CINXE.COM

Search results for: bottom up priming

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bottom up priming</title> <meta name="description" content="Search results for: bottom up priming"> <meta name="keywords" content="bottom up priming"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bottom up priming" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bottom up priming"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 786</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bottom up priming</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Seed Priming, Treatments and Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atakan%20Efe%20Akp%C4%B1nar">Atakan Efe Akpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Demir"> Zeynep Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. In this study, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds were analyzed for vigor (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title="seed priming">seed priming</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/176548/seed-priming-treatments-and-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Language Switching Errors of Bilinguals: Role of Top down and Bottom up Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Numra%20Qayyum">Numra Qayyum</a>, <a href="https://publications.waset.org/abstracts/search?q=Samina%20Sarwat"> Samina Sarwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20ul%20Ain"> Noor ul Ain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bilingual speakers generally can speak both languages with the same competency without mixing them intentionally and making mistakes, but sometimes errors occur in language selection. This quantitative study particularly deals with the language errors made by Urdu-English bilinguals. In this research, researchers have given special attention to the part played by bottom-up priming and top-down cognitive control in these errors. Unstable Urdu-English bilingual participants termed pictures and were prompted to shift from one language to another under the pressure of time. Different situations were given to manipulate the participants. The long and short runs trials of the same language were also given before switching to another language. The study is concluded with the findings that bilinguals made more errors when switching to the first language from their second language, and these errors are large in number, especially when a speaker is switching from L2 (second language) to L1 (first language) after a long run. When the switching is reversed, i.e., from L2 to LI, it had no effect at all. These results gave the clear responsibility of all these errors to top-down cognitive control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming" title="bottom up priming">bottom up priming</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20error" title=" language error"> language error</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20switching" title=" language switching"> language switching</a>, <a href="https://publications.waset.org/abstracts/search?q=top%20down%20cognitive%20control" title=" top down cognitive control"> top down cognitive control</a> </p> <a href="https://publications.waset.org/abstracts/117687/language-switching-errors-of-bilinguals-role-of-top-down-and-bottom-up-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> The Role of Thermo Priming on Improving Seedling Production Technology (ISPT) in Soybean (Glycine max (L.) Merrill) Seed&#039;s</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Sani">Behzad Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vida%20Jodaeian"> Vida Jodaeian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to determine the impact of thermo priming on germination of soybean seeds, an experiment was conducted as a completely randomized design with three replications. The factors of studied included different time thermo priming (control, 5 and 10 minutes) through the placing seeds were exposed to oven. The results showed that the effect of thermo priming was significant on germination percentage, seedling dry weight and seedling vigour in P ≤ 0.05. Mean comparison showed that the highest germination percentage (77 %), seedling dry weight (1.39 g) and seedling vigour (107.03) were achieved by 10 minutes thermo priming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo%20priming" title="thermo priming">thermo priming</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling" title=" seedling"> seedling</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20production" title=" seedling production"> seedling production</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/31615/the-role-of-thermo-priming-on-improving-seedling-production-technology-ispt-in-soybean-glycine-max-l-merrill-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> The Audio-Visual and Syntactic Priming Effect on Specific Language Impairment and Gender in Modern Standard Arabic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Al-Dawoody">Mohammad Al-Dawoody</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at exploring if priming is affected by gender in Modern Standard Arabic and if it is restricted solely to subjects with no specific language impairment (SLI). The sample in this study consists of 74 subjects, between the ages of 11;1 and 11;10, distributed into (a) 2 SLI experimental groups of 38 subjects divided into two gender groups of 18 females and 20 males and (b) 2 non-SLI control groups of 36 subjects divided into two gender groups of 17 females and 19 males. Employing a mixed research design, the researcher conducted this study within the framework of the relevance theory (RT) whose main assumption is that human beings are endowed with a biological ability to magnify the relevance of the incoming stimuli. Each of the four groups was given two different priming stimuli: audio-visual priming (T1) and syntactic priming (T2). The results showed that the priming effect was sheer distinct among SLI participants especially when retrieving typical responses (TR) in T1 and T2 with slight superiority of males over females. The results also revealed that non-SLI females showed stronger original response (OR) priming in T1 than males and that non-SLI males in T2 excelled in OR priming than females. Furthermore, the results suggested that the audio-visual priming has a stronger effect on SLI females than non-SLI females and that syntactic priming seems to have the same effect on the two groups (non-SLI and SLI females). The conclusion is that the priming effect varies according to gender and is not confined merely to non-SLI subjects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20language%20impairment" title="specific language impairment">specific language impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=relevance%20theory" title=" relevance theory"> relevance theory</a>, <a href="https://publications.waset.org/abstracts/search?q=audio-visual%20priming" title=" audio-visual priming"> audio-visual priming</a>, <a href="https://publications.waset.org/abstracts/search?q=syntactic%20priming" title=" syntactic priming"> syntactic priming</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20standard%20Arabic" title=" modern standard Arabic"> modern standard Arabic</a> </p> <a href="https://publications.waset.org/abstracts/98547/the-audio-visual-and-syntactic-priming-effect-on-specific-language-impairment-and-gender-in-modern-standard-arabic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Seed Priming Treatments in Common Zinnia (Zinnia elegans) Using Some Plant Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atakan%20Efe%20Akp%C4%B1nar">Atakan Efe Akpınar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Demir"> Zeynep Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. This study addresses the question of whether seed priming with plant extracts can improve seed vigour and germination performance. By investigating the effects of plant extract priming on various vigour parameters, the research aims to provide insights into the potential benefits of this treatment method. Thus, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds of Common zinnia (Zinnia elegans) were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds of Common zinnia (Zinnia elegans) were analyzed for vigour (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title="seed priming">seed priming</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title=" plant extracts"> plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a> </p> <a href="https://publications.waset.org/abstracts/177849/seed-priming-treatments-in-common-zinnia-zinnia-elegans-using-some-plant-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> The Priming Effect of Morphology, Phonology, Semantics, and Orthography in Mandarin Chinese: A Prime Paradigm Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingqing%20Xu">Bingqing Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxing%20Shuai"> Wenxing Shuai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the priming effects of different Chinese compound words by native Mandarin speakers. There are lots of homonym, polysemy, and synonym in Chinese. However, it is unclear which kind of words have the biggest priming effect. Native Mandarin speakers were tested in a visual-word lexical decision experiment. The stimuli, which are all two-character compound words, consisted of two parts: primes and targets. Five types of relationships were used in all stimuli: morphologically related condition, in which the prime and the target contain the same morpheme; orthographically related condition, in which the target and the prime contain the different morpheme with the same form; phonologically related condition, in which the target and the prime contain the different morpheme with the same phonology; semantically related condition, in which the target and the prime contain the different morpheme with similar meanings; totally unrelated condition. The time since participants saw the target to respond was recorded. Analyses on reaction time showed that the average reaction time of morphologically related targets was much shorter than others, suggesting the morphological priming effect is the biggest. However, the reaction time of the phonologically related conditions was the longest, even longer than unrelated conditions. According to scatter plots analyses, 86.7% of participants had priming effects in morphologically related conditions, only 20% of participants had priming effects in phonologically related conditions. These results suggested that morphologically related conditions had the biggest priming effect. The orthographically and semantically related conditions also had priming effects, whereas the phonologically related conditions had few priming effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=priming%20effect" title="priming effect">priming effect</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=phonology" title=" phonology"> phonology</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=orthography" title=" orthography"> orthography</a> </p> <a href="https://publications.waset.org/abstracts/135493/the-priming-effect-of-morphology-phonology-semantics-and-orthography-in-mandarin-chinese-a-prime-paradigm-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> An Event-Related Potential Study of Individual Differences in Word Recognition: The Evidence from Morphological Knowledge of Sino-Korean Prefixes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinwon%20Kang">Jinwon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonghak%20Jo"> Seonghak Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joohee%20Ahn"> Joohee Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghye%20Choi"> Junghye Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Young%20Lee"> Sun-Young Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A morphological priming has proved its importance by showing that segmentation occurs in morphemes when visual words are recognized within a noticeably short time. Regarding Sino-Korean prefixes, this study conducted an experiment on visual masked priming tasks with 57 ms stimulus-onset asynchrony (SOA) to see how individual differences in the amount of morphological knowledge affect morphological priming. The relationship between the prime and target words were classified as morphological (e.g., 미개척 migaecheog [unexplored] – 미해결 mihaegyel [unresolved]), semantical (e.g., 친환경 chinhwangyeong [eco-friendly]) – 무공해 mugonghae [no-pollution]), and orthographical (e.g., 미용실 miyongsil [beauty shop] – 미확보 mihwagbo [uncertainty]) conditions. We then compared the priming by configuring irrelevant paired stimuli for each condition’s control group. As a result, in the behavioral data, we observed facilitatory priming from a group with high morphological knowledge only under the morphological condition. In contrast, a group with low morphological knowledge showed the priming only under the orthographic condition. In the event-related potential (ERP) data, the group with high morphological knowledge presented the N250 only under the morphological condition. The findings of this study imply that individual differences in morphological knowledge in Korean may have a significant influence on the segmental processing of Korean word recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ERP" title="ERP">ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=individual%20differences" title=" individual differences"> individual differences</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20priming" title=" morphological priming"> morphological priming</a>, <a href="https://publications.waset.org/abstracts/search?q=sino-Korean%20prefixes" title=" sino-Korean prefixes "> sino-Korean prefixes </a> </p> <a href="https://publications.waset.org/abstracts/130734/an-event-related-potential-study-of-individual-differences-in-word-recognition-the-evidence-from-morphological-knowledge-of-sino-korean-prefixes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Effect of Hormones Priming on Enzyme Activity and Lipid Peroxidation in Wheat Seed under Accelerated Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Abbasi">Amin Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Shekari"> Fariborz Shekari</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Bahman%20Mousavi"> Seyed Bahman Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seed aging during storage is a complex biochemical and physiological processes that can lead to reduce seed germination. This phenomenon associated with increasing of total antioxidant activity during aging. To study the effects of hormones on seed aging, aged wheat seeds (control, 90 and 80% viabilities) were treated with GA3, Salicylic Acid, and paclobutrazol and antioxidant system were investigated as molecular biomarkers for seed vigor. The results showed that, seed priming treatment significantly affected germination percentage, normality seedling percentage, H2O2, MDA, CAT, APX, and GPX activates. Maximum germination percentage achieve in GA3 priming in control treatment. Germination percentage and normal seedling percentage increased in other GA3 priming treatment compared with other hormones. Also aging increased MDA, H2O2 content. MDA is considered sensitive marker commonly used for assessing membrane lipid peroxidation and H2O2result in toxicity to cellular membrane system and damages to plant cells. Amount of H2O2 and MDA declined in GA3 treatment. CAT, GPX and APX activities were reduced by increasing the aging time and at different levels of priming. The highest APX activity was observed in Salicylic Acid control treatment and the highest GPX and CAT activity was obtained in GA3 control treatment. The lowest MDA and H2O2 showed in GA3 control treatment, too. Hormone priming increased Antioxidant enzyme activity and decreased amount of reactive oxygen space and malondialdehyde (MDA) under aging treatment. Also, GA3 priming treatments have a significant effect on germination percentage and number of normal seedling. Generally aging seed, increase ROS and lipid peroxidation. Antioxidant enzymes activity of aged seeds increased after hormone priming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hormones%20priming" title="hormones priming">hormones priming</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=aging%20seed" title=" aging seed"> aging seed</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/3560/effect-of-hormones-priming-on-enzyme-activity-and-lipid-peroxidation-in-wheat-seed-under-accelerated-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> The Impact of Syntactic Priming on Language Learners’ Perception of Relative Clauses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaine%20Gulozer">Kaine Gulozer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Listening comprehension in a foreign language context has been a constant challenge for Turkish speakers of English. Syntactic priming (SP) of relative clauses might affect the perception of subsequent sentences of identical structure and this could have an impact on the listening comprehension of second or foreign language learners. There has been little attempt to investigate the syntactic priming of English subject relative clauses and object relative clauses in relation to perception for the learners of English in Turkish context. This study investigates SP effects on low-proficiency EFL learners’ production of English relative clauses. Both qualitative and quantitative method along with a pre-test and post-test tasks were adopted, recruiting 62 EFL learners to receive a six-week listening instruction on relative clauses. Testing instruments for language production included the two tasks: (1) the visual- cued presentation and recall and (2) the auditory-cued presentation and recall. Students’ listening comprehension in task 1 and 2 were recorded and transcribed. Fifteen of the participants were also interviewed. The results of the dependent samples t-test analyses revealed that SP had a significant effect on the overall perception of relative clauses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listening%20comprehension" title="listening comprehension">listening comprehension</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20clauses" title=" relative clauses"> relative clauses</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20priming" title=" structural priming"> structural priming</a>, <a href="https://publications.waset.org/abstracts/search?q=syntactic%20persistance" title=" syntactic persistance"> syntactic persistance</a>, <a href="https://publications.waset.org/abstracts/search?q=syntactic%20priming" title=" syntactic priming "> syntactic priming </a> </p> <a href="https://publications.waset.org/abstracts/101733/the-impact-of-syntactic-priming-on-language-learners-perception-of-relative-clauses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Choral Singers&#039; Preference for Expressive Priming Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shawn%20Michael%20Condon">Shawn Michael Condon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current research on teaching expressivity mainly involves instrumentalists. This study focuses on choral singers’ preference of priming techniques based on four methods for teaching expressivity. 112 choral singers answered the survey about their preferred methods for priming expressivity (vocal modelling, using metaphor, tapping into felt emotions, and drawing on past experiences) in three conditions (active, passive, and instructor). Analysis revealed higher preference for drawing on past experience among more experienced singers. The most preferred technique in the passive and instructor roles was vocal modelling, with metaphors and tapping into felt emotions favoured in an active role. Priming techniques are often used in combination with other methods to enhance singing technique or expressivity and are dependent upon the situation, repertoire, and the preferences of the instructor and performer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion" title="emotion">emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=expressivity" title=" expressivity"> expressivity</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=singing" title=" singing"> singing</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching" title=" teaching"> teaching</a> </p> <a href="https://publications.waset.org/abstracts/103722/choral-singers-preference-for-expressive-priming-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Role of Phenylalanine and Glycine in Plant Signaling to Improve Drought Tolerance Potential in Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Kausar">Abida Kausar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Parveen"> Shagufta Parveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The priming of seeds was carried out by two amino acids (phenylalanine and glycine) to improve the drought tolerance potential of two wheat varieties. As wheat is a staple food of more than half of the population of the world, including Pakistan. However, its productivity is mainly adversely affected by abiotic stresses. The current research plan was to investigate the effect of hydropriming and priming by amino acids on wheat varieties under drought stress (50% field capacity). Therefore morphological, biochemical, physiological, and yield attributes were recorded. It was revealed that drought stress significantly decreased the biochemical, morpho-physiological, and growth attributes of the wheat crop. However, the priming treatments have shown a positive correlation with all the studied attributes. It was concluded that priming might involve plant signaling to produce the drought tolerance metabolites under stress conditions which, as a consequence, enhanced the drought tolerance potential of crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20biomass" title="plant biomass">plant biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20parameters" title=" biochemical parameters"> biochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20contents" title=" chlorophyll contents"> chlorophyll contents</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/151774/role-of-phenylalanine-and-glycine-in-plant-signaling-to-improve-drought-tolerance-potential-in-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Priming through Open Book MCQ Test: A Tool for Enhancing Learning in Medical Undergraduates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Bhandari">Bharti Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharati%20Mehta"> Bharati Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabyasachi%20Sircar"> Sabyasachi Sircar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical education is advancing in India, with its advancement newer innovations are being incorporated in teaching and assessment methodology. Our study focusses on a teaching innovation that is more student-centric than teacher-centric and is the need of the day. The teaching innovation was carried out in 1st year MBBS students of our institute. Students were assigned control and test groups. Priming was done for the students in the test group with an open-book MCQ based test in a particular topic before delivering formal didactic lecture on that topic. The control group was not assigned any such exercise. This was followed by formal didactic lecture on the same topic. Thereafter, both groups were assessed on the same topic. The marks were compiled and analysed using appropriate statistical tests. Students were also given questionnaire to elicit their views on the benefits of “self-priming”. The mean marks scored in theory assessment by the test group were statistically higher than the marks scored by the controls. According to students’ feedback, the ‘self-priming “process was interesting, helped in better orientation during class-room lectures and better understanding of the topic. They want it to be repeated for other topics with moderate difficulty level. Better performance of the students in the primed group validates the combination of student-centric priming model and didactic lecture as superior to the conventional, teacher-centric methods alone. If this system is successfully followed, the present teacher-centric pedagogy should increasingly give way to student-centric activities where the teacher is only a facilitator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20education" title="medical education">medical education</a>, <a href="https://publications.waset.org/abstracts/search?q=open-book%20test" title=" open-book test"> open-book test</a>, <a href="https://publications.waset.org/abstracts/search?q=pedagogy" title=" pedagogy"> pedagogy</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a> </p> <a href="https://publications.waset.org/abstracts/30029/priming-through-open-book-mcq-test-a-tool-for-enhancing-learning-in-medical-undergraduates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Effects of Drying Method and Seed Priming Duration on Coffee Seed and Seedling Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taju%20Mohammednur">Taju Mohammednur</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Megersa"> Tesfaye Megersa</a>, <a href="https://publications.waset.org/abstracts/search?q=Karta%20Kaske"> Karta Kaske</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee is an economically important cash crop in Ethiopia. However, the conditions under which coffee seeds are dried and processed significantly affect the seedling quality and productivity. The objective of this study was to evaluate the effect of pre-sowing treatments and drying methods on the physiological quality of coffee seeds and seedlings. The study included two coffee varieties (74110, 75227), two drying conditions (under-shade drying room, open sun), and five durations of seed hydro priming (6, 8, 18, 24 hours, and an untreated control). Factorial combinations of the three factors were laid out in a Completely Randomized Design of three replications. Results indicated that the highest germination percentage (91%), emergence rate (90%), and seedling vigor index-I (2236 cm %) were recorded for seeds dried under-shade drying room. In contrast, the lowest values of germination percentage, emergence rate, and vigor index were observed for seeds dried under open sun. There was a significant difference in seed germination based on hydro priming time, with the highest germination percentage (83%) recorded for seeds soaked for 6 hours, followed by 24 hours (83%). The lowest germination percentage (77%) was recorded for un-soaked seeds. In conclusion, drying seeds under shade is better for coffee seed quality, and hydro priming has improved seedling vigor. However, further investigation into seed priming methods and preservation techniques for primed seeds is necessary to improve coffee seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coffee" title="coffee">coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20drying" title=" seed drying"> seed drying</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20longevity" title=" seed longevity"> seed longevity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20priming" title=" seed priming"> seed priming</a> </p> <a href="https://publications.waset.org/abstracts/191107/effects-of-drying-method-and-seed-priming-duration-on-coffee-seed-and-seedling-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> The Effects of Future Priming on Resource Concern</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Calvin%20Rong">Calvin Rong</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Agassian"> Regina Agassian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindy%20Engle-Friedman"> Mindy Engle-Friedman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate changes, including rising sea levels and increases in global temperature, can have major effects on resource availability, leading to increased competition for resources and rising food prices. The abstract nature and often delayed consequences of many ecological problems cause people focus on immediate, specific, and personal events and circumstances that compel immediate and emotional involvement. This finding may be explained by the challenges humans have in imagining themselves in the future, a shortcoming that interferes with decision-making involving far-off rewards, and leads people to indicate a lower concern toward the future than to present circumstances. The present study sought to assess whether priming people to think of themselves in the future might strengthen the connection to their future selves and stimulate environmentally-protective behavior. We hypothesize that priming participants to think about themselves in the future would increase concern for the future environment. 45 control participants were primed to think about themselves in the present, and 42 participants were primed to think about themselves in the futures. After priming, the participants rated their concern over access to clean water, food, and energy on a scale of 1 to 10. They also rated their predicted care levels for the environment at age points 40, 50, 60, 70, 80, and 90 on a scale of 1(not at all) to 10 (very much). Predicted care levels at age 90 for the experimental group was significantly higher than for the control group. Overall the experimental group rated their concern for resources higher than the control. In comparison to the control group (M=7.60, SD=2.104) participants in the experimental group had greater concern for clean water (M=8.56, SD=1.534). In comparison to the control group (M=7.49, SD=2.041) participants in the experimental group were more concerned about food resources (M=8.41, SD=1.830). In comparison to the control group (M=7.22, SD=1.999) participants in the experimental group were more concerned about energy resources (M=8.07, SD=1.967). This study assessed whether a priming strategy could be used to encourage pro-environmental practices that protect limited resources. Future-self priming helped participants see past short term issues and focus on concern for the future environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=future" title=" future"> future</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/77487/the-effects-of-future-priming-on-resource-concern" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> A Particle Image Velocimetric (PIV) Experiment on Simplified Bottom Hole Flow Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heqian%20Zhao">Heqian Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaizhong%20Shi"> Huaizhong Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwei%20Huang"> Zhongwei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengliang%20Chen"> Zhengliang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziang%20Gu"> Ziang Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Gao"> Fei Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulics mechanics is significantly important in the drilling process of oil or gas exploration, especially for the drill bit. The fluid flows through the nozzles on the bit and generates a water jet to remove the cutting at the bottom hole. In this paper, a simplified bottom hole model is established. The Particle Image Velocimetric (PIV) is used to capture the flow field of the single nozzle. Due to the limitation of the bottom and wellbore, the potential core is shorter than that of the free water jet. The velocity magnitude rapidly attenuates when fluid close to the bottom is lower than about 5 mm. Besides, a vortex zone appears near the middle of the bottom beside the water jet zone. A modified exponential function can be used to fit the centerline velocity well. On the one hand, the results of this paper can provide verification for the numerical simulation of the bottom hole flow field. On the other hand, it also can provide an experimental basis for the hydraulic design of the drill bit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title="oil and gas">oil and gas</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20mechanic%20of%20drilling" title=" hydraulic mechanic of drilling"> hydraulic mechanic of drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20hole" title=" bottom hole"> bottom hole</a> </p> <a href="https://publications.waset.org/abstracts/141552/a-particle-image-velocimetric-piv-experiment-on-simplified-bottom-hole-flow-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Production of Geopolymers for Structural Applications from Fluidized Bed Combustion Bottom Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thapelo%20Aubrey%20Motsieng">Thapelo Aubrey Motsieng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed of in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymers" title=" geopolymers"> geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/65221/production-of-geopolymers-for-structural-applications-from-fluidized-bed-combustion-bottom-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Carbon Dioxide Removal from Off Gases in a Self-Priming Submerged Venturi Scrubber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Bal">Manisha Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Verma"> Amit Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Meikap"> B. C. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO₂) is the most abundant waste produced by human activities. It is estimated to be one of the major contributors of greenhouse effect and also considered as a major air pollutant formed by burning of fossil fuels. The main sources of emissions are flue gas from thermal power plants and process industries. It is also a contributor of acid rain. Its exposure through inhalation can lead to health risks. Therefore, control of CO₂ emission in the environment is very necessary. The main focus of this study is on the removal of carbon dioxide from off gases using a self-priming venturi scrubber in submerged conditions using sodium hydroxide as the scrubbing liquid. A self-priming submerged venturi scrubber is an efficient device to remove gaseous pollutants. In submerged condition, venturi scrubber remains submerged in the liquid tank and the liquid enters at the throat section of venturi scrubber due to the pressure difference which includes the hydrostatic pressure of the liquid and static pressure of the gas. The inlet polluted air stream enters through converging section which moves at very high velocity in the throat section and atomizes the liquid droplets. This leads to absorption of CO₂ from the off gases in scrubbing liquid which resulted in removal of CO₂ gas from the off gases. Detailed investigation on the scrubbing of carbon dioxide has been done in this literature. Experiments were conducted at different throat gas velocities, liquid levels in outer cylinder and CO₂ inlet concentrations to study the carbon dioxide removal efficiency. Experimental results give more than 95% removal efficiency of CO₂ in the self priming venturi scrubber which can meet the environmental emission limit of CO₂ to save the human life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=scrubbing" title=" scrubbing"> scrubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20control" title=" pollution control"> pollution control</a>, <a href="https://publications.waset.org/abstracts/search?q=self-priming%20venturi%20scrubber" title=" self-priming venturi scrubber"> self-priming venturi scrubber</a> </p> <a href="https://publications.waset.org/abstracts/100123/carbon-dioxide-removal-from-off-gases-in-a-self-priming-submerged-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakize%20Ozlem%20Kurt%20Polat">Pakize Ozlem Kurt Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Gizem%20Metin"> Gizem Metin</a>, <a href="https://publications.waset.org/abstracts/search?q=Koksal%20Yagdi"> Koksal Yagdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=germination" title="germination">germination</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a>, <a href="https://publications.waset.org/abstracts/search?q=seedling%20growth" title=" seedling growth"> seedling growth</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/90719/seed-priming-winter-wheat-triticum-aestivum-l-for-germination-and-emergence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Microwave Production of Geopolymers Using Fluidized Bed Combustion Bottom Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osholana%20Tobi%20Stephen">Osholana Tobi Stephen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20Emmanuel%20Sadiku"> Rotimi Emmanuel Sadiku</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilainu%20Oboirien.o"> Bilainu Oboirien.o</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20combustion%20%28FBC%29%20geopolymer" title=" fluidized bed combustion (FBC) geopolymer"> fluidized bed combustion (FBC) geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/49851/microwave-production-of-geopolymers-using-fluidized-bed-combustion-bottom-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> The Facilitatory Effect of Phonological Priming on Visual Word Recognition in Arabic as a Function of Lexicality and Overlap Positions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al%20Moussaoui">Ali Al Moussaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was designed to assess the performance of 24 Lebanese adults (mean age 29:5 years) in a lexical decision making (LDM) task to find out how the facilitatory effect of phonological priming (PP) affects the speed of visual word recognition in Arabic as lexicality (wordhood) and phonological overlap positions (POP) vary. The experiment falls in line with previous research on phonological priming in the light of the cohort theory and in relation to visual word recognition. The experiment also departs from the research on the Arabic language in which the importance of the consonantal root as a distinct morphological unit is confirmed. Based on previous research, it is hypothesized that (1) PP has a facilitating effect in LDM with words but not with nonwords and (2) final phonological overlap between the prime and the target is more facilitatory than initial overlap. An LDM task was programmed on PsychoPy application. Participants had to decide if a target (e.g., bayn ‘between’) preceded by a prime (e.g., bayt ‘house’) is a word or not. There were 4 conditions: no PP (NP), nonwords priming nonwords (NN), nonwords priming words (NW), and words priming words (WW). The conditions were simultaneously controlled for word length, wordhood, and POP. The interstimulus interval was 700 ms. Within the PP conditions, POP was controlled for in which there were 3 overlap positions between the primes and the targets: initial (e.g., asad ‘lion’ and asaf ‘sorrow’), final (e.g., kattab ‘cause to write’ 2sg-mas and rattab ‘organize’ 2sg-mas), or two-segmented (e.g., namle ‘ant’ and naħle ‘bee’). There were 96 trials, 24 in each condition, using a within-subject design. The results show that concerning (1), the highest average reaction time (RT) is that in NN, followed firstly by NW and finally by WW. There is statistical significance only between the pairs NN-NW and NN-WW. Regarding (2), the shortest RT is that in the two-segmented overlap condition, followed by the final POP in the first place and the initial POP in the last place. The difference between the two-segmented and the initial overlap is significant, while other pairwise comparisons are not. Based on these results, PP emerges as a facilitatory phenomenon that is highly sensitive to lexicality and POP. While PP can have a facilitating effect under lexicality, it shows no facilitation in its absence, which intersects with several previous findings. Participants are found to be more sensitive to the final phonological overlap than the initial overlap, which also coincides with a body of earlier literature. The results contradict the cohort theory’s stress on the onset overlap position and, instead, give more weight to final overlap, and even heavier weight to the two-segmented one. In conclusion, this study confirms the facilitating effect of PP with words but not when stimuli (at least the primes and at most both the primes and targets) are nonwords. It also shows that the two-segmented priming is the most influential in LDM in Arabic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lexicality" title="lexicality">lexicality</a>, <a href="https://publications.waset.org/abstracts/search?q=phonological%20overlap%20positions" title=" phonological overlap positions"> phonological overlap positions</a>, <a href="https://publications.waset.org/abstracts/search?q=phonological%20priming" title=" phonological priming"> phonological priming</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20word%20recognition" title=" visual word recognition"> visual word recognition</a> </p> <a href="https://publications.waset.org/abstracts/97923/the-facilitatory-effect-of-phonological-priming-on-visual-word-recognition-in-arabic-as-a-function-of-lexicality-and-overlap-positions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Research on the Transformation of Bottom Space in the Teaching Area of Zijingang Campus, Zhejiang University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia%20Xu">Jia Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a lot of bottom space in the teaching area of Zijingang Campus of Zhejiang University, which benefits to the ventilation, heat dissipation, circulation, partition of quiet and noisy areas and diversification of spaces. Hangzhou is hot in summer but cold in winter, so teachers and students spend much less time in the bottom space of buildings in winter than in summer. Recently, depending on the teachers and students&rsquo; proposals, the school transformed the bottom space in the teaching area to provide space for relaxing, chatting and staying in winter. Surveying and analyzing the existing ways to transform, the paper researches deeply on the transformation projects of bottom space in the teaching buildings. It is believed that this paper can be a salutary lesson to make the bottom space in the teaching areas of universities richer and bring more diverse activities for teachers and students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20space" title="bottom space">bottom space</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20area" title=" teaching area"> teaching area</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijingang%20Campus%20of%20Zhejiang%20University" title=" Zijingang Campus of Zhejiang University"> Zijingang Campus of Zhejiang University</a> </p> <a href="https://publications.waset.org/abstracts/67240/research-on-the-transformation-of-bottom-space-in-the-teaching-area-of-zijingang-campus-zhejiang-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youb%20Said">Youb Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourar%20Ali"> Fourar Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title=" free surface flow"> free surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20roughness" title=" bottom roughness"> bottom roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume" title=" finite volume"> finite volume</a>, <a href="https://publications.waset.org/abstracts/search?q=K-%CE%B5%20model" title=" K-ε model"> K-ε model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/19829/study-of-the-relationship-between-the-roughness-configuration-of-channel-bottom-and-the-creation-of-vortices-at-the-rough-area-numerical-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20Pratama%20Herman">Angga Pratama Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Yusup"> Suzana Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20steam%20gasification" title=" biomass steam gasification"> biomass steam gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20scale" title=" lab scale"> lab scale</a> </p> <a href="https://publications.waset.org/abstracts/43272/utilization-of-bottom-ash-as-catalyst-in-biomass-steam-gasification-for-hydrogen-and-syngas-production-lab-scale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Effects of Empathy Priming on Idea Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tejas%20Dhadphale">Tejas Dhadphale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The user-centered design (UCD) approach has led to an increased interest in empathy within the product development process. Designers have explored several empathetic methods and tools such as personas, empathy maps, journey maps, user needs statements and user scenarios to capture and visualize users’ needs. The goal of these tools is not only to generate a deeper and shared understanding of user needs but also to become a point of reference for subsequent decision making, brainstorming and concept evaluation tasks. The purpose of this study is to measure the effect of empathy priming on divergent brainstorming tasks. This study compares the effects of three empathy tools, personas, empathy maps and user needs statements, on ideation fluency and originality of ideas during brainstorming tasks. In a three-between-subjects experimental design study, sixty product design students were randomly assigned to one of three conditions: persona, empathy maps and user needs statements. A one-way, between-subjects analysis of variance (ANOVA) revealed a a statistically significant difference in empathy priming on fluency and originality of ideas. Participants in the persona group showed higher ideation fluency and generated a greater number of original ideas compared to the other groups. The results show that participants in the user need statement group to generate a greater number of feasible and relevant ideas. The study also aims to understand how formatting and visualization of empathy tools impact divergent brainstorming tasks. Participants were interviewed to understand how different visualizations of users’ needs (personas, empathy maps and user needs statements) facilitated idea generation during brainstorming tasks. Implications for design education are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empathy" title="empathy">empathy</a>, <a href="https://publications.waset.org/abstracts/search?q=persona" title=" persona"> persona</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a>, <a href="https://publications.waset.org/abstracts/search?q=Design%20research" title=" Design research"> Design research</a> </p> <a href="https://publications.waset.org/abstracts/167060/effects-of-empathy-priming-on-idea-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Mir">B. A. Mir</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Malik"> Asim Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20environment" title=" sustainable environment"> sustainable environment</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization"> waste utilization</a> </p> <a href="https://publications.waset.org/abstracts/67046/studies-on-the-mechanical-behavior-of-bottom-ash-for-a-sustainable-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> The Effects of Current and Future Priming on Pro-Environmental Attitudes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Calvin%20Rong">Calvin Rong</a>, <a href="https://publications.waset.org/abstracts/search?q=Regina%20Agassian"> Regina Agassian</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20Hernandez"> Joel Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindy%20Engle-Friedman"> Mindy Engle-Friedman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study assessed strategies to stimulate engagement with future environmental needs. 32 participants were randomly assigned to one of three conditions which involved imagining and drawing: 1) a generic person in current life, 2) one’s self in current life or 3) one’s self in the future. Participants before and after the intervention indicated connectedness to their selves 50 years in the future on an adapted Future Self-Continuity Scale. A significant interaction (p = .03) showed no difference in connectedness into one’s future self in the control group, a decrease in connectedness in those who imagined themselves in the present and an increase in connectedness in those who imagined themselves in the future. Results suggest attention to one’s present life circumstances may interfere with one’s connection with future environmental issues but imagining one’s future life may stimulate actions that result in future environmental protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20psychology" title="environmental psychology">environmental psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20priming" title=" future priming"> future priming</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/77010/the-effects-of-current-and-future-priming-on-pro-environmental-attitudes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Biogas Production from Lake Bottom Biomass from Forest Management Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessie%20Tegegne%20Tibebu">Dessie Tegegne Tibebu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirsi%20Mononen"> Kirsi Mononen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In areas with forest management, agricultural, and industrial activity, sediments and biomass are accumulated in lakes through drainage system, which might be a cause for biodiversity loss and health problems. One possible solution can be utilization of lake bottom biomass and sediments for biogas production. The main objective of this study was to investigate the potentials of lake bottom materials for production of biogas by anaerobic digestion and to study the effect of pretreatment methods for feed materials on biogas yield. In order to study the potentials of biogas production lake bottom materials were collected from two sites, Likokanta and Kutunjärvi lake. Lake bottom materials were mixed with straw-horse manure to produce biogas in a laboratory scale reactor. The results indicated that highest yields of biogas values were observed when feeds were composed of 50% lake bottom materials with 50% straw horse manure mixture-while with above 50% lake bottom materials in the feed biogas production decreased. CH4 content from Likokanta lake materials with straw-horse manure and Kutunjärvi lake materials with straw-horse manure were similar values when feed consisted of 50% lake bottom materials with 50% straw horse manure mixtures. However, feeds with lake bottom materials above 50%, the CH4 concentration started to decrease, impairing gas process. Pretreatment applied on Kutunjärvi lake materials showed a slight negative effect on the biogas production and lowest CH4 concentration throughout the experiment. The average CH4 production (ml g-1 VS) from pretreated Kutunjärvi lake materials with straw horse manure (208.9 ml g-1 VS) and untreated Kutunjärvi lake materials with straw horse manure (182.2 ml g-1 VS) were markedly higher than from Likokanta lake materials with straw horse manure (157.8 ml g-1 VS). According to the experimental results, utilization of 100% lake bottom materials for biogas production is likely to be impaired negatively. In the future, further analyses to improve the biogas yields, assessment of costs and benefits is needed before utilizing lake bottom materials for the production of biogas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20bottom%20materials" title=" lake bottom materials"> lake bottom materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/34770/biogas-production-from-lake-bottom-biomass-from-forest-management-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Efficacy of Modified Bottom Boards to Control Varroa Mite (Varroa Destructor) in Honeybee Colonies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Keshlaf">Marwan Keshlaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Fellah"> Hassan Fellah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to test whether hive bottom boards modified with polyvinyl chloride pipe or screen-mesh reduces number of Varroa mites in naturally infested honeybee colonies comparing to chemical control. Fifty six colonies distributed equally between two location each received one of four experimental treatment 1) conventional solid board “control”, 2) Apistan in conventional solid board, 3) Mesh bottom board and 4) tube bottom board. Varroa infestation level on both adult bees and on capped brood was estimated. Stored pollen, capped brood area and honey production were also measured. Results of varroa infestation were inconsistent between apiaries. In apiary 1, colonies with Apistan had fewer Varroa destructor than other treatments, but this benefit was not apparent in Apiary 2. There were no effects of modified bottom boards on bee flight activity, brood production, honey yield and stored pollen. We conclude that the efficacy of modified bottom boards in reducing varroa mites population in bee colonies remains uncertain due to observed differences of hygienic behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apis%20mellifera" title="Apis mellifera">Apis mellifera</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20bottom%20boards" title=" modified bottom boards"> modified bottom boards</a>, <a href="https://publications.waset.org/abstracts/search?q=Varroa%20destructor" title=" Varroa destructor"> Varroa destructor</a>, <a href="https://publications.waset.org/abstracts/search?q=Honeybee%20colonies" title=" Honeybee colonies"> Honeybee colonies</a> </p> <a href="https://publications.waset.org/abstracts/36434/efficacy-of-modified-bottom-boards-to-control-varroa-mite-varroa-destructor-in-honeybee-colonies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huzaifa%20Bilal">Huzaifa Bilal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Russian%20wheat%20aphis" title="Russian wheat aphis">Russian wheat aphis</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=puccina%20triticina" title=" puccina triticina"> puccina triticina</a>, <a href="https://publications.waset.org/abstracts/search?q=priming" title=" priming"> priming</a> </p> <a href="https://publications.waset.org/abstracts/139395/the-efficacy-of-salicylic-acid-and-puccinia-triticina-isolates-priming-wheat-plant-to-diuraphis-noxia-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Removal of Gaseous Pollutant from the Flue Gas in a Submerged Self-Priming Venturi Scrubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Bal">Manisha Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Meikap"> B. C. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen chloride is the most common acid gas emitted by the industries. HCl gas is listed as Title III hazardous air pollutant. It causes severe threat to the human health as well as environment. So, removal of HCl from flue gases is very imperative. In the present study, submerged self-priming venturi scrubber is chosen to remove the HCl gas with water as a scrubbing liquid. Venturi scrubber is the most popular device for the removal of gaseous pollutants. Main mechanism behind the venturi scrubber is the polluted gas stream enters at converging section which accelerated to maximum velocity at throat section. A very interesting thing in case of submerged condition, venturi scrubber is submerged inside the liquid tank and liquid is entered at throat section because of suction created due to large pressure drop generated at the throat section. Maximized throat gas velocity atomizes the entered liquid into number of tiny droplets. Gaseous pollutant HCl is absorbed from gas to liquid droplets inside the venturi scrubber due to interaction between the gas and water. Experiments were conducted at different throat gas velocity, water level and inlet concentration of HCl to enhance the HCl removal efficiency. The effect of throat gas velocity, inlet concentration of HCl, and water level on removal efficiency of venturi scrubber has been evaluated. Present system yielded very high removal efficiency for the scrubbing of HCl gas which is more than 90%. It is also concluded that the removal efficiency of HCl increases with increasing throat gas velocity, inlet HCl concentration, and water level height. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=HCl%20scrubbing" title=" HCl scrubbing"> HCl scrubbing</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=self-priming%20venturi%20scrubber" title=" self-priming venturi scrubber"> self-priming venturi scrubber</a> </p> <a href="https://publications.waset.org/abstracts/91400/removal-of-gaseous-pollutant-from-the-flue-gas-in-a-submerged-self-priming-venturi-scrubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bottom%20up%20priming&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10