CINXE.COM
Search results for: nucleic acids
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nucleic acids</title> <meta name="description" content="Search results for: nucleic acids"> <meta name="keywords" content="nucleic acids"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nucleic acids" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nucleic acids"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 885</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nucleic acids</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leyla%20Esfandiari">Leyla Esfandiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title="diagnostics">diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopore" title=" nanopore"> nanopore</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acids" title=" nucleic acids"> nucleic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor "> sensor </a> </p> <a href="https://publications.waset.org/abstracts/35912/highly-sensitive-nanopore-based-sensors-for-point-of-care-medical-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> DNA PLA: A Nano-Biotechnological Programmable Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Md.%20HasanBabu">Hafiz Md. HasanBabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Khandaker%20Mohammad%20Mohi%20Uddin"> Khandaker Mohammad Mohi Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20IstiakJaman%20Ami"> Md. IstiakJaman Ami</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahat%20Hossain%20Faisal"> Rahat Hossain Faisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20systems" title="biological systems">biological systems</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20computing" title=" DNA computing"> DNA computing</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20logic%20array" title=" programmable logic array"> programmable logic array</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA" title=" PLA"> PLA</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a> </p> <a href="https://publications.waset.org/abstracts/141070/dna-pla-a-nano-biotechnological-programmable-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Human Health and Omega 3 Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinpa%20Palmo">Jinpa Palmo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many research, omega 3 fatty acid which is a polyunsaturated fatty acids is proved to be very important and essential nutrients having many different health benefits but apart from other fatty acids, it cannot be synthesise by our human body. Therefore, we have to get these fatty acids by consuming diets and supplements rich in it. Even though human beings can live by consuming other important nutrients but can live much healthier and longer by consuming omega 3 fatty acids. American heart association AHA recommends for daily intake of omega 3 fatty acids specially by those people with coronary heart disease. Fish considering as nutritional valuable animal is mostly due to its lipid content (fish oil) in which these omega 3 fatty acids are present very significantly. Fish does not actually produce these omega 3 fatty acid in their body, but receive these fatty acids through the food web in which phytoplankton are the chief source of these omega fatty acids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title="fatty acid">fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/157895/human-health-and-omega-3-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Structure Clustering for Milestoning Applications of Complex Conformational Transitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20Tahat">Amani Tahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdal%20Kirmizialtin"> Serdal Kirmizialtin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milestoning" title="milestoning">milestoning</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20organizing%20map" title=" self organizing map"> self organizing map</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20linkage" title=" single linkage"> single linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20clustering" title=" structure clustering "> structure clustering </a> </p> <a href="https://publications.waset.org/abstracts/82477/structure-clustering-for-milestoning-applications-of-complex-conformational-transitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> Biophysical Study of the Interaction of Harmalol with Nucleic Acids of Different Motifs: Spectroscopic and Calorimetric Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kakali%20Bhadra">Kakali Bhadra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Binding of small molecules to DNA and recently to RNA, continues to attract considerable attention for developing effective therapeutic agents for control of gene expression. This work focuses towards understanding interaction of harmalol, a dihydro beta-carboline alkaloid, with different nucleic acid motifs viz. double stranded CT DNA, single stranded A-form poly(A), double-stranded A-form of poly(C)·poly(G) and clover leaf tRNAphe by different spectroscopic, calorimetric and molecular modeling techniques. Results of this study converge to suggest that (i) binding constant varied in the order of CT DNA > poly(C)·poly(G) > tRNAphe > poly(A), (ii) non-cooperative binding of harmalol to poly(C)·poly(G) and poly(A) and cooperative binding with CT DNA and tRNAphe, (iii) significant structural changes of CT DNA, poly(C)·poly(G) and tRNAphe with concomitant induction of optical activity in the bound achiral alkaloid molecules, while with poly(A) no intrinsic CD perturbation was observed, (iv) the binding was predominantly exothermic, enthalpy driven, entropy favoured with CT DNA and poly(C)·poly(G) while it was entropy driven with tRNAphe and poly(A), (v) a hydrophobic contribution and comparatively large role of non-polyelectrolytic forces to Gibbs energy changes with CT DNA, poly(C)·poly(G) and tRNAphe, and (vi) intercalated state of harmalol with CT DNA and poly(C)·poly(G) structure as revealed from molecular docking and supported by the viscometric data. Furthermore, with competition dialysis assay it was shown that harmalol prefers hetero GC sequences. All these findings unequivocally pointed out that harmalol prefers binding with ds CT DNA followed by ds poly(C)·poly(G), clover leaf tRNAphe and least with ss poly(A). The results highlight the importance of structural elements in these natural beta-carboline alkaloids in stabilizing different DNA and RNA of various motifs for developing nucleic acid based better therapeutic agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title="calorimetry">calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%2FRNA-alkaloid%20interaction" title=" DNA/RNA-alkaloid interaction"> DNA/RNA-alkaloid interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=harmalol" title=" harmalol"> harmalol</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/55814/biophysical-study-of-the-interaction-of-harmalol-with-nucleic-acids-of-different-motifs-spectroscopic-and-calorimetric-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeanne%20Leblond">Jeanne Leblond</a>, <a href="https://publications.waset.org/abstracts/search?q=Warren%20Viricel"> Warren Viricel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Mbarek"> Amira Mbarek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liposomes" title="liposomes">liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=siRNA" title=" siRNA"> siRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=pH-sensitive" title=" pH-sensitive"> pH-sensitive</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20switch" title=" molecular switch"> molecular switch</a> </p> <a href="https://publications.waset.org/abstracts/46460/switchable-lipids-from-a-molecular-switch-to-a-ph-sensitive-system-for-the-drug-and-gene-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Target-Triggered DNA Motors and their Applications to Biosensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongquan%20Zhang">Hongquan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20motors" title=" DNA motors"> DNA motors</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20amplification" title=" signal amplification"> signal amplification</a> </p> <a href="https://publications.waset.org/abstracts/165780/target-triggered-dna-motors-and-their-applications-to-biosensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Comparison of Nucleic Acid Extraction Platforms On Tissue Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Rafeah%20Md%20Rafei">Siti Rafeah Md Rafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Wang%20Yanping"> Karen Wang Yanping</a>, <a href="https://publications.waset.org/abstracts/search?q=Park%20Mi%20Kyoung"> Park Mi Kyoung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue samples are precious supply for molecular studies or disease identification diagnosed using molecular assays, namely real-time PCR (qPCR). It is critical to establish the most favorable nucleic acid extraction that gives the PCR-amplifiable genomic DNA. Furthermore, automated nucleic acid extraction is an appealing alternative to labor-intensive manual methods. Operational complexity, defined as the number of steps required to obtain an extracted sample, is one of the criteria in the comparison. Here we are comparing the One BioMed’s automated X8 platform with the commercially available manual-operated kits from QIAGEN Mini Kit and Roche. We extracted DNA from rat fresh-frozen tissue (from different type of organs) in the matrices. After tissue pre-treatment, it is added to the One BioMed’s X8 pre-filled cartridge, and the QIAGEN QIAmp column respectively. We found that the results after subjecting the eluates to the Real Time PCR using BIORAD CFX are comparable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20extraction" title="DNA extraction">DNA extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=frozen%20tissue" title=" frozen tissue"> frozen tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/153546/comparison-of-nucleic-acid-extraction-platforms-on-tissue-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Computation of Natural Logarithm Using Abstract Chemical Reaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iuliia%20Zarubiieva">Iuliia Zarubiieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Joyun%20Tseng"> Joyun Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishwesh%20Kulkarni"> Vishwesh Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20networks" title="chemical reaction networks">chemical reaction networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ratio%20computation" title=" ratio computation"> ratio computation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a> </p> <a href="https://publications.waset.org/abstracts/93960/computation-of-natural-logarithm-using-abstract-chemical-reaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">876</span> Exploring Emerging Viruses From a Protected Reserve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nemat%20Sokhandan%20Bashir">Nemat Sokhandan Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wild" title="wild">wild</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a>, <a href="https://publications.waset.org/abstracts/search?q=novel" title=" novel"> novel</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a> </p> <a href="https://publications.waset.org/abstracts/176207/exploring-emerging-viruses-from-a-protected-reserve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">875</span> Assessing Brain Targeting Efficiency of Ionisable Lipid Nanoparticles Encapsulating Cas9 mRNA/gGFP Following Different Routes of Administration in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meiling%20Yu">Meiling Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Rouatbi"> Nadia Rouatbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khuloud%20T.%20Al-Jamal"> Khuloud T. Al-Jamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Treatment of neurological disorders with modern medical and surgical approaches remains difficult. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. The treatment of brain diseases with gene therapy requires the gene-editing tool to be delivered efficiently to the central nervous system. In this study, we explored the efficiency of different delivery routes, namely intravenous (i.v.), intra-cranial (i.c.), and intra-nasal (i.n.), to deliver stable nucleic acid-lipid particles (SNALPs) containing gene-editing tools namely Cas9 mRNA and sgRNA encoding for GFP as a reporter protein. We hypothesise that SNALPs can reach the brain and perform gene-editing to different extents depending on the administration route. Intranasal administration (i.n.) offers an attractive and non-invasive way to access the brain circumventing the blood–brain barrier. Successful delivery of gene-editing tools to the brain offers a great opportunity for therapeutic target validation and nucleic acids therapeutics delivery to improve treatment options for a range of neurodegenerative diseases. In this study, we utilised Rosa26-Cas9 knock-in mice, expressing GFP, to study brain distribution and gene-editing efficiency of SNALPs after i.v.; i.c. and i.n. routes of administration. Methods: Single guide RNA (sgRNA) against GFP has been designed and validated by in vitro nuclease assay. SNALPs were formulated and characterised using dynamic light scattering. The encapsulation efficiency of nucleic acids (NA) was measured by RiboGreen™ assay. SNALPs were incubated in serum to assess their ability to protect NA from degradation. Rosa26-Cas9 knock-in mice were i.v., i.n., or i.c. administered with SNALPs to test in vivo gene-editing (GFP knockout) efficiency. SNALPs were given as three doses of 0.64 mg/kg sgGFP following i.v. and i.n. or a single dose of 0.25 mg/kg sgGFP following i.c.. knockout efficiency was assessed after seven days using Sanger Sequencing and Inference of CRISPR Edits (ICE) analysis. In vivo, the biodistribution of DiR labelled SNALPs (SNALPs-DiR) was assessed at 24h post-administration using IVIS Lumina Series III. Results: Serum-stable SNALPs produced were 130-140 nm in diameter with ~90% nucleic acid loading efficiency. SNALPs could reach and stay in the brain for up to 24h following i.v.; i.n. and i.c. administration. Decreasing GFP expression (around 50% after i.v. and i.c. and 20% following i.n.) was confirmed by optical imaging. Despite the small number of mice used, ICE analysis confirmed GFP knockout in mice brains. Additional studies are currently taking place to increase mice numbers. Conclusion: Results confirmed efficient gene knockout achieved by SNALPs in Rosa26-Cas9 knock-in mice expressing GFP following different routes of administrations in the following order i.v.= i.c.> i.n. Each of the administration routes has its pros and cons. The next stages of the project involve assessing gene-editing efficiency in wild-type mice and replacing GFP as a model target with therapeutic target genes implicated in Motor Neuron Disease pathology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR" title="CRISPR">CRISPR</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20diseases" title=" brain diseases"> brain diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=administration%20routes" title=" administration routes"> administration routes</a> </p> <a href="https://publications.waset.org/abstracts/166265/assessing-brain-targeting-efficiency-of-ionisable-lipid-nanoparticles-encapsulating-cas9-mrnaggfp-following-different-routes-of-administration-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">874</span> A Nucleic Acid Extraction Method for High-Viscosity Floricultural Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harunori%20Kawabe">Harunori Kawabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hideyuki%20Aoshima"> Hideyuki Aoshima</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Murakami"> Koji Murakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Minoru%20Kawakami"> Minoru Kawakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuka%20Nakano"> Yuka Nakano</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20D.%20Ordinario"> David D. Ordinario</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Crawford"> C. W. Crawford</a>, <a href="https://publications.waset.org/abstracts/search?q=Iri%20Sato-Baran"> Iri Sato-Baran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the recent advances in gene editing technologies allowing the rewriting of genetic sequences, additional market growth in the global floriculture market beyond previous trends is anticipated through increasingly sophisticated plant breeding techniques. As a prerequisite for gene editing, the gene sequence of the target plant must first be identified. This necessitates the genetic analysis of plants with unknown gene sequences, the extraction of RNA, and comprehensive expression analysis. Consequently, a technology capable of consistently and effectively extracting high-purity DNA and RNA from plants is of paramount importance. Although model plants, such as Arabidopsis and tobacco, have established methods for DNA and RNA extraction, floricultural species such as roses present unique challenges. Different techniques to extract DNA and RNA from various floricultural species were investigated. Upon sampling and grinding the petals of several floricultural species, it was observed that nucleic acid extraction from the ground petal solutions of low viscosity was straightforward; solutions of high viscosity presented a significant challenge. It is postulated that the presence of substantial quantities of polysaccharides and polyphenols in the plant tissue was responsible for the inhibition of nucleic acid extraction. Consequently, attempts were made to extract high-purity DNA and RNA by improving the CTAB method and combining it with commercially available nucleic acid extraction kits. The quality of the total extracted DNA and RNA was evaluated using standard methods. Finally, the effectiveness of the extraction method was assessed by determining whether it was possible to create a library that could be applied as a suitable template for a next-generation sequencer. In conclusion, a method was developed for consistent and accurate nucleic acid extraction from high-viscosity floricultural samples. These results demonstrate improved techniques for DNA and RNA extraction from flowers, help facilitate gene editing of floricultural species and expand the boundaries of research and commercial opportunities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floriculture" title="floriculture">floriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20editing" title=" gene editing"> gene editing</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acid%20extraction" title=" nucleic acid extraction"> nucleic acid extraction</a> </p> <a href="https://publications.waset.org/abstracts/191049/a-nucleic-acid-extraction-method-for-high-viscosity-floricultural-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">873</span> Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semuel%20Unwakoly">Semuel Unwakoly</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinner%20Puppela"> Reinner Puppela</a>, <a href="https://publications.waset.org/abstracts/search?q=Maresthy%20Rumalean"> Maresthy Rumalean</a>, <a href="https://publications.waset.org/abstracts/search?q=Healthy%20Kainama"> Healthy Kainama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (<em>M. maculata</em>) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (<em>M. maculata</em>) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moonfish%20%28M.%20maculata%29" title="Moonfish (M. maculata)">Moonfish (M. maculata)</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title=" fatty acid"> fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/75018/fatty-acid-and-amino-acid-composition-in-mene-maculata-in-the-sea-of-maluku" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">872</span> Thermochromic Behavior of Fluoran-Based Mixtures Containing Liquid-Crystalline 4-n-Alkylbenzoic Acids as Color Developers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Wilk-Kozubek">Magdalena Wilk-Kozubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Paw%C5%82%C3%B3w"> Jakub Pawłów</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Czajkowski"> Maciej Czajkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Zdo%C5%84czyk"> Maria Zdończyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20%C5%9Alepokura"> Katarzyna Ślepokura</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cybi%C5%84ska"> Joanna Cybińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermochromic materials belong to the family of intelligent materials that change their color in response to temperature changes; this ability is called thermochromism. Thermochromic behavior can be displayed by both isolated compounds and multicomponent mixtures. Fluoran leuco dye-based mixtures are well-known thermochromic systems used, for example, in heat-sensitive FAX paper. Weak acids often serve as color developers for such systems. As the temperature increases, the acids melt, and the mixtures become colored. The objective of this research is to determine the influence of acids showing a liquid crystalline nematic phase on the development of the fluoran dye. For this purpose, fluoran-based mixtures with 4-n-alkylbenzoic acids were prepared. The mixtures are colored at room temperature, but they become colorless upon the melting of the acids. The melting of acids is associated not only with a change in the color of the mixtures but also with a change in their emission color. Phase transitions were investigated by temperature-dependent powder X-ray diffraction and differential scanning calorimetry; nematic phases were visualized by polarized optical microscopy, and color and emission changes were studied by UV-Vis diffuse reflectance and photoluminescence spectroscopies, respectively. When 4-n-alkylbenzoic acids are used as color developers, the fluoran-based mixtures become colorless after the melting of the acids. This is because the melting of acids is accompanied by the transition from the crystalline phase to the nematic phase, in which the molecular arrangement of the acids does not allow the fluoran dye to be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20developer" title="color developer">color developer</a>, <a href="https://publications.waset.org/abstracts/search?q=leuco%20dye" title=" leuco dye"> leuco dye</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title=" liquid crystal"> liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochromism" title=" thermochromism"> thermochromism</a> </p> <a href="https://publications.waset.org/abstracts/150281/thermochromic-behavior-of-fluoran-based-mixtures-containing-liquid-crystalline-4-n-alkylbenzoic-acids-as-color-developers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> An Organic Dye-Based Staining for Plant DNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beg%C3%BCm%20Terzi">Begüm Terzi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Ate%C5%9F%20S%C3%B6nmezo%C4%9Flu"> Özlem Ateş Sönmezoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerime%20%C3%96zkay"> Kerime Özkay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y%C4%B1ld%C4%B1r%C4%B1m"> Ahmet Yıldırım</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In plant biotechnology, electrophoresis is used to detect nucleic acids. Ethidium bromide (EtBr) is used as an intercalator dye to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. In this study, a visible, reliable and organic Ruthenium-based dye (N-719) for staining plant DNA in comparison to EtBr. When prestaining and post-staining for gel electrophoresis, N-719 stained both DNA and PCR product bands with the same clarity as EtBr. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. The organic dye was found to have staining activity suitable for the identification of DNA.Consequently, N-719 organic dye can be used to stain and visualize DNA during gel electrophoresis as alternatives to EtBr in plant biotechnology studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agarose%20gel" title="agarose gel">agarose gel</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20staining" title=" DNA staining"> DNA staining</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dye" title=" organic dye"> organic dye</a>, <a href="https://publications.waset.org/abstracts/search?q=N-719" title=" N-719"> N-719</a> </p> <a href="https://publications.waset.org/abstracts/68758/an-organic-dye-based-staining-for-plant-dna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Antiplatelet Activity of Nitrated Fatty Acids from Tomato Pomace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyanne%20Rodriguez">Lyanne Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Fuente"> Eduardo Fuente</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20Trostchansky"> Andrés Trostchansky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Palomo"> Ivan Palomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular diseases (CVD) are the leading cause of death in the world. The development of platelet-rich thrombi has been considered a trigger for acute cardiovascular events. A healthy diet, rich in fruit and vegetables, has been related to increased protection against cardiovascular events. Previous studies have observed that tomato pomace has a potent antiplatelet activity, due could be attributed to its high content of fatty acids (> 30%). It has been shown that unsaturated fatty acids can undergo endogenous intracellular nitration reactions during digestion after lipid consumption. Additionally, nitrated fatty acids (NO2-FA) can significantly reduce atherosclerotic lesion formation, inhibiting the expression of adhesion molecules on dysfunctional endothelium and platelet activation. In this work, we have proposed the nitration of fatty acids present in tomato pomace to improve its antiplatelet action. The gastric digestion of the tomato pomace allowed the nitration of the fatty acids, while by HPLC/MS/MS we were able to identify and quantify the nitrated fatty acids. The nitrated tomase extracts showed antiplatelet potential when platelets were stimulated with TRAP-6 and collagen. This activity was related to the presence of nitrated linoleic acid, which inhibited platelet activation by flow cytometry. The knowledge about the antiplatelet activity of nitrated fatty acids from tomato pomace will further develop new and more effective agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular" title="cardiovascular">cardiovascular</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20extracts" title=" tomato extracts"> tomato extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrated%20fatty%20acids" title=" nitrated fatty acids"> nitrated fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=antiplatelet%20activity" title=" antiplatelet activity"> antiplatelet activity</a> </p> <a href="https://publications.waset.org/abstracts/161607/antiplatelet-activity-of-nitrated-fatty-acids-from-tomato-pomace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Influence of Culture Conditions on the Growth and Fatty Acid Composition of Green Microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Karpenyuk">Tatyana A. Karpenyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Saltanat%20B.%20Orazova"> Saltanat B. Orazova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yana%20S.%20Tzurkan"> Yana S. Tzurkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alla%20V.%20Goncharova"> Alla V. Goncharova</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakytzhan%20K.%20Kairat"> Bakytzhan K. Kairat</a>, <a href="https://publications.waset.org/abstracts/search?q=Togzhan%20D.%20Mukasheva"> Togzhan D. Mukasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20V.%20Ignatova"> Ludmila V. Ignatova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramza%20Z.%20Berzhanova"> Ramza Z. Berzhanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgae due to the ability to accumulate high levels of practically valuable polyunsaturated fatty acids attract attention as a promising raw material for commercial products. It were defined the features of the growth processes of cells green protococcal microalgae Oocystis rhomboideus, Scenedesmus obliquus, Dictyochlorella globosa at cultivation in different nutritional mediums. For the rapid accumulation of biomass, combined with high productivity of total lipids fraction yield recommended to use the Fitzgerald medium (Scenodesmus obliquus, Oocystis rhomboideus) and/or Bold medium (Dictyochlorella globosa). Productivity of lipids decreased in sequence Dictyochlorella globosa > Scenodesmus obliquus > Oocystis rhomboideus. The bulk of fatty acids fraction of the total lipids is unsaturated fatty acids, which accounts for 70 to 83% of the total number of fatty acids. The share of monoenic acids varies from 16 to 36 %, the share of unsaturated fatty acids - from 44 to 65% of total fatty acids fraction. Among the unsaturated acids dominate α-linolenic acid (C18:3n-3), hexadecatetraenic acid (C16:4) and linoleic acid (C18:2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=culture%20conditions" title=" culture conditions"> culture conditions</a> </p> <a href="https://publications.waset.org/abstracts/10149/influence-of-culture-conditions-on-the-growth-and-fatty-acid-composition-of-green-microalgae-oocystis-rhomboideus-scenedesmus-obliquus-dictyochlorella-globosa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20C.%20Blaga">Alexandra C. Blaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Ca%C5%9Fcaval"> Dan Caşcaval</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Tucaliuc"> Alexandra Tucaliuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Madalina%20Po%C5%9Ftaru"> Madalina Poştaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Anca%20I.%20Galaction"> Anca I. Galaction</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=di-%282-ethylhexyl%29%20phosphoric%20acid" title=" di-(2-ethylhexyl) phosphoric acid"> di-(2-ethylhexyl) phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20extraction" title=" reactive extraction"> reactive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20extraction" title=" selective extraction"> selective extraction</a> </p> <a href="https://publications.waset.org/abstracts/25016/selective-separation-of-amino-acids-by-reactive-extraction-with-di-2-ethylhexyl-phosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> Electrocatalytic Amino Acid Synthesis from Biomass-Derivable Keto Acids over Ball-Milled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiying%20Xiao">Yiying Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia%20Wei%20Lim"> Chia Wei Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinquan%20Chang"> Jinquan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qixin%20Yuan"> Qixin Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Yan"> Ning Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocatalytic reductive amination (ERA) offers an attractive way to make organonitrogen chemicals from renewable feedstock. Here, we report carbon nanotube (CNT) as an effective catalyst for the ERA of biomass-derivable α-keto acids into amino acids using NH₃ as the nitrogen source. Through a facile ball milling (BM) treatment, the intrinsic defects in the CNTs were increased while the electrocatalytic activity of CNTs converting 2-ketoglutaric acid into glutamic acid was enhanced by approximately seven times. A high Faradaic efficiency (FE) of ~90% with a corresponding glutamic acid formation rate up to 180.9 mmol•g⁻¹𝒸ₐₜt•h⁻¹ was achieved, and ~60% molar yield of glutamic acid was obtained after 8 h of electrolysis. Electrokinetic analyses indicate that the BM-CNTs catalysed ERA exhibits first-order dependences on the substrate and NH₃, with a rate-determining step (RDS) involving the first electron transfer. Following this protocol, a number of amino acids were prepared with moderate to high FEs and formation rates. Significantly, we synthesised long carbon chain amino acids, which typically face lower yields using the existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=reductive%20amination" title=" reductive amination"> reductive amination</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-keto%20acids" title=" α-keto acids"> α-keto acids</a> </p> <a href="https://publications.waset.org/abstracts/164061/electrocatalytic-amino-acid-synthesis-from-biomass-derivable-keto-acids-over-ball-milled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Effect of Peppermint Essential Oil versus a Mixture of Formic and Propionic Acids on Corn Silage Volatile Fatty Acid Score</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Danesh%20Mesgaran">Mohsen Danesh Mesgaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hodjatpanah%20Montazeri"> Ali Hodjatpanah Montazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Vakili"> Alireza Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Tahmasbei"> Mansoor Tahmasbei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To compare peppermint essential oil versus a mixture of formic and propionic acids a study was conducted to their effects on volatile fatty acid proportion and VFA score of corn silage. Chopped whole crop corn (control) was treated with peppermint essential oil (240 mg kg-1 DM) or a mixture of formic and propionic acids (2:1) at 0.4% of fresh forage weight, and ensiled for 30 days. Then, silage extract was provided and the concentration of each VFA was determined using gas chromatography. The VFA score was calculated according to the patented formula proposed by Dairy One Scientific Committee. The score is calculated based on the positive impact of lactic and acetic acids versus the negative effect of butyric acid to achieve a single value for evaluating silage quality. The essential oil declined pH and increased the concentration of lactic and acetic acids in the silage extract. All corn silages evaluated in this study had a VFA score between 6 through 8. However, silage with peppermint essential oils had lower volatile fatty acids score than those of the other treatments. Both of applied additives caused a significant improvement in silage aerobic stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peppermint" title="peppermint">peppermint</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20silage" title=" corn silage"> corn silage</a>, <a href="https://publications.waset.org/abstracts/search?q=VFA%20%28volatile%20fatty%20acids%29" title=" VFA (volatile fatty acids)"> VFA (volatile fatty acids)</a> </p> <a href="https://publications.waset.org/abstracts/63626/effect-of-peppermint-essential-oil-versus-a-mixture-of-formic-and-propionic-acids-on-corn-silage-volatile-fatty-acid-score" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Study of Coconut and Babassu Oils with High Acid Content and the Fatty Acids (C6 to C16) Obtained from These Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%A1vio%20A.%20F.%20da%20Ponte">Flávio A. F. da Ponte</a>, <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Q.%20Malveira"> Jackson Q. Malveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20%20A.%20S.%20Ramos%20Filho"> José A. S. Ramos Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20C.%20G.%20Albuquerque"> Monica C. G. Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vegetable oils have many applications in industrial processes and due to this potential have constantly increased the demand for the use of low-quality oils, mainly in the production of biofuel. This work aims to the physicochemical evaluation of babassu oil (Orbinya speciosa) and coconut (Cocos nucifera) of low quality, as well the obtaining the free fatty acids 6 to 16 carbon atoms, with intention to be used as raw material for the biofuels production. The babassu oil and coconut low quality, as well the fatty acids obtained from these oils were characterized as their physicochemical properties and fatty acid composition (using gas chromatography coupled to mass). The NMR technique was used to assess the efficiency of fractional distillation under reduced pressure to obtain the intermediate carbonic chain fatty acids. The results showed that the bad quality in terms of physicochemical evaluation of babassu oils and coconut oils interfere directly in industrial application. However the fatty acids of intermediate carbonic chain (C6 to C16) may be used in cosmetic, pharmaceutical and particularly as the biokerosene fuel. The chromatographic analysis showed that the babassu oil and coconut oil have as major fatty acids are lauric acid (57.5 and 38.6%, respectively), whereas the top phase from distillation of coconut oil showed caprylic acid (39.1%) and major fatty acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=babassu%20oil%20%28Orbinya%20speciosa%29" title="babassu oil (Orbinya speciosa)">babassu oil (Orbinya speciosa)</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20oil%20%28Cocos%20nucifera%29" title=" coconut oil (Cocos nucifera)"> coconut oil (Cocos nucifera)</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/48733/study-of-coconut-and-babassu-oils-with-high-acid-content-and-the-fatty-acids-c6-to-c16-obtained-from-these-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew%20Tefery">Temesgen Geremew Tefery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/190956/functionalization-of-nanomaterials-for-bio-sensing-applications-current-progress-and-future-prospective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> The Role of Bone Marrow Fatty Acids in the Early Stage of Post-Menopausal Osteoporosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sizhu%20Wang">Sizhu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuisong%20Tang"> Cuisong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Zhang"> Lin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangyu%20Tang"> Guangyu Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: We aimed to detect the composition of bone marrow fatty acids early after ovariectomized (OVX) surgery and explore the potential mechanism. Methods: Thirty-two female Sprague-Dawley (SD) rats (12 weeks) were randomly divided into OVX group and Sham group (N=16/group), and received ovariectomy or sham surgery respectively. After 3 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by gas chromatography–mass spectrometry (GC–MS) and evaluate the trabecular bone microarchitecture by micro-CT. Significant different fatty acids in the early stage of post-menopausal osteoporosis were selected by OPLS-DA and t test. Then selected fatty acids were further studied in the process of osteogenic differentiation through RT-PCR and Alizarin Red S staining. Results: An apparent sample clustering and group separation were observed between OVX group and sham group three days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Specifically, myristate, palmitoleate and arachidonate were found to play an important role in classification between OVX group and sham group. We further investigated the effect of palmitoleate and arachidonate on osteogenic differentiation and found that palmitoleate promoted the osteogenic differentiation of MC3T3-E1 cells while arachidonate inhibited this process. Conclusion: Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. Bone marrow fatty acids may begin to affect osteogenic differentiation shortly after deficiency of estrogen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20marrow%20fatty%20acids" title="bone marrow fatty acids">bone marrow fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblast" title=" osteoblast"> osteoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=post-menopausal" title=" post-menopausal"> post-menopausal</a> </p> <a href="https://publications.waset.org/abstracts/156509/the-role-of-bone-marrow-fatty-acids-in-the-early-stage-of-post-menopausal-osteoporosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Ratio of Omega-6/Omega-3 Fatty Acids in Spelt and Flaxseed Pasta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Filipovic">Jelena Filipovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Milenko%20Kosutic"> Milenko Kosutic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic way of life has the tendency to simplify and decrease preparing healthy, quick, cheap and safe meals. Spelt pasta is meeting most of these goals. Contrary to bread, pasta can be stored a long time without deterioration in flavour, odour and usability without losing quality. This paper deals with the chemical composition and content of fatty acids in flaxseed and spelt flour. Ratio of essential fatty acids ω-6/ω-3 is also analysed in spelt pasta and pasta with 0%, 10% and 20% flaxseed flour. Gas chromatography with mass spectrometry is used for carrying out a quantitative analysis of flaxseed flour, spelt flour and pasta liposoluble extracts. Flaxseed flour has a better fatty acid profile than spelt flour, with low levels of saturated fat (approximately 9g/100g), high concentration of linolenic acid (57g/100g) and lower content of linoleic acid (16g/100g), as well as superior ω-6/ω-3 ratio that is 1:4. Flaxseed flour in the share of 10% and 20% in spelt pasta positively contributes to the essential fatty acids daily intake recommended by nutritionists and the improvement of ω-6/ω-3 ratio (6,7:1 and 1:1.2). This paper points out that investigated pasta with flaxseed is a new product with improved functional properties due to high level of ω-3 fatty acids and it is acceptable for consumers in regard to sensory properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flaxseed" title="flaxseed">flaxseed</a>, <a href="https://publications.waset.org/abstracts/search?q=spelt" title=" spelt"> spelt</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=%CF%89-3%2F%CF%89-6%20ratio" title=" ω-3/ω-6 ratio"> ω-3/ω-6 ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=pasta" title=" pasta"> pasta</a> </p> <a href="https://publications.waset.org/abstracts/42864/ratio-of-omega-6omega-3-fatty-acids-in-spelt-and-flaxseed-pasta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Determination of Hydrolisis Condition in the Extraction of Fatty Acids from Pinchagua's (Opisthonema libertate) Heads, a By-Product of Sardine Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belen%20Carrillo">Belen Carrillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Mosquera"> Mauricio Mosquera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fatty acids are bioactive compounds widely used as nutritional supplements in the food and pharmaceutical industry. Bluefish such as sardines have a large variety of these fatty acids in their composition. The objective of this project is to extract these compounds from fishing wastes, to do this, heads of known species as Pinchagua (Opistonema libertate) were used. The conducted study represents a simplified alternative for obtaining and simultaneous saponification of oil through basic hydrolysis, which separates lipids from protein and saponifies sample all the same time to isolate the fatty acid accurately through salts formation. To do these different concentrations of sodium hydroxide were used, it was demonstrated at a concentration of 1 M the highest yield of saponified oil recovery corresponding a value of 3,64% was obtained. Subsequently, the saponified oil was subjected to an acid hydrolysis in which fatty acids were isolated. Different sulfuric acid concentrations and temperatures for the process were tested. Thus, it was shown that the great fatty acids variety were obtained at a 60 °C temperature and sulfuric acid concentration of 50% v/v. Among the obtained compounds the presence of acids such as palmitic, lauric, caproic and myristic are highlighted. Applications of this type of elements are varied and widely used in the nutritional supplements development. Thus, the described methodology proposes a simple mechanism in the revaluation of fishing industry wastes that allow directly generate high added value elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title="fatty acids">fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinchagua" title=" Pinchagua"> Pinchagua</a>, <a href="https://publications.waset.org/abstracts/search?q=saponification" title=" saponification"> saponification</a> </p> <a href="https://publications.waset.org/abstracts/57726/determination-of-hydrolisis-condition-in-the-extraction-of-fatty-acids-from-pinchaguas-opisthonema-libertate-heads-a-by-product-of-sardine-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> Effect of Pre Harvest Application of Amino Acids on Fruit Development of Sub-Tropical Peach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjot%20Kaur">Manjot Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Singh"> Harminder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Jawandha"> S. K. Jawandha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigations were carried out at Fruit Research Farm, Department of Fruit Science, Punjab Agricultural University, Ludhiana during the years 2016 and 2017, with the aim of assessing the effect of amino acids on fruit development, shoot growth and yield of peach. The six-year-old peach trees of cv. Florida Prince were sprayed with 0.25 % and 0.50 % concentrations of amino acids (Peptone P1 023), 7 and 14 days after full bloom and the sprays were repeated after 15 and 30 days. Experimental findings showed that all the amino acid treatments increased fruit growth, shoot growth, fruit retention and yield and decreased fruit drop as compared to control during both the years. Maximum fruit retention (89.29 %) and minimum fruit drop (10.71 %) was observed in T8 (2 sprays @ 0.50%). Highest mean shoot growth (113.89 cm) was recorded in T12 (3 sprays @ 0.50%) while the minimum was in control plants (88.23 cm). Fruit yield was also found to be maximum (53.92 kg/tree) under double spray treatment T8 (2 sprays @ 0.50%) of amino acids and minimum in plants sprayed with triple spray of amino acids. Fruit maturity was advanced by 3-4 days by double spray treatments of amino acids as compared to control. In brief, the application of double spray of amino acids @ 0.50% (applied 14 days after full bloom and 15 days later), was found to be best to improve the fruit growth, fruit retention and yield of Florida Prince peach under Punjab conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20growth" title=" fruit growth"> fruit growth</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity" title=" maturity"> maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=peach" title=" peach"> peach</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot%20growth" title=" shoot growth"> shoot growth</a> </p> <a href="https://publications.waset.org/abstracts/100280/effect-of-pre-harvest-application-of-amino-acids-on-fruit-development-of-sub-tropical-peach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> The Role of Physically Adsorbing Species of Oxyhydryl Reagents in Flotation Aggregate Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Kondratyev">S. A. Kondratyev</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20I.%20Ibragimova"> O. I. Ibragimova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The authors discuss the collecting abilities of desorbable species (DS) of saturated fatty acids. The DS species of the reagent are understood as species capable of moving from the surface of the mineral particle to the bubble at the moment of the rupture of the interlayer of liquid separating these objects of interaction. DS species of carboxylic acids (molecules and ionic-molecular complexes) have the ability to spread over the surface of the bubble. The rate of their spreading at pH 7 and 10 over the water surface is determined. The collectibility criterion of saturated fatty acids is proposed. The values of forces exerted by the spreading DS species of reagents on liquid in the interlayer and the liquid flow rate from the interlayer are determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criterion%20of%20action%20of%20physically%20adsorbed%20reagent" title="criterion of action of physically adsorbed reagent">criterion of action of physically adsorbed reagent</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=saturated%20fatty%20acids" title=" saturated fatty acids"> saturated fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20pressure" title=" surface pressure"> surface pressure</a> </p> <a href="https://publications.waset.org/abstracts/76153/the-role-of-physically-adsorbing-species-of-oxyhydryl-reagents-in-flotation-aggregate-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> Oat Grain Functional Ingredient Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Sterna">Vita Sterna</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanita%20Zute"> Sanita Zute</a>, <a href="https://publications.waset.org/abstracts/search?q=Inga%20Jansone"> Inga Jansone</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Brunava"> Linda Brunava</a>, <a href="https://publications.waset.org/abstracts/search?q=Inara%20Kantane"> Inara Kantane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grains, including oats (Avena sativa L.), have been recognized functional foods, because provide beneficial effect on the health of the consumer and decrease the risk of various diseases.Oats are good source of soluble fibre, essential amino acids, unsaturated fatty acids, vitamins and minerals. Oat breeders have developed oat varieties and improved yielding ability potential of oat varieties. Therefore, the aim of investigation was to analyze the composition of perspective oat varieties and breeding lines grains grown in different conditions and evaluate functional properties. In the studied samples content of protein, starch, β - glucans, total dietetic fibre, composition of amino acids and vitamin E were determined. The results of analysis showed that protein content depending of varieties ranged 9.70 –17.30% total dietary fibre 13.66-30.17 g100g-1, content of β-glucans 2.7-3.5 g100g-1, amount of vitamin E (α-tocopherol) determined from 4 to 9.9 mg kg-1. The sum of essential amino acids in oat grain samples were determined from 31.63 to 54.90 gkg-1. Concluded that amino acids composition of husked and naked oats grown in organic or conventional conditions is close to optimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dietetic%20fibre" title="dietetic fibre">dietetic fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title=" amino acids"> amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=scores" title=" scores"> scores</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20value" title=" nutrition value"> nutrition value</a> </p> <a href="https://publications.waset.org/abstracts/26261/oat-grain-functional-ingredient-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Effect of Alcoholic and Acetous Fermentations on Phenolic Acids of Kei-Apple (Dovyalis Caffra L.) Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jolly">Neil Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Louisa%20%20Beukes"> Louisa Beukes</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Benito-SaEz"> Santiago Benito-SaEz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kei-apple is a tree found on the African continent. Limited information exists on the effect of alcoholic and acetous fermentation on the phytochemicals. The fruit has increased L-malic, ascorbic, and phenolic acids. Juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation and acetous fermentation using acetic acid bacteria. Saccharomyces cerevisiae+S. pombe wines and vinegars had highest pH. Total acidity, soluble solids and L-malic acid decreased during alcoholic and acetous fermentation with highest in S. cerevisiae wines and vinegars. Volatile acidity was highest in S. pombe vinegars but not different from S. cerevisiae and S. cerevisiae+S. pombe. Gallic acid was highest in S. pombe wines and vinegars. Syringic acid was highest in S. cerevisiae wines and vinegars. S. cerevisiae+S. pombe wines were highest in caffeic, p-coumaric and protocatechuic acids. Schizosaccharomyces pombe vinegars were highest in caffeic and p-coumaric acids. Ferulic and sinapic acids were highest in S. pombe and S. cerevisiae wines, respectively. Chlorogenic acid was most abundant in both wines and vinegars. Saccharomyces cerevisiae+S. pombe and S. cerevisiae had a positive effect on most phenolic acids. Saccharomyces cerevisiae +acetic acid bacteria had an increased effect on syringic and chlorogenic acids. Schizosaccharomyces pombe+acetic acid bacteria resulted in an increase in gallic, caffeic and p-coumaric acids. Acetic acid bacteria had minimal performance with respect to volatile acidity production in comparison to commercial vinegars. Acetic acid bacteria selection should therefore be reconsidered and the decrease of certain phenolic acids during acetous fermentation needs to be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20bacteria" title="acetic acid bacteria">acetic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=schizosaccharomyces%20pombe" title=" schizosaccharomyces pombe"> schizosaccharomyces pombe</a> </p> <a href="https://publications.waset.org/abstracts/133987/effect-of-alcoholic-and-acetous-fermentations-on-phenolic-acids-of-kei-apple-dovyalis-caffra-l-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Composite Coatings of Piezoelectric Quartz Sensors Based on Viscous Sorbents and Casein Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuba%20Anastasiia">Shuba Anastasiia</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuchmenko%20Tatiana"> Kuchmenko Tatiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Umarkhanov%20Ruslan"> Umarkhanov Ruslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of new sensitive coatings for sensors is one of the key directions in the development of sensor technologies. Recently, there has been a trend towards the creation of multicomponent coatings for sensors, which make it possible to increase the sensitivity, and specificity, and improve the performance properties of sensors. When analyzing samples with a complex matrix of biological origin, the inclusion of micelles of bioactive substances (amino and nucleic acids, peptides, proteins) in the composition of the sensor coating can also increase useful analytical information. The purpose of this work is to evaluate the analytical characteristics of composite coatings of piezoelectric quartz sensors based on medium-molecular viscous sorbents with incorporated micellar casein concentrate during the sorption of vapors of volatile organic compounds. The sorption properties of the coatings were studied by piezoelectric quartz microbalance. Macromolecular compounds (dicyclohexyl-18-crown-6, triton X-100, lanolin, micellar casein concentrate) were used as sorbents. Highly volatile organic compounds of various classes (alcohols, acids, aldehydes, esters) and water were selected as test substances. It has been established that composite coatings of sensors with the inclusion of micellar casein are more stable and selective to vapors of highly volatile compounds than to water vapors. The method and technique of forming a composite coating using molecular viscous sorbents do not affect the kinetic features of VOC sorption. When casein micelles are used, the features of kinetic sorption depend on the matrix of the coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoquartz%20sensor" title="piezoquartz sensor">piezoquartz sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20sorbents" title=" viscous sorbents"> viscous sorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=micellar%20casein" title=" micellar casein"> micellar casein</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20compounds" title=" volatile compounds"> volatile compounds</a> </p> <a href="https://publications.waset.org/abstracts/163492/composite-coatings-of-piezoelectric-quartz-sensors-based-on-viscous-sorbents-and-casein-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nucleic%20acids&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>