CINXE.COM
Search results for: growth and yield
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: growth and yield</title> <meta name="description" content="Search results for: growth and yield"> <meta name="keywords" content="growth and yield"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="growth and yield" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="growth and yield"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8342</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: growth and yield</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8342</span> Effects of Hypoxic Duration at Different Growth Stages on Yield Potential of Waxy Corn (Zea mays L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Boonlertnirun">S. Boonlertnirun</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Suvannasara"> R. Suvannasara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Boonlertnirun"> K. Boonlertnirun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypoxia has negative effects on growth and crop yield, its severity is so varied depending on crop growth stages, duration of hypoxia and crop species. The objective was to evaluate the sensitive growth stage and the duration of hypoxia negatively affecting growth and yield of waxy corn. Pot experiment was conducted using a split plot in randomized complete block with 3 growth stages: V3 (3-4 true leaves), V7 (7-8 true leaves), and R1 (silking stage), and three hypoxic durations: 6, 9, and 12 days, in an open–ended outdoor greenhouse during January to March 2013. The results revealed that different growth stages had significantly (p < 0.5) different responses to hypoxia, seeing that the sensitive growth stage affecting plant height, yield and yield components was mostly detected in V7 growth stage whereas leaf greenness and days to silking were sensitive to hypoxia at R1 growth stage. Different hypoxic durations significantly affected the yield and yield components, hypoxic duration of twelve days showed the most negative effect greater than the others. In this present study, it can be concluded that waxy corn plants were waterlogged at V7 growth stage for twelve days had the most negative effect on yield and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypoxia%20duration" title="hypoxia duration">hypoxia duration</a>, <a href="https://publications.waset.org/abstracts/search?q=waxy%20corn" title=" waxy corn"> waxy corn</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=Zea%20mays%20L." title=" Zea mays L. "> Zea mays L. </a> </p> <a href="https://publications.waset.org/abstracts/2297/effects-of-hypoxic-duration-at-different-growth-stages-on-yield-potential-of-waxy-corn-zea-mays-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8341</span> Investigation of Growth Yield and Antioxidant Activity of Monascus purpureus Extract Isolated from Stirred Tank Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pourshirazi">M. Pourshirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Esmaelifar"> M. Esmaelifar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aliahmadi"> A. Aliahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yazdian"> F. Yazdian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Hatamian%20Zarami"> A. S. Hatamian Zarami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Ashrafi"> S. J. Ashrafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monascus purpureus is an antioxidant-producing fungus whose secondary metabolites can be used in drug industries. The growth yield and antioxidant activity of extract were investigated in 3-L liquid fermentation media in a 5-L stirred tank bioreactor (STD) at 30°C, pH 5.93 and darkness for 4 days with 150 rpm agitation and 40% dissolved oxygen. Results were compared to extract isolated from Erlenmeyer flask with the same condition. The growth yield was 0.21 and 0.17 in STD condition and Erlenmeyer flask, respectively. Furthermore, the IC50 of DPPH scavenging activity was 256.32 µg/ml and 150.43 µg/ml for STD extract and flask extract, respectively. Our data demonstrated that transferring the growth condition into the STD caused an increase in growth yield but not in antioxidant activity. Accordingly, there is no relationship between growth rate and secondary metabolites formation. More studies are needed to determine the mass transfer coefficient and also evaluating the hydrodynamic condition have to be done in the future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monascus%20purpureus" title="Monascus purpureus">Monascus purpureus</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20yield" title=" growth yield"> growth yield</a> </p> <a href="https://publications.waset.org/abstracts/9632/investigation-of-growth-yield-and-antioxidant-activity-of-monascus-purpureus-extract-isolated-from-stirred-tank-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8340</span> Agriculture Yield Prediction Using Predictive Analytic Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagini%20Sabbineni">Nagini Sabbineni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajini%20T.%20V.%20Kanth"> Rajini T. V. Kanth</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Kiranmayee"> B. V. Kiranmayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20growth" title="agriculture yield growth">agriculture yield growth</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20yield%20prediction" title=" agriculture yield prediction"> agriculture yield prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=explorative%20data%20analysis" title=" explorative data analysis"> explorative data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20models" title=" predictive models"> predictive models</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20models" title=" regression models"> regression models</a> </p> <a href="https://publications.waset.org/abstracts/54159/agriculture-yield-prediction-using-predictive-analytic-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8339</span> Effect of Plant Growth Regulator on Vegetative Growth and Yield Components of Winter Wheat under Different Levels of Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed%20Alghamdi">Mohammed Ahmed Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiment were carried out to investigate the effect of the plant growth regulator on vegetative growth and yield components of reduced height isogenic lines of the wheat (Triticum aestivum L.) cultivar Mercia. The Field experiment compared the growth regulator response of seven isogenic lines of Mercia. Growth regulators reduced plant height significantly in all lines. Growth regulator decreased total dry matter and grain yield with greatest reduction generally for the control and Rht8 lines. Rht1 was the least affected. There were few significant effects of growth regulator on gas exchange and chlorophyll fluorescence but the trend was for greater values with growth regulator. In this field experiment, a rate of 2.0 l ha-1 applied just before the third node detectable stage under non water stressed and water stressed conditions gave slight increases in yield of up to 14% except for line Rht10 which increased significantly in non-stressed conditions. In the second glasshouse experiment, a rate of 2.5 l ha-1 applied at the start of stem elongation under 30% FC and 100% FC gave reductions in yield up to 16% for the growth regulator and 55% under water stress. In the field experiment, rates of 2.5 and 3.0 l ha-1 applied at the start of stem elongation gave reductions in yield up to 20% mainly through individual seed weight. In the final glasshouse experiment, rates of 2.5 and 3.0 l ha-1 applied at 6 leaves unfolded and 1st node detectable both reduced grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20regulator" title="growth regulator">growth regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=isogenic%20lines" title=" isogenic lines"> isogenic lines</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20wheat" title=" winter wheat"> winter wheat</a> </p> <a href="https://publications.waset.org/abstracts/27090/effect-of-plant-growth-regulator-on-vegetative-growth-and-yield-components-of-winter-wheat-under-different-levels-of-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8338</span> Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Raphael%20Adeyemi">Olusegun Raphael Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwaseun%20Osunleti"> Samuel Oluwaseun Osunleti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiddin%20Adekunle%20Bashiruddin"> Abiddin Adekunle Bashiruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria, to evaluate the effect of biochar application under different weeding regimes on the growth and yield of okra. Treatments were laid out in a split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar, namely 0t/ha, 10t/ha and 20t/ha while sub-plot treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra and weed parameters were subjected to analysis of variance, and treatment means were separated using the least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in an 87.3% yield reduction in okra. It is concluded that weed suppression, growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding" title=" weeding"> weeding</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20competition" title=" weed competition"> weed competition</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/184663/response-of-okra-abelmoschus-esculentus-l-moench-to-soil-amendments-and-weeding-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8337</span> Response of Okra (Abelmoschus Esculentus (L). Moench) to Soil Amendments and Weeding Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Raphael%20Adeyemi">Olusegun Raphael Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwaseun%20Osunleti"> Samuel Oluwaseun Osunleti</a>, <a href="https://publications.waset.org/abstracts/search?q=Abiddin%20Adekunle%20Bashiruddin">Abiddin Adekunle Bashiruddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field trials were conducted in 2020 and 2021 at the Teaching and Research Farm of the Federal University of Agriculture Abeokuta, Ogun State, Nigeria to evaluate the effect of biochar application under different weeding regimes on growth and yield of okra. Treatments were laid out in split- plot in a randomized complete block design with three replications. Main plot treatments were three levels of biochar namely 0t/ha, 10t/ha and 20t/ha while sub-plots treatments consisted of four weeding regimes (weeding at 3, 6 and 9 WAS, weeding at 3 and 6 WAS, weeding at 3 WAS and weedy check as control). Data collected on growth and yield of okra, and weed parameters were subjected to analysis of variance and treatment means were separated using least significant difference at p < 0.05. Results showed that biochar applied at 20 t/ha increased okra yield by 47.5% compared to the control. Weeding at 3, 6 and 9 WAS gave the highest okra yield. Uncontrolled weed infestation throughout crop growth resulted in 87.3% yield reduction in okra. It is concluded that weed suppression , growth and yield of okra can be enhanced by the application of biochar at 20t/ha and weeding at 3, 6 and 9 WAS hence recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=okra" title=" okra"> okra</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding" title=" weeding"> weeding</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20competition" title=" weed competition"> weed competition</a> </p> <a href="https://publications.waset.org/abstracts/181280/response-of-okra-abelmoschus-esculentus-l-moench-to-soil-amendments-and-weeding-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8336</span> Effect of Pre-treatment with Salicylic Acid on Vegetative Growth and Yield Components of Wheat under Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20M.%20Howladar">Saad M. Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20exchange" title=" gas exchange"> gas exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/7202/effect-of-pre-treatment-with-salicylic-acid-on-vegetative-growth-and-yield-components-of-wheat-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8335</span> Effect of Pre-Treatment with Salicylic Acid on Vegetative Growth and Yield Components of Saudi’s Wheat under Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Howladar">Saad Howladar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Dennett"> Mike Dennett </a> </p> <p class="card-text"><strong>Abstract:</strong></p> At first harvest, results showed that salinity (tap water, 100 and 200 mM NaCl) induced a significant decrease in all growth parameters in both Yecora Rojo and Paragon cultivars. The greatest effect of salinity was a decrease in leaf area. The same tendency was observed with specific leaf area, and total fresh and dry weights and their components. Green leaf and tiller numbers were reduced by the same extent in both cultivars. The corresponding final harvest, all growth parameters also reduced with increased salinity. Yield and yield components were also reduced by salinity with similar effects in both cultivars. Chlorophyll fluorescence, expressed as Fv/Fm, and gas exchange parameters were decreased significantly with increase in salinity in both cultivars. In contrast, seed protein content was increased significantly with increase in salinity. Salicylic acid (SA) application induced no significant improvements in growth parameters and yield components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salinity" title="salinity">salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20fluorescence" title=" chlorophyll fluorescence"> chlorophyll fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20exchange" title=" gas exchange"> gas exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/10390/effect-of-pre-treatment-with-salicylic-acid-on-vegetative-growth-and-yield-components-of-saudis-wheat-under-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8334</span> Interaction of Elevated Carbon Dioxide and Temperature on Strawberry (Fragaria × ananassa) Growth and Fruit Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himali%20N.%20Balasooriya">Himali N. Balasooriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kithsiri%20B.%20Dassanayake"> Kithsiri B. Dassanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=Saman%20Seneweera"> Saman Seneweera</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Ajlouni"> Said Ajlouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase in atmospheric CO<sub>2</sub> concentration [CO<sub>2</sub>] and ambient temperature associated with changing climatic conditions will have significant impacts on agriculture crop productivity and quality. Independent effects of the above two environmental variables on the growth, yield and quality of strawberry were well documented. Higher temperatures over the optimum range (20-25ºC) lead to crop failures, while elevated [CO<sub>2</sub>] stimulated plant growth and yield but compromised the physical quality of fruits. However, there is very limited understanding of the interaction between these variables on the plant growth, yield and quality. Therefore, this study was designed to investigate the interactive effect of high temperature and elevated [CO<sub>2</sub>] on growth, yield and quality of strawberries. Strawberry cultivars ‘Albion’ and ‘San Andreas’ were grown under six different combinations of two temperatures (25 and 30ºC) and three [CO<sub>2</sub>] (400, 650 and 950 µmol mol<sup>-1</sup>) in controlled-environmental growth chambers. Plant growth measurements such as plant height, canopy area, number of flowers, and fruit yield were measured during phonological development. Photosynthesis and transpiration, the ratio of intercellular to atmospheric [CO<sub>2</sub>] (Ci/Ca) were measured to estimate the physiological adjustment to climate stress. The impact of temperature and [CO<sub>2</sub>] interaction on growth and yield of strawberry was significant (p < 0.05). Across both cultivars, highest fruit yields were observed at 650 µmol mol<sup>-1</sup> [CO<sub>2</sub>], which was particularly clear at 25°C. The fruit yield gradually decreased at 30°C under all the treatment combinations. However, photosynthesis rates were highest at 650 µmol mol<sup>-1 </sup>[CO<sub>2</sub>] but no increment was found at 900 µmol mol<sup>-1</sup> [CO<sub>2</sub>]. Interestingly, Ci/Ca ratio increased with increasing atmospheric [CO<sub>2</sub>] which was predominant at high temperature. Similarly, fruit yield was substantially reduced at high [CO<sub>2</sub>] under high temperature. Our findings suggest that increased Ci/Ca ratio at high temperature is likely reduces the photosynthesis and thus yield response to elevated [CO<sub>2</sub>]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20CO%E2%82%82%20concentration" title="atmospheric CO₂ concentration">atmospheric CO₂ concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20yield" title=" fruit yield"> fruit yield</a>, <a href="https://publications.waset.org/abstracts/search?q=strawberry" title=" strawberry"> strawberry</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/91768/interaction-of-elevated-carbon-dioxide-and-temperature-on-strawberry-fragaria-ananassa-growth-and-fruit-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8333</span> Effect of Inflorescence Removal and Earthing-Up Times on Growth and Yield of Potato (Solanum tuberosum L.) at Jimma Southwestern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessie%20Fisseha">Dessie Fisseha</a>, <a href="https://publications.waset.org/abstracts/search?q=Derbew%20Belew"> Derbew Belew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambecha%20Olika"> Ambecha Olika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato is a high-potential food security crop in Ethiopia. However, the yield and productivity of the crop have been far below the world average. This is due to several factors, including appropriate agronomic practices, such as time of earthing-up and inflorescence management. A field experiment was conducted at Jimma, Southwest Ethiopia, during 2016/17 under irrigation to determine the effect of time of earthing-up and inflorescence removal on the growth, yield, and quality of potatoes. The treatments consisted of a time of earthing-up (no earthing-up, earthing-up at 15, 30, and 45 days after complete plant emergence) and inflorescence removal (inflorescence removed and not removed). Potato variety (Belete) was used for this experiment. A 2x4 factorial experiment was laid out with three replications. Data collected on the growth, yield, and quality components of potatoes were analyzed using SAS Version 9.3 statistical software. Inflorescence removal affected the majority of the growth and yield parameters, while the time of earthing-up affected all growth, yield, and quality (green tuber number) parameters. Earthing-up at 15 days in combination with inflorescence removal (at 60 days after complete plant emergence) gave better plant growth and maximum tuber yield of the Belete potato variety under irrigated conditions. Since the current research was conducted at one location, in one season, and with one potato cultivar (Belete), it would be advisable to repeat the experiment so as to arrive at a final conclusion and subsequent recommendation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belete" title="Belete">Belete</a>, <a href="https://publications.waset.org/abstracts/search?q=earthing-up" title=" earthing-up"> earthing-up</a>, <a href="https://publications.waset.org/abstracts/search?q=inflorescence" title=" inflorescence"> inflorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/167985/effect-of-inflorescence-removal-and-earthing-up-times-on-growth-and-yield-of-potato-solanum-tuberosum-l-at-jimma-southwestern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8332</span> Effect of Tillage Practices and Planting Patterns on Growth and Yield of Maize (Zee Maize)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20R.%20Obalowu">O. R. Obalowu</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20B.%20Akande"> F. B. Akande</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P%20Abegunrin"> T. P Abegunrin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize (Zea may) is mostly grown and consumed by Nigeria farmers using different tillage practices which have a great effect on its growth and yield. In order to maximize output, there is need to recommend a suitable tillage practice for crop production which will increase the growth and yield of maize. This study investigated the effect of tillage practices and planting pattern on the growth and yield of maize. The experiment was arranged in a 4x3x3 Randomized Complete Block Design (RCBD) layout, with four tillage practices consisting of no-tillage (NT), disc ploughing only (Ponly), disc ploughing followed by harrowing (PH), and disc ploughing, harrowing then ridging (PHR). Three planting patterns which include; 65 x 75, 75 x 75 and 85 x 75 cm spacing within and between the rows respectively, were randomly applied on the plots. All treatments were replicated three times. Data which consist of plant height, stem girth, leaf area and weight of maize per plots were taken and recorded. Data gathered were analyzed using Analysis of Variance (ANOVA) in the Minitab Software Package. The result shows that PHR under the third planting pattern has the highest growth rate (216.50 cm) while NT under the first planting pattern has the lowest mean value of growth rate (115.60 cm). Also, Ponly under the first planting pattern gives a better maize yield (19.45 kg) when compared with other tillage practices while NT under first planting pattern recorded the least yield of maize (9.40 kg). In conclusion, considering soil and weather conditions of the research area, plough only under the first planting pattern (65 x 75 cm) is the best alternative for the production of the Swan maize variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage%20practice" title="tillage practice">tillage practice</a>, <a href="https://publications.waset.org/abstracts/search?q=planting%20pattern" title=" planting pattern"> planting pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=disc%20ploughing" title=" disc ploughing"> disc ploughing</a>, <a href="https://publications.waset.org/abstracts/search?q=harrowing" title=" harrowing"> harrowing</a>, <a href="https://publications.waset.org/abstracts/search?q=ridging" title=" ridging"> ridging</a> </p> <a href="https://publications.waset.org/abstracts/35634/effect-of-tillage-practices-and-planting-patterns-on-growth-and-yield-of-maize-zee-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8331</span> Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali.%20Marjani">Ali. Marjani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farsi"> M. Farsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimizadeh"> M. Rahimizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (<em>Cicer arietinum</em> L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea" title="chickpea">chickpea</a>, <a href="https://publications.waset.org/abstracts/search?q=drought%20stress" title=" drought stress"> drought stress</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20stage" title=" growth stage"> growth stage</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/55202/response-of-chickpea-cicer-arietinum-l-genotypes-to-drought-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8330</span> Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Khattab">E. Khattab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Halla"> S. Halla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20irrigation" title="interval irrigation">interval irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield%20characters" title=" growth and yield characters"> growth and yield characters</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=jojoba" title=" jojoba"> jojoba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinai" title=" Sinai"> Sinai</a> </p> <a href="https://publications.waset.org/abstracts/80001/effect-of-irrigation-interval-on-jojoba-plants-under-circumstance-of-sinai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8329</span> Response of Onion to FTM and Inorganic Fertilizers Application on Growth, Yield and Nutrient Uptake in Lateritic Soil of Konkan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupali%20Thorat">Rupali Thorat</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Dodake"> S. B. Dodake</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Palsande"> V. N. Palsande</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Patil"> S. D. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted to study the “Response of onion to FYM and inorganic fertilizers application on growth, yield and nutrient uptake in lateritic soil of Konkan” at the farm of Pangari block of Irrigation of Scheme, Central Experimentation Station, Wakawali during Rabi 2009-10. There were 12 treatment combinations, comprising of 3 levels of NPK fertilizers (C1 ,C2-125 kg N, 62.5 kg P205 and 62.5 kg K20 ha-1 and C3-150 kg N, 75 kg P205 and 75 kg K20 ha-1) and 4 levels of FYM (F1-10 t FYM ha-1, F2 - 15 t FYM ha-1, F3-20 t FYM ha-1, F4-25 t FYM ha-1) replicated thrice using Factorial Randomized Block Design. The observations on plant height, number of leaves, girth of plant, polar and equatorial diameter of bulb as well as dry matter yield, onion bulb yield recorded during the course of field study were subjected to statistical analysis. Similarly nutrient content and uptake, quality parameters of bulb and soil properties were also determined and their data were also analyzed statistically. It is revealed from the study that the growth attributes, dry matter yield, onion bulb yield, nutrient content, nutrient uptake, quality parameters were improved significantly due to application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1(C3F3). Application of NPK @ 150:75:75 kg ha-1 along with FYM @ 20 t ha-1 (C3F3) registered highest onion bulb yield (t ha-1). The quality of onion as well as availability of N, P, K, Fe, Mn, Zn and Cu in the soil was improved due to application of NPK @ 150:75:75 kg ha-1 and FYM @ 20 t ha-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=onion" title="onion">onion</a>, <a href="https://publications.waset.org/abstracts/search?q=FYM" title=" FYM"> FYM</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20uptake%20and%20fertilizer" title=" nutrient uptake and fertilizer"> nutrient uptake and fertilizer</a> </p> <a href="https://publications.waset.org/abstracts/23182/response-of-onion-to-ftm-and-inorganic-fertilizers-application-on-growth-yield-and-nutrient-uptake-in-lateritic-soil-of-konkan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8328</span> Effect of Plowing the Soil of Faba Bean on Soil Productivity and Quality Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khattab%20E.%20A.">Khattab E. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20A.%20Amin"> Gehan A. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the experiment was to investigate yield and yield components under effect of three different tillage systems and three faba bean varieties on clay-loamy soils. The experiment was conducted as split plot design having tillage systems in main plot and varieties in subplot. A field trial was conducted during the winter seasons of 2021-2022 and 2022-2-23, respectively in private of the agricultural lands of Shobra Beddin village, which belongs to Mansoura District of Dakahlia Province 31°, (04457)- N latitude and 31°4757- E longitude. The soil was prepared. The Seeds covered with a thin layer of soil, sown and watered. Three weeks later, the developed plants were thinned. Finally, the plants collected after 110 days of growth. Growth, yield and chemical contents determined. The results showed that the highest yield in the traditional tillage system corresponds to the superior to other tillage systems. In addition, In the variety comparison, the Sakha 1 variety was characterized by the highest yield as well as the highest values of plant growth properties among the three varieties. Conclusion: The traditional tillage system is increase grain yield of variety Sakha 1 compared with other varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yield" title="yield">yield</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage%20system" title=" tillage system"> tillage system</a>, <a href="https://publications.waset.org/abstracts/search?q=varieties" title=" varieties"> varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=faba%20bean" title=" faba bean"> faba bean</a> </p> <a href="https://publications.waset.org/abstracts/179437/effect-of-plowing-the-soil-of-faba-bean-on-soil-productivity-and-quality-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8327</span> Effect of Silicon Sulphate and Silicic Acid Rates on Growth, Yield and Nutritional Status of Wheat (Triticum aestivum L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Shemi">R. G. Shemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Abo%20Horish"> M. A. Abo Horish</a>, <a href="https://publications.waset.org/abstracts/search?q=Kh.%20M.%20A.%20Mekled"> Kh. M. A. Mekled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of silicon (Si) sources is a crucial agricultural tool that requires optimization to promote sustainable practices. The application of Si provides the implementation of biological mechanisms of plant nutrition, growth promotion, and protection. The aims of this experiment were to investigate the relative efficacy of Si sources and levels on the growth, yield, and mineral content of wheat. The study examined the effects of silicon sulphate and silicic acid levels on growth, spike characteristics, yield parameters, and macro- and micronutrient concentrations of wheat during the 2-season. The entire above-indicated parameters were significantly (p < 0.05) increased with increasing levels of silicon sulphate and silicic acid compared to the control. Foliar application of silicon sulphate 150 ppm and silicic acid 60 ppm statistically (p < 0.05) enhanced grain N concentration and the grain yield by 136.14 and 77.85%, 43.49 and 34.52% in the 1st season, and by 78.62 and 54.40%, 43.53 and 33.18% in the 2nd season, respectively, as compared with control. Overall, foliar applications of silicon sulphate at 150 ppm and silicic acid at 60 ppm were greatly efficient amongst all Si levels and sources in improving growth and spike characters, increasing yield parameters, and elevating grain nutrients. Finally, the treatment of silicon sulfate at 150 ppm was more effective than the treatment of silicic acid at 60 ppm in increasing growth, grain nutrients, and productivity of wheat and attaining agricultural sustainability under experiment conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20sulphate" title=" silicon sulphate"> silicon sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=silicic%20acid" title=" silicic acid"> silicic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20nutrients" title=" grain nutrients"> grain nutrients</a> </p> <a href="https://publications.waset.org/abstracts/192208/effect-of-silicon-sulphate-and-silicic-acid-rates-on-growth-yield-and-nutritional-status-of-wheat-triticum-aestivum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8326</span> Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Babalola">O. A. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Adekunle"> A. F Adekunle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Oladeji"> F. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Osungbade"> A. T. Osungbade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Akinlaja"> O. A. Akinlaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activities" title=" microbial activities"> microbial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contribution" title=" microbial contribution"> microbial contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth%20and%20yield" title=" tomato growth and yield"> tomato growth and yield</a> </p> <a href="https://publications.waset.org/abstracts/81437/contributions-of-microbial-activities-to-tomato-growth-and-yield-under-an-organic-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8325</span> Nitrogen and Potassium Fertilizer Response on Growth and Yield of Hybrid Luffa –Naga F1 Variety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20T.%20N.%20K.%20Dissanayake">D. R. T. N. K. Dissanayake</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20S.%20K.%20Herath"> H. M. S. K. Herath</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20S.%20G.%20Gunadasa"> H. K. S. G. Gunadasa</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Weerasinghe"> P. Weerasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luffa is a tropical and subtropical vegetable, belongs to family Cucurbiteceae. It is predominantly monoecious in sex expression and provides an ample scope for utilization of hybrid vigor. Hybrid varieties develop through open pollination, produce higher yields due to its hybrid vigor. Naga F1 hybrid variety consists number of desirable traits other than higher yield such as strong and vigorous plants, fruits with long deep ridges, attractive green color fruits ,better fruit weight, length and early maturity compared to the local Luffa cultivars. Unavailability of fertilizer recommendations for hybrid cucurbit vegetables leads to an excess fertilizer application causing a vital environmental issue that creates undesirable impacts on nature and the human health. Main Objective of this research is to determine effect of different nitrogen and potassium fertilizer rates on growth and yield of Naga F1 Variety. Other objectives are, to evaluate specific growth parameters and yield, to identify the optimum nitrogen and potassium fertilizer levels based on growth and yield of hybrid Luffa variety. As well as to formulate the general fertilizer recommendation for hybrid Luffa -Naga F1 variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid" title="hybrid">hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorous" title=" phosphorous"> phosphorous</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a> </p> <a href="https://publications.waset.org/abstracts/28263/nitrogen-and-potassium-fertilizer-response-on-growth-and-yield-of-hybrid-luffa-naga-f1-variety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8324</span> Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20El%20Sabagh">Ayman El Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Celaleddin%20Barut%C3%A7ular"> Celaleddin Barutçular</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirofumi%20Saneoka"> Hirofumi Saneoka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-enegry increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought%20susceptibility%20index" title="drought susceptibility index">drought susceptibility index</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20growth" title=" grain growth"> grain growth</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/37438/assessment-of-drought-tolerance-maize-hybrids-at-grain-growth-stage-in-mediterranean-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8323</span> Screening and Evaluation of Plant Growth Promoting Rhizobacteria of Wheat/Faba Bean for Increasing Productivity and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Arafat">Yasir Arafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Shah"> Asma Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Shao"> Hua Shao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: Legume/cereal intercropping is used worldwide for enhancement in biomass and yield of cereal crops. However, because of intercropping, the belowground biological and chemical interactions and their effect on physiological parameters and yield of crops are limited. Methods: Wheat faba bean (WF) intercropping was designed to understand the underlying changes in the soil's chemical environment, soil microbial communities, and effect on growth and yield parameters. Experimental plots were established as having no root partition (NRP), semi-root partition (SRP), complete root partition (CRP), and their sole cropping (CK). Low molecular weight organic acids (LMWOAs) were determined by GC-MS, and high throughput sequencing of the 16S rRNA gene was carried out to screen microbial structure and composition in different root partitions of the WF intercropping system. Results: We show that intercropping induced a shift in the relative abundance of some genera of plant growth promoting rhizobacteria (PGPR) such as Allorhizobium, Neorhizobium, Pararhizobium, and Rhizobium species and resulted in better growth and yield performance of wheat. Moreover, as the plant's distance of wheat from faba beans decreased, the diversity of microbes increased, and a positive effect was observed on physiological traits and crop yield. Furthermore, an abundance and positive correlations of palmitic acid, arachidic acid, stearic acid, and 9-Octadecenoic with PGPR were recorded in the root zone of WF intercropping, which can play an important role in this facilitative mechanism of enhancing growth and yield of cereals. Conclusion: The two treatments clearly affected soil microbial and chemical composition, which can be reflected in growth and yield enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intercropping" title="intercropping">intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community" title=" microbial community"> microbial community</a>, <a href="https://publications.waset.org/abstracts/search?q=LMWOAs" title=" LMWOAs"> LMWOAs</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR" title=" PGPR"> PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20chemical%20environment" title=" soil chemical environment"> soil chemical environment</a> </p> <a href="https://publications.waset.org/abstracts/179034/screening-and-evaluation-of-plant-growth-promoting-rhizobacteria-of-wheatfaba-bean-for-increasing-productivity-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8322</span> Effects of Plant Growth Promoting Microbes and Mycorrhizal Fungi on Wheat Growth in the Saline Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elgharably">Ahmed Elgharably</a>, <a href="https://publications.waset.org/abstracts/search?q=Nivien%20Nafady"> Nivien Nafady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arbuscular mycorrhizal fungi (AMF) and plant growth promoting microbes (PGPM) can promote plant growth under saline conditions. This study investigated how AMF and PGPM affected the growth and grain yield of wheat at different soil salinity levels (0, 75 and 150 mM NaCl). AMF colonization percentage, grain yield and dry weights and lengths of shoot and root, N, P K, Na, malondialdehyde, chlorophyll and proline contents and shoot relative permeability were determined. Salinity reduced NPK uptake and malondialdehyde and chlorophyll contents, and increased shoot Na concentration, relative permeability, and proline content, and thus declined plant growth. PGPM inoculation enhanced AMF colonization, P uptake, and K/Na ratio, but alone had no significant effect on plant growth and grain yield. AMF inoculation significantly enhanced NPK uptake, increased chlorophyll content and decreased shoot relative permeability, proline and Na contents, and thus promoted the plant growth. The inoculation of PGPM significantly enhanced the positive effects of AMF in controlling Na uptake and in increasing chlorophyll and NPK contents. Compared to AMF inoculation alone, dual inoculation with AMF and PGPM resulted in approximately 10, 25 and 25% higher grain yield at 0, 75 and 150 mM NaCl, respectively. The results provide that PGPM inoculation can maximize the effects of AMF inoculation in alleviating the deleterious effects of NaCl salts on wheat growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycorrhizal%20fungi" title="mycorrhizal fungi">mycorrhizal fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/102437/effects-of-plant-growth-promoting-microbes-and-mycorrhizal-fungi-on-wheat-growth-in-the-saline-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8321</span> Growth and Yield Response of Solanum retroflexum to Different Level of Salinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fhatuwani%20Herman%20Nndwambi">Fhatuwani Herman Nndwambi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Mashela"> P. W. Mashela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is a major constraint limiting crop productivity. It has been predicted that by the year 2050, more than 50% of the arable land will be affected by salinity. Two similar salinity experiments were conducted in two seasons under greenhouse condition. Six levels of salinity plus control (viz; control, 2, 4, 8, 16, 32 and 64 % NaCl and CaCl2 at 3:1 ratio) were applied in a form of irrigation water in a single factor experiment arranged in a complete block design with 20 replications. Plant growth and yield were negatively affected by salinity treatments especially at the high levels of salinity. For example, our results suggest that the 32 and 64% of NaCl and CaCl2 treatment were too much for the plant to withstand as determined by reduced dry shoot mass, stem diameter and plant height in both seasons. On the other hand, stomatal conductance and chlorophyll content increased with an increased level of salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth" title="growth">growth</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=season" title=" season"> season</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/107899/growth-and-yield-response-of-solanum-retroflexum-to-different-level-of-salinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8320</span> Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghi%20Karbalaei%20Aghamolki">Mohammad Taghi Karbalaei Aghamolki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Khanif%20Yusop"> Mohd Khanif Yusop</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateh%20Chand%20Oad"> Fateh Chand Oad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Zakikhani"> Hamed Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawa%20Zee%20Jaafar"> Hawa Zee Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifh%20Kharidah"> Sharifh Kharidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanafi%20Musa"> Mohamed Hanafi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Soltani">Shahram Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/2332/response-of-yield-and-morphological-characteristic-of-rice-cultivars-to-heat-stress-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8319</span> Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shital%20Bangar">Shital Bangar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Khandagale"> G. B. Khandagale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron" title="boron">boron</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20and%20sulphur" title=" soybean and sulphur"> soybean and sulphur</a> </p> <a href="https://publications.waset.org/abstracts/21799/influence-of-sulphur-and-boron-on-growth-quality-parameters-and-productivity-of-soybean-glycine-max-l-merrill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8318</span> Effect of Organic and Inorganic Fertilizers on the Growth and Yield of Physic Nut (Jatropha curcas)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Echezona%20Ngwu">Oliver Echezona Ngwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was conducted in 2011 cropping season at the Teaching and Research farm of the Faculty of Agriculture and Natural Resources Management, Enugu State University of Science and Technology, Enugu, Nigeria to study the effect of organic and inorganic fertilizers on the growth and yield of physic Nut (Jatropha curcas). There were five treatments namely, control, (no application of treatment), NPK 20:10:10, NPK 15:15;15, poultry droppings and goat dung. The treatments were laid out in a Randomized complete Block Design (RCBD) with five replications. The total land area used was 228m2 (19x12m) while the plot size was 3mx2 (6m2). The growth parameters measured were plant height, number of leaves, and leaf area, index (LAI). The results obtained showed that there were significant differences at P=0.05 among the different treatments in 30, to and 90 DAP. Based on the results T4 (poultry droppings) had higher effect at P=0.05 at 30, 60, 90 DAP than the other treatments when compared and is hereby recommended as the best type of fertilizer for the optimum growth and production of physic Nut (Jatropha Curcas) in South Eastern Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic" title="organic">organic</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20fertilizers" title=" inorganic fertilizers"> inorganic fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a> </p> <a href="https://publications.waset.org/abstracts/43908/effect-of-organic-and-inorganic-fertilizers-on-the-growth-and-yield-of-physic-nut-jatropha-curcas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8317</span> Effect of Sowing Dates on Growth, Agronomic Traits and Yield of Tossa Jute (Corchorus olitorius L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Racha%20Ben%20Yakoub">Amira Racha Ben Yakoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ferchichi"> Ali Ferchichi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the impact of sowing time on growth parameters, the length of the development cycle and yield of tossa jute (Corchorus olitorius L.), a field experiment was conducted from March to May 2011 at the Laboratoire d’Aridoculture et Cultures Oasiennes, ‘Institut des Régions Arides de Médénine’, Tunisia. Results of the experiment revealed that the early sowing (the middle of March, the beginning of April) induced a cycle of more than 100 days to reach the stage maturity and generates a marked drop in production. This period of plantation affects plant development and leads to a sharp drop in performance marked primarily by a reduction in growth, number and size of leaves, number of flowers and pods and weight of different parts of plant. Sowing from the end of April seems appropriate for shortening the development cycle and better profitability than the first two dates. Seeding of C. olitorius during May enhance the development of plants more dense, which explains the superiority of production marked by the increase of seed yield and leaf fresh and dry weight of this leafy vegetables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tossa%20jute%20%28Corchorus%20olitorius%20L%29" title="tossa jute (Corchorus olitorius L)">tossa jute (Corchorus olitorius L)</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20date" title=" sowing date"> sowing date</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/14532/effect-of-sowing-dates-on-growth-agronomic-traits-and-yield-of-tossa-jute-corchorus-olitorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8316</span> Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quang%20M.%20Dinh">Quang M. Dinh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stigmatogobius%20pleurostigma" title="Stigmatogobius pleurostigma">Stigmatogobius pleurostigma</a>, <a href="https://publications.waset.org/abstracts/search?q=age" title=" age"> age</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20structure" title=" population structure"> population structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/75857/population-and-age-structure-of-the-goby-stigmatogobius-pleurostigma-in-the-mekong-delta-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8315</span> Effect of Sugar Mill Effluent on Growth, Yield and Soil Properties of Ratoon Cane in Cauvery Command Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Madhu">G. K. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhaskar"> S. Bhaskar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dinesh"> M. S. Dinesh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Manii"> R. Manii</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Srinivasamurthy"> C. A. Srinivasamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field experiment was conducted in the premises of M/s Sri Chamundeshwari Sugars Ltd., Bharathinagar, Mandya District Pvt. Ltd., during 2014 to study the effect of sugar mill effluent (SME) on growth, yield and soil properties of ratoon cane with eight treatments replicated thrice using RCBD design. Significantly higher growth parameters like cane height (249.77 cm) and number of tillers per clump (12.22) were recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower growth attributes were recorded in treatment which received irrigation with sugar mill effluent alone. Significantly higher cane yield (104. 93 t -1) was recorded in treatment which received cycle of 3 irrigations with freshwater + 1 irrigation with sugar mill effluent + RDF as compared to other treatments. Significantly lower cane yield (87.40 t ha-1) was observed in treatment which received irrigation with sugar mill effluent alone. Soil properties like pH (7.84) was higher in treatment receiving Alternate irrigation with freshwater and sugar mill effluent + RDF. But EC was significantly higher in treatment which received Cycle of1 irrigation with freshwater + 2 irrigations with sugar mill effluent + RDF as compared to other treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugar%20mill%20effluent" title="sugar mill effluent">sugar mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title=" sugarcane"> sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20yield" title=" cane yield"> cane yield</a> </p> <a href="https://publications.waset.org/abstracts/37275/effect-of-sugar-mill-effluent-on-growth-yield-and-soil-properties-of-ratoon-cane-in-cauvery-command-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8314</span> Improving the Growth, Biochemical Parameters and Content and Composition of Essential Oil of Mentha piperita L. through Soil-Applied N, P, and K </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Bhat">Bilal Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masroor%20A.%20Khan"> M. Masroor A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Moin%20Uddin"> Moin Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naeem"> M. Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic herb, peppermint (Mentha piperita L.), is a natural hybrid (M. aquatica × M. spicata) with immense therapeutic uses, apart from other potential uses. Peppermint oil is one of the most popular and widely used essential oil (EO), because of its main components menthol and menthone. In view of enhancing growth, yield and quality of this medicinally important herb, a pot experiment was conducted in the net-house of the department. The experiment was aimed at studying the effect of graded levels of N, P, and K on growth, biochemical characteristics, and content and composition of EO in Mentha piperita L. Six NPK treatments (viz. N0P0K0, N20P20K20, N40P40K40, N20+20 P20+20 K20+20, N60P60K60, and N30+30 P30+30 K30+30) were tested. The plants were harvested 150 days after transplanting. The crop performance was assessed in terms of growth attributes, physiological activities, herbage yield and content as well as yield of active constituents of Mentha piperita L. Biochemical parameters were analyzed spectrophotometrically. The EO was extracted using Clevenger’s apparatus and the active constituents of the oil were determined using Gas Chromatography. Split-dose application of N, P and K (N30+30 P30+30 K30+30) ameliorated most of the parameters significantly including, fresh and dry weight of plant, NPK content, chlorophyll and carotenoids content, and the activities of carbonic anhydrase and nitrate reductase in the leaves. It also enhanced the EO content (44.0%), EO yield (91.0%), menthol content (14.1%), menthone content (34.0%), menthyl acetate content (16.9%) and 1, 8-cineole content (43.7%) but decreased the pulegone content (36.8%). Conclusively, the fertilization proved useful in enhancing the EO content, yield and other EO components of the plant. Thus, the yield and quality of EO of peppermint may be improved by this agricultural strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mentha%20piperita" title="mentha piperita">mentha piperita</a>, <a href="https://publications.waset.org/abstracts/search?q=menthol" title=" menthol"> menthol</a>, <a href="https://publications.waset.org/abstracts/search?q=menthone" title=" menthone"> menthone</a>, <a href="https://publications.waset.org/abstracts/search?q=EO" title=" EO"> EO</a> </p> <a href="https://publications.waset.org/abstracts/11602/improving-the-growth-biochemical-parameters-and-content-and-composition-of-essential-oil-of-mentha-piperita-l-through-soil-applied-n-p-and-k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8313</span> Effect of Pre Harvest Application of Amino Acids on Fruit Development of Sub-Tropical Peach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjot%20Kaur">Manjot Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Singh"> Harminder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Jawandha"> S. K. Jawandha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigations were carried out at Fruit Research Farm, Department of Fruit Science, Punjab Agricultural University, Ludhiana during the years 2016 and 2017, with the aim of assessing the effect of amino acids on fruit development, shoot growth and yield of peach. The six-year-old peach trees of cv. Florida Prince were sprayed with 0.25 % and 0.50 % concentrations of amino acids (Peptone P1 023), 7 and 14 days after full bloom and the sprays were repeated after 15 and 30 days. Experimental findings showed that all the amino acid treatments increased fruit growth, shoot growth, fruit retention and yield and decreased fruit drop as compared to control during both the years. Maximum fruit retention (89.29 %) and minimum fruit drop (10.71 %) was observed in T8 (2 sprays @ 0.50%). Highest mean shoot growth (113.89 cm) was recorded in T12 (3 sprays @ 0.50%) while the minimum was in control plants (88.23 cm). Fruit yield was also found to be maximum (53.92 kg/tree) under double spray treatment T8 (2 sprays @ 0.50%) of amino acids and minimum in plants sprayed with triple spray of amino acids. Fruit maturity was advanced by 3-4 days by double spray treatments of amino acids as compared to control. In brief, the application of double spray of amino acids @ 0.50% (applied 14 days after full bloom and 15 days later), was found to be best to improve the fruit growth, fruit retention and yield of Florida Prince peach under Punjab conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20growth" title=" fruit growth"> fruit growth</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity" title=" maturity"> maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=peach" title=" peach"> peach</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot%20growth" title=" shoot growth"> shoot growth</a> </p> <a href="https://publications.waset.org/abstracts/100280/effect-of-pre-harvest-application-of-amino-acids-on-fruit-development-of-sub-tropical-peach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=278">278</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=279">279</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=growth%20and%20yield&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>