrumented with 100- and 500-MHz (14 bit) waveform digitizers which enable triggerless operation, pulse-shape discrimination, fast timing, and pileup correction. Finally, two examples of experimental data taken during the commissioning of the CLARION2-TRINITY system are given: a PID spectrum from $^{16}$O + $^{18}$O fusion-evaporation, and PID and Doppler-corrected $纬$-ray spectra from $^{48}$Ti + $^{12}$C Coulomb excitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05449v1-abstract-full').style.display = 'none'; document.getElementById('2208.05449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 21 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11127">arXiv:2207.11127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.11127">pdf</a>, <a href="https://arxiv.org/format/2207.11127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/01/P01029">10.1088/1748-0221/18/01/P01029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a novel, windowless, amorphous selenium based photodetector for use in liquid noble detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Rooks%2C+M">M. Rooks</a>, <a href="/search/?searchtype=author&amp;query=Abbaszadeh%2C+S">S. Abbaszadeh</a>, <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Gladen%2C+R+W">R. W. Gladen</a>, <a href="/search/?searchtype=author&amp;query=Gramellini%2C+E">E. Gramellini</a>, <a href="/search/?searchtype=author&amp;query=Hellier%2C+K">K. Hellier</a>, <a href="/search/?searchtype=author&amp;query=Blaszczyk%2C+F+M">F. Maria Blaszczyk</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+A+D">A. D. McDonald</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11127v1-abstract-short" style="display: inline;"> Detection of the vacuum ultraviolet (VUV) scintillation light produced by liquid noble elements is a central challenge in order to fully exploit the available timing, topological, and calorimetric information in detectors leveraging these media. In this paper, we characterize a novel, windowless amorphous selenium based photodetector with direct sensitivity to VUV light. We present here the manufa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11127v1-abstract-full').style.display = 'inline'; document.getElementById('2207.11127v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11127v1-abstract-full" style="display: none;"> Detection of the vacuum ultraviolet (VUV) scintillation light produced by liquid noble elements is a central challenge in order to fully exploit the available timing, topological, and calorimetric information in detectors leveraging these media. In this paper, we characterize a novel, windowless amorphous selenium based photodetector with direct sensitivity to VUV light. We present here the manufacturing and experimental setup used to operate this detector at low transport electric fields (2.7-5.2 V/$渭$m) and across a wide range of temperatures (77K-290K). This work shows that the first proof-of-principle device windowless amorphous selenium is robust under cryogenic conditions, responsive to VUV light at cryogenic temperatures, and preserves argon purity. These findings motivate a continued exploration of amorphous selenium devices for simultaneous detection of scintillation light and ionization charge in noble element detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11127v1-abstract-full').style.display = 'none'; document.getElementById('2207.11127v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12414">arXiv:2205.12414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12414">pdf</a>, <a href="https://arxiv.org/format/2205.12414">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A COHERENT constraint on leptophobic dark matter using CsI data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Bouabid%2C+R">R. Bouabid</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliot%2C+S+R">S. R. Elliot</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12414v2-abstract-short" style="display: inline;"> We use data from the COHERENT CsI[Na] scintillation detector to constrain sub-GeV leptophobic dark matter models. This detector was built to observe low-energy nuclear recoils from coherent elastic neutrino-nucleus scattering. These capabilities enable searches for dark matter particles produced at the Spallation Neutron Source mediated by a vector portal particle with masses between 2 and 400 MeV&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12414v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12414v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12414v2-abstract-full" style="display: none;"> We use data from the COHERENT CsI[Na] scintillation detector to constrain sub-GeV leptophobic dark matter models. This detector was built to observe low-energy nuclear recoils from coherent elastic neutrino-nucleus scattering. These capabilities enable searches for dark matter particles produced at the Spallation Neutron Source mediated by a vector portal particle with masses between 2 and 400 MeV/c$^2$. No evidence for dark matter is observed and a limit on the mediator coupling to quarks is placed. This constraint improves upon previous results by two orders of magnitude. This newly explored parameter space probes the region where the dark matter relic abundance is explained by leptophobic dark matter when the mediator mass is roughly twice the dark matter mass. COHERENT sets the best constraint on leptophobic dark matter at these masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12414v2-abstract-full').style.display = 'none'; document.getElementById('2205.12414v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13747">arXiv:2204.13747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13747">pdf</a>, <a href="https://arxiv.org/format/2204.13747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/09/P09007">10.1088/1748-0221/17/09/P09007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical properties of low background PEN structural components for the LEGEND-200 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Manzanillas%2C+L">L. Manzanillas</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+F">F. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Corominas%2C+M+G">M. Guitart Corominas</a>, <a href="/search/?searchtype=author&amp;query=Hackett%2C+B">B. Hackett</a>, <a href="/search/?searchtype=author&amp;query=Leonhardt%2C+A">A. Leonhardt</a>, <a href="/search/?searchtype=author&amp;query=Majorovits%2C+B">B. Majorovits</a>, <a href="/search/?searchtype=author&amp;query=Schulz%2C+O">O. Schulz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13747v2-abstract-short" style="display: inline;"> Polyethylene Naphthalate (PEN) plastic scintillator has been identified as potential self-vetoing structural material in low-background physics experiments. Scintillating components have been produced radio-pure from PEN using injection compression molding technology. These low-background PEN components will be used as active holders to mount the Germanium detectors in the \legend-$200$ neutrinole&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13747v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13747v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13747v2-abstract-full" style="display: none;"> Polyethylene Naphthalate (PEN) plastic scintillator has been identified as potential self-vetoing structural material in low-background physics experiments. Scintillating components have been produced radio-pure from PEN using injection compression molding technology. These low-background PEN components will be used as active holders to mount the Germanium detectors in the \legend-$200$ neutrinoless double beta decay experiment. In this paper we present the measurement of the optical properties of these PEN components. Thus, the emission spectrum, time constant, attenuation and bulk absorption length as well as light output and light yield are reported. In addition, the surface of these PEN components has been characterized and an estimation of the surface roughness is presented. Moreover, the light output of the final \legend-$200$ detector holders has been measured and is reported. These measurements were used to estimate the self-vetoing efficiency of these holders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13747v2-abstract-full').style.display = 'none'; document.getElementById('2204.13747v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04575">arXiv:2204.04575</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.04575">pdf</a>, <a href="https://arxiv.org/format/2204.04575">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The COHERENT Experimental Program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Alawabdeh%2C+S">S. Alawabdeh</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Arteaga%2C+A">A. Arteaga</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Barry%2C+C">C. Barry</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Blokland%2C+L">L. Blokland</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bodur%2C+B">B. Bodur</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Bouabid%2C+R">R. Bouabid</a>, <a href="/search/?searchtype=author&amp;query=Bracho%2C+A">A. Bracho</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+N">N. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Daughtry%2C+J">J. Daughtry</a>, <a href="/search/?searchtype=author&amp;query=Day%2C+E">E. Day</a> , et al. (106 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04575v1-abstract-short" style="display: inline;"> The COHERENT experiment located in Neutrino Alley at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL), has made the world&#39;s first two measurements of coherent elastic neutrino-nucleus scattering (CEvNS), on CsI and argon, using neutrinos produced at the SNS. The COHERENT collaboration continues to pursue CEvNS measurements on various targets as well as additional studies o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04575v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04575v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04575v1-abstract-full" style="display: none;"> The COHERENT experiment located in Neutrino Alley at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL), has made the world&#39;s first two measurements of coherent elastic neutrino-nucleus scattering (CEvNS), on CsI and argon, using neutrinos produced at the SNS. The COHERENT collaboration continues to pursue CEvNS measurements on various targets as well as additional studies of inelastic neutrino-nucleus interactions, searches for accelerator-produced dark matter (DM) and physics beyond the Standard Model, using the uniquely high-quality and high-intensity neutrino source available at the SNS. This white paper describes primarily COHERENT&#39;s ongoing and near-future program at the SNS First Target Station (FTS). Opportunities enabled by the SNS Second Target Station (STS) for the study of neutrino physics and development of novel detector technologies are elaborated in a separate white paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04575v1-abstract-full').style.display = 'none'; document.getElementById('2204.04575v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 papers, 24 figures; Snowmass contribution</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.02866">arXiv:2204.02866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.02866">pdf</a>, <a href="https://arxiv.org/format/2204.02866">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Light Response of Poly(ethylene 2,6-napthalate) to Neutrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hackett%2C+B">Brennan Hackett</a>, <a href="/search/?searchtype=author&amp;query=deBoer%2C+R">Richard deBoer</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Yuri Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">Michael Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Nattress%2C+J">Jason Nattress</a>, <a href="/search/?searchtype=author&amp;query=Bardayan%2C+D">Dan Bardayan</a>, <a href="/search/?searchtype=author&amp;query=Boomershine%2C+C">Chevelle Boomershine</a>, <a href="/search/?searchtype=author&amp;query=Brandenburg%2C+K">Kristyn Brandenburg</a>, <a href="/search/?searchtype=author&amp;query=Dede%2C+S">Stefania Dede</a>, <a href="/search/?searchtype=author&amp;query=Derkin%2C+J">Joseph Derkin</a>, <a href="/search/?searchtype=author&amp;query=Fang%2C+R">Ruoyu Fang</a>, <a href="/search/?searchtype=author&amp;query=Fritsch%2C+A">Adam Fritsch</a>, <a href="/search/?searchtype=author&amp;query=Gula%2C+A">August Gula</a>, <a href="/search/?searchtype=author&amp;query=Gyorgy%2C+G">Gyurky Gyorgy</a>, <a href="/search/?searchtype=author&amp;query=Hamad%2C+G">Gula Hamad</a>, <a href="/search/?searchtype=author&amp;query=Jones-Alberty%2C+Y">Yenuel Jones-Alberty</a>, <a href="/search/?searchtype=author&amp;query=Kelmar%2C+B">Beka Kelmar</a>, <a href="/search/?searchtype=author&amp;query=Manukyan%2C+K">Khachatur Manukyan</a>, <a href="/search/?searchtype=author&amp;query=Matney%2C+M">Miriam Matney</a>, <a href="/search/?searchtype=author&amp;query=McDonaugh%2C+J">John McDonaugh</a>, <a href="/search/?searchtype=author&amp;query=Moylan%2C+S">Shane Moylan</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P">Patrick O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Shahina%2C+S">Shahina Shahina</a>, <a href="/search/?searchtype=author&amp;query=Singh%2C+N">Nisha Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.02866v2-abstract-short" style="display: inline;"> There is increasing necessity for low background active materials as ton-scale, rare-event and cryogenic detectors are developed. Poly(ethylene-2,6-naphthalate) (PEN) has been considered for these applications because of its robust structural characteristics, and its scintillation light in the blue wavelength region. Radioluminescent properties of PEN have been measured to aid in the evaluation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02866v2-abstract-full').style.display = 'inline'; document.getElementById('2204.02866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.02866v2-abstract-full" style="display: none;"> There is increasing necessity for low background active materials as ton-scale, rare-event and cryogenic detectors are developed. Poly(ethylene-2,6-naphthalate) (PEN) has been considered for these applications because of its robust structural characteristics, and its scintillation light in the blue wavelength region. Radioluminescent properties of PEN have been measured to aid in the evaluation of this material. In this article we present a measurement of PEN&#39;s quenching factor using three different neutron sources; neutrons emitted from spontaneous fission in $^{252}$Cf, neutrons generated from a DD generator, and neutrons emitted from the $^{13}$C($伪$,n)$^{16}$O and the $^{7}$Li(p,n)$^{7}$Be nuclear reactions. The fission source used time-of-flight to determine the neutron energy, and the neutron energy from the nuclear reactions was defined using thin targets and reaction kinematics. The Birk&#39;s factor and scintillation efficiency were found to be $kB = 0.12 \pm 0.01$ mm MeV$^{-1}$ and $S = 1.31\pm0.09$ MeV$_{ee}$ MeV$^{-1}$ from a simultaneous analysis of the data obtained from the three different sources. With these parameters, it is possible to evaluate PEN as a viable material for large-scale, low background physics experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02866v2-abstract-full').style.display = 'none'; document.getElementById('2204.02866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12542">arXiv:2203.12542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12542">pdf</a>, <a href="https://arxiv.org/format/2203.12542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Photon counting from the vacuum ultraviolet to the short wavelength infrared using semiconductor and superconducting technologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J">Jonathan Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Baxter%2C+D">Dan Baxter</a>, <a href="/search/?searchtype=author&amp;query=Berggren%2C+K+K">Karl K. Berggren</a>, <a href="/search/?searchtype=author&amp;query=Braga%2C+D">Davide Braga</a>, <a href="/search/?searchtype=author&amp;query=Charlebois%2C+S+A">Serge A. Charlebois</a>, <a href="/search/?searchtype=author&amp;query=Chang%2C+C">Clarence Chang</a>, <a href="/search/?searchtype=author&amp;query=Dragone%2C+A">Angelo Dragone</a>, <a href="/search/?searchtype=author&amp;query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a>, <a href="/search/?searchtype=author&amp;query=Escobar%2C+C+O">Carlos O. Escobar</a>, <a href="/search/?searchtype=author&amp;query=Estrada%2C+J">Juan Estrada</a>, <a href="/search/?searchtype=author&amp;query=Fahim%2C+F">Farah Fahim</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">Michael Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Moroni%2C+G+F">Guillermo Fernandez Moroni</a>, <a href="/search/?searchtype=author&amp;query=Holland%2C+S">Stephen Holland</a>, <a href="/search/?searchtype=author&amp;query=Hossbach%2C+T">Todd Hossbach</a>, <a href="/search/?searchtype=author&amp;query=Koppell%2C+S">Stewart Koppell</a>, <a href="/search/?searchtype=author&amp;query=Leitz%2C+C">Christopher Leitz</a>, <a href="/search/?searchtype=author&amp;query=Magnoni%2C+A">Agustina Magnoni</a>, <a href="/search/?searchtype=author&amp;query=Mazin%2C+B+A">Benjamin A. Mazin</a>, <a href="/search/?searchtype=author&amp;query=Pratte%2C+J">Jean-Fran莽ois Pratte</a>, <a href="/search/?searchtype=author&amp;query=Rauscher%2C+B">Bernie Rauscher</a>, <a href="/search/?searchtype=author&amp;query=Rodrigues%2C+D">Dario Rodrigues</a>, <a href="/search/?searchtype=author&amp;query=Shen%2C+L">Lingjia Shen</a>, <a href="/search/?searchtype=author&amp;query=Sofo-Haro%2C+M">Miguel Sofo-Haro</a>, <a href="/search/?searchtype=author&amp;query=Tiffenberg%2C+J">Javier Tiffenberg</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12542v1-abstract-short" style="display: inline;"> In the last decade, several photon counting technologies have been developed opening a new window for experiments in the low photon number regime. Several ongoing and future projects in HEP benefit from these developments, which will also have a large impact outside HEP. During the next decade there is a clear technological opportunity to fully develop these sensors and produce a large impact in H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12542v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12542v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12542v1-abstract-full" style="display: none;"> In the last decade, several photon counting technologies have been developed opening a new window for experiments in the low photon number regime. Several ongoing and future projects in HEP benefit from these developments, which will also have a large impact outside HEP. During the next decade there is a clear technological opportunity to fully develop these sensors and produce a large impact in HEP. In this white paper we discuss the need for photon counting technologies in future projects, and present some technological opportunities to address those needs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12542v1-abstract-full').style.display = 'none'; document.getElementById('2203.12542v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12109">arXiv:2203.12109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.12109">pdf</a>, <a href="https://arxiv.org/format/2203.12109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.032011">10.1103/PhysRevD.106.032011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced low-energy supernova burst detection in large liquid argon time projection chambers enabled by Q-Pix </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Kubota%2C+S">S. Kubota</a>, <a href="/search/?searchtype=author&amp;query=Ho%2C+J">J. Ho</a>, <a href="/search/?searchtype=author&amp;query=McDonald%2C+A+D">A. D. McDonald</a>, <a href="/search/?searchtype=author&amp;query=Tata%2C+N">N. Tata</a>, <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Guenette%2C+R">R. Guenette</a>, <a href="/search/?searchtype=author&amp;query=Battat%2C+J+B+R">J. B. R. Battat</a>, <a href="/search/?searchtype=author&amp;query=Braga%2C+D">D. Braga</a>, <a href="/search/?searchtype=author&amp;query=Demarteau%2C+M">M. Demarteau</a>, <a href="/search/?searchtype=author&amp;query=Djurcic%2C+Z">Z. Djurcic</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Gramellini%2C+E">E. Gramellini</a>, <a href="/search/?searchtype=author&amp;query=Kohani%2C+S">S. Kohani</a>, <a href="/search/?searchtype=author&amp;query=Mauger%2C+C">C. Mauger</a>, <a href="/search/?searchtype=author&amp;query=Mei%2C+Y">Y. Mei</a>, <a href="/search/?searchtype=author&amp;query=Newcomer%2C+F+M">F. M. Newcomer</a>, <a href="/search/?searchtype=author&amp;query=Nishimura%2C+K">K. Nishimura</a>, <a href="/search/?searchtype=author&amp;query=Nygren%2C+D">D. Nygren</a>, <a href="/search/?searchtype=author&amp;query=Van+Berg%2C+R">R. Van Berg</a>, <a href="/search/?searchtype=author&amp;query=Varner%2C+G+S">G. S. Varner</a>, <a href="/search/?searchtype=author&amp;query=Woodworth%2C+K">K. Woodworth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12109v3-abstract-short" style="display: inline;"> The detection of neutrinos from core-collapse supernovae may reveal important process features as well as neutrino properties. The detection of supernova neutrinos is one of the main science drivers for future kiloton-scale neutrino detectors based on liquid argon. Here we show that for such detectors the intrinsically 3D readout in Q-Pix offers numerous advantages relative to a wire-based readout&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12109v3-abstract-full').style.display = 'inline'; document.getElementById('2203.12109v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12109v3-abstract-full" style="display: none;"> The detection of neutrinos from core-collapse supernovae may reveal important process features as well as neutrino properties. The detection of supernova neutrinos is one of the main science drivers for future kiloton-scale neutrino detectors based on liquid argon. Here we show that for such detectors the intrinsically 3D readout in Q-Pix offers numerous advantages relative to a wire-based readout, such as higher reconstruction efficiency, lower energy threshold, considerably lower data rates, and potential pointing information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12109v3-abstract-full').style.display = 'none'; document.getElementById('2203.12109v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 19 figures, 4 tables; accepted by Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 032011 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07242">arXiv:2203.07242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07242">pdf</a>, <a href="https://arxiv.org/format/2203.07242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 White Paper: The Windchime Project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=The+Windchime+Collaboration"> The Windchime Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Attanasio%2C+A">Alaina Attanasio</a>, <a href="/search/?searchtype=author&amp;query=Bhave%2C+S+A">Sunil A. Bhave</a>, <a href="/search/?searchtype=author&amp;query=Blanco%2C+C">Carlos Blanco</a>, <a href="/search/?searchtype=author&amp;query=Carney%2C+D">Daniel Carney</a>, <a href="/search/?searchtype=author&amp;query=Demarteau%2C+M">Marcel Demarteau</a>, <a href="/search/?searchtype=author&amp;query=Elshimy%2C+B">Bahaa Elshimy</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">Michael Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Feldman%2C+M+A">Matthew A. Feldman</a>, <a href="/search/?searchtype=author&amp;query=Ghosh%2C+S">Sohitri Ghosh</a>, <a href="/search/?searchtype=author&amp;query=Hickin%2C+A">Abby Hickin</a>, <a href="/search/?searchtype=author&amp;query=Hong%2C+S">Seongjin Hong</a>, <a href="/search/?searchtype=author&amp;query=Lang%2C+R+F">Rafael F. Lang</a>, <a href="/search/?searchtype=author&amp;query=Lawrie%2C+B">Benjamin Lawrie</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+S">Shengchao Li</a>, <a href="/search/?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/?searchtype=author&amp;query=Maldonado%2C+J+P+A">Juan P. A. Maldonado</a>, <a href="/search/?searchtype=author&amp;query=Marvinney%2C+C">Claire Marvinney</a>, <a href="/search/?searchtype=author&amp;query=Oo%2C+H+Z+Y">Hein Zay Yar Oo</a>, <a href="/search/?searchtype=author&amp;query=Pai%2C+Y">Yun-Yi Pai</a>, <a href="/search/?searchtype=author&amp;query=Pooser%2C+R">Raphael Pooser</a>, <a href="/search/?searchtype=author&amp;query=Qin%2C+J">Juehang Qin</a>, <a href="/search/?searchtype=author&amp;query=Sparmann%2C+T+J">Tobias J. Sparmann</a>, <a href="/search/?searchtype=author&amp;query=Taylor%2C+J+M">Jacob M. Taylor</a>, <a href="/search/?searchtype=author&amp;query=Tian%2C+H">Hao Tian</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07242v1-abstract-short" style="display: inline;"> The absence of clear signals from particle dark matter in direct detection experiments motivates new approaches in disparate regions of viable parameter space. In this Snowmass white paper, we outline the Windchime project, a program to build a large array of quantum-enhanced mechanical sensors. The ultimate aim is to build a detector capable of searching for Planck mass-scale dark matter purely t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07242v1-abstract-full').style.display = 'inline'; document.getElementById('2203.07242v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07242v1-abstract-full" style="display: none;"> The absence of clear signals from particle dark matter in direct detection experiments motivates new approaches in disparate regions of viable parameter space. In this Snowmass white paper, we outline the Windchime project, a program to build a large array of quantum-enhanced mechanical sensors. The ultimate aim is to build a detector capable of searching for Planck mass-scale dark matter purely through its gravitational coupling to ordinary matter. In the shorter term, we aim to search for a number of other physics targets, especially some ultralight dark matter candidates. Here, we discuss the basic design, open R&amp;D challenges and opportunities, current experimental efforts, and both short- and long-term physics targets of the Windchime project. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07242v1-abstract-full').style.display = 'none'; document.getElementById('2203.07242v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures. Contribution to the Snowmass 2021 proceedings (Cosmic Frontier working groups 1 and 2 - particle and wave-like dark matter)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12012">arXiv:2112.12012</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12012">pdf</a>, <a href="https://arxiv.org/format/2112.12012">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.166287">10.1016/j.nima.2021.166287 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light Output Quenching in Response to Deuterium-ions and Alpha Particles and Pulse Shape Discrimination in Deuterated Trans-stilbene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhou%2C+J">J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Gaughan%2C+N">N. Gaughan</a>, <a href="/search/?searchtype=author&amp;query=Becchetti%2C+F+D">F. D. Becchetti</a>, <a href="/search/?searchtype=author&amp;query=Torres-Isea%2C+R+O">R. O. Torres-Isea</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Zaitseva%2C+N">N. Zaitseva</a>, <a href="/search/?searchtype=author&amp;query=Di+Fulvio%2C+A">A. Di Fulvio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12012v1-abstract-short" style="display: inline;"> We characterized the light output response of a new 140 cm3 stilbene-d12 crystal up to 14.1 MeV neutron energies using a coincidence neutron scattering system. We also characterized its light output response to alpha particles in the 5 to 6~MeV energy range. The excellent PSD capability of the stilbene-d$_{12}$ detector allowed us to select light pulses produced by particles of increasing ionizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12012v1-abstract-full').style.display = 'inline'; document.getElementById('2112.12012v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12012v1-abstract-full" style="display: none;"> We characterized the light output response of a new 140 cm3 stilbene-d12 crystal up to 14.1 MeV neutron energies using a coincidence neutron scattering system. We also characterized its light output response to alpha particles in the 5 to 6~MeV energy range. The excellent PSD capability of the stilbene-d$_{12}$ detector allowed us to select light pulses produced by particles of increasing ionization density, namely electrons, protons, deuterium-ions, and alpha particles. The measured fast decay component of the light pulses is increasingly quenched as the ionization density of the particle in the crystal increases. Consistently with this finding, the Birks&#39; quenching parameter of alpha particles is approximately 8.5 times larger compared to the quenching of deuterium ions, produced by neutron scattering interactions. The reported experimental characterization will allow high-fidelity modeling of the detector enabling its application for fast-neutron detection and spectroscopy in nuclear physics, radiation protection, nuclear security, and non-proliferation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12012v1-abstract-full').style.display = 'none'; document.getElementById('2112.12012v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.02768">arXiv:2112.02768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.02768">pdf</a>, <a href="https://arxiv.org/format/2112.02768">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/03/P03021">10.1088/1748-0221/17/03/P03021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monitoring the SNS basement neutron background with the MARS detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.02768v2-abstract-short" style="display: inline;"> We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02768v2-abstract-full').style.display = 'inline'; document.getElementById('2112.02768v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.02768v2-abstract-full" style="display: none;"> We present the analysis and results of the first dataset collected with the MARS neutron detector deployed at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) for the purpose of monitoring and characterizing the beam-related neutron (BRN) background for the COHERENT collaboration. MARS was positioned next to the COH-CsI coherent elastic neutrino-nucleus scattering detector in the SNS basement corridor. This is the basement location of closest proximity to the SNS target and thus, of highest neutrino flux, but it is also well shielded from the BRN flux by infill concrete and gravel. These data show the detector registered roughly one BRN per day. Using MARS&#39; measured detection efficiency, the incoming BRN flux is estimated to be $1.20~\pm~0.56~\text{neutrons}/\text{m}^2/\text{MWh}$ for neutron energies above $\sim3.5$ MeV and up to a few tens of MeV. We compare our results with previous BRN measurements in the SNS basement corridor reported by other neutron detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.02768v2-abstract-full').style.display = 'none'; document.getElementById('2112.02768v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 P03021 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06448">arXiv:2111.06448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.06448">pdf</a>, <a href="https://arxiv.org/format/2111.06448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0081175">10.1063/5.0081175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a Pulsed VUV Light Source With Adjustable Intensity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=McDonald%2C+A+D">A. D. McDonald</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Havener%2C+C+C">C. C Havener</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06448v1-abstract-short" style="display: inline;"> This paper describes the development of a pulsed light source using the discharge from an electrode in a medium of various noble gases. This source can be used to aid in the characterization and testing of new vacuum-ultraviolet (VUV) sensitive light detection devices. The source includes a novel spark driver circuit, a spark chamber into which different noble gases can be introduced, and an optic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06448v1-abstract-full').style.display = 'inline'; document.getElementById('2111.06448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06448v1-abstract-full" style="display: none;"> This paper describes the development of a pulsed light source using the discharge from an electrode in a medium of various noble gases. This source can be used to aid in the characterization and testing of new vacuum-ultraviolet (VUV) sensitive light detection devices. The source includes a novel spark driver circuit, a spark chamber into which different noble gases can be introduced, and an optical attenuation cell capable of being filled with different gases to allow for the attenuation of the pulsed light down to single photon levels. We describe the construction, calibration, and characterization of this device deployed at a dedicated light detection test stand at Oak Ridge National Laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06448v1-abstract-full').style.display = 'none'; document.getElementById('2111.06448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02477">arXiv:2111.02477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.02477">pdf</a>, <a href="https://arxiv.org/format/2111.02477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Measurement of scintillation response of CsI[Na] to low-energy nuclear recoils by COHERENT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02477v2-abstract-short" style="display: inline;"> We present results of several measurements of CsI[Na] scintillation response to 3-60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02477v2-abstract-full').style.display = 'inline'; document.getElementById('2111.02477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02477v2-abstract-full" style="display: none;"> We present results of several measurements of CsI[Na] scintillation response to 3-60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02477v2-abstract-full').style.display = 'none'; document.getElementById('2111.02477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The version accepted by JINST. The changes made as a result of the peer review process: 1. Section 8 &#34;Global CsI[Na] QF data fit&#34; is expanded. The main fit result and its uncertainty is NOT CHANGED. An alternative fit is now shown in Figure 14, Figure 15 is added to further validate the assumptions in the main fit. 2. The Appendix B is restructured for clarity</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.12791">arXiv:2110.12791</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.12791">pdf</a>, <a href="https://arxiv.org/format/2110.12791">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/P01010">10.1088/1748-0221/17/01/P01010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Production and validation of scintillating structural components from low-background Poly(ethylene naphthalate) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+F">F. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Corominas%2C+M+G">M. Guitart Corominas</a>, <a href="/search/?searchtype=author&amp;query=Gusev%2C+K">K. Gusev</a>, <a href="/search/?searchtype=author&amp;query=Hackett%2C+B">B. Hackett</a>, <a href="/search/?searchtype=author&amp;query=Hayward%2C+C">C. Hayward</a>, <a href="/search/?searchtype=author&amp;query=Hod%C3%A1k%2C+R">R. Hod谩k</a>, <a href="/search/?searchtype=author&amp;query=Krause%2C+P">P. Krause</a>, <a href="/search/?searchtype=author&amp;query=Majorovits%2C+B">B. Majorovits</a>, <a href="/search/?searchtype=author&amp;query=Manzanillas%2C+L">L. Manzanillas</a>, <a href="/search/?searchtype=author&amp;query=Muenstermann%2C+D">D. Muenstermann</a>, <a href="/search/?searchtype=author&amp;query=Pohl%2C+M">M. Pohl</a>, <a href="/search/?searchtype=author&amp;query=Rouhana%2C+R">R. Rouhana</a>, <a href="/search/?searchtype=author&amp;query=Radford%2C+D">D. Radford</a>, <a href="/search/?searchtype=author&amp;query=Rukhadze%2C+E">E. Rukhadze</a>, <a href="/search/?searchtype=author&amp;query=Rumyantseva%2C+N">N. Rumyantseva</a>, <a href="/search/?searchtype=author&amp;query=Schilling%2C+I">I. Schilling</a>, <a href="/search/?searchtype=author&amp;query=Schoenert%2C+S">S. Schoenert</a>, <a href="/search/?searchtype=author&amp;query=Schulz%2C+O">O. Schulz</a>, <a href="/search/?searchtype=author&amp;query=Schwarz%2C+M">M. Schwarz</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0tekl%2C+I">I. 艩tekl</a>, <a href="/search/?searchtype=author&amp;query=Stommel%2C+M">M. Stommel</a>, <a href="/search/?searchtype=author&amp;query=Weingarten%2C+J">J. Weingarten</a>, <a href="/search/?searchtype=author&amp;query=Hoppe%2C+E">E. Hoppe</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.12791v3-abstract-short" style="display: inline;"> Poly Ethylene Naphthalate (PEN) is an industrial polymer plastic which is investigated as a low background, transparent, scintillating and wavelength shifting structural material. PEN scintillates in the blue region and has excellent mechanical properties both at room and cryogenic temperatures. Thus, it is an ideal candidate for active structural components in experiments for the search of rare e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12791v3-abstract-full').style.display = 'inline'; document.getElementById('2110.12791v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.12791v3-abstract-full" style="display: none;"> Poly Ethylene Naphthalate (PEN) is an industrial polymer plastic which is investigated as a low background, transparent, scintillating and wavelength shifting structural material. PEN scintillates in the blue region and has excellent mechanical properties both at room and cryogenic temperatures. Thus, it is an ideal candidate for active structural components in experiments for the search of rare events like neutrinoless double-beta decay or dark matter recoils. Such optically active structures improve the identification and rejection efficiency of background events, like this improving the sensitivity of experiments. This paper reports on the production of radiopure and transparent PEN plates These structures can be used to mount germanium detectors operating in cryogenic liquids (LAr, LN). Thus, as first application PEN holders will be used to mount the Ge detectors in the LEGEND-200 experiment. The whole process from cleaning the raw material to testing the PEN active components under final operational conditions is reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.12791v3-abstract-full').style.display = 'none'; document.getElementById('2110.12791v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.11453">arXiv:2110.11453</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.11453">pdf</a>, <a href="https://arxiv.org/format/2110.11453">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First Probe of Sub-GeV Dark Matter Beyond the Cosmological Expectation with the COHERENT CsI Detector at the SNS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.11453v2-abstract-short" style="display: inline;"> The COHERENT collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220~MeV/c$^2$ using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9~keV$_\text{nr}$. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent ela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11453v2-abstract-full').style.display = 'inline'; document.getElementById('2110.11453v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.11453v2-abstract-full" style="display: none;"> The COHERENT collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220~MeV/c$^2$ using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9~keV$_\text{nr}$. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei. The cross section for this process is orders of magnitude higher than for other processes historically used for accelerator-based direct-detection searches so that our small, 14.6~kg detector significantly improves on past constraints. At peak sensitivity, we reject the flux consistent with the cosmologically observed dark-matter concentration for all coupling constants $伪_D&lt;0.64$, assuming a scalar dark-matter particle. We also calculate the sensitivity of future COHERENT detectors to dark-matter signals which will ambitiously test multiple dark-matter spin scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.11453v2-abstract-full').style.display = 'none'; document.getElementById('2110.11453v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.07730">arXiv:2110.07730</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.07730">pdf</a>, <a href="https://arxiv.org/format/2110.07730">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.081801">10.1103/PhysRevLett.129.081801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.07730v2-abstract-short" style="display: inline;"> We measured the cross section of coherent elastic neutrino-nucleus scattering (\cevns{}) using a CsI[Na] scintillating crystal in a high flux of neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. New data collected before detector decommissioning has more than doubled the dataset since the first observation of \cevns{}, achieved with this detector. Systemat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07730v2-abstract-full').style.display = 'inline'; document.getElementById('2110.07730v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.07730v2-abstract-full" style="display: none;"> We measured the cross section of coherent elastic neutrino-nucleus scattering (\cevns{}) using a CsI[Na] scintillating crystal in a high flux of neutrinos produced at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. New data collected before detector decommissioning has more than doubled the dataset since the first observation of \cevns{}, achieved with this detector. Systematic uncertainties have also been reduced with an updated quenching model, allowing for improved precision. With these analysis improvements, the COHERENT collaboration determined the cross section to be $(165^{+30}_{-25})\times10^{-40}$~cm$^2$, consistent with the standard model, giving the most precise measurement of \cevns{} yet. The timing structure of the neutrino beam has been exploited to compare the \cevns{} cross section from scattering of different neutrino flavors. This result places leading constraints on neutrino non-standard interactions while testing lepton flavor universality and measures the weak mixing angle as $\sin^2胃_{W}=0.220^{+0.028}_{-0.026}$ at $Q^2\approx(50\text{ MeV})^2$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.07730v2-abstract-full').style.display = 'none'; document.getElementById('2110.07730v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.11049">arXiv:2109.11049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.11049">pdf</a>, <a href="https://arxiv.org/format/2109.11049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bock%2C+C">C. Bock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Browning%2C+J">J. Browning</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Galambos%2C+J">J. Galambos</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.11049v2-abstract-short" style="display: inline;"> The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a pulsed source of neutrons and, as a byproduct of this operation, an intense source of pulsed neutrinos via stopped-pion decay. The COHERENT collaboration uses this source to investigate coherent elastic neutrino-nucleus scattering and other physics with a suite of detectors. This work includes a description of our Geant4 sim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11049v2-abstract-full').style.display = 'inline'; document.getElementById('2109.11049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.11049v2-abstract-full" style="display: none;"> The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory is a pulsed source of neutrons and, as a byproduct of this operation, an intense source of pulsed neutrinos via stopped-pion decay. The COHERENT collaboration uses this source to investigate coherent elastic neutrino-nucleus scattering and other physics with a suite of detectors. This work includes a description of our Geant4 simulation of neutrino production at the SNS and the flux calculation which informs the COHERENT studies. We estimate the uncertainty of this calculation at about 10% based on validation against available low-energy pion production data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.11049v2-abstract-full').style.display = 'none'; document.getElementById('2109.11049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11462">arXiv:2107.11462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11462">pdf</a>, <a href="https://arxiv.org/format/2107.11462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> LEGEND-1000 Preconceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=LEGEND+Collaboration"> LEGEND Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/?searchtype=author&amp;query=Abt%2C+I">I. Abt</a>, <a href="/search/?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/?searchtype=author&amp;query=Alexander%2C+A">A. Alexander</a>, <a href="/search/?searchtype=author&amp;query=Andreoiu%2C+C">C. Andreoiu</a>, <a href="/search/?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/?searchtype=author&amp;query=Bae%2C+W">W. Bae</a>, <a href="/search/?searchtype=author&amp;query=Bakalyarov%2C+A">A. Bakalyarov</a>, <a href="/search/?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/?searchtype=author&amp;query=Bantel%2C+M">M. Bantel</a>, <a href="/search/?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/?searchtype=author&amp;query=Bernieri%2C+E">E. Bernieri</a>, <a href="/search/?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/?searchtype=author&amp;query=Bhimani%2C+K+H">K. H. Bhimani</a>, <a href="/search/?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a> , et al. (239 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11462v1-abstract-short" style="display: inline;"> We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $尾尾$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11462v1-abstract-full" style="display: none;"> We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $尾尾$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay $Q$ value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the $^{76}$Ge half-life of $1.3\times10^{28}$ years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11462v1-abstract-full').style.display = 'none'; document.getElementById('2107.11462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09535">arXiv:2106.09535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.09535">pdf</a>, <a href="https://arxiv.org/format/2106.09535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165822">10.1016/j.nima.2021.165822 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of stilbene-d12 for neutron spectroscopy without time of flight </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Gaughan%2C+N">N. Gaughan</a>, <a href="/search/?searchtype=author&amp;query=Zhou%2C+J">J. Zhou</a>, <a href="/search/?searchtype=author&amp;query=Becchetti%2C+F+D">F. D. Becchetti</a>, <a href="/search/?searchtype=author&amp;query=Torres-Isea%2C+R+O">R. O. Torres-Isea</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Zaitseva%2C+N">N. Zaitseva</a>, <a href="/search/?searchtype=author&amp;query=Di+Fulvio%2C+A">A. Di Fulvio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09535v1-abstract-short" style="display: inline;"> We have experimentally characterized the light-output response of a deuterated trans-stilbene (stilbene-d12) crystal to quasi-monoenergetic neutrons in the 0.8 to 4.4 MeV energy range. These data allowed us to perform neutron spectroscopy measurements of a DT 14.1 MeV source and a PuBe-239 source by unfolding the impinging neutron spectrum from the measured light-output response. The stilbene-d12&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09535v1-abstract-full').style.display = 'inline'; document.getElementById('2106.09535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09535v1-abstract-full" style="display: none;"> We have experimentally characterized the light-output response of a deuterated trans-stilbene (stilbene-d12) crystal to quasi-monoenergetic neutrons in the 0.8 to 4.4 MeV energy range. These data allowed us to perform neutron spectroscopy measurements of a DT 14.1 MeV source and a PuBe-239 source by unfolding the impinging neutron spectrum from the measured light-output response. The stilbene-d12 outperforms a H1-stilbene of similar size when comparing the shape of the unfolded spectra and the reference ones. These results confirm the viability of non-hygroscopic stilbene-d12 crystal for direct neutron spectroscopy without need for time-of-flight measurements. This capability makes stilbene-d12 a well suited detector for fast-neutron spectroscopy in many applications including nuclear reaction studies, radiation protection, nuclear non-proliferation, and space travel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09535v1-abstract-full').style.display = 'none'; document.getElementById('2106.09535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09605">arXiv:2104.09605</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.09605">pdf</a>, <a href="https://arxiv.org/format/2104.09605">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08048">10.1088/1748-0221/16/08/P08048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A D$_{2}$O detector for flux normalization of a pion decay-at-rest neutrino source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Blokland%2C+L">L. Blokland</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Day%2C+E">E. Day</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Ding%2C+K">K. Ding</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Rosso%2C+A+G">A. Gallo Rosso</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09605v4-abstract-short" style="display: inline;"> We report on the technical design and expected performance of a 592 kg heavy-water-Cherenkov detector to measure the absolute neutrino flux from the pion-decay-at-rest neutrino source at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The detector will be located roughly 20 m from the SNS target and will measure the neutrino flux with better than 5% statistical uncerta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09605v4-abstract-full').style.display = 'inline'; document.getElementById('2104.09605v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09605v4-abstract-full" style="display: none;"> We report on the technical design and expected performance of a 592 kg heavy-water-Cherenkov detector to measure the absolute neutrino flux from the pion-decay-at-rest neutrino source at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The detector will be located roughly 20 m from the SNS target and will measure the neutrino flux with better than 5% statistical uncertainty in 2 years. This heavy-water detector will serve as the first module of a two-module detector system to ultimately measure the neutrino flux to 2-3% at both the First Target Station and the planned Second Target Station of the SNS. This detector will significantly reduce a dominant systematic uncertainty for neutrino cross-section measurements at the SNS, increasing the sensitivity of searches for new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09605v4-abstract-full').style.display = 'none'; document.getElementById('2104.09605v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">As accepted to JINST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 (2021) 08, P08048 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03232">arXiv:2103.03232</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.03232">pdf</a>, <a href="https://arxiv.org/format/2103.03232">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/07/P07017">10.1088/1748-0221/16/07/P07017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wavelength-Shifting Performance of Polyethylene Naphthalate Films in a Liquid Argon Environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abraham%2C+Y">Y. Abraham</a>, <a href="/search/?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a>, <a href="/search/?searchtype=author&amp;query=Basque%2C+V">V. Basque</a>, <a href="/search/?searchtype=author&amp;query=Castiglioni%2C+W">W. Castiglioni</a>, <a href="/search/?searchtype=author&amp;query=Dorrill%2C+R">R. Dorrill</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Hackett%2C+B">B. Hackett</a>, <a href="/search/?searchtype=author&amp;query=Kelsey%2C+J">J. Kelsey</a>, <a href="/search/?searchtype=author&amp;query=Littlejohn%2C+B+R">B. R. Littlejohn</a>, <a href="/search/?searchtype=author&amp;query=Parmaksiz%2C+I">I. Parmaksiz</a>, <a href="/search/?searchtype=author&amp;query=Rooks%2C+M">M. Rooks</a>, <a href="/search/?searchtype=author&amp;query=Szelc%2C+A+M">A. M. Szelc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03232v3-abstract-short" style="display: inline;"> Liquid argon is commonly used as a detector medium for neutrino physics and dark matter experiments in part due to its copious scintillation light production in response to its excitation and ionization by charged particle interactions. As argon scintillation appears in the vacuum ultraviolet (VUV) regime and is difficult to detect, wavelength-shifting materials are typically used to convert VUV l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03232v3-abstract-full').style.display = 'inline'; document.getElementById('2103.03232v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03232v3-abstract-full" style="display: none;"> Liquid argon is commonly used as a detector medium for neutrino physics and dark matter experiments in part due to its copious scintillation light production in response to its excitation and ionization by charged particle interactions. As argon scintillation appears in the vacuum ultraviolet (VUV) regime and is difficult to detect, wavelength-shifting materials are typically used to convert VUV light to visible wavelengths more easily detectable by conventional means. In this work, we examine the wavelength-shifting and optical properties of poly(ethylene naphthalate) (PEN), a recently proposed alternative to tetraphenyl butadiene (TPB), the most widely-used wavelength-shifter in argon-based experiments. In a custom cryostat system with well-demonstrated geometric and response stability, we use 128~nm argon scintillation light to examine various PEN-including reflective samples&#39; light-producing capabilities, and study the stability of PEN when immersed in liquid argon. The best-performing PEN-including test reflector was found to produce 34% as much visible light as a TPB-including reference sample, with widely varying levels of light production between different PEN-including test reflectors. Plausible origins for these variations, including differences in optical properties and molecular orientation, are then identified using additional measurements. Unlike TPB-coated samples, PEN-coated samples did not produce long-timescale light collection increases associated with solvation or suspension of wavelength-shifting material in bulk liquid argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03232v3-abstract-full').style.display = 'none'; document.getElementById('2103.03232v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures. Minor edits as suggested by reviewers. Replaced most usages of inches with SI units. Fix a typo in the legend on Figure 9. Other minor revisions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.08983">arXiv:2011.08983</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.08983">pdf</a>, <a href="https://arxiv.org/format/2011.08983">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Usage of PEN as self-vetoing structural material in low background experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Abt%2C+I">I. Abt</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+F">F. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Guitart%2C+M">M. Guitart</a>, <a href="/search/?searchtype=author&amp;query=Gusev%2C+K">K. Gusev</a>, <a href="/search/?searchtype=author&amp;query=Hackett%2C+B">B. Hackett</a>, <a href="/search/?searchtype=author&amp;query=Hayward%2C+C">C. Hayward</a>, <a href="/search/?searchtype=author&amp;query=Hodak%2C+R">R. Hodak</a>, <a href="/search/?searchtype=author&amp;query=Krause%2C+P">P. Krause</a>, <a href="/search/?searchtype=author&amp;query=Majorovits%2C+B">B. Majorovits</a>, <a href="/search/?searchtype=author&amp;query=Manzanillas%2C+L">L. Manzanillas</a>, <a href="/search/?searchtype=author&amp;query=Muenstermann%2C+D">D. Muenstermann</a>, <a href="/search/?searchtype=author&amp;query=Pjatkan%2C+R">R. Pjatkan</a>, <a href="/search/?searchtype=author&amp;query=Pohl%2C+M">M. Pohl</a>, <a href="/search/?searchtype=author&amp;query=Rouhana%2C+R">R. Rouhana</a>, <a href="/search/?searchtype=author&amp;query=Radford%2C+D">D. Radford</a>, <a href="/search/?searchtype=author&amp;query=Rukhadze%2C+E">E. Rukhadze</a>, <a href="/search/?searchtype=author&amp;query=Rumyantseva%2C+N">N. Rumyantseva</a>, <a href="/search/?searchtype=author&amp;query=Schilling%2C+I">I. Schilling</a>, <a href="/search/?searchtype=author&amp;query=Schoenert%2C+S">S. Schoenert</a>, <a href="/search/?searchtype=author&amp;query=Schulz%2C+O">O. Schulz</a>, <a href="/search/?searchtype=author&amp;query=Schwarz%2C+M">M. Schwarz</a>, <a href="/search/?searchtype=author&amp;query=Stommel%2C+M">M. Stommel</a>, <a href="/search/?searchtype=author&amp;query=Weingarten%2C+J">J. Weingarten</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.08983v2-abstract-short" style="display: inline;"> PEN is an industrial polyester plastic which has become interesting for the physics community as a new type of plastic scintillator. PEN scintillates in the blue regime, which is ideal for most photosensor devices. In addition, PEN has excellent mechanical properties and very good radiopurity has been achieved. Thus, it is an ideal candidate for active structural components in low-background exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08983v2-abstract-full').style.display = 'inline'; document.getElementById('2011.08983v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.08983v2-abstract-full" style="display: none;"> PEN is an industrial polyester plastic which has become interesting for the physics community as a new type of plastic scintillator. PEN scintillates in the blue regime, which is ideal for most photosensor devices. In addition, PEN has excellent mechanical properties and very good radiopurity has been achieved. Thus, it is an ideal candidate for active structural components in low-background experiments. One possible application are holders for germanium detectors operating in cryogenic liquids (LAr, LN2). Such structures can help to reject surface and external backgrounds, boosting the sensitivity of experiments. In this contribution, the R\&amp;D on PEN is outlined and an evaluation of the first production of PEN structures for the LEGEND-200 experiment is reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.08983v2-abstract-full').style.display = 'none'; document.getElementById('2011.08983v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference ICHEP2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.11258">arXiv:2010.11258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.11258">pdf</a>, <a href="https://arxiv.org/format/2010.11258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/04/P04002">10.1088/1748-0221/16/04/P04002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a $^{83\mathrm{m}}$Kr source for the calibration of the CENNS-10 Liquid Argon Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Bernardi%2C+I">I. Bernardi</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Blokland%2C+L">L. Blokland</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+N">N. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+W">W. Fox</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.11258v2-abstract-short" style="display: inline;"> We report on the preparation of and calibration measurements with a $^{83\mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83\mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of $^{83\mathrm{m}}$Kr i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11258v2-abstract-full').style.display = 'inline'; document.getElementById('2010.11258v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.11258v2-abstract-full" style="display: none;"> We report on the preparation of and calibration measurements with a $^{83\mathrm{m}}$Kr source for the CENNS-10 liquid argon detector. $^{83\mathrm{m}}$Kr atoms generated in the decay of a $^{83}$Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of $^{83\mathrm{m}}$Kr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9$\%$ at the total $^{83\mathrm{m}}$Kr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keV <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.11258v2-abstract-full').style.display = 'none'; document.getElementById('2010.11258v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: As accepted to JINST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P04002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12659">arXiv:2006.12659</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12659">pdf</a>, <a href="https://arxiv.org/format/2006.12659">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.3903810">10.5281/zenodo.3903810 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COHERENT Collaboration data release from the first detection of coherent elastic neutrino-nucleus scattering on argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Blokland%2C+L">L. Blokland</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+N">N. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+W">W. Fox</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12659v2-abstract-short" style="display: inline;"> Release of COHERENT collaboration data from the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on argon. This release corresponds with the results of &#34;Analysis A&#34; published in Akimov et al., arXiv:2003.10630 [nucl-ex]. Data is shared in a binned, text-based format representing both &#34;signal&#34; and &#34;backgrounds&#34; along with associated uncertainties such that the included data c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12659v2-abstract-full').style.display = 'inline'; document.getElementById('2006.12659v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12659v2-abstract-full" style="display: none;"> Release of COHERENT collaboration data from the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on argon. This release corresponds with the results of &#34;Analysis A&#34; published in Akimov et al., arXiv:2003.10630 [nucl-ex]. Data is shared in a binned, text-based format representing both &#34;signal&#34; and &#34;backgrounds&#34; along with associated uncertainties such that the included data can be used to perform independent analyses. This document describes the contents of the data release as well as guidance on the use of the data. Included example code in C++ (ROOT) and Python show one possible use of the included data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12659v2-abstract-full').style.display = 'none'; document.getElementById('2006.12659v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Update document with arXiv ID number in requested citation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10630">arXiv:2003.10630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.10630">pdf</a>, <a href="https://arxiv.org/format/2003.10630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.012002">10.1103/PhysRevLett.126.012002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Blokland%2C+L">L. Blokland</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+N">N. Chen</a>, <a href="/search/?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+W">W. Fox</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10630v7-abstract-short" style="display: inline;"> We report the first measurement of coherent elastic neutrino-nucleus scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer \cevns over the background-only null hypothesis with greater than $3蟽$ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 $\pm$ 0.7)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10630v7-abstract-full').style.display = 'inline'; document.getElementById('2003.10630v7-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10630v7-abstract-full" style="display: none;"> We report the first measurement of coherent elastic neutrino-nucleus scattering (\cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer \cevns over the background-only null hypothesis with greater than $3蟽$ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 $\pm$ 0.7) $\times$10$^{-39}$ cm$^2$ -- consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the \cevns process and provides improved constraints on non-standard neutrino interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10630v7-abstract-full').style.display = 'none'; document.getElementById('2003.10630v7-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures with 2 pages, 6 figures supplementary material V3: fixes to figs 3,4 V4: fix typo in table 1, V5: replaced missing appendix, V6: fix Eq 1, new fig 3, V7 final version, updated with final revisions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 012002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06422">arXiv:1911.06422</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.06422">pdf</a>, <a href="https://arxiv.org/format/1911.06422">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.052007">10.1103/PhysRevD.102.052007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+N">N. Chen</a>, <a href="/search/?searchtype=author&amp;query=Conley%2C+E">E. Conley</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=Durand%2C+M+R">M. R. Durand</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+W">W. Fox</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Green%2C+M+P">M. P. Green</a>, <a href="/search/?searchtype=author&amp;query=Hansen%2C+K+S">K. S. Hansen</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06422v1-abstract-short" style="display: inline;"> The COHERENT experiment is well poised to test sub-GeV dark matter models using low-energy recoil detectors sensitive to coherent elastic neutrino-nucleus scattering (CEvNS) in the $蟺$-DAR neutrino beam produced by the Spallation Neutron Source. We show how a planned 750-kg liquid argon scintillation detector would place leading limits on scalar light dark matter models, over two orders of magnitu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06422v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06422v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06422v1-abstract-full" style="display: none;"> The COHERENT experiment is well poised to test sub-GeV dark matter models using low-energy recoil detectors sensitive to coherent elastic neutrino-nucleus scattering (CEvNS) in the $蟺$-DAR neutrino beam produced by the Spallation Neutron Source. We show how a planned 750-kg liquid argon scintillation detector would place leading limits on scalar light dark matter models, over two orders of magnitude of dark matter mass, for dark matter particles produced through vector and leptophobic portals in the absence of other effects beyond the standard model. The characteristic timing structure of a $蟺$-DAR beam allows a unique opportunity for constraining systematic uncertainties on the standard model background in a time window where signal is not expected, enhancing expected sensitivity. Additionally, we discuss future prospects, further increasing the discovery potential of CEvNS detectors. Such methods would test the calculated thermal dark matter abundance for all couplings $伪&#39;\leq1$ within the vector portal model over an order of magnitude of dark matter masses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06422v1-abstract-full').style.display = 'none'; document.getElementById('1911.06422v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 052007 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.12965">arXiv:1910.12965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.12965">pdf</a>, <a href="https://arxiv.org/format/1910.12965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Superallowed $0^+ \rightarrow 0^+$ $尾$ decay of $T =2$ $^{20}$Mg: $Q_{\textrm{EC}}$ value and $尾纬$ branching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Glassman%2C+B+E">B. E. Glassman</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A9rez-Loureiro%2C+D">D. P茅rez-Loureiro</a>, <a href="/search/?searchtype=author&amp;query=Wrede%2C+C">C. Wrede</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J+M">J. M. Allen</a>, <a href="/search/?searchtype=author&amp;query=Bardayan%2C+D+W">D. W. Bardayan</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+M+B">M. B. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+B+A">B. A. Brown</a>, <a href="/search/?searchtype=author&amp;query=Chipps%2C+K+A">K. A. Chipps</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fry%2C+C">C. Fry</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+M+R">M. R. Hall</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+O">O. Hall</a>, <a href="/search/?searchtype=author&amp;query=Liddick%2C+S+N">S. N. Liddick</a>, <a href="/search/?searchtype=author&amp;query=Magilligan%2C+A">A. Magilligan</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P">P. O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Ong%2C+W">W-J. Ong</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Shidling%2C+P">P. Shidling</a>, <a href="/search/?searchtype=author&amp;query=Sims%2C+H">H. Sims</a>, <a href="/search/?searchtype=author&amp;query=Thompson%2C+P">P. Thompson</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+H">H. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.12965v1-abstract-short" style="display: inline;"> \textbf{Background}: Superallowed $0^+ \rightarrow 0^+$ $尾$ decays of isospin $T=2$ nuclides can be used to test theoretical isospin symmetry breaking corrections applied to extract the CKM matrix element $V_{ud}$ from $T = 0,1$ decays by measuring precise $ft$ values and also to search for scalar currents using the $尾-谓$ angular correlation. Key ingredients include the $Q_{\textrm{EC}}$ value and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12965v1-abstract-full').style.display = 'inline'; document.getElementById('1910.12965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.12965v1-abstract-full" style="display: none;"> \textbf{Background}: Superallowed $0^+ \rightarrow 0^+$ $尾$ decays of isospin $T=2$ nuclides can be used to test theoretical isospin symmetry breaking corrections applied to extract the CKM matrix element $V_{ud}$ from $T = 0,1$ decays by measuring precise $ft$ values and also to search for scalar currents using the $尾-谓$ angular correlation. Key ingredients include the $Q_{\textrm{EC}}$ value and branching of the superallowed transition and the half life of the parent. \textbf{Purpose}: To determine a precise experimental $Q_{\textrm{EC}}$ value for the superallowed $0^+ \rightarrow 0^+$ $尾$ decay of $T=2$ $^{20}$Mg and the intensity of $^{20}$Mg $尾$-delayed $纬$ rays through the isobaric analog state in $^{20}$Na. \textbf{Method}: A beam of $^{20}$Mg was produced using the in-flight method and implanted into a plastic scintillator surrounded by an array of high-purity germanium detectors used to detect $尾$-delayed $纬$ rays. The high-resolution $纬$-ray spectrum was analyzed to measure the $纬$-ray energies and intensities. \textbf{Results}: The intensity of $^{20}$Mg $尾$-delayed $纬$ rays through the isobaric analog state in $^{20}$Na was measured to be $(1.60 \pm 0.04_{\textrm{stat}} \pm 0.15_{\textrm{syst}} \pm 0.15_{\textrm{theo}}) \times 10^{-4}$, where the uncertainties are statistical, systematic, and theoretical, respectively. The $Q_{\textrm{EC}}$ value for the superallowed transition was determined to be $4128.7 \pm 2.2$ keV based on the measured excitation energy of $6498.4 \pm 0.2_{\textrm{stat}} \pm 0.4_{\textrm{syst}}$ keV and literature values for the ground-state masses of $^{20}$Na and $^{20}$Mg. \textbf{Conclusions}: The $尾$-delayed $纬$-decay branch and $Q_{\textrm{EC}}$ value are now sufficiently precise to match or exceed the sensitivity required for current low-energy tests of the standard model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.12965v1-abstract-full').style.display = 'none'; document.getElementById('1910.12965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.05913">arXiv:1909.05913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.05913">pdf</a>, <a href="https://arxiv.org/format/1909.05913">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.115020">10.1103/PhysRevD.100.115020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Constraint on Coherent Elastic Neutrino-Nucleus Scattering in Argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J+I">J. I. Collar</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=D%27Onofrio%2C+M">M. D&#39;Onofrio</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Erkela%2C+E+M">E. M. Erkela</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fox%2C+W">W. Fox</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.05913v1-abstract-short" style="display: inline;"> Coherent elastic neutrino-nucleus scattering (CEvNS) is the dominant neutrino scattering channel for neutrinos of energy $E_谓&lt; 100$ MeV. We report a limit for this process using data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the Oak Ridge National Laboratory Spallation Neutron Source (SNS) Hg target with $4.2\times 10^{22}$ protons on target. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.05913v1-abstract-full').style.display = 'inline'; document.getElementById('1909.05913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.05913v1-abstract-full" style="display: none;"> Coherent elastic neutrino-nucleus scattering (CEvNS) is the dominant neutrino scattering channel for neutrinos of energy $E_谓&lt; 100$ MeV. We report a limit for this process using data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the Oak Ridge National Laboratory Spallation Neutron Source (SNS) Hg target with $4.2\times 10^{22}$ protons on target. The dataset yielded $&lt; 7.4$ observed CEvNS events implying a cross section for the process, averaged over the SNS pion decay-at-rest flux, of $&lt;3.4 \times 10^{-39}$ cm$^{2}$, a limit within twice the Standard Model prediction. This is the first limit on CEvNS from an argon nucleus and confirms the earlier CsI non-standard neutrino interaction constraints from the collaboration. This run demonstrated the feasibility of the ongoing experimental effort to detect CEvNS with liquid argon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.05913v1-abstract-full').style.display = 'none'; document.getElementById('1909.05913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 115020 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.07244">arXiv:1906.07244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.07244">pdf</a>, <a href="https://arxiv.org/format/1906.07244">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.162465">10.1016/j.nima.2019.162465 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Radioactive Source Calibration System of the PROSPECT Reactor Antineutrino Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=PROSPECT+Collaboration"> PROSPECT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/?searchtype=author&amp;query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/?searchtype=author&amp;query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/?searchtype=author&amp;query=Berish%2C+D">D. Berish</a>, <a href="/search/?searchtype=author&amp;query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/?searchtype=author&amp;query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/?searchtype=author&amp;query=Classen%2C+T">T. Classen</a>, <a href="/search/?searchtype=author&amp;query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Deichert%2C+G">G. Deichert</a>, <a href="/search/?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/?searchtype=author&amp;query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/?searchtype=author&amp;query=Erickson%2C+A">A. Erickson</a>, <a href="/search/?searchtype=author&amp;query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Gilbert%2C+C+E">C. E. Gilbert</a>, <a href="/search/?searchtype=author&amp;query=Hackett%2C+B+T">B. T. Hackett</a>, <a href="/search/?searchtype=author&amp;query=Hans%2C+S">S. Hans</a> , et al. (40 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.07244v2-abstract-short" style="display: inline;"> The Precision Reactor Oscillation and Spectrum (PROSPECT) Experiment is a reactor neutrino experiment designed to search for sterile neutrinos with a mass on the order of 1 eV/c$^2$ and to measure the spectrum of electron antineutrinos from a highly-enriched $^{235}$U nuclear reactor. The PROSPECT detector consists of an 11 by 14 array of optical segments in $^{6}$Li-loaded liquid scintillator at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07244v2-abstract-full').style.display = 'inline'; document.getElementById('1906.07244v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.07244v2-abstract-full" style="display: none;"> The Precision Reactor Oscillation and Spectrum (PROSPECT) Experiment is a reactor neutrino experiment designed to search for sterile neutrinos with a mass on the order of 1 eV/c$^2$ and to measure the spectrum of electron antineutrinos from a highly-enriched $^{235}$U nuclear reactor. The PROSPECT detector consists of an 11 by 14 array of optical segments in $^{6}$Li-loaded liquid scintillator at the High Flux Isotope Reactor in Oak Ridge National Laboratory. Antineutrino events are identified via inverse beta decay and read out by photomultiplier tubes located at the ends of each segment. The detector response is characterized using a radioactive source calibration system. This paper describes the design, operation, and performance of the PROSPECT source calibration system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.07244v2-abstract-full').style.display = 'none'; document.getElementById('1906.07244v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Methods A, Vol. 944, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00603">arXiv:1904.00603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.00603">pdf</a>, <a href="https://arxiv.org/format/1904.00603">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.035805">10.1103/PhysRevC.99.035805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New $纬$-ray Transitions Observed in $^{19}$Ne with Implications for the $^{15}$O($伪$,$纬$)$^{19}$Ne Reaction Rate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hall%2C+M+R">M. R. Hall</a>, <a href="/search/?searchtype=author&amp;query=Bardayan%2C+D+W">D. W. Bardayan</a>, <a href="/search/?searchtype=author&amp;query=Baugher%2C+T">T. Baugher</a>, <a href="/search/?searchtype=author&amp;query=Lepailleur%2C+A">A. Lepailleur</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Ratkiewicz%2C+A">A. Ratkiewicz</a>, <a href="/search/?searchtype=author&amp;query=Ahn%2C+S">S. Ahn</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J+M">J. M. Allen</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+J+T">J. T. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Ayangeakaa%2C+A+D">A. D. Ayangeakaa</a>, <a href="/search/?searchtype=author&amp;query=Blackmon%2C+J+C">J. C. Blackmon</a>, <a href="/search/?searchtype=author&amp;query=Burcher%2C+S">S. Burcher</a>, <a href="/search/?searchtype=author&amp;query=Carpenter%2C+M+P">M. P. Carpenter</a>, <a href="/search/?searchtype=author&amp;query=Cha%2C+S+M">S. M. Cha</a>, <a href="/search/?searchtype=author&amp;query=Chae%2C+K+Y">K. Y. Chae</a>, <a href="/search/?searchtype=author&amp;query=Chipps%2C+K+A">K. A. Chipps</a>, <a href="/search/?searchtype=author&amp;query=Cizewski%2C+J+A">J. A. Cizewski</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+O">O. Hall</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J">J. Hu</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+C+L">C. L. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+K+L">K. L. Jones</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+E+J">E. J. Lee</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P+D">P. D. O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Ota%2C+S">S. Ota</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00603v1-abstract-short" style="display: inline;"> The $^{15}$O($伪$,$纬$)$^{19}$Ne reaction is responsible for breakout from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of resonances between $E_x = 4$ and 5 MeV in $^{19}$Ne is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00603v1-abstract-full').style.display = 'inline'; document.getElementById('1904.00603v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00603v1-abstract-full" style="display: none;"> The $^{15}$O($伪$,$纬$)$^{19}$Ne reaction is responsible for breakout from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of resonances between $E_x = 4$ and 5 MeV in $^{19}$Ne is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2$^-$ and 7/2$^-$, respectively. Gamma-ray transitions from these states were studied using triton-$纬$-$纬$ coincidences from the $^{19}$F($^{3}$He,$t纬$)$^{19}$Ne reaction measured with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the $J^蟺$ values are actually 7/2$^-$ and 9/2$^-$, respectively. These assignments are consistent with the values in the $^{19}$F mirror nucleus and in contrast to previously accepted assignments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00603v1-abstract-full').style.display = 'none'; document.getElementById('1904.00603v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 035805, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.06430">arXiv:1902.06430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.06430">pdf</a>, <a href="https://arxiv.org/format/1902.06430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/04/P04014">10.1088/1748-0221/14/04/P04014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Low Mass Optical Grid for the PROSPECT Reactor Antineutrino Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=PROSPECT+Collaboration"> PROSPECT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/?searchtype=author&amp;query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/?searchtype=author&amp;query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/?searchtype=author&amp;query=Berish%2C+D">D. Berish</a>, <a href="/search/?searchtype=author&amp;query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/?searchtype=author&amp;query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/?searchtype=author&amp;query=Classen%2C+T">T. Classen</a>, <a href="/search/?searchtype=author&amp;query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/?searchtype=author&amp;query=Davee%2C+D">D. Davee</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Deichert%2C+G">G. Deichert</a>, <a href="/search/?searchtype=author&amp;query=Diwan%2C+A+E+D+M+V">A. E. Detweiler M. V. Diwan</a>, <a href="/search/?searchtype=author&amp;query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/?searchtype=author&amp;query=Erickson%2C+A">A. Erickson</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/?searchtype=author&amp;query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Gebre%2C+Y">Y. Gebre</a>, <a href="/search/?searchtype=author&amp;query=Gilbert%2C+C+E">C. E. Gilbert</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.06430v3-abstract-short" style="display: inline;"> PROSPECT, the Precision Reactor Oscillation and SPECTrum experiment, is a short-baseline reactor antineutrino experiment designed to provide precision measurements of the $^{235}$U product $\overline谓_e$ spectrum of utilizing an optically segmented 4-ton liquid scintillator detector. PROSPECT&#39;s segmentation system, the optical grid, plays a central role in reconstructing the position and energy of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.06430v3-abstract-full').style.display = 'inline'; document.getElementById('1902.06430v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.06430v3-abstract-full" style="display: none;"> PROSPECT, the Precision Reactor Oscillation and SPECTrum experiment, is a short-baseline reactor antineutrino experiment designed to provide precision measurements of the $^{235}$U product $\overline谓_e$ spectrum of utilizing an optically segmented 4-ton liquid scintillator detector. PROSPECT&#39;s segmentation system, the optical grid, plays a central role in reconstructing the position and energy of $\overline谓_e$ interactions in the detector. This paper is the technical reference for this PROSPECT subsystem, describing its design, fabrication, quality assurance, transportation and assembly in detail. In addition, the dimensional, optical and mechanical characterizations of optical grid components and the assembled PROSPECT target are also presented. The technical information and characterizations detailed here will inform geometry-related inputs for PROSPECT physics analysis, and can guide a variety of future particle detection development efforts, such as those using optically reflecting materials or filament-based 3D printing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.06430v3-abstract-full').style.display = 'none'; document.getElementById('1902.06430v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.00106">arXiv:1902.00106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.00106">pdf</a>, <a href="https://arxiv.org/format/1902.00106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.052701">10.1103/PhysRevLett.122.052701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Key $^{19}$Ne states identified affecting $纬$-ray emission from $^{18}$F in novae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Hall%2C+M+R">M. R. Hall</a>, <a href="/search/?searchtype=author&amp;query=Barbadian%2C+D+W">D. W. Barbadian</a>, <a href="/search/?searchtype=author&amp;query=Baugher%2C+T">T. Baugher</a>, <a href="/search/?searchtype=author&amp;query=Lepailleur%2C+A">A. Lepailleur</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Ratkiewicz%2C+A">A. Ratkiewicz</a>, <a href="/search/?searchtype=author&amp;query=Ahn%2C+S">S. Ahn</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J+M">J. M. Allen</a>, <a href="/search/?searchtype=author&amp;query=Anderson%2C+J+T">J. T. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Ayangeakaa%2C+A+D">A. D. Ayangeakaa</a>, <a href="/search/?searchtype=author&amp;query=Blackmon%2C+J+C">J. C. Blackmon</a>, <a href="/search/?searchtype=author&amp;query=Burcher%2C+S">S. Burcher</a>, <a href="/search/?searchtype=author&amp;query=Carpenter%2C+M+P">M. P. Carpenter</a>, <a href="/search/?searchtype=author&amp;query=Cha%2C+S+M">S. M. Cha</a>, <a href="/search/?searchtype=author&amp;query=Chae%2C+K+Y">K. Y. Chae</a>, <a href="/search/?searchtype=author&amp;query=Chipps%2C+K+A">K. A. Chipps</a>, <a href="/search/?searchtype=author&amp;query=Cizewski%2C+J+A">J. A. Cizewski</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+O">O. Hall</a>, <a href="/search/?searchtype=author&amp;query=Hu%2C+J">J. Hu</a>, <a href="/search/?searchtype=author&amp;query=Jiang%2C+C+L">C. L. Jiang</a>, <a href="/search/?searchtype=author&amp;query=Jones%2C+K+L">K. L. Jones</a>, <a href="/search/?searchtype=author&amp;query=Lee%2C+E+J">E. J. Lee</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P+D">P. D. O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Ota%2C+S">S. Ota</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.00106v1-abstract-short" style="display: inline;"> Detection of nuclear-decay $纬$ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense $纬$-ray flux is thought to be annihilation radiation from the $尾^+$ decay of $^{18}$F, which is destroyed prior to decay by the $^{18}$F($p$,$伪$)$^{15}$O reaction. Estimates of $^{18}$F production had been uncertain, however, because key near-threshold levels in the compound nucleus,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00106v1-abstract-full').style.display = 'inline'; document.getElementById('1902.00106v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.00106v1-abstract-full" style="display: none;"> Detection of nuclear-decay $纬$ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense $纬$-ray flux is thought to be annihilation radiation from the $尾^+$ decay of $^{18}$F, which is destroyed prior to decay by the $^{18}$F($p$,$伪$)$^{15}$O reaction. Estimates of $^{18}$F production had been uncertain, however, because key near-threshold levels in the compound nucleus, $^{19}$Ne, had yet to be identified. This Letter reports the first measurement of the $^{19}$F($^{3}$He,$t纬$)$^{19}$Ne reaction, in which the placement of two long-sought 3/2$^+$ levels is suggested via triton-$纬$-$纬$ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of $1.5-17$ at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.00106v1-abstract-full').style.display = 'none'; document.getElementById('1902.00106v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 052701, 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.05569">arXiv:1901.05569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.05569">pdf</a>, <a href="https://arxiv.org/format/1901.05569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/03/P03026">10.1088/1748-0221/14/03/P03026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lithium-loaded Liquid Scintillator Production for the PROSPECT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=PROSPECT+Collaboration"> PROSPECT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/?searchtype=author&amp;query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/?searchtype=author&amp;query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/?searchtype=author&amp;query=Berish%2C+D">D. Berish</a>, <a href="/search/?searchtype=author&amp;query=Bignell%2C+L+J">L. J. Bignell</a>, <a href="/search/?searchtype=author&amp;query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/?searchtype=author&amp;query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/?searchtype=author&amp;query=Reyes%2C+C+C">C. Camilo Reyes</a>, <a href="/search/?searchtype=author&amp;query=Campos%2C+S">S. Campos</a>, <a href="/search/?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/?searchtype=author&amp;query=Classen%2C+T">T. Classen</a>, <a href="/search/?searchtype=author&amp;query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/?searchtype=author&amp;query=Davee%2C+D">D. Davee</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Deichert%2C+G">G. Deichert</a>, <a href="/search/?searchtype=author&amp;query=Perez%2C+R+D">R. Diaz Perez</a>, <a href="/search/?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/?searchtype=author&amp;query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/?searchtype=author&amp;query=Erickson%2C+A">A. Erickson</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Foust%2C+B+T">B. T. Foust</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.05569v2-abstract-short" style="display: inline;"> This work reports the production and characterization of lithium-loaded liquid scintillator (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 liter batches of LiLS (${}^6{\rm Li}$ mass fraction 0.082%$\pm$0.001%) were produced and samples from all batches were characterized by measuring their optical absorbance relative to air, light yield relative to a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05569v2-abstract-full').style.display = 'inline'; document.getElementById('1901.05569v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.05569v2-abstract-full" style="display: none;"> This work reports the production and characterization of lithium-loaded liquid scintillator (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 liter batches of LiLS (${}^6{\rm Li}$ mass fraction 0.082%$\pm$0.001%) were produced and samples from all batches were characterized by measuring their optical absorbance relative to air, light yield relative to a pure liquid scintillator reference, and pulse shape discrimination capability. Fifty-seven batches passed the quality assurance criteria and were used for the PROSPECT experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.05569v2-abstract-full').style.display = 'none'; document.getElementById('1901.05569v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Ashenfelter et al 2019 JINST 14 P03026 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.03579">arXiv:1901.03579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.03579">pdf</a>, <a href="https://arxiv.org/format/1901.03579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/07/P07006">10.1088/1748-0221/14/07/P07006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Use of polyethylene naphthalate as a self-vetoing structural material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Fajt%2C+L">L. Fajt</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fischer%2C+F">F. Fischer</a>, <a href="/search/?searchtype=author&amp;query=Hayward%2C+C">C. Hayward</a>, <a href="/search/?searchtype=author&amp;query=Hod%C3%A1k%2C+R">R. Hod谩k</a>, <a href="/search/?searchtype=author&amp;query=Kraetzschmar%2C+T">T. Kraetzschmar</a>, <a href="/search/?searchtype=author&amp;query=Majorovits%2C+B">B. Majorovits</a>, <a href="/search/?searchtype=author&amp;query=Muenstermann%2C+D">D. Muenstermann</a>, <a href="/search/?searchtype=author&amp;query=%C3%96z%2C+E">E. 脰z</a>, <a href="/search/?searchtype=author&amp;query=Pjatkan%2C+R">R. Pjatkan</a>, <a href="/search/?searchtype=author&amp;query=Pohl%2C+M">M. Pohl</a>, <a href="/search/?searchtype=author&amp;query=Radford%2C+D">D. Radford</a>, <a href="/search/?searchtype=author&amp;query=Rouhana%2C+R">R. Rouhana</a>, <a href="/search/?searchtype=author&amp;query=Sala%2C+E">E. Sala</a>, <a href="/search/?searchtype=author&amp;query=Schulz%2C+O">O. Schulz</a>, <a href="/search/?searchtype=author&amp;query=%C5%A0tekl%2C+I">I. 艩tekl</a>, <a href="/search/?searchtype=author&amp;query=Stommel%2C+M">M. Stommel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.03579v3-abstract-short" style="display: inline;"> The discovery of scintillation in the blue regime from polyethylene naphthalate (PEN), a commonly used high-performance industrial polyester plastic, has sparked considerable interest from the physics community as a new type of plastic scintillator material. This observation in addition to its good mechanical and radiopurity properties makes PEN an attractive candidate as an active structure scint&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03579v3-abstract-full').style.display = 'inline'; document.getElementById('1901.03579v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.03579v3-abstract-full" style="display: none;"> The discovery of scintillation in the blue regime from polyethylene naphthalate (PEN), a commonly used high-performance industrial polyester plastic, has sparked considerable interest from the physics community as a new type of plastic scintillator material. This observation in addition to its good mechanical and radiopurity properties makes PEN an attractive candidate as an active structure scintillator for low-background physics experiments. This paper reports on investigations of its potential in terms of production tests of custom made tiles and various scintillation light output measurements. These investigations substantiate the high potential of usage of PEN in low-background experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.03579v3-abstract-full').style.display = 'none'; document.getElementById('1901.03579v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01966">arXiv:1901.01966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01966">pdf</a>, <a href="https://arxiv.org/format/1901.01966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.065801">10.1103/PhysRevC.99.065801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Doppler Broadening in $^{20}$Mg($尾p纬$)$^{19}$Ne Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Glassman%2C+B+E">Brent E. Glassman</a>, <a href="/search/?searchtype=author&amp;query=P%C3%A9rez-Loureiro%2C+D">David P茅rez-Loureiro</a>, <a href="/search/?searchtype=author&amp;query=Wrede%2C+C">Chris Wrede</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J">Jacob Allen</a>, <a href="/search/?searchtype=author&amp;query=Bardayan%2C+D+W">Dan W. Bardayan</a>, <a href="/search/?searchtype=author&amp;query=Bennett%2C+M+B">Michael B. Bennett</a>, <a href="/search/?searchtype=author&amp;query=Chipps%2C+K+A">Kelly A. Chipps</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">Michael Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Friedman%2C+M">Moshe Friedman</a>, <a href="/search/?searchtype=author&amp;query=Fry%2C+C">Cathleen Fry</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+M">Matt Hall</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+O">Oscar Hall</a>, <a href="/search/?searchtype=author&amp;query=Liddick%2C+S+N">Sean N. Liddick</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P">Patrick O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Ong%2C+W+J">Wei Jia Ong</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">Steven D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Schwartz%2C+S">Sarah Schwartz</a>, <a href="/search/?searchtype=author&amp;query=Shidling%2C+P">Praveen Shidling</a>, <a href="/search/?searchtype=author&amp;query=Sims%2C+H">Harry Sims</a>, <a href="/search/?searchtype=author&amp;query=Thompson%2C+P">Paul Thompson</a>, <a href="/search/?searchtype=author&amp;query=Zhang%2C+H">Helin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01966v1-abstract-short" style="display: inline;"> Background: The $^{15}$O($伪,纬$)$^{19}$Ne bottleneck reaction in Type I x-ray bursts is the most important thermonuclear reaction rate to constrain experimentally, in order to improve the accuracy of burst light-curve simulations. A proposed technique to determine the thermonuclear rate of this reaction employs the $^{20}$Mg($尾p伪$)$^{15}$O decay sequence. The key $^{15}$O($伪,纬$)$^{19}$Ne resonance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01966v1-abstract-full').style.display = 'inline'; document.getElementById('1901.01966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01966v1-abstract-full" style="display: none;"> Background: The $^{15}$O($伪,纬$)$^{19}$Ne bottleneck reaction in Type I x-ray bursts is the most important thermonuclear reaction rate to constrain experimentally, in order to improve the accuracy of burst light-curve simulations. A proposed technique to determine the thermonuclear rate of this reaction employs the $^{20}$Mg($尾p伪$)$^{15}$O decay sequence. The key $^{15}$O($伪,纬$)$^{19}$Ne resonance at an excitation of 4.03 MeV is now known to be fed in $^{20}$Mg($尾p纬$)$^{19}$Ne; however, the energies of the protons feeding the 4.03 MeV state are unknown. Knowledge of the proton energies will facilitate future $^{20}$Mg($尾p 伪$)$^{15}$O measurements. Purpose: To determine the energy of the proton transition feeding the 4.03 MeV state in $^{19}$Ne. Method: A fast beam of $^{20}$Mg was implanted into a plastic scintillator, which was used to detect $尾$ particles. 16 high purity germanium detectors were used to detect $纬$ rays emitted following $尾p$ decay. A Monte Carlo method was used to simulate the Doppler broadening of $^{19}$Ne $纬$ rays and compare to the experimental data. Results: The center of mass energy between the proton and $^{19}$Ne, feeding the 4.03 MeV state, is measured to be 1.21${^{+0.25}_{-0.22}}$ MeV, corresponding to a $^{20}$Na excitation energy of 7.44${^{+0.25}_{-0.22}}$ MeV. Absolute feeding intensities and $纬$-decay branching ratios of $^{19}$Ne states were determined including the 1615 keV state. A new $纬$ decay branch from the 1536 keV state in $^{19}$Ne to the ground state is reported. The lifetime of the 1507 keV state in $^{19}$Ne is measured to be 4.3${^{+1.3}_{-1.1}}$ ps resolving discrepancies in the literature. Conflicting $^{20}$Mg($尾p$) decay schemes in published literature are clarified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01966v1-abstract-full').style.display = 'none'; document.getElementById('1901.01966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 065801 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.10877">arXiv:1812.10877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.10877">pdf</a>, <a href="https://arxiv.org/format/1812.10877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.251801">10.1103/PhysRevLett.122.251801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Antineutrino Spectrum from $^{235}$U Fission at HFIR with PROSPECT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=PROSPECT+Collaboration"> PROSPECT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/?searchtype=author&amp;query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/?searchtype=author&amp;query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/?searchtype=author&amp;query=Berish%2C+D">D. Berish</a>, <a href="/search/?searchtype=author&amp;query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/?searchtype=author&amp;query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/?searchtype=author&amp;query=Classen%2C+T">T. Classen</a>, <a href="/search/?searchtype=author&amp;query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+A+A">A. A. Cox</a>, <a href="/search/?searchtype=author&amp;query=Davee%2C+D">D. Davee</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Deichert%2C+G">G. Deichert</a>, <a href="/search/?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/?searchtype=author&amp;query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/?searchtype=author&amp;query=Erickson%2C+A">A. Erickson</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Foust%2C+B+T">B. T. Foust</a>, <a href="/search/?searchtype=author&amp;query=Gaison%2C+J+K">J. K. Gaison</a>, <a href="/search/?searchtype=author&amp;query=Galindo-Uribarri%2C+A">A. Galindo-Uribarri</a>, <a href="/search/?searchtype=author&amp;query=Gilbert%2C+C+E">C. E. Gilbert</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.10877v2-abstract-short" style="display: inline;"> This Letter reports the first measurement of the $^{235}$U $\overline{谓_{e}}$ energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9m from the 85MW$_{\mathrm{th}}$ highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678$\pm$304 (stat.) $\overline{谓_{e}}$-induced inverse beta decays&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10877v2-abstract-full').style.display = 'inline'; document.getElementById('1812.10877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.10877v2-abstract-full" style="display: none;"> This Letter reports the first measurement of the $^{235}$U $\overline{谓_{e}}$ energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9m from the 85MW$_{\mathrm{th}}$ highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678$\pm$304 (stat.) $\overline{谓_{e}}$-induced inverse beta decays (IBD), the largest sample from HEU fission to date, 99% of which are attributed to $^{235}$U. Despite broad agreement, comparison of the Huber $^{235}$U model to the measured spectrum produces a $蠂^2/ndf = 51.4/31$, driven primarily by deviations in two localized energy regions. The measured $^{235}$U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the $\overline{谓_{e}}$ energy region of 5-7MeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.10877v2-abstract-full').style.display = 'none'; document.getElementById('1812.10877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 251801 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02784">arXiv:1806.02784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02784">pdf</a>, <a href="https://arxiv.org/format/1806.02784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.251802">10.1103/PhysRevLett.121.251802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First search for short-baseline neutrino oscillations at HFIR with PROSPECT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Ashenfelter%2C+J">J. Ashenfelter</a>, <a href="/search/?searchtype=author&amp;query=Balantekin%2C+A+B">A. B. Balantekin</a>, <a href="/search/?searchtype=author&amp;query=Baldenegro%2C+C">C. Baldenegro</a>, <a href="/search/?searchtype=author&amp;query=Band%2C+H+R">H. R. Band</a>, <a href="/search/?searchtype=author&amp;query=Bass%2C+C+D">C. D. Bass</a>, <a href="/search/?searchtype=author&amp;query=Bergeron%2C+D+E">D. E. Bergeron</a>, <a href="/search/?searchtype=author&amp;query=Berish%2C+D">D. Berish</a>, <a href="/search/?searchtype=author&amp;query=Bignell%2C+L+J">L. J. Bignell</a>, <a href="/search/?searchtype=author&amp;query=Bowden%2C+N+S">N. S. Bowden</a>, <a href="/search/?searchtype=author&amp;query=Bricco%2C+J">J. Bricco</a>, <a href="/search/?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/?searchtype=author&amp;query=Bryan%2C+C+D">C. D. Bryan</a>, <a href="/search/?searchtype=author&amp;query=Telles%2C+A+B">A. Bykadorova Telles</a>, <a href="/search/?searchtype=author&amp;query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/?searchtype=author&amp;query=Classen%2C+T">T. Classen</a>, <a href="/search/?searchtype=author&amp;query=Commeford%2C+K">K. Commeford</a>, <a href="/search/?searchtype=author&amp;query=Conant%2C+A+J">A. J. Conant</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+A+A">A. A. Cox</a>, <a href="/search/?searchtype=author&amp;query=Davee%2C+D">D. Davee</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D">D. Dean</a>, <a href="/search/?searchtype=author&amp;query=Deichert%2C+G">G. Deichert</a>, <a href="/search/?searchtype=author&amp;query=Diwan%2C+M+V">M. V. Diwan</a>, <a href="/search/?searchtype=author&amp;query=Dolinski%2C+M+J">M. J. Dolinski</a>, <a href="/search/?searchtype=author&amp;query=Erickson%2C+A">A. Erickson</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02784v4-abstract-short" style="display: inline;"> This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of $^{235}$U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton $^6$Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 meter water e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02784v4-abstract-full').style.display = 'inline'; document.getElementById('1806.02784v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02784v4-abstract-full" style="display: none;"> This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of $^{235}$U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton $^6$Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 meter water equivalent overburden. Data collected during 33 live-days of reactor operation at a nominal power of 85 MW yields a detection of 25461 $\pm$ 283 (stat.) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5$蟽$ statistical significance within two hours of on-surface reactor-on data-taking. A reactor-model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the Reactor Antineutrino Anomaly at 2.2$蟽$ confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02784v4-abstract-full').style.display = 'none'; document.getElementById('1806.02784v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures; v3: Added additional supplemental files</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 251802 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.09459">arXiv:1804.09459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.09459">pdf</a>, <a href="https://arxiv.org/format/1804.09459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.1228631">10.5281/zenodo.1228631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=COHERENT+Collaboration"> COHERENT Collaboration</a>, <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J+I">J. I. Collar</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Cuesta%2C+C">C. Cuesta</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D+J">D. J. Dean</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J">J. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=D%27Onofrio%2C+M">M. D&#39;Onofrio</a>, <a href="/search/?searchtype=author&amp;query=Eberhardt%2C+A">A. Eberhardt</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.09459v1-abstract-short" style="display: inline;"> This release includes data and information necessary to perform independent analyses of the COHERENT result presented in Akimov et al., arXiv:1708.01294 [nucl-ex]. Data is shared in a binned, text-based format, including both &#34;signal&#34; and &#34;background&#34; regions, so that counts and associated uncertainties can be quantitatively calculated for the purpose of separate analyses. This document describes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09459v1-abstract-full').style.display = 'inline'; document.getElementById('1804.09459v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.09459v1-abstract-full" style="display: none;"> This release includes data and information necessary to perform independent analyses of the COHERENT result presented in Akimov et al., arXiv:1708.01294 [nucl-ex]. Data is shared in a binned, text-based format, including both &#34;signal&#34; and &#34;background&#34; regions, so that counts and associated uncertainties can be quantitatively calculated for the purpose of separate analyses. This document describes the included information and its format, offering some guidance on use of the data. Accompanying code examples show basic interaction with the data using Python. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.09459v1-abstract-full').style.display = 'none'; document.getElementById('1804.09459v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.09183">arXiv:1803.09183</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.09183">pdf</a>, <a href="https://arxiv.org/format/1803.09183">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> COHERENT 2018 at the Spallation Neutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Akimov%2C+D">D. Akimov</a>, <a href="/search/?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/?searchtype=author&amp;query=An%2C+P">P. An</a>, <a href="/search/?searchtype=author&amp;query=Awe%2C+C">C. Awe</a>, <a href="/search/?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/?searchtype=author&amp;query=Becker%2C+B">B. Becker</a>, <a href="/search/?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/?searchtype=author&amp;query=Blackston%2C+M+A">M. A. Blackston</a>, <a href="/search/?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/?searchtype=author&amp;query=Cabrera-Palmer%2C+B">B. Cabrera-Palmer</a>, <a href="/search/?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/?searchtype=author&amp;query=Collar%2C+J+I">J. I. Collar</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+J">R. J. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Cooper%2C+R+L">R. L. Cooper</a>, <a href="/search/?searchtype=author&amp;query=Daughhetee%2C+J">J. Daughhetee</a>, <a href="/search/?searchtype=author&amp;query=Dean%2C+D+J">D. J. Dean</a>, <a href="/search/?searchtype=author&amp;query=Coello%2C+M+d+V">M. del Valle Coello</a>, <a href="/search/?searchtype=author&amp;query=Detwiler%2C+J+A">J. A. Detwiler</a>, <a href="/search/?searchtype=author&amp;query=D%27Onofrio%2C+M">M. D&#39;Onofrio</a>, <a href="/search/?searchtype=author&amp;query=Efremenko%2C+Y">Y. Efremenko</a>, <a href="/search/?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/?searchtype=author&amp;query=Erkela%2C+E">E. Erkela</a>, <a href="/search/?searchtype=author&amp;query=Etenko%2C+A">A. Etenko</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.09183v2-abstract-short" style="display: inline;"> The primary goal of the COHERENT collaboration is to measure and study coherent elastic neutrino-nucleus scattering (CEvNS) using the high-power, few-tens-of-MeV, pulsed source of neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The COHERENT collaboration reported the first detection of CEvNS [Akimov:2017ade] using a CsI[Na] detector. At present th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.09183v2-abstract-full').style.display = 'inline'; document.getElementById('1803.09183v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.09183v2-abstract-full" style="display: none;"> The primary goal of the COHERENT collaboration is to measure and study coherent elastic neutrino-nucleus scattering (CEvNS) using the high-power, few-tens-of-MeV, pulsed source of neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The COHERENT collaboration reported the first detection of CEvNS [Akimov:2017ade] using a CsI[Na] detector. At present the collaboration is deploying four detector technologies: a CsI[Na] scintillating crystal, p-type point-contact germanium detectors, single-phase liquid argon, and NaI[Tl] crystals. All detectors are located in the neutron-quiet basement of the SNS target building at distances 20-30 m from the SNS neutrino source. The simultaneous measurement in all four COHERENT detector subsystems will test the $N^2$ dependence of the cross section and search for new physics. In addition, COHERENT is measuring neutrino-induced neutrons from charged- and neutral-current neutrino interactions on nuclei in shielding materials, which represent a non-negligible background for CEvNS as well as being of intrinsic interest. The Collaboration is planning as well to look for charged-current interactions of relevance to supernova and weak-interaction physics. This document describes concisely the COHERENT physics motivations, sensitivity, and next plans for measurements at the SNS to be accomplished on a few-year timescale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.09183v2-abstract-full').style.display = 'none'; document.getElementById('1803.09183v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.06944">arXiv:1712.06944</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.06944">pdf</a>, <a href="https://arxiv.org/format/1712.06944">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5506/APhysPolB.49.365">10.5506/APhysPolB.49.365 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of the (d,n) proton-transfer reaction in inverse kinematics for structure studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Jones%2C+K+L">K. L. Jones</a>, <a href="/search/?searchtype=author&amp;query=Thornsberry%2C+C">C. Thornsberry</a>, <a href="/search/?searchtype=author&amp;query=Allen%2C+J">J. Allen</a>, <a href="/search/?searchtype=author&amp;query=Atencio%2C+A">A. Atencio</a>, <a href="/search/?searchtype=author&amp;query=Bardayan%2C+D+W">D. W. Bardayan</a>, <a href="/search/?searchtype=author&amp;query=Blankstein%2C+D">D. Blankstein</a>, <a href="/search/?searchtype=author&amp;query=Burcher%2C+S">S. Burcher</a>, <a href="/search/?searchtype=author&amp;query=Carter%2C+A+B">A. B. Carter</a>, <a href="/search/?searchtype=author&amp;query=Chipps%2C+K+A">K. A. Chipps</a>, <a href="/search/?searchtype=author&amp;query=Cizewski%2C+J+A">J. A. Cizewski</a>, <a href="/search/?searchtype=author&amp;query=Cox%2C+I">I. Cox</a>, <a href="/search/?searchtype=author&amp;query=Elledge%2C+Z">Z. Elledge</a>, <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M">M. Febbraro</a>, <a href="/search/?searchtype=author&amp;query=Fijalkowska%2C+A">A. Fijalkowska</a>, <a href="/search/?searchtype=author&amp;query=Grzywacz%2C+R">R. Grzywacz</a>, <a href="/search/?searchtype=author&amp;query=Hall%2C+M+R">M. R. Hall</a>, <a href="/search/?searchtype=author&amp;query=King%2C+T+T">T. T. King</a>, <a href="/search/?searchtype=author&amp;query=Lepailleur%2C+A">A. Lepailleur</a>, <a href="/search/?searchtype=author&amp;query=Madurga%2C+M">M. Madurga</a>, <a href="/search/?searchtype=author&amp;query=Marley%2C+S+T">S. T. Marley</a>, <a href="/search/?searchtype=author&amp;query=O%27Malley%2C+P+D">P. D. O&#39;Malley</a>, <a href="/search/?searchtype=author&amp;query=Paulauskas%2C+S+V">S. V. Paulauskas</a>, <a href="/search/?searchtype=author&amp;query=Pain%2C+S+D">S. D. Pain</a>, <a href="/search/?searchtype=author&amp;query=Peters%2C+W+A">W. A. Peters</a>, <a href="/search/?searchtype=author&amp;query=Reingold%2C+C">C. Reingold</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.06944v1-abstract-short" style="display: inline;"> Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06944v1-abstract-full').style.display = 'inline'; document.getElementById('1712.06944v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.06944v1-abstract-full" style="display: none;"> Transfer reactions have provided exciting opportunities to study the structure of exotic nuclei and are often used to inform studies relating to nucleosynthesis and applications. In order to benefit from these reactions and their application to rare ion beams (RIBs) it is necessary to develop the tools and techniques to perform and analyze the data from reactions performed in inverse kinematics, that is with targets of light nuclei and heavier beams. We are continuing to expand the transfer reaction toolbox in preparation for the next generation of facilities, such as the Facility for Rare Ion Beams (FRIB), which is scheduled for completion in 2022. An important step in this process is to perform the (d,n) reaction in inverse kinematics, with analyses that include Q-value spectra and differential cross sections. In this way, proton-transfer reactions can be placed on the same level as the more commonly used neutron-transfer reactions, such as (d,p), (9Be,8Be), and (13C,12C). Here we present an overview of the techniques used in (d,p) and (d,n), and some recent data from (d,n) reactions in inverse kinematics using stable beams of 12C and 16O. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.06944v1-abstract-full').style.display = 'none'; document.getElementById('1712.06944v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Poland</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Febbraro%2C+M&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10