CINXE.COM
Yoneda lemma for bicategories in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Yoneda lemma for bicategories in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Yoneda lemma for bicategories </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/11213/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="yoneda_lemma">Yoneda lemma</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></strong></p> <p><strong>Ingredients</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/presheaf">presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+presheaf">representable presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a></p> </li> </ul> <p><strong>Incarnations</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+Yoneda+lemma">enriched Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/co-Yoneda+lemma">co-Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+reduction">Yoneda reduction</a></p> </li> </ul> <p><strong>Properties</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/free+cocompletion">free cocompletion</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+extension">Yoneda extension</a></p> </li> </ul> <p><strong>Universal aspects</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+construction">universal construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+element">universal element</a></p> </li> </ul> <p><strong>Classification</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a>, <a class="existingWikiWord" href="/nlab/show/classifying+stack">classifying stack</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/moduli+space">moduli space</a>, <a class="existingWikiWord" href="/nlab/show/moduli+stack">moduli stack</a>, <a class="existingWikiWord" href="/nlab/show/derived+moduli+space">derived moduli space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+topos">classifying topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+principal+bundle">universal principal bundle</a>, <a class="existingWikiWord" href="/nlab/show/universal+principal+%E2%88%9E-bundle">universal principal ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+morphism">classifying morphism</a></p> </li> </ul> <p><strong>Induced theorems</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Tannaka+duality">Tannaka duality</a></li> </ul> <p>…</p> <p><strong>In higher category theory</strong></p> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+higher+categories">Yoneda lemma for higher categories</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+%28%E2%88%9E%2C1%29-categories">Yoneda lemma for (∞,1)-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+bicategories">Yoneda lemma for bicategories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+tricategories">Yoneda lemma for tricategories</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/Yoneda+lemma+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="2category_theory">2-category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/2-category+theory">2-category theory</a></strong></p> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-category">2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/strict+2-category">strict 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bicategory">bicategory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/enriched+bicategory">enriched bicategory</a></p> </li> </ul> <p><strong>Transfors between 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+functor">lax functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+of+2-categories">equivalence of 2-categories</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-natural+transformation">2-natural transformation</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+natural+transformation">lax natural transformation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/icon">icon</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/modification">modification</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+bicategories">Yoneda lemma for bicategories</a></p> </li> </ul> <p><strong>Morphisms in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fully+faithful+morphism">fully faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/faithful+morphism">faithful morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/conservative+morphism">conservative morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonic+morphism">pseudomonic morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+morphism">discrete morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/eso+morphism">eso morphism</a></p> </li> </ul> <p><strong>Structures in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/adjunction">adjunction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mate">mate</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cartesian+object">cartesian object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fibration+in+a+2-category">fibration in a 2-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/codiscrete+cofibration">codiscrete cofibration</a></p> </li> </ul> <p><strong>Limits in 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-limit">2-limit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-pullback">2-pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inserter">inserter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverter">inverter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equifier">equifier</a></p> </li> </ul> <p><strong>Structures on 2-categories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/lax-idempotent+2-monad">lax-idempotent 2-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudomonad">pseudomonad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pseudoalgebra+for+a+2-monad">pseudoalgebra for a 2-monad</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+2-category">monoidal 2-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cartesian+bicategory">cartesian bicategory</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Gray+tensor+product">Gray tensor product</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proarrow+equipment">proarrow equipment</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#statement'>Statement</a></li> <li><a href='#implications'>Implications</a></li> <li><a href='#proof'>Proof</a></li> <ul> <li><a href='#explicit_proof'>Explicit proof</a></li> <li><a href='#hightechnology_proof'>High-technology proof</a></li> </ul> <li><a href='#related_entries'>Related entries</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="statement">Statement</h2> <p>The <strong>Yoneda lemma for bicategories</strong> is a version of the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a> that applies to <a class="existingWikiWord" href="/nlab/show/bicategories">bicategories</a>, the most common algebraic sort of weak <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a>. It says that for any bicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, any object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">x\in C</annotation></semantics></math>, and any <a class="existingWikiWord" href="/nlab/show/pseudofunctor">pseudofunctor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo lspace="verythinmathspace">:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">F\colon C^{op}\to Cat</annotation></semantics></math>, there is an equivalence of categories</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mi>F</mi><mo stretchy="false">)</mo><mo>≃</mo><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> [C^{op},Cat](C(-,x), F) \simeq F(x) </annotation></semantics></math></div> <p>which is <a class="existingWikiWord" href="/nlab/show/pseudonatural+transformation">pseudonatural</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>, and which is given by evaluation at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>x</mi></msub></mrow><annotation encoding="application/x-tex">1_x</annotation></semantics></math>, i.e. <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo lspace="verythinmathspace">:</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>→</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">\alpha\colon C(-,x)\to F</annotation></semantics></math> maps to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><msub><mn>1</mn> <mi>x</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\alpha_x(1_x)</annotation></semantics></math>.</p> <p>For bicategories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[A,B]</annotation></semantics></math> denotes the bicategory of <a class="existingWikiWord" href="/nlab/show/pseudofunctors">pseudofunctors</a>, <a class="existingWikiWord" href="/nlab/show/pseudonatural+transformations">pseudonatural transformations</a>, and <a class="existingWikiWord" href="/nlab/show/modifications">modifications</a> from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>. Note that it is a strict 2-category as soon as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> is.</p> <h2 id="implications">Implications</h2> <p>In particular, the Yoneda lemma for bicategories implies that there is a <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> for bicategories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">C\to [C^{op},Cat]</annotation></semantics></math> which is <span class="newWikiWord">2-fully-faithful<a href="/nlab/new/2-fully-faithful+functor">?</a></span>, i.e. an equivalence on hom-categories. Therefore, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/equivalence">equivalent</a> to a sub-bicategory of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C^{op},Cat]</annotation></semantics></math>. Since <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> is a <a class="existingWikiWord" href="/nlab/show/strict+2-category">strict 2-category</a>, it follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is equivalent to a strict 2-category, which is one form of the <a class="existingWikiWord" href="/nlab/show/coherence+theorem+for+bicategories">coherence theorem for bicategories</a>. (Conversely, another form of the coherence theorem can be used to prove the Yoneda lemma; see below.)</p> <h2 id="proof">Proof</h2> <p>A detailed proof of the bicategorical Yoneda lemma is given in (<a href="#JohnsonYau">Johnson & Yau 20, Chap. 8</a>).</p> <h3 id="explicit_proof">Explicit proof</h3> <p>An explicit proof, involving many diagrams, has been written up by <a class="existingWikiWord" href="/nlab/show/Igor+Bakovi%C4%87">Igor Baković</a> and can be found <a href="http://www.irb.hr/korisnici/ibakovic/yoneda.pdf">here</a>.</p> <h3 id="hightechnology_proof">High-technology proof</h3> <p>We will take it for granted that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C^{op},Cat]</annotation></semantics></math> is a well-defined bicategory; this is a basic fact having nothing to do with the Yoneda lemma. We also take it as given that “evaluation at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>x</mi></msub></mrow><annotation encoding="application/x-tex">1_x</annotation></semantics></math>” functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mi>F</mi><mo stretchy="false">)</mo><mo>→</mo><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> [C^{op},Cat](C(-,x), F) \to F(x) </annotation></semantics></math></div> <p>is well-defined and pseudonatural in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math>; our goal is to prove that it is an equivalence. (Granted, these basic facts require a fair amount of verification as well.)</p> <p>We will use part of the <span class="newWikiWord">coherence theorem for pseudoalgebras<a href="/nlab/new/coherence+theorem+for+pseudoalgebras">?</a></span>, which says that for a suitably well-behaved strict <a class="existingWikiWord" href="/nlab/show/2-monad">2-monad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>, the inclusion <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Alg</mi> <mi>strict</mi></msub><mo>↪</mo><mi>Ps</mi></mrow><annotation encoding="application/x-tex">Alg_{strict} \hookrightarrow Ps</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Alg</mi></mrow><annotation encoding="application/x-tex">Alg</annotation></semantics></math> of the 2-category of strict <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras and strict <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-morphisms into the 2-category of pseudo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras and pseudo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-morphisms has a left adjoint, usually written as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>′</mo></mrow><annotation encoding="application/x-tex">(-)'</annotation></semantics></math>. Moreover, for any pseudo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, the unit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>A</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">A\to A'</annotation></semantics></math> is an equivalence in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Ps</mi></mrow><annotation encoding="application/x-tex">Ps</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Alg</mi></mrow><annotation encoding="application/x-tex">Alg</annotation></semantics></math>.</p> <p>First, there is a 2-monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math> such that strict <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras are strict 2-categories, strict <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-morphisms are strict 2-functors, pseudo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-algebras are <a class="existingWikiWord" href="/nlab/show/biased">unbiased bicategories</a>, and pseudo <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math>-morphisms are <a class="existingWikiWord" href="/nlab/show/pseudofunctors">pseudofunctors</a>. By Mac Lane’s coherence theorem for bicategories, any ordinary bicategory can equally well be considered as an unbiased one. Thus, since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math> is a strict 2-category, for any bicategory <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> there is a strict 2-category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">C'</annotation></semantics></math> such that pseudofunctors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">C\to Cat</annotation></semantics></math> are in bijection with strict 2-functors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo><mo>→</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">C'\to Cat</annotation></semantics></math>.</p> <p>Now note that a pseudonatural transformation between two pseudofunctors (resp. strict 2-functors) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">C\to D</annotation></semantics></math> is the same as a single pseudofunctor (resp. strict 2-functor) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mi>Cyl</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C\to Cyl(D)</annotation></semantics></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cyl</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Cyl(D)</annotation></semantics></math> is the bicategory whose objects are the 1-cells of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>, whose 1-cells are squares in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> commuting up to isomorphism, and whose 2-cells are “cylinders” in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>. Likewise, a modification between two such transformations is the same as a single functor (of whichever sort) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>→</mo><mn>2</mn><mi>Cyl</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C\to 2Cyl(D)</annotation></semantics></math>, where the objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn><mi>Cyl</mi><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">2Cyl(D)</annotation></semantics></math> are the 2-cells of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math>, and so on. Therefore, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">C'</annotation></semantics></math> classifies not only pseudofunctors out of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, but transformations and modifications between them; thus we have an isomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><mo stretchy="false">]</mo><mo>≅</mo><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub></mrow><annotation encoding="application/x-tex">[C^{op},Cat] \cong [(C')^{op},Cat]_{strict,pseudo}</annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo>,</mo><mi>B</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub></mrow><annotation encoding="application/x-tex">[A,B]_{strict,pseudo}</annotation></semantics></math> denotes the 2-category of strict 2-functors, pseudonatural transformations, and modifications between two strict 2-categories. Thus we can equally well analyze the functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub><mo stretchy="false">(</mo><mover><mrow><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>¯</mo></mover><mo>,</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>→</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> [(C')^{op},Cat]_{strict,pseudo}(\overline{C(-,x)}, \overline{F}) \to \overline{F}(x) = F(x) </annotation></semantics></math></div> <p>given by evaluation at <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>x</mi></msub></mrow><annotation encoding="application/x-tex">1_x</annotation></semantics></math>. Here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mrow><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">\overline{C(-,x)}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>F</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">\overline{F}</annotation></semantics></math> denote the strict 2-functors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>→</mo><mi>Cat</mi></mrow><annotation encoding="application/x-tex">(C')^{op}\to Cat</annotation></semantics></math> corresponding to the pseudofunctors <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C(-,x)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> under the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>′</mo></mrow><annotation encoding="application/x-tex">(-)'</annotation></semantics></math> adjunction. However, we also have a strict 2-functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">C'(-,x)</annotation></semantics></math>, and the equivalence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>≃</mo><mi>C</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">C\simeq C'</annotation></semantics></math> induces an equivalence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≃</mo><mover><mrow><mi>C</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">C'(-,x)\simeq \overline{C(-,x)}</annotation></semantics></math>. Therefore, it suffices to analyze the functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>→</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>.</mo></mrow><annotation encoding="application/x-tex"> [(C')^{op},Cat]_{strict,pseudo}(C'(-,x), \overline{F}) \to \overline{F}(x). </annotation></semantics></math></div> <p>Now for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>, we have an inclusion functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo>,</mo><mi>B</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>strict</mi></mrow></msub><mo>→</mo><mo stretchy="false">[</mo><mi>A</mi><mo>,</mo><mi>B</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub></mrow><annotation encoding="application/x-tex">[A,B]_{strict,strict} \to [A,B]_{strict,pseudo}</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>A</mi><mo>,</mo><mi>B</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>strict</mi></mrow></msub></mrow><annotation encoding="application/x-tex">[A,B]_{strict,strict}</annotation></semantics></math> denotes the 2-category of strict 2-functors, strict 2-natural transformations, and modifications. This functor is <a class="existingWikiWord" href="/nlab/show/bijective+on+objects+functor">bijective on objects</a> and <a class="existingWikiWord" href="/nlab/show/locally+fully+faithful+2-functor">locally fully faithful</a>. Moreover, the composite</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>strict</mi></mrow></msub><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>→</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>.</mo></mrow><annotation encoding="application/x-tex"> [(C')^{op},Cat]_{strict,strict}(C'(-,x), \overline{F}) \to [(C')^{op},Cat]_{strict,pseudo}(C'(-,x), \overline{F}) \to \overline{F}(x). </annotation></semantics></math></div> <p>is an <em>isomorphism</em>, by the <a class="existingWikiWord" href="/nlab/show/enriched+Yoneda+lemma">enriched Yoneda lemma</a>, in the special case of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Cat</mi></mrow><annotation encoding="application/x-tex">Cat</annotation></semantics></math>-enrichment. Since</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>strict</mi></mrow></msub><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>,</mo><mi>Cat</mi><msub><mo stretchy="false">]</mo> <mrow><mi>strict</mi><mo>,</mo><mi>pseudo</mi></mrow></msub><mo stretchy="false">(</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>,</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[(C')^{op},Cat]_{strict,strict}(C'(-,x), \overline{F}) \to [(C')^{op},Cat]_{strict,pseudo}(C'(-,x), \overline{F})</annotation></semantics></math></div> <p>is fully faithful, if we can show that it is essentially surjective, then the <a class="existingWikiWord" href="/nlab/show/2-out-of-3+property">2-out-of-3 property</a> for equivalences of categories will imply that the desired functor is an equivalence.</p> <p>Here we at last descend to something concrete. Given <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo lspace="verythinmathspace">:</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>→</mo><mover><mi>F</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">\alpha\colon C'(-,x)\to \overline{F}</annotation></semantics></math>, we have an obvious choice for a strict transformation for it to be equivalent to, namely <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>β</mi></mrow><annotation encoding="application/x-tex">\beta</annotation></semantics></math> whose components <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>β</mi> <mi>y</mi></msub><mo lspace="verythinmathspace">:</mo><mi>C</mi><mo>′</mo><mo stretchy="false">(</mo><mi>y</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>→</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\beta_y\colon C'(y,x)\to \overline{F}(y)</annotation></semantics></math> is given by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>↦</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f \mapsto \overline{F}(f)(a)</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>a</mi><mo>=</mo><msub><mi>α</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><msub><mn>1</mn> <mi>x</mi></msub><mo stretchy="false">)</mo><mo>∈</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">a = \alpha_x(1_x)\in \overline{F}(x)</annotation></semantics></math>. Since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math> is pseudonatural, for any <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>y</mi><mo>→</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">f\colon y\to x</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>′</mo></mrow><annotation encoding="application/x-tex">C'</annotation></semantics></math> we have an isomorphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>α</mi> <mi>y</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>α</mi> <mi>y</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo>∘</mo><msub><mn>1</mn> <mi>x</mi></msub><mo stretchy="false">)</mo><mo>≅</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><msub><mi>α</mi> <mi>x</mi></msub><mo stretchy="false">(</mo><msub><mn>1</mn> <mi>x</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mover><mi>F</mi><mo>¯</mo></mover><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>β</mi> <mi>y</mi></msub><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>.</mo></mrow><annotation encoding="application/x-tex">\alpha_y(f) = \alpha_y(f\circ 1_x) \cong \overline{F}(f)(\alpha_x(1_x)) = \overline{F}(f)(a) = \beta_y(f).</annotation></semantics></math></div> <p>We then simply verify that these isomorphisms are the components of an (invertible) modification <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>≅</mo><mi>β</mi></mrow><annotation encoding="application/x-tex">\alpha\cong \beta</annotation></semantics></math>. This completes the proof.</p> <h2 id="related_entries">Related entries</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Yoneda+lemma+for+tricategories">Yoneda lemma for tricategories</a></li> </ul> <h2 id="references">References</h2> <p>Review:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Angelo+Vistoli">Angelo Vistoli</a>, §3.6.2 in: <em>Grothendieck topologies, fibered categories and descent theory</em>, in: <em><a class="existingWikiWord" href="/nlab/show/Fundamental+algebraic+geometry+--+Grothendieck%27s+FGA+explained">Fundamental algebraic geometry – Grothendieck's FGA explained</a></em>, Mathematical Surveys and Monographs <strong>123</strong>, Amer. Math. Soc. (2005) 1-104 [<a href="https://bookstore.ams.org/surv-123-s">ISBN:978-0-8218-4245-4</a>, <a href="http://arxiv.org/abs/math/0412512">math.AG/0412512</a>]</li> </ul> <p>See also:</p> <ul> <li id="JohnsonYau"><a class="existingWikiWord" href="/nlab/show/Niles+Johnson">Niles Johnson</a>, <a class="existingWikiWord" href="/nlab/show/Donald+Yau">Donald Yau</a>, Chap. 8: <em>2-Dimensional Categories</em>, (<a href="https://arxiv.org/abs/2002.06055">arXiv:2002.06055</a>)</li> </ul> <p>An account of <a class="existingWikiWord" href="/nlab/show/Morita+equivalence">Morita equivalence</a> as a corollary of the Yoneda lemma for bicategories is in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Niles+Johnson">Niles Johnson</a>, <em>Morita Theory For Derived Categories: A Bicategorical Perspective</em> (<a href="http://arxiv.org/abs/0805.3673">arXiv:0805.3673</a>)</li> </ul> <p>The stricter case of 2-categories is detailed in</p> <ul> <li>Jonas Hedman, <em>2-Categories and Yoneda lemma</em> (<a href="http://www.diva-portal.org/smash/get/diva2:1064822/FULLTEXT01.pdf">pdf</a>)</li> <li>Max Kelly, <em>Basic Concepts of Enriched Category Theory</em> (<a href="http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html">TAC</a>, <a href="http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf">pdf</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on May 7, 2023 at 07:02:33. See the <a href="/nlab/history/Yoneda+lemma+for+bicategories" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Yoneda+lemma+for+bicategories" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/11213/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/revision/Yoneda+lemma+for+bicategories/18" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Yoneda+lemma+for+bicategories" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Yoneda+lemma+for+bicategories" accesskey="S" class="navlink" id="history" rel="nofollow">History (18 revisions)</a> <a href="/nlab/show/Yoneda+lemma+for+bicategories/cite" style="color: black">Cite</a> <a href="/nlab/print/Yoneda+lemma+for+bicategories" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Yoneda+lemma+for+bicategories" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>