CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–25 of 25 results for author: <span class="mathjax">Syed, U</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Syed%2C+U">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Syed, U"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Syed%2C+U&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Syed, U"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.14297">arXiv:2503.14297</a> <span> [<a href="https://arxiv.org/pdf/2503.14297">pdf</a>, <a href="https://arxiv.org/ps/2503.14297">ps</a>, <a href="https://arxiv.org/format/2503.14297">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Improved Scalable Lipschitz Bounds for Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Syed%2C+U">Usman Syed</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+B">Bin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.14297v1-abstract-short" style="display: inline;"> Computing tight Lipschitz bounds for deep neural networks is crucial for analyzing their robustness and stability, but existing approaches either produce relatively conservative estimates or rely on semidefinite programming (SDP) formulations (namely the LipSDP condition) that face scalability issues. Building upon ECLipsE-Fast, the state-of-the-art Lipschitz bound method that avoids SDP formulati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14297v1-abstract-full').style.display = 'inline'; document.getElementById('2503.14297v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.14297v1-abstract-full" style="display: none;"> Computing tight Lipschitz bounds for deep neural networks is crucial for analyzing their robustness and stability, but existing approaches either produce relatively conservative estimates or rely on semidefinite programming (SDP) formulations (namely the LipSDP condition) that face scalability issues. Building upon ECLipsE-Fast, the state-of-the-art Lipschitz bound method that avoids SDP formulations, we derive a new family of improved scalable Lipschitz bounds that can be combined to outperform ECLipsE-Fast. Specifically, we leverage more general parameterizations of feasible points of LipSDP to derive various closed-form Lipschitz bounds, avoiding the use of SDP solvers. In addition, we show that our technique encompasses ECLipsE-Fast as a special case and leads to a much larger class of scalable Lipschitz bounds for deep neural networks. Our empirical study shows that our bounds improve ECLipsE-Fast, further advancing the scalability and precision of Lipschitz estimation for large neural networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.14297v1-abstract-full').style.display = 'none'; document.getElementById('2503.14297v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.08924">arXiv:2502.08924</a> <span> [<a href="https://arxiv.org/pdf/2502.08924">pdf</a>, <a href="https://arxiv.org/format/2502.08924">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Escaping Collapse: The Strength of Weak Data for Large Language Model Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Amin%2C+K">Kareem Amin</a>, <a href="/search/cs?searchtype=author&query=Babakniya%2C+S">Sara Babakniya</a>, <a href="/search/cs?searchtype=author&query=Bie%2C+A">Alex Bie</a>, <a href="/search/cs?searchtype=author&query=Kong%2C+W">Weiwei Kong</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Vassilvitskii%2C+S">Sergei Vassilvitskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.08924v1-abstract-short" style="display: inline;"> Synthetically-generated data plays an increasingly larger role in training large language models. However, while synthetic data has been found to be useful, studies have also shown that without proper curation it can cause LLM performance to plateau, or even "collapse", after many training iterations. In this paper, we formalize this question and develop a theoretical framework to investigate how… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08924v1-abstract-full').style.display = 'inline'; document.getElementById('2502.08924v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.08924v1-abstract-full" style="display: none;"> Synthetically-generated data plays an increasingly larger role in training large language models. However, while synthetic data has been found to be useful, studies have also shown that without proper curation it can cause LLM performance to plateau, or even "collapse", after many training iterations. In this paper, we formalize this question and develop a theoretical framework to investigate how much curation is needed in order to ensure that LLM performance continually improves. We find that the requirements are nearly minimal. We describe a training procedure that converges to an optimal LLM even if almost all of the non-synthetic training data is of poor quality. Our analysis is inspired by boosting, a classic machine learning technique that leverages a very weak learning algorithm to produce an arbitrarily good classifier. Our training procedure subsumes many recently proposed methods for training LLMs on synthetic data, and thus our analysis sheds light on why they are successful, and also suggests opportunities for future improvement. We present experiments that validate our theory, and show that dynamically focusing labeling resources on the most challenging examples -- in much the same way that boosting focuses the efforts of the weak learner -- leads to improved performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.08924v1-abstract-full').style.display = 'none'; document.getElementById('2502.08924v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13953">arXiv:2411.13953</a> <span> [<a href="https://arxiv.org/pdf/2411.13953">pdf</a>, <a href="https://arxiv.org/format/2411.13953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Material synthesis through simulations guided by machine learning: a position paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Syed%2C+U">Usman Syed</a>, <a href="/search/cs?searchtype=author&query=Cunico%2C+F">Federico Cunico</a>, <a href="/search/cs?searchtype=author&query=Khan%2C+U">Uzair Khan</a>, <a href="/search/cs?searchtype=author&query=Radicchi%2C+E">Eros Radicchi</a>, <a href="/search/cs?searchtype=author&query=Setti%2C+F">Francesco Setti</a>, <a href="/search/cs?searchtype=author&query=Speghini%2C+A">Adolfo Speghini</a>, <a href="/search/cs?searchtype=author&query=Marone%2C+P">Paolo Marone</a>, <a href="/search/cs?searchtype=author&query=Semenzin%2C+F">Filiberto Semenzin</a>, <a href="/search/cs?searchtype=author&query=Cristani%2C+M">Marco Cristani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13953v2-abstract-short" style="display: inline;"> In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13953v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13953v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13953v2-abstract-full" style="display: none;"> In this position paper, we propose an approach for sustainable data collection in the field of optimal mix design for marble sludge reuse. Marble sludge, a calcium-rich residual from stone-cutting processes, can be repurposed by mixing it with various ingredients. However, determining the optimal mix design is challenging due to the variability in sludge composition and the costly, time-consuming nature of experimental data collection. Also, we investigate the possibility of using machine learning models using meta-learning as an optimization tool to estimate the correct quantity of stone-cutting sludge to be used in aggregates to obtain a mix design with specific mechanical properties that can be used successfully in the building industry. Our approach offers two key advantages: (i) through simulations, a large dataset can be generated, saving time and money during the data collection phase, and (ii) Utilizing machine learning models, with performance enhancement through hyper-parameter optimization via meta-learning, to estimate optimal mix designs reducing the need for extensive manual experimentation, lowering costs, minimizing environmental impact, and accelerating the processing of quarry sludge. Our idea promises to streamline the marble sludge reuse process by leveraging collective data and advanced machine learning, promoting sustainability and efficiency in the stonecutting sector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13953v2-abstract-full').style.display = 'none'; document.getElementById('2411.13953v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19811">arXiv:2410.19811</a> <span> [<a href="https://arxiv.org/pdf/2410.19811">pdf</a>, <a href="https://arxiv.org/format/2410.19811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> ControlAgent: Automating Control System Design via Novel Integration of LLM Agents and Domain Expertise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guo%2C+X">Xingang Guo</a>, <a href="/search/cs?searchtype=author&query=Keivan%2C+D">Darioush Keivan</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Usman Syed</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+L">Lianhui Qin</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+H">Huan Zhang</a>, <a href="/search/cs?searchtype=author&query=Dullerud%2C+G">Geir Dullerud</a>, <a href="/search/cs?searchtype=author&query=Seiler%2C+P">Peter Seiler</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+B">Bin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19811v1-abstract-short" style="display: inline;"> Control system design is a crucial aspect of modern engineering with far-reaching applications across diverse sectors including aerospace, automotive systems, power grids, and robotics. Despite advances made by Large Language Models (LLMs) in various domains, their application in control system design remains limited due to the complexity and specificity of control theory. To bridge this gap, we i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19811v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19811v1-abstract-full" style="display: none;"> Control system design is a crucial aspect of modern engineering with far-reaching applications across diverse sectors including aerospace, automotive systems, power grids, and robotics. Despite advances made by Large Language Models (LLMs) in various domains, their application in control system design remains limited due to the complexity and specificity of control theory. To bridge this gap, we introduce ControlAgent, a new paradigm that automates control system design via novel integration of LLM agents and control-oriented domain expertise. ControlAgent encodes expert control knowledge and emulates human iterative design processes by gradually tuning controller parameters to meet user-specified requirements for stability, performance, and robustness. ControlAgent integrates multiple collaborative LLM agents, including a central agent responsible for task distribution and task-specific agents dedicated to detailed controller design for various types of systems and requirements. ControlAgent also employs a Python computation agent that performs complex calculations and controller evaluations based on standard design information provided by task-specified LLM agents. Combined with a history and feedback module, the task-specific LLM agents iteratively refine controller parameters based on real-time feedback from prior designs. Overall, ControlAgent mimics the design processes used by (human) practicing engineers, but removes all the human efforts and can be run in a fully automated way to give end-to-end solutions for control system design with user-specified requirements. To validate ControlAgent's effectiveness, we develop ControlEval, an evaluation dataset that comprises 500 control tasks with various specific design goals. The effectiveness of ControlAgent is demonstrated via extensive comparative evaluations between LLM-based and traditional human-involved toolbox-based baselines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19811v1-abstract-full').style.display = 'none'; document.getElementById('2410.19811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06954">arXiv:2410.06954</a> <span> [<a href="https://arxiv.org/pdf/2410.06954">pdf</a>, <a href="https://arxiv.org/format/2410.06954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.56553/popets-2025-0038">10.56553/popets-2025-0038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Berke%2C+A">Alex Berke</a>, <a href="/search/cs?searchtype=author&query=Bacis%2C+E">Enrico Bacis</a>, <a href="/search/cs?searchtype=author&query=Ghazi%2C+B">Badih Ghazi</a>, <a href="/search/cs?searchtype=author&query=Kamath%2C+P">Pritish Kamath</a>, <a href="/search/cs?searchtype=author&query=Kumar%2C+R">Ravi Kumar</a>, <a href="/search/cs?searchtype=author&query=Lassonde%2C+R">Robin Lassonde</a>, <a href="/search/cs?searchtype=author&query=Manurangsi%2C+P">Pasin Manurangsi</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06954v3-abstract-short" style="display: inline;"> Browser fingerprinting can be used to identify and track users across the Web, even without cookies, by collecting attributes from users' devices to create unique "fingerprints". This technique and resulting privacy risks have been studied for over a decade. Yet further research is limited because prior studies used data not publicly available. Additionally, data in prior studies lacked user demog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06954v3-abstract-full').style.display = 'inline'; document.getElementById('2410.06954v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06954v3-abstract-full" style="display: none;"> Browser fingerprinting can be used to identify and track users across the Web, even without cookies, by collecting attributes from users' devices to create unique "fingerprints". This technique and resulting privacy risks have been studied for over a decade. Yet further research is limited because prior studies used data not publicly available. Additionally, data in prior studies lacked user demographics. Here we provide a first-of-its-kind dataset to enable further research. It includes browser attributes with users' demographics and survey responses, collected with informed consent from 8,400 US study participants. We use this dataset to demonstrate how fingerprinting risks differ across demographic groups. For example, we find lower income users are more at risk, and find that as users' age increases, they are both more likely to be concerned about fingerprinting and at real risk of fingerprinting. Furthermore, we demonstrate an overlooked risk: user demographics, such as gender, age, income level and race, can be inferred from browser attributes commonly used for fingerprinting, and we identify which browser attributes most contribute to this risk. Our data collection process also conducted an experiment to study what impacts users' likelihood to share browser data for open research, in order to inform future data collection efforts, with responses from 12,461 total participants. Female participants were significantly less likely to share their browser data, as were participants who were shown the browser data we asked to collect. Overall, we show the important role of user demographics in the ongoing work that intends to assess fingerprinting risks and improve user privacy, with findings to inform future privacy enhancing browser developments. The dataset and data collection tool we provide can be used to further study research questions not addressed in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06954v3-abstract-full').style.display = 'none'; document.getElementById('2410.06954v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Proceedings on Privacy Enhancing Technologies 2025(1)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08302">arXiv:2408.08302</a> <span> [<a href="https://arxiv.org/pdf/2408.08302">pdf</a>, <a href="https://arxiv.org/ps/2408.08302">ps</a>, <a href="https://arxiv.org/format/2408.08302">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Benchmarking the Capabilities of Large Language Models in Transportation System Engineering: Accuracy, Consistency, and Reasoning Behaviors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Syed%2C+U">Usman Syed</a>, <a href="/search/cs?searchtype=author&query=Light%2C+E">Ethan Light</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+X">Xingang Guo</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+H">Huan Zhang</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+L">Lianhui Qin</a>, <a href="/search/cs?searchtype=author&query=Ouyang%2C+Y">Yanfeng Ouyang</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+B">Bin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08302v1-abstract-short" style="display: inline;"> In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as GPT-4, GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in solving some selected undergraduate-level transportation engineering problems. We introduce TransportBench, a benchmark dataset that includes a sample of transportation engineering problems on a wide range of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08302v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08302v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08302v1-abstract-full" style="display: none;"> In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as GPT-4, GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in solving some selected undergraduate-level transportation engineering problems. We introduce TransportBench, a benchmark dataset that includes a sample of transportation engineering problems on a wide range of subjects in the context of planning, design, management, and control of transportation systems. This dataset is used by human experts to evaluate the capabilities of various commercial and open-sourced LLMs, especially their accuracy, consistency, and reasoning behaviors, in solving transportation engineering problems. Our comprehensive analysis uncovers the unique strengths and limitations of each LLM, e.g. our analysis shows the impressive accuracy and some unexpected inconsistent behaviors of Claude 3.5 Sonnet in solving TransportBench problems. Our study marks a thrilling first step toward harnessing artificial general intelligence for complex transportation challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08302v1-abstract-full').style.display = 'none'; document.getElementById('2408.08302v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12108">arXiv:2407.12108</a> <span> [<a href="https://arxiv.org/pdf/2407.12108">pdf</a>, <a href="https://arxiv.org/format/2407.12108">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Private prediction for large-scale synthetic text generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Amin%2C+K">Kareem Amin</a>, <a href="/search/cs?searchtype=author&query=Bie%2C+A">Alex Bie</a>, <a href="/search/cs?searchtype=author&query=Kong%2C+W">Weiwei Kong</a>, <a href="/search/cs?searchtype=author&query=Kurakin%2C+A">Alexey Kurakin</a>, <a href="/search/cs?searchtype=author&query=Ponomareva%2C+N">Natalia Ponomareva</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Terzis%2C+A">Andreas Terzis</a>, <a href="/search/cs?searchtype=author&query=Vassilvitskii%2C+S">Sergei Vassilvitskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12108v2-abstract-short" style="display: inline;"> We present an approach for generating differentially private synthetic text using large language models (LLMs), via private prediction. In the private prediction framework, we only require the output synthetic data to satisfy differential privacy guarantees. This is in contrast to approaches that train a generative model on potentially sensitive user-supplied source data and seek to ensure the mod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12108v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12108v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12108v2-abstract-full" style="display: none;"> We present an approach for generating differentially private synthetic text using large language models (LLMs), via private prediction. In the private prediction framework, we only require the output synthetic data to satisfy differential privacy guarantees. This is in contrast to approaches that train a generative model on potentially sensitive user-supplied source data and seek to ensure the model itself is safe to release. We prompt a pretrained LLM with source data, but ensure that next-token predictions are made with differential privacy guarantees. Previous work in this paradigm reported generating a small number of examples (<10) at reasonable privacy levels, an amount of data that is useful only for downstream in-context learning or prompting. In contrast, we make changes that allow us to generate thousands of high-quality synthetic data points, greatly expanding the set of potential applications. Our improvements come from an improved privacy analysis and a better private selection mechanism, which makes use of the equivalence between the softmax layer for sampling tokens in LLMs and the exponential mechanism. Furthermore, we introduce a novel use of public predictions via the sparse vector technique, in which we do not pay privacy costs for tokens that are predictable without sensitive data; we find this to be particularly effective for structured data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12108v2-abstract-full').style.display = 'none'; document.getElementById('2407.12108v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages; updated figure + some new experiments from EMNLP 2024 findings camera-ready</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03647">arXiv:2404.03647</a> <span> [<a href="https://arxiv.org/pdf/2404.03647">pdf</a>, <a href="https://arxiv.org/format/2404.03647">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Capabilities of Large Language Models in Control Engineering: A Benchmark Study on GPT-4, Claude 3 Opus, and Gemini 1.0 Ultra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kevian%2C+D">Darioush Kevian</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Usman Syed</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+X">Xingang Guo</a>, <a href="/search/cs?searchtype=author&query=Havens%2C+A">Aaron Havens</a>, <a href="/search/cs?searchtype=author&query=Dullerud%2C+G">Geir Dullerud</a>, <a href="/search/cs?searchtype=author&query=Seiler%2C+P">Peter Seiler</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+L">Lianhui Qin</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+B">Bin Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03647v1-abstract-short" style="display: inline;"> In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as GPT-4, Claude 3 Opus, and Gemini 1.0 Ultra in solving undergraduate-level control problems. Controls provides an interesting case study for LLM reasoning due to its combination of mathematical theory and engineering design. We introduce ControlBench, a benchmark dataset tailored to reflect the bread… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03647v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03647v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03647v1-abstract-full" style="display: none;"> In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as GPT-4, Claude 3 Opus, and Gemini 1.0 Ultra in solving undergraduate-level control problems. Controls provides an interesting case study for LLM reasoning due to its combination of mathematical theory and engineering design. We introduce ControlBench, a benchmark dataset tailored to reflect the breadth, depth, and complexity of classical control design. We use this dataset to study and evaluate the problem-solving abilities of these LLMs in the context of control engineering. We present evaluations conducted by a panel of human experts, providing insights into the accuracy, reasoning, and explanatory prowess of LLMs in control engineering. Our analysis reveals the strengths and limitations of each LLM in the context of classical control, and our results imply that Claude 3 Opus has become the state-of-the-art LLM for solving undergraduate control problems. Our study serves as an initial step towards the broader goal of employing artificial general intelligence in control engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03647v1-abstract-full').style.display = 'none'; document.getElementById('2404.03647v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15607">arXiv:2403.15607</a> <span> [<a href="https://arxiv.org/pdf/2403.15607">pdf</a>, <a href="https://arxiv.org/format/2403.15607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> Assessing Web Fingerprinting Risk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bacis%2C+E">Enrico Bacis</a>, <a href="/search/cs?searchtype=author&query=Bilogrevic%2C+I">Igor Bilogrevic</a>, <a href="/search/cs?searchtype=author&query=Busa-Fekete%2C+R">Robert Busa-Fekete</a>, <a href="/search/cs?searchtype=author&query=Herath%2C+A">Asanka Herath</a>, <a href="/search/cs?searchtype=author&query=Sartori%2C+A">Antonio Sartori</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15607v1-abstract-short" style="display: inline;"> Modern Web APIs allow developers to provide extensively customized experiences for website visitors, but the richness of the device information they provide also make them vulnerable to being abused to construct browser fingerprints, device-specific identifiers that enable covert tracking of users even when cookies are disabled. Previous research has established entropy, a measure of information… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15607v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15607v1-abstract-full" style="display: none;"> Modern Web APIs allow developers to provide extensively customized experiences for website visitors, but the richness of the device information they provide also make them vulnerable to being abused to construct browser fingerprints, device-specific identifiers that enable covert tracking of users even when cookies are disabled. Previous research has established entropy, a measure of information, as the key metric for quantifying fingerprinting risk. However, earlier studies had two major limitations. First, their entropy estimates were based on either a single website or a very small sample of devices. Second, they did not adequately consider correlations among different Web APIs, potentially grossly overestimating their fingerprinting risk. We provide the first study of browser fingerprinting which addresses the limitations of prior work. Our study is based on actual visited pages and Web APIs reported by tens of millions of real Chrome browsers in-the-wild. We accounted for the dependencies and correlations among Web APIs, which is crucial for obtaining more realistic entropy estimates. We also developed a novel experimental design that accurately and efficiently estimates entropy while never observing too much information from any single user. Our results provide an understanding of the distribution of entropy for different website categories, confirm the utility of entropy as a fingerprinting proxy, and offer a method for evaluating browser enhancements which are intended to mitigate fingerprinting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15607v1-abstract-full').style.display = 'none'; document.getElementById('2403.15607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A version of this report to appear in the proceedings of The Web Conference (WWW) 2024. This version contains additional material in the appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05608">arXiv:2307.05608</a> <span> [<a href="https://arxiv.org/pdf/2307.05608">pdf</a>, <a href="https://arxiv.org/format/2307.05608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> DP-Auditorium: a Large Scale Library for Auditing Differential Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kong%2C+W">William Kong</a>, <a href="/search/cs?searchtype=author&query=Medina%2C+A+M">Andr茅s Mu帽oz Medina</a>, <a href="/search/cs?searchtype=author&query=Ribero%2C+M">M贸nica Ribero</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05608v2-abstract-short" style="display: inline;"> New regulations and increased awareness of data privacy have led to the deployment of new and more efficient differentially private mechanisms across public institutions and industries. Ensuring the correctness of these mechanisms is therefore crucial to ensure the proper protection of data. However, since differential privacy is a property of the mechanism itself, and not of an individual output,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05608v2-abstract-full').style.display = 'inline'; document.getElementById('2307.05608v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05608v2-abstract-full" style="display: none;"> New regulations and increased awareness of data privacy have led to the deployment of new and more efficient differentially private mechanisms across public institutions and industries. Ensuring the correctness of these mechanisms is therefore crucial to ensure the proper protection of data. However, since differential privacy is a property of the mechanism itself, and not of an individual output, testing whether a mechanism is differentially private is not a trivial task. While ad hoc testing techniques exist under specific assumptions, no concerted effort has been made by the research community to develop a flexible and extendable tool for testing differentially private mechanisms. This paper introduces DP-Auditorium as a step advancing research in this direction. DP-Auditorium abstracts the problem of testing differential privacy into two steps: (1) measuring the distance between distributions, and (2) finding neighboring datasets where a mechanism generates output distributions maximizing such distance. From a technical point of view, we propose three new algorithms for evaluating the distance between distributions. While these algorithms are well-established in the statistics community, we provide new estimation guarantees that exploit the fact that we are only interested in verifying whether a mechanism is differentially private, and not in obtaining an exact estimate of the distance between two distributions. DP-Auditorium is easily extensible, as demonstrated in this paper by implementing a well-known approximate differential privacy testing algorithm into our library. We provide an extensive comparison to date of multiple testers across varying sample sizes and differential privacy parameters, demonstrating that there is no single tester that dominates all others, and that a combination of different techniques is required to ensure proper testing of mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05608v2-abstract-full').style.display = 'none'; document.getElementById('2307.05608v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01684">arXiv:2306.01684</a> <span> [<a href="https://arxiv.org/pdf/2306.01684">pdf</a>, <a href="https://arxiv.org/format/2306.01684">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Harnessing large-language models to generate private synthetic text </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kurakin%2C+A">Alexey Kurakin</a>, <a href="/search/cs?searchtype=author&query=Ponomareva%2C+N">Natalia Ponomareva</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=MacDermed%2C+L">Liam MacDermed</a>, <a href="/search/cs?searchtype=author&query=Terzis%2C+A">Andreas Terzis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01684v2-abstract-short" style="display: inline;"> Differentially private training algorithms like DP-SGD protect sensitive training data by ensuring that trained models do not reveal private information. An alternative approach, which this paper studies, is to use a sensitive dataset to generate synthetic data that is differentially private with respect to the original data, and then non-privately training a model on the synthetic data. Doing so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01684v2-abstract-full').style.display = 'inline'; document.getElementById('2306.01684v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01684v2-abstract-full" style="display: none;"> Differentially private training algorithms like DP-SGD protect sensitive training data by ensuring that trained models do not reveal private information. An alternative approach, which this paper studies, is to use a sensitive dataset to generate synthetic data that is differentially private with respect to the original data, and then non-privately training a model on the synthetic data. Doing so has several advantages: synthetic data can be reused for other tasks (including for hyper parameter tuning), retained indefinitely, and shared with third parties without sacrificing privacy. However, generating private synthetic data is much harder than training a private model. To improve performance on text data, recent work has utilized public data by starting with a pre-trained generative language model and privately fine-tuning it on sensitive data. This model can be used to sample a DP synthetic dataset. While this strategy seems straightforward, executing it has proven problematic. Previous approaches either show significant performance loss, or have, as we show, critical design flaws. In this paper we demonstrate that a proper training objective along with tuning fewer parameters results in excellent DP synthetic data quality. Our approach is competitive with direct DP-training of downstream classifiers in terms of performance on downstream tasks. Further, we demonstrate that our DP synthetic data is not only useful for downstream classifier training, but also to tune those same models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01684v2-abstract-full').style.display = 'none'; document.getElementById('2306.01684v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages; 7 figures; compared to previous version added result of LoRa-finetuning</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18585">arXiv:2305.18585</a> <span> [<a href="https://arxiv.org/pdf/2305.18585">pdf</a>, <a href="https://arxiv.org/format/2305.18585">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Exploiting Explainability to Design Adversarial Attacks and Evaluate Attack Resilience in Hate-Speech Detection Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Kumbam%2C+P+R">Pranath Reddy Kumbam</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+S+U">Sohaib Uddin Syed</a>, <a href="/search/cs?searchtype=author&query=Thamminedi%2C+P">Prashanth Thamminedi</a>, <a href="/search/cs?searchtype=author&query=Harish%2C+S">Suhas Harish</a>, <a href="/search/cs?searchtype=author&query=Perera%2C+I">Ian Perera</a>, <a href="/search/cs?searchtype=author&query=Dorr%2C+B+J">Bonnie J. Dorr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18585v1-abstract-short" style="display: inline;"> The advent of social media has given rise to numerous ethical challenges, with hate speech among the most significant concerns. Researchers are attempting to tackle this problem by leveraging hate-speech detection and employing language models to automatically moderate content and promote civil discourse. Unfortunately, recent studies have revealed that hate-speech detection systems can be misled… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18585v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18585v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18585v1-abstract-full" style="display: none;"> The advent of social media has given rise to numerous ethical challenges, with hate speech among the most significant concerns. Researchers are attempting to tackle this problem by leveraging hate-speech detection and employing language models to automatically moderate content and promote civil discourse. Unfortunately, recent studies have revealed that hate-speech detection systems can be misled by adversarial attacks, raising concerns about their resilience. While previous research has separately addressed the robustness of these models under adversarial attacks and their interpretability, there has been no comprehensive study exploring their intersection. The novelty of our work lies in combining these two critical aspects, leveraging interpretability to identify potential vulnerabilities and enabling the design of targeted adversarial attacks. We present a comprehensive and comparative analysis of adversarial robustness exhibited by various hate-speech detection models. Our study evaluates the resilience of these models against adversarial attacks using explainability techniques. To gain insights into the models' decision-making processes, we employ the Local Interpretable Model-agnostic Explanations (LIME) framework. Based on the explainability results obtained by LIME, we devise and execute targeted attacks on the text by leveraging the TextAttack tool. Our findings enhance the understanding of the vulnerabilities and strengths exhibited by state-of-the-art hate-speech detection models. This work underscores the importance of incorporating explainability in the development and evaluation of such models to enhance their resilience against adversarial attacks. Ultimately, this work paves the way for creating more robust and reliable hate-speech detection systems, fostering safer online environments and promoting ethical discourse on social media platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18585v1-abstract-full').style.display = 'none'; document.getElementById('2305.18585v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07751">arXiv:2305.07751</a> <span> [<a href="https://arxiv.org/pdf/2305.07751">pdf</a>, <a href="https://arxiv.org/format/2305.07751">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Private and Communication-Efficient Algorithms for Entropy Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bravo-Hermsdorff%2C+G">Gecia Bravo-Hermsdorff</a>, <a href="/search/cs?searchtype=author&query=Busa-Fekete%2C+R">R贸bert Busa-Fekete</a>, <a href="/search/cs?searchtype=author&query=Ghavamzadeh%2C+M">Mohammad Ghavamzadeh</a>, <a href="/search/cs?searchtype=author&query=Medina%2C+A+M">Andres Mu帽oz Medina</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07751v1-abstract-short" style="display: inline;"> Modern statistical estimation is often performed in a distributed setting where each sample belongs to a single user who shares their data with a central server. Users are typically concerned with preserving the privacy of their samples, and also with minimizing the amount of data they must transmit to the server. We give improved private and communication-efficient algorithms for estimating sever… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07751v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07751v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07751v1-abstract-full" style="display: none;"> Modern statistical estimation is often performed in a distributed setting where each sample belongs to a single user who shares their data with a central server. Users are typically concerned with preserving the privacy of their samples, and also with minimizing the amount of data they must transmit to the server. We give improved private and communication-efficient algorithms for estimating several popular measures of the entropy of a distribution. All of our algorithms have constant communication cost and satisfy local differential privacy. For a joint distribution over many variables whose conditional independence is given by a tree, we describe algorithms for estimating Shannon entropy that require a number of samples that is linear in the number of variables, compared to the quadratic sample complexity of prior work. We also describe an algorithm for estimating Gini entropy whose sample complexity has no dependence on the support size of the distribution and can be implemented using a single round of concurrent communication between the users and the server. In contrast, the previously best-known algorithm has high communication cost and requires the server to facilitate interaction between the users. Finally, we describe an algorithm for estimating collision entropy that generalizes the best known algorithm to the private and communication-efficient setting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07751v1-abstract-full').style.display = 'none'; document.getElementById('2305.07751v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Originally published at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). This version corrects some errors in the original version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.12306">arXiv:2201.12306</a> <span> [<a href="https://arxiv.org/pdf/2201.12306">pdf</a>, <a href="https://arxiv.org/format/2201.12306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> </div> </div> <p class="title is-5 mathjax"> Statistical anonymity: Quantifying reidentification risks without reidentifying users </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Bravo-Hermsdorff%2C+G">Gecia Bravo-Hermsdorff</a>, <a href="/search/cs?searchtype=author&query=Busa-Fekete%2C+R">Robert Busa-Fekete</a>, <a href="/search/cs?searchtype=author&query=Gunderson%2C+L+M">Lee M. Gunderson</a>, <a href="/search/cs?searchtype=author&query=Medina%2C+A+M">Andr茅s Mun玫z Medina</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.12306v1-abstract-short" style="display: inline;"> Data anonymization is an approach to privacy-preserving data release aimed at preventing participants reidentification, and it is an important alternative to differential privacy in applications that cannot tolerate noisy data. Existing algorithms for enforcing $k$-anonymity in the released data assume that the curator performing the anonymization has complete access to the original data. Reasons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12306v1-abstract-full').style.display = 'inline'; document.getElementById('2201.12306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.12306v1-abstract-full" style="display: none;"> Data anonymization is an approach to privacy-preserving data release aimed at preventing participants reidentification, and it is an important alternative to differential privacy in applications that cannot tolerate noisy data. Existing algorithms for enforcing $k$-anonymity in the released data assume that the curator performing the anonymization has complete access to the original data. Reasons for limiting this access range from undesirability to complete infeasibility. This paper explores ideas -- objectives, metrics, protocols, and extensions -- for reducing the trust that must be placed in the curator, while still maintaining a statistical notion of $k$-anonymity. We suggest trust (amount of information provided to the curator) and privacy (anonymity of the participants) as the primary objectives of such a framework. We describe a class of protocols aimed at achieving these goals, proposing new metrics of privacy in the process, and proving related bounds. We conclude by discussing a natural extension of this work that completely removes the need for a central curator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.12306v1-abstract-full').style.display = 'none'; document.getElementById('2201.12306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.02159">arXiv:2110.02159</a> <span> [<a href="https://arxiv.org/pdf/2110.02159">pdf</a>, <a href="https://arxiv.org/format/2110.02159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Structures and Algorithms">cs.DS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Label differential privacy via clustering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Esfandiari%2C+H">Hossein Esfandiari</a>, <a href="/search/cs?searchtype=author&query=Mirrokni%2C+V">Vahab Mirrokni</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Vassilvitskii%2C+S">Sergei Vassilvitskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.02159v1-abstract-short" style="display: inline;"> We present new mechanisms for \emph{label differential privacy}, a relaxation of differentially private machine learning that only protects the privacy of the labels in the training set. Our mechanisms cluster the examples in the training set using their (non-private) feature vectors, randomly re-sample each label from examples in the same cluster, and output a training set with noisy labels as we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02159v1-abstract-full').style.display = 'inline'; document.getElementById('2110.02159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.02159v1-abstract-full" style="display: none;"> We present new mechanisms for \emph{label differential privacy}, a relaxation of differentially private machine learning that only protects the privacy of the labels in the training set. Our mechanisms cluster the examples in the training set using their (non-private) feature vectors, randomly re-sample each label from examples in the same cluster, and output a training set with noisy labels as well as a modified version of the true loss function. We prove that when the clusters are both large and high-quality, the model that minimizes the modified loss on the noisy training set converges to small excess risk at a rate that is comparable to the rate for non-private learning. We describe both a centralized mechanism in which the entire training set is stored by a trusted curator, and a distributed mechanism where each user stores a single labeled example and replaces her label with the label of a randomly selected user from the same cluster. We also describe a learning problem in which large clusters are necessary to achieve both strong privacy and either good precision or good recall. Our experiments show that randomizing the labels within each cluster significantly improves the privacy vs. accuracy trade-off compared to applying uniform randomized response to the labels, and also compared to learning a model via DP-SGD. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.02159v1-abstract-full').style.display = 'none'; document.getElementById('2110.02159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.01181">arXiv:2007.01181</a> <span> [<a href="https://arxiv.org/pdf/2007.01181">pdf</a>, <a href="https://arxiv.org/format/2007.01181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Private Optimization Without Constraint Violations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Medina%2C+A+M">Andr茅s Mu帽oz Medina</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Vassilvitskii%2C+S">Sergei Vassilvitskii</a>, <a href="/search/cs?searchtype=author&query=Vitercik%2C+E">Ellen Vitercik</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.01181v2-abstract-short" style="display: inline;"> We study the problem of differentially private optimization with linear constraints when the right-hand-side of the constraints depends on private data. This type of problem appears in many applications, especially resource allocation. Previous research provided solutions that retained privacy but sometimes violated the constraints. In many settings, however, the constraints cannot be violated und… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01181v2-abstract-full').style.display = 'inline'; document.getElementById('2007.01181v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.01181v2-abstract-full" style="display: none;"> We study the problem of differentially private optimization with linear constraints when the right-hand-side of the constraints depends on private data. This type of problem appears in many applications, especially resource allocation. Previous research provided solutions that retained privacy but sometimes violated the constraints. In many settings, however, the constraints cannot be violated under any circumstances. To address this hard requirement, we present an algorithm that releases a nearly-optimal solution satisfying the constraints with probability 1. We also prove a lower bound demonstrating that the difference between the objective value of our algorithm's solution and the optimal solution is tight up to logarithmic factors among all differentially private algorithms. We conclude with experiments demonstrating that our algorithm can achieve nearly optimal performance while preserving privacy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.01181v2-abstract-full').style.display = 'none'; document.getElementById('2007.01181v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06781">arXiv:1906.06781</a> <span> [<a href="https://arxiv.org/pdf/1906.06781">pdf</a>, <a href="https://arxiv.org/ps/1906.06781">ps</a>, <a href="https://arxiv.org/format/1906.06781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the Exact Behaviors of Temporal Difference Learning Algorithms Using Markov Jump Linear System Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+B">Bin Hu</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U+A">Usman Ahmed Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06781v3-abstract-short" style="display: inline;"> In this paper, we provide a unified analysis of temporal difference learning algorithms with linear function approximators by exploiting their connections to Markov jump linear systems (MJLS). We tailor the MJLS theory developed in the control community to characterize the exact behaviors of the first and second order moments of a large family of temporal difference learning algorithms. For both t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06781v3-abstract-full').style.display = 'inline'; document.getElementById('1906.06781v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06781v3-abstract-full" style="display: none;"> In this paper, we provide a unified analysis of temporal difference learning algorithms with linear function approximators by exploiting their connections to Markov jump linear systems (MJLS). We tailor the MJLS theory developed in the control community to characterize the exact behaviors of the first and second order moments of a large family of temporal difference learning algorithms. For both the IID and Markov noise cases, we show that the evolution of some augmented versions of the mean and covariance matrix of the TD estimation error exactly follows the trajectory of a deterministic linear time-invariant (LTI) dynamical system. Applying the well-known LTI system theory, we obtain closed-form expressions for the mean and covariance matrix of the TD estimation error at any time step. We provide a tight matrix spectral radius condition to guarantee the convergence of the covariance matrix of the TD estimation error, and perform a perturbation analysis to characterize the dependence of the TD behaviors on learning rate. For the IID case, we provide an exact formula characterizing how the mean and covariance matrix of the TD estimation error converge to the steady state values. For the Markov case, we use our formulas to explain how the behaviors of TD learning algorithms are affected by learning rate and the underlying Markov chain. For both cases, upper and lower bounds for the mean square TD error are provided. The mean square TD error is shown to converge linearly to an exact limit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06781v3-abstract-full').style.display = 'none'; document.getElementById('1906.06781v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in NeurIPS 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03111">arXiv:1703.03111</a> <span> [<a href="https://arxiv.org/pdf/1703.03111">pdf</a>, <a href="https://arxiv.org/format/1703.03111">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Statistical Cost Sharing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Balkanski%2C+E">Eric Balkanski</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Vassilvitskii%2C+S">Sergei Vassilvitskii</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03111v1-abstract-short" style="display: inline;"> We study the cost sharing problem for cooperative games in situations where the cost function $C$ is not available via oracle queries, but must instead be derived from data, represented as tuples $(S, C(S))$, for different subsets $S$ of players. We formalize this approach, which we call statistical cost sharing, and consider the computation of the core and the Shapley value, when the tuples are d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03111v1-abstract-full').style.display = 'inline'; document.getElementById('1703.03111v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03111v1-abstract-full" style="display: none;"> We study the cost sharing problem for cooperative games in situations where the cost function $C$ is not available via oracle queries, but must instead be derived from data, represented as tuples $(S, C(S))$, for different subsets $S$ of players. We formalize this approach, which we call statistical cost sharing, and consider the computation of the core and the Shapley value, when the tuples are drawn from some distribution $\mathcal{D}$. Previous work by Balcan et al. in this setting showed how to compute cost shares that satisfy the core property with high probability for limited classes of functions. We expand on their work and give an algorithm that computes such cost shares for any function with a non-empty core. We complement these results by proving an inapproximability lower bound for a weaker relaxation. We then turn our attention to the Shapley value. We first show that when cost functions come from the family of submodular functions with bounded curvature, $魏$, the Shapley value can be approximated from samples up to a $\sqrt{1 - 魏}$ factor, and that the bound is tight. We then define statistical analogues of the Shapley axioms, and derive a notion of statistical Shapley value. We show that these can always be approximated arbitrarily well for general functions over any distribution $\mathcal{D}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03111v1-abstract-full').style.display = 'none'; document.getElementById('1703.03111v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1504.01117">arXiv:1504.01117</a> <span> [<a href="https://arxiv.org/pdf/1504.01117">pdf</a>, <a href="https://arxiv.org/ps/1504.01117">ps</a>, <a href="https://arxiv.org/format/1504.01117">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> An $\tilde{O}(\frac{1}{\sqrt{T}})$-error online algorithm for retrieving heavily perturbated statistical databases in the low-dimensional querying mode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Choromanski%2C+K">Krzysztof Choromanski</a>, <a href="/search/cs?searchtype=author&query=Rostamizadeh%2C+A">Afshin Rostamizadeh</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1504.01117v1-abstract-short" style="display: inline;"> We give the first $\tilde{O}(\frac{1}{\sqrt{T}})$-error online algorithm for reconstructing noisy statistical databases, where $T$ is the number of (online) sample queries received. The algorithm, which requires only $O(\log T)$ memory, aims to learn a hidden database-vector $w^{*} \in \mathbb{R}^{D}$ in order to accurately answer a stream of queries regarding the hidden database, which arrive in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01117v1-abstract-full').style.display = 'inline'; document.getElementById('1504.01117v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1504.01117v1-abstract-full" style="display: none;"> We give the first $\tilde{O}(\frac{1}{\sqrt{T}})$-error online algorithm for reconstructing noisy statistical databases, where $T$ is the number of (online) sample queries received. The algorithm, which requires only $O(\log T)$ memory, aims to learn a hidden database-vector $w^{*} \in \mathbb{R}^{D}$ in order to accurately answer a stream of queries regarding the hidden database, which arrive in an online fashion from some unknown distribution $\mathcal{D}$. We assume the distribution $\mathcal{D}$ is defined on the neighborhood of a low-dimensional manifold. The presented algorithm runs in $O(dD)$-time per query, where $d$ is the dimensionality of the query-space. Contrary to the classical setting, there is no separate training set that is used by the algorithm to learn the database --- the stream on which the algorithm will be evaluated must also be used to learn the database-vector. The algorithm only has access to a binary oracle $\mathcal{O}$ that answers whether a particular linear function of the database-vector plus random noise is larger than a threshold, which is specified by the algorithm. We note that we allow for a significant $O(D)$ amount of noise to be added while other works focused on the low noise $o(\sqrt{D})$-setting. For a stream of $T$ queries our algorithm achieves an average error $\tilde{O}(\frac{1}{\sqrt{T}})$ by filtering out random noise, adapting threshold values given to the oracle based on its previous answers and, as a consequence, recovering with high precision a projection of a database-vector $w^{*}$ onto the manifold defining the query-space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1504.01117v1-abstract-full').style.display = 'none'; document.getElementById('1504.01117v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.8320">arXiv:1407.8320</a> <span> [<a href="https://arxiv.org/pdf/1407.8320">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Software Engineering">cs.SE</span> </div> </div> <p class="title is-5 mathjax"> An Implementation of Web Services for Inter-Connectivity of Information Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chandio%2C+A+A">Aftab Ahmed Chandio</a>, <a href="/search/cs?searchtype=author&query=Zhu%2C+D">Dingju Zhu</a>, <a href="/search/cs?searchtype=author&query=Sodhro%2C+A+H">Ali Hassan Sodhro</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+M+U">Muhammad Umer Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.8320v1-abstract-short" style="display: inline;"> As educational institutions and their departments rapidly increase, a communication between their end-users becomes more and more difficult in traditional online management systems (OMS). However, the end-users, i.e., employees, teaching staff, and students are associated to different sub-domains and using different subsystems that are executed on different platforms following different administra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8320v1-abstract-full').style.display = 'inline'; document.getElementById('1407.8320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.8320v1-abstract-full" style="display: none;"> As educational institutions and their departments rapidly increase, a communication between their end-users becomes more and more difficult in traditional online management systems (OMS). However, the end-users, i.e., employees, teaching staff, and students are associated to different sub-domains and using different subsystems that are executed on different platforms following different administrative policies. Because of their intercommunication is not automated integrated, consequently, the overall efficiency of the system is degraded and the communication time is increased. Therefore, a technique for better interoperability and automated integration of departments is an urgent needed. Many of existing systems does not have a set of connections yet, such as the system of the University of Sindh (UoS). In this paper, we propose a system for the UoS, named integration of inter-connectivity of information system (i3) based on service oriented architecture (SOA) with web services. The system i3 monitors and exchanges the students information in support of verification along heterogeneous and decentralized nature. Moreover, the proposed system provides capability of interoperability between their subsystems that are deployed in different departments of UoS and using different programming languages and database management systems (DBMS) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.8320v1-abstract-full').style.display = 'none'; document.getElementById('1407.8320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures, (Accepted for the Int. J. Com. Dig. Sys. Vol. 3, No. 3, ISSN. 2210-142X)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Computing and Digital Systems (IJCDS), Vol. 3, No. 3, pp. (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.1466">arXiv:1407.1466</a> <span> [<a href="https://arxiv.org/pdf/1407.1466">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> The Smart Shower </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Syed%2C+U+A">Umair Atique Syed</a>, <a href="/search/cs?searchtype=author&query=Muniandy%2C+U+K">Uma Kandan Muniandy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.1466v1-abstract-short" style="display: inline;"> The smart shower is an intelligent device that saves the water during the shower. It uses the indicator lamps that inform the user of the amount of the water. Like the traffic signal it has three sets of lamps, green, yellow and red, each indicating the amount of time spent. This device brain is the Siemens Logo PLC. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.1466v1-abstract-full" style="display: none;"> The smart shower is an intelligent device that saves the water during the shower. It uses the indicator lamps that inform the user of the amount of the water. Like the traffic signal it has three sets of lamps, green, yellow and red, each indicating the amount of time spent. This device brain is the Siemens Logo PLC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.1466v1-abstract-full').style.display = 'none'; document.getElementById('1407.1466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">2 Pages, 3 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.6838">arXiv:1311.6838</a> <span> [<a href="https://arxiv.org/pdf/1311.6838">pdf</a>, <a href="https://arxiv.org/ps/1311.6838">ps</a>, <a href="https://arxiv.org/format/1311.6838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Science and Game Theory">cs.GT</span> </div> </div> <p class="title is-5 mathjax"> Learning Prices for Repeated Auctions with Strategic Buyers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Amin%2C+K">Kareem Amin</a>, <a href="/search/cs?searchtype=author&query=Rostamizadeh%2C+A">Afshin Rostamizadeh</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.6838v1-abstract-short" style="display: inline;"> Inspired by real-time ad exchanges for online display advertising, we consider the problem of inferring a buyer's value distribution for a good when the buyer is repeatedly interacting with a seller through a posted-price mechanism. We model the buyer as a strategic agent, whose goal is to maximize her long-term surplus, and we are interested in mechanisms that maximize the seller's long-term reve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6838v1-abstract-full').style.display = 'inline'; document.getElementById('1311.6838v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.6838v1-abstract-full" style="display: none;"> Inspired by real-time ad exchanges for online display advertising, we consider the problem of inferring a buyer's value distribution for a good when the buyer is repeatedly interacting with a seller through a posted-price mechanism. We model the buyer as a strategic agent, whose goal is to maximize her long-term surplus, and we are interested in mechanisms that maximize the seller's long-term revenue. We define the natural notion of strategic regret --- the lost revenue as measured against a truthful (non-strategic) buyer. We present seller algorithms that are no-(strategic)-regret when the buyer discounts her future surplus --- i.e. the buyer prefers showing advertisements to users sooner rather than later. We also give a lower bound on strategic regret that increases as the buyer's discounting weakens and shows, in particular, that any seller algorithm will suffer linear strategic regret if there is no discounting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.6838v1-abstract-full').style.display = 'none'; document.getElementById('1311.6838v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Neural Information Processing Systems (NIPS 2013)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1206.5290">arXiv:1206.5290</a> <span> [<a href="https://arxiv.org/pdf/1206.5290">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Imitation Learning with a Value-Based Prior </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Schapire%2C+R+E">Robert E. Schapire</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1206.5290v1-abstract-short" style="display: inline;"> The goal of imitation learning is for an apprentice to learn how to behave in a stochastic environment by observing a mentor demonstrating the correct behavior. Accurate prior knowledge about the correct behavior can reduce the need for demonstrations from the mentor. We present a novel approach to encoding prior knowledge about the correct behavior, where we assume that this prior knowledge takes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5290v1-abstract-full').style.display = 'inline'; document.getElementById('1206.5290v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1206.5290v1-abstract-full" style="display: none;"> The goal of imitation learning is for an apprentice to learn how to behave in a stochastic environment by observing a mentor demonstrating the correct behavior. Accurate prior knowledge about the correct behavior can reduce the need for demonstrations from the mentor. We present a novel approach to encoding prior knowledge about the correct behavior, where we assume that this prior knowledge takes the form of a Markov Decision Process (MDP) that is used by the apprentice as a rough and imperfect model of the mentor's behavior. Specifically, taking a Bayesian approach, we treat the value of a policy in this modeling MDP as the log prior probability of the policy. In other words, we assume a priori that the mentor's behavior is likely to be a high value policy in the modeling MDP, though quite possibly different from the optimal policy. We describe an efficient algorithm that, given a modeling MDP and a set of demonstrations by a mentor, provably converges to a stationary point of the log posterior of the mentor's policy, where the posterior is computed with respect to the "value based" prior. We also present empirical evidence that this prior does in fact speed learning of the mentor's policy, and is an improvement in our experiments over similar previous methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1206.5290v1-abstract-full').style.display = 'none'; document.getElementById('1206.5290v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Appears in Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI2007)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UAI-P-2007-PG-384-391 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.3782">arXiv:1202.3782</a> <span> [<a href="https://arxiv.org/pdf/1202.3782">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Graphical Models for Bandit Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Amin%2C+K">Kareem Amin</a>, <a href="/search/cs?searchtype=author&query=Kearns%2C+M">Michael Kearns</a>, <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.3782v1-abstract-short" style="display: inline;"> We introduce a rich class of graphical models for multi-armed bandit problems that permit both the state or context space and the action space to be very large, yet succinctly specify the payoffs for any context-action pair. Our main result is an algorithm for such models whose regret is bounded by the number of parameters and whose running time depends only on the treewidth of the graph substruct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.3782v1-abstract-full').style.display = 'inline'; document.getElementById('1202.3782v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.3782v1-abstract-full" style="display: none;"> We introduce a rich class of graphical models for multi-armed bandit problems that permit both the state or context space and the action space to be very large, yet succinctly specify the payoffs for any context-action pair. Our main result is an algorithm for such models whose regret is bounded by the number of parameters and whose running time depends only on the treewidth of the graph substructure induced by the action space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.3782v1-abstract-full').style.display = 'none'; document.getElementById('1202.3782v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UAI-P-2011-PG-1-10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.3799">arXiv:1007.3799</a> <span> [<a href="https://arxiv.org/pdf/1007.3799">pdf</a>, <a href="https://arxiv.org/ps/1007.3799">ps</a>, <a href="https://arxiv.org/format/1007.3799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Adapting to the Shifting Intent of Search Queries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Syed%2C+U">Umar Syed</a>, <a href="/search/cs?searchtype=author&query=Slivkins%2C+A">Aleksandrs Slivkins</a>, <a href="/search/cs?searchtype=author&query=Mishra%2C+N">Nina Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.3799v1-abstract-short" style="display: inline;"> Search engines today present results that are often oblivious to abrupt shifts in intent. For example, the query `independence day' usually refers to a US holiday, but the intent of this query abruptly changed during the release of a major film by that name. While no studies exactly quantify the magnitude of intent-shifting traffic, studies suggest that news events, seasonal topics, pop culture, e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.3799v1-abstract-full').style.display = 'inline'; document.getElementById('1007.3799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.3799v1-abstract-full" style="display: none;"> Search engines today present results that are often oblivious to abrupt shifts in intent. For example, the query `independence day' usually refers to a US holiday, but the intent of this query abruptly changed during the release of a major film by that name. While no studies exactly quantify the magnitude of intent-shifting traffic, studies suggest that news events, seasonal topics, pop culture, etc account for 50% of all search queries. This paper shows that the signals a search engine receives can be used to both determine that a shift in intent has happened, as well as find a result that is now more relevant. We present a meta-algorithm that marries a classifier with a bandit algorithm to achieve regret that depends logarithmically on the number of query impressions, under certain assumptions. We provide strong evidence that this regret is close to the best achievable. Finally, via a series of experiments, we demonstrate that our algorithm outperforms prior approaches, particularly as the amount of intent-shifting traffic increases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.3799v1-abstract-full').style.display = 'none'; document.getElementById('1007.3799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is the full version of the paper in NIPS'09</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>