CINXE.COM

3D rotation group - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>3D rotation group - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ef29f121-0ff9-4e88-93f8-5ff013093d1b","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"3D_rotation_group","wgTitle":"3D rotation group","wgCurRevisionId":1254216031,"wgRevisionId":1254216031,"wgArticleId":173965,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: location missing publisher","Articles with short description","Short description matches Wikidata","Articles with excerpts","Lie groups","Rotational symmetry","Rotation in three dimensions","Euclidean solid geometry","3-manifolds"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"3D_rotation_group","wgRelevantArticleId":173965,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true, "wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1256500","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="3D rotation group - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/3D_rotation_group"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=3D_rotation_group&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/3D_rotation_group"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-3D_rotation_group rootpage-3D_rotation_group skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=3D+rotation+group" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=3D+rotation+group" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=3D+rotation+group" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=3D+rotation+group" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Length_and_angle" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Length_and_angle"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Length and angle</span> </div> </a> <ul id="toc-Length_and_angle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orthogonal_and_rotation_matrices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Orthogonal_and_rotation_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Orthogonal and rotation matrices</span> </div> </a> <ul id="toc-Orthogonal_and_rotation_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Group_structure" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Group_structure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Group structure</span> </div> </a> <button aria-controls="toc-Group_structure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Group structure subsection</span> </button> <ul id="toc-Group_structure-sublist" class="vector-toc-list"> <li id="toc-Complete_classification_of_finite_subgroups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complete_classification_of_finite_subgroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Complete classification of finite subgroups</span> </div> </a> <ul id="toc-Complete_classification_of_finite_subgroups-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Axis_of_rotation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Axis_of_rotation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Axis of rotation</span> </div> </a> <ul id="toc-Axis_of_rotation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topology" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Topology</span> </div> </a> <ul id="toc-Topology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_between_SO(3)_and_SU(2)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Connection_between_SO(3)_and_SU(2)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Connection between SO(3) and SU(2)</span> </div> </a> <button aria-controls="toc-Connection_between_SO(3)_and_SU(2)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Connection between SO(3) and SU(2) subsection</span> </button> <ul id="toc-Connection_between_SO(3)_and_SU(2)-sublist" class="vector-toc-list"> <li id="toc-Using_quaternions_of_unit_norm" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Using_quaternions_of_unit_norm"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Using quaternions of unit norm</span> </div> </a> <ul id="toc-Using_quaternions_of_unit_norm-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Using_Möbius_transformations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Using_Möbius_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Using Möbius transformations</span> </div> </a> <ul id="toc-Using_Möbius_transformations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lie_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Lie_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Lie algebra</span> </div> </a> <button aria-controls="toc-Lie_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lie algebra subsection</span> </button> <ul id="toc-Lie_algebra-sublist" class="vector-toc-list"> <li id="toc-A_note_on_Lie_algebras" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_note_on_Lie_algebras"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>A note on Lie algebras</span> </div> </a> <ul id="toc-A_note_on_Lie_algebras-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Isomorphism_with_𝖘𝖚(2)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isomorphism_with_𝖘𝖚(2)"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Isomorphism with 𝖘𝖚(2)</span> </div> </a> <ul id="toc-Isomorphism_with_𝖘𝖚(2)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Exponential_map" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Exponential_map"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Exponential map</span> </div> </a> <ul id="toc-Exponential_map-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logarithm_map" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Logarithm_map"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Logarithm map</span> </div> </a> <ul id="toc-Logarithm_map-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Uniform_random_sampling" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Uniform_random_sampling"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Uniform random sampling</span> </div> </a> <ul id="toc-Uniform_random_sampling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Baker–Campbell–Hausdorff_formula" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Baker–Campbell–Hausdorff_formula"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Baker–Campbell–Hausdorff formula</span> </div> </a> <ul id="toc-Baker–Campbell–Hausdorff_formula-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinitesimal_rotations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Infinitesimal_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Infinitesimal rotations</span> </div> </a> <ul id="toc-Infinitesimal_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Realizations_of_rotations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Realizations_of_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Realizations of rotations</span> </div> </a> <ul id="toc-Realizations_of_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Spherical_harmonics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Spherical_harmonics"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Spherical harmonics</span> </div> </a> <ul id="toc-Spherical_harmonics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">18</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">19</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">3D rotation group</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 13 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-13" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">13 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Grup_de_rotaci%C3%B3_3D" title="Grup de rotació 3D – Catalan" lang="ca" hreflang="ca" data-title="Grup de rotació 3D" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Grupa_rotac%C3%AD_v_trojrozm%C4%9Brn%C3%A9m_prostoru" title="Grupa rotací v trojrozměrném prostoru – Czech" lang="cs" hreflang="cs" data-title="Grupa rotací v trojrozměrném prostoru" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Drehgruppe" title="Drehgruppe – German" lang="de" hreflang="de" data-title="Drehgruppe" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Grupo_de_rotaci%C3%B3n_SO(3)" title="Grupo de rotación SO(3) – Spanish" lang="es" hreflang="es" data-title="Grupo de rotación SO(3)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/3-dimensia_turnada_grupo" title="3-dimensia turnada grupo – Esperanto" lang="eo" hreflang="eo" data-title="3-dimensia turnada grupo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/3%EC%B0%A8%EC%9B%90_%EC%A7%81%EA%B5%90%EA%B5%B0" title="3차원 직교군 – Korean" lang="ko" hreflang="ko" data-title="3차원 직교군" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%97%D7%91%D7%95%D7%A8%D7%AA_%D7%94%D7%A1%D7%99%D7%91%D7%95%D7%91_(3)SO" title="חבורת הסיבוב (3)SO – Hebrew" lang="he" hreflang="he" data-title="חבורת הסיבוב (3)SO" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Rotatiegroep" title="Rotatiegroep – Dutch" lang="nl" hreflang="nl" data-title="Rotatiegroep" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Grupa_obrot%C3%B3w" title="Grupa obrotów – Polish" lang="pl" hreflang="pl" data-title="Grupa obrotów" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Grupo_de_rota%C3%A7%C3%A3o" title="Grupo de rotação – Portuguese" lang="pt" hreflang="pt" data-title="Grupo de rotação" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%BF%D0%B0_%D0%B2%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D0%B9" title="Группа вращений – Russian" lang="ru" hreflang="ru" data-title="Группа вращений" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/SO(3)" title="SO(3) – Ukrainian" lang="uk" hreflang="uk" data-title="SO(3)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%97%8B%E8%BD%89%E7%BE%A4" title="旋轉群 – Chinese" lang="zh" hreflang="zh" data-title="旋轉群" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1256500#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/3D_rotation_group" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:3D_rotation_group" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/3D_rotation_group"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/3D_rotation_group"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/3D_rotation_group" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/3D_rotation_group" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;oldid=1254216031" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=3D_rotation_group&amp;id=1254216031&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F3D_rotation_group"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F3D_rotation_group"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=3D_rotation_group&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=3D_rotation_group&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1256500" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Group of rotations in 3 dimensions</div> <p>In <a href="/wiki/Classical_mechanics" title="Classical mechanics">mechanics</a> and <a href="/wiki/Geometry" title="Geometry">geometry</a>, the <b>3D rotation group</b>, often denoted <b><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">SO</a>(3)</b>, is the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> of all <a href="/wiki/Rotation" title="Rotation">rotations</a> about the <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a> of <a href="/wiki/Three-dimensional_space" title="Three-dimensional space">three-dimensional</a> <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> under the operation of <a href="/wiki/Function_composition" title="Function composition">composition</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>By definition, a rotation about the origin is a transformation that preserves the origin, <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> (so it is an <a href="/wiki/Isometry" title="Isometry">isometry</a>), and <a href="/wiki/Orientation_(vector_space)" title="Orientation (vector space)">orientation</a> (i.e., <i>handedness</i> of space). Composing two rotations results in another rotation, every rotation has a unique <a href="/wiki/Inverse_function" title="Inverse function">inverse</a> rotation, and the <a href="/wiki/Identity_map" class="mw-redirect" title="Identity map">identity map</a> satisfies the definition of a rotation. Owing to the above properties (along composite rotations' <a href="/wiki/Associative_property" title="Associative property">associative property</a>), the set of all rotations is a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> under composition. </p><p>Every non-trivial rotation is determined by its axis of rotation (a line through the origin) and its angle of rotation. Rotations are not commutative (for example, rotating <i>R</i> 90° in the x-y plane followed by <i>S</i> 90° in the y-z plane is not the same as <i>S</i> followed by <i>R</i>), making the 3D rotation group a <a href="/wiki/Non-abelian_group" title="Non-abelian group">nonabelian group</a>. Moreover, the rotation group has a natural structure as a <a href="/wiki/Manifold" title="Manifold">manifold</a> for which the group operations are <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smoothly differentiable</a>, so it is in fact a <a href="/wiki/Lie_group" title="Lie group">Lie group</a>. It is <a href="/wiki/Compact_space" title="Compact space">compact</a> and has dimension 3. </p><p>Rotations are <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformations</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> and can therefore be represented by <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a> once a <a href="/wiki/Basis_of_a_vector_space" class="mw-redirect" title="Basis of a vector space">basis</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> has been chosen. Specifically, if we choose an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, every rotation is described by an <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal 3 × 3 matrix</a> (i.e., a 3 × 3 matrix with real entries which, when multiplied by its <a href="/wiki/Transpose" title="Transpose">transpose</a>, results in the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>) with <a href="/wiki/Determinant" title="Determinant">determinant</a> 1. The group SO(3) can therefore be identified with the group of these matrices under <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>. These matrices are known as "special orthogonal matrices", explaining the notation SO(3). </p><p>The group SO(3) is used to describe the possible rotational symmetries of an object, as well as the possible orientations of an object in space. Its <a href="/wiki/Group_representation" title="Group representation">representations</a> are important in physics, where they give rise to the <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particles</a> of integer <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Length_and_angle">Length and angle</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=1" title="Edit section: Length and angle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Besides just preserving length, rotations also preserve the <a href="/wiki/Angle" title="Angle">angles</a> between vectors. This follows from the fact that the standard <a href="/wiki/Dot_product" title="Dot product">dot product</a> between two vectors <b>u</b> and <b>v</b> can be written purely in terms of length (see the <a href="/wiki/Law_of_cosines" title="Law of cosines">law of cosines</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} \cdot \mathbf {v} ={\frac {1}{2}}\left(\|\mathbf {u} +\mathbf {v} \|^{2}-\|\mathbf {u} \|^{2}-\|\mathbf {v} \|^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <msup> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} \cdot \mathbf {v} ={\frac {1}{2}}\left(\|\mathbf {u} +\mathbf {v} \|^{2}-\|\mathbf {u} \|^{2}-\|\mathbf {v} \|^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2be32bc3925318102e0a1d5f45a696051b5198d2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:37.674ex; height:5.176ex;" alt="{\displaystyle \mathbf {u} \cdot \mathbf {v} ={\frac {1}{2}}\left(\|\mathbf {u} +\mathbf {v} \|^{2}-\|\mathbf {u} \|^{2}-\|\mathbf {v} \|^{2}\right).}"></span> </p><p>It follows that every length-preserving linear transformation in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> preserves the dot product, and thus the angle between vectors. Rotations are often defined as linear transformations that preserve the inner product on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>, which is equivalent to requiring them to preserve length. See <a href="/wiki/Classical_group" title="Classical group">classical group</a> for a treatment of this more general approach, where <span class="texhtml">SO(3)</span> appears as a special case. </p> <div class="mw-heading mw-heading2"><h2 id="Orthogonal_and_rotation_matrices">Orthogonal and rotation matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=2" title="Edit section: Orthogonal and rotation matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal matrix</a> and <a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation matrix</a></div> <p>Every rotation maps an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> to another orthonormal basis. Like any linear transformation of <a href="/wiki/Finite-dimensional" class="mw-redirect" title="Finite-dimensional">finite-dimensional</a> vector spaces, a rotation can always be represented by a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>. Let <span class="texhtml"><i>R</i></span> be a given rotation. With respect to the <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a> <span class="texhtml"><b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> the columns of <span class="texhtml"><i>R</i></span> are given by <span class="texhtml">(<i>R</i><b>e</b><sub>1</sub>, <i>R</i><b>e</b><sub>2</sub>, <i>R</i><b>e</b><sub>3</sub>)</span>. Since the standard basis is orthonormal, and since <span class="texhtml"><i>R</i></span> preserves angles and length, the columns of <span class="texhtml"><i>R</i></span> form another orthonormal basis. This orthonormality condition can be expressed in the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{\mathsf {T}}R=RR^{\mathsf {T}}=I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>R</mi> <mo>=</mo> <mi>R</mi> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{\mathsf {T}}R=RR^{\mathsf {T}}=I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f00b1d1fa4a159fc813f017112c4b3bc45b7635" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.775ex; height:3.009ex;" alt="{\displaystyle R^{\mathsf {T}}R=RR^{\mathsf {T}}=I,}"></span></dd></dl> <p>where <span class="texhtml"><i>R</i><sup><span style="font-family:sans-serif;">T</span></sup></span> denotes the <a href="/wiki/Transpose" title="Transpose">transpose</a> of <span class="texhtml"><i>R</i></span> and <span class="texhtml mvar" style="font-style:italic;">I</span> is the <span class="texhtml">3 × 3</span> <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>. Matrices for which this property holds are called <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal matrices</a>. The group of all <span class="texhtml">3 × 3</span> orthogonal matrices is denoted <span class="texhtml">O(3)</span>, and consists of all proper and improper rotations. </p><p>In addition to preserving length, proper rotations must also preserve orientation. A matrix will preserve or reverse orientation according to whether the <a href="/wiki/Determinant" title="Determinant">determinant</a> of the matrix is positive or negative. For an orthogonal matrix <span class="texhtml"><i>R</i></span>, note that <span class="texhtml">det <i>R</i><sup><span style="font-family:sans-serif;">T</span></sup> = det <i>R</i></span> implies <span class="texhtml">(det <i>R</i>)<sup>2</sup> = 1</span>, so that <span class="texhtml">det <i>R</i> = ±1</span>. The <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of orthogonal matrices with determinant <span class="texhtml">+1</span> is called the <i>special <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a></i>, denoted <span class="texhtml">SO(3)</span>. </p><p>Thus every rotation can be represented uniquely by an orthogonal matrix with unit determinant. Moreover, since composition of rotations corresponds to <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>, the rotation group is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to the special orthogonal group <span class="texhtml">SO(3)</span>. </p><p><a href="/wiki/Improper_rotation" title="Improper rotation">Improper rotations</a> correspond to orthogonal matrices with determinant <span class="texhtml">−1</span>, and they do not form a group because the product of two improper rotations is a proper rotation. </p> <div class="mw-heading mw-heading2"><h2 id="Group_structure">Group structure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=3" title="Edit section: Group structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The rotation group is a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> under <a href="/wiki/Function_composition" title="Function composition">function composition</a> (or equivalently the <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">product of linear transformations</a>). It is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a> consisting of all <a href="/wiki/Invertible_matrix" title="Invertible matrix">invertible</a> linear transformations of the <a href="/wiki/Real_coordinate_space" title="Real coordinate space">real 3-space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Furthermore, the rotation group is <a href="/wiki/Nonabelian_group" class="mw-redirect" title="Nonabelian group">nonabelian</a>. That is, the order in which rotations are composed makes a difference. For example, a quarter turn around the positive <i>x</i>-axis followed by a quarter turn around the positive <i>y</i>-axis is a different rotation than the one obtained by first rotating around <i>y</i> and then <i>x</i>. </p><p>The orthogonal group, consisting of all proper and improper rotations, is generated by reflections. Every proper rotation is the composition of two reflections, a special case of the <a href="/wiki/Cartan%E2%80%93Dieudonn%C3%A9_theorem" title="Cartan–Dieudonné theorem">Cartan–Dieudonné theorem</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Complete_classification_of_finite_subgroups">Complete classification of finite subgroups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=4" title="Edit section: Complete classification of finite subgroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The finite subgroups of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {SO} (3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">O</mi> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {SO} (3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8366fc6e92660ba077b87b745b305a4176b1d1ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.072ex; height:2.843ex;" alt="{\displaystyle \mathrm {SO} (3)}"></span> are completely <a href="/wiki/Classification_theorem" title="Classification theorem">classified</a>.<sup id="cite_ref-coxeter_3-0" class="reference"><a href="#cite_note-coxeter-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>Every finite subgroup is isomorphic to either an element of one of two <a href="/wiki/Countably_infinite" class="mw-redirect" title="Countably infinite">countably infinite</a> families of planar isometries: the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic groups</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0301812adb392070d834ca2df4ed97f1cf132f33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.88ex; height:2.509ex;" alt="{\displaystyle C_{n}}"></span> or the <a href="/wiki/Dihedral_group" title="Dihedral group">dihedral groups</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{2n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{2n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/317005e1541e49becbb38da665de9d667b8863b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.965ex; height:2.509ex;" alt="{\displaystyle D_{2n}}"></span>, or to one of three other groups: the <a href="/wiki/Tetrahedral_group" class="mw-redirect" title="Tetrahedral group">tetrahedral group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cong A_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cong A_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9c787947b23c62f7360e3fdd060af896e32c6bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.251ex; height:2.509ex;" alt="{\displaystyle \cong A_{4}}"></span>, the <a href="/wiki/Octahedral_group" class="mw-redirect" title="Octahedral group">octahedral group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cong S_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cong S_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9037c415dceccb174f6bd8e2cb6d777053b5122" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.932ex; height:2.509ex;" alt="{\displaystyle \cong S_{4}}"></span>, or the <a href="/wiki/Icosahedral_group" class="mw-redirect" title="Icosahedral group">icosahedral group</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cong A_{5}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2245;<!-- ≅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cong A_{5}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dea51f976c1fc6e55ca425cbf639c25f1530a1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.251ex; height:2.509ex;" alt="{\displaystyle \cong A_{5}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Axis_of_rotation">Axis of rotation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=5" title="Edit section: Axis of rotation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Axis%E2%80%93angle_representation" title="Axis–angle representation">Axis–angle representation</a></div> <p>Every nontrivial proper rotation in 3 dimensions fixes a unique 1-dimensional <a href="/wiki/Linear_subspace" title="Linear subspace">linear subspace</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> which is called the <i>axis of rotation</i> (this is <a href="/wiki/Euler%27s_rotation_theorem" title="Euler&#39;s rotation theorem">Euler's rotation theorem</a>). Each such rotation acts as an ordinary 2-dimensional rotation in the plane <a href="/wiki/Orthogonal" class="mw-redirect" title="Orthogonal">orthogonal</a> to this axis. Since every 2-dimensional rotation can be represented by an angle <i>φ</i>, an arbitrary 3-dimensional rotation can be specified by an axis of rotation together with an <a href="/wiki/Angle_of_rotation" class="mw-redirect" title="Angle of rotation">angle of rotation</a> about this axis. (Technically, one needs to specify an orientation for the axis and whether the rotation is taken to be <a href="/wiki/Clockwise_and_counterclockwise" class="mw-redirect" title="Clockwise and counterclockwise">clockwise</a> or <a href="/wiki/Counterclockwise" class="mw-redirect" title="Counterclockwise">counterclockwise</a> with respect to this orientation). </p><p>For example, counterclockwise rotation about the positive <i>z</i>-axis by angle <i>φ</i> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{z}(\phi )={\begin{bmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{z}(\phi )={\begin{bmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f62c196069d2c1a2ce655d79fa0e48e7fc977255" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:31.072ex; height:9.509ex;" alt="{\displaystyle R_{z}(\phi )={\begin{bmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{bmatrix}}.}"></span></dd></dl> <p>Given a <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a> <b>n</b> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> and an angle <i>φ</i>, let <i>R</i>(<i>φ</i>, <b>n</b>) represent a counterclockwise rotation about the axis through <b>n</b> (with orientation determined by <b>n</b>). Then </p> <ul><li><i>R</i>(0, <b>n</b>) is the identity transformation for any <b>n</b></li> <li><i>R</i>(<i>φ</i>, <b>n</b>) = <i>R</i>(−<i>φ</i>, −<b>n</b>)</li> <li><i>R</i>(<span class="texhtml mvar" style="font-style:italic;">π</span> + <i>φ</i>, <b>n</b>) = <i>R</i>(<span class="texhtml mvar" style="font-style:italic;">π</span> − <i>φ</i>, −<b>n</b>).</li></ul> <p>Using these properties one can show that any rotation can be represented by a unique angle <i>φ</i> in the range 0 ≤ φ ≤ <span class="texhtml mvar" style="font-style:italic;">π</span> and a unit vector <b>n</b> such that </p> <ul><li><b>n</b> is arbitrary if <i>φ</i> = 0</li> <li><b>n</b> is unique if 0 &lt; <i>φ</i> &lt; <span class="texhtml mvar" style="font-style:italic;">π</span></li> <li><b>n</b> is unique up to a <a href="/wiki/Sign_(mathematics)" title="Sign (mathematics)">sign</a> if <i>φ</i> = <span class="texhtml mvar" style="font-style:italic;">π</span> (that is, the rotations <i>R</i>(<span class="texhtml mvar" style="font-style:italic;">π</span>, ±<b>n</b>) are identical).</li></ul> <p>In the next section, this representation of rotations is used to identify SO(3) topologically with three-dimensional real projective space. </p> <div class="mw-heading mw-heading2"><h2 id="Topology">Topology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=6" title="Edit section: Topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Hypersphere_of_rotations" class="mw-redirect" title="Hypersphere of rotations">Hypersphere of rotations</a></div> <p>The Lie group SO(3) is <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphic</a> to the <a href="/wiki/Real_projective_space" title="Real projective space">real projective space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f5ea9bdc7df9ead8e852c208b16ebdbb1a8f5ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.609ex; height:3.176ex;" alt="{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}"></span><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>Consider the solid ball in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> of radius <span class="texhtml mvar" style="font-style:italic;">π</span> (that is, all points of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> of distance <span class="texhtml mvar" style="font-style:italic;">π</span> or less from the origin). Given the above, for every point in this ball there is a rotation, with axis through the point and the origin, and rotation angle equal to the distance of the point from the origin. The identity rotation corresponds to the point at the center of the ball. Rotations through an angle 𝜃 between 0 and <span class="texhtml mvar" style="font-style:italic;">π</span> (not including either) are on the same axis at the same distance. Rotation through angles between 0 and −<span class="texhtml mvar" style="font-style:italic;">π</span> correspond to the point on the same axis and distance from the origin but on the opposite side of the origin. The one remaining issue is that the two rotations through <span class="texhtml mvar" style="font-style:italic;">π</span> and through −<span class="texhtml mvar" style="font-style:italic;">π</span> are the same. So we <a href="/wiki/Quotient_space_(topology)" title="Quotient space (topology)">identify</a> (or "glue together") <a href="/wiki/Antipodal_point" title="Antipodal point">antipodal points</a> on the surface of the ball. After this identification, we arrive at a <a href="/wiki/Topological_space" title="Topological space">topological space</a> <a href="/wiki/Homeomorphic" class="mw-redirect" title="Homeomorphic">homeomorphic</a> to the rotation group. </p><p>Indeed, the ball with antipodal surface points identified is a <a href="/wiki/Smooth_manifold" class="mw-redirect" title="Smooth manifold">smooth manifold</a>, and this manifold is <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphic</a> to the rotation group. It is also diffeomorphic to the <a href="/wiki/Real_projective_space" title="Real projective space">real 3-dimensional projective space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eacc73ad667eb9da5d2c9532fc4287673081c21a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.609ex; height:3.176ex;" alt="{\displaystyle \mathbb {P} ^{3}(\mathbb {R} ),}"></span> so the latter can also serve as a topological model for the rotation group. </p><p>These identifications illustrate that SO(3) is <a href="/wiki/Connected_space" title="Connected space">connected</a> but not <a href="/wiki/Simply_connected" class="mw-redirect" title="Simply connected">simply connected</a>. As to the latter, in the ball with antipodal surface points identified, consider the path running from the "north pole" straight through the interior down to the south pole. This is a closed loop, since the north pole and the south pole are identified. This loop cannot be shrunk to a point, since no matter how it is deformed, the start and end point have to remain antipodal, or else the loop will "break open". In terms of rotations, this loop represents a continuous sequence of rotations about the <i>z</i>-axis starting (by example) at the identity (center of the ball), through the south pole, jumping to the north pole and ending again at the identity rotation (i.e., a series of rotation through an angle <i>φ</i> where <i>φ</i> runs from 0 to <a href="/wiki/Turn_(geometry)" class="mw-redirect" title="Turn (geometry)">2<span class="texhtml mvar" style="font-style:italic;">π</span></a>). </p><p>Surprisingly, running through the path twice, i.e., running from the north pole down to the south pole, jumping back to the north pole (using the fact that north and south poles are identified), and then again running from the north pole down to the south pole, so that <i>φ</i> runs from 0 to 4<span class="texhtml mvar" style="font-style:italic;">π</span>, gives a closed loop which <i>can</i> be shrunk to a single point: first move the paths continuously to the ball's surface, still connecting north pole to south pole twice. The second path can then be mirrored over to the antipodal side without changing the path at all. Now we have an ordinary closed loop on the surface of the ball, connecting the north pole to itself along a great circle. This circle can be shrunk to the north pole without problems. The <a href="/wiki/Plate_trick" title="Plate trick">plate trick</a> and similar tricks demonstrate this practically. </p><p>The same argument can be performed in general, and it shows that the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of SO(3) is the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> of order 2 (a fundamental group with two elements). In <a href="/wiki/Physics" title="Physics">physics</a> applications, the non-triviality (more than one element) of the fundamental group allows for the existence of objects known as <a href="/wiki/Spinor" title="Spinor">spinors</a>, and is an important tool in the development of the <a href="/wiki/Spin%E2%80%93statistics_theorem" title="Spin–statistics theorem">spin–statistics theorem</a>. </p><p>The <a href="/wiki/Universal_cover" class="mw-redirect" title="Universal cover">universal cover</a> of SO(3) is a <a href="/wiki/Lie_group" title="Lie group">Lie group</a> called <a href="/wiki/Spin(3)" class="mw-redirect" title="Spin(3)">Spin(3)</a>. The group Spin(3) is isomorphic to the <a href="/wiki/Special_unitary_group" title="Special unitary group">special unitary group</a> SU(2); it is also diffeomorphic to the unit <a href="/wiki/3-sphere" title="3-sphere">3-sphere</a> <i>S</i><sup>3</sup> and can be understood as the group of <a href="/wiki/Versor" title="Versor">versors</a> (<a href="/wiki/Quaternion" title="Quaternion">quaternions</a> with <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> 1). The connection between quaternions and rotations, commonly exploited in <a href="/wiki/Computer_graphics" title="Computer graphics">computer graphics</a>, is explained in <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">quaternions and spatial rotations</a>. The map from <i>S</i><sup>3</sup> onto SO(3) that identifies antipodal points of <i>S</i><sup>3</sup> is a <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> of Lie groups, with <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> {±1}. Topologically, this map is a two-to-one <a href="/wiki/Covering_map" class="mw-redirect" title="Covering map">covering map</a>. (See the <a href="/wiki/Plate_trick" title="Plate trick">plate trick</a>.) </p> <div class="mw-heading mw-heading2"><h2 id="Connection_between_SO(3)_and_SU(2)"><span id="Connection_between_SO.283.29_and_SU.282.29"></span>Connection between SO(3) and SU(2)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=7" title="Edit section: Connection between SO(3) and SU(2)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In this section, we give two different constructions of a two-to-one and <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a> <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> of SU(2) onto SO(3). </p> <div class="mw-heading mw-heading3"><h3 id="Using_quaternions_of_unit_norm">Using quaternions of unit norm</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=8" title="Edit section: Using quaternions of unit norm"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">Quaternions and spatial rotation</a></div> <p>The group <span class="texhtml">SU(2)</span> is <a href="/wiki/Group_isomorphism" title="Group isomorphism">isomorphic</a> to the <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> of unit norm via a map given by<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q=a\mathbf {1} +b\mathbf {i} +c\mathbf {j} +d\mathbf {k} =\alpha +\beta \mathbf {j} \leftrightarrow {\begin{bmatrix}\alpha &amp;\beta \\-{\overline {\beta }}&amp;{\overline {\alpha }}\end{bmatrix}}=U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> </mtd> <mtd> <mi>&#x03B2;<!-- β --></mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q=a\mathbf {1} +b\mathbf {i} +c\mathbf {j} +d\mathbf {k} =\alpha +\beta \mathbf {j} \leftrightarrow {\begin{bmatrix}\alpha &amp;\beta \\-{\overline {\beta }}&amp;{\overline {\alpha }}\end{bmatrix}}=U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0abb62269bdfd9ffdc6fe1b0b19809ae520fd3e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.913ex; height:6.509ex;" alt="{\displaystyle q=a\mathbf {1} +b\mathbf {i} +c\mathbf {j} +d\mathbf {k} =\alpha +\beta \mathbf {j} \leftrightarrow {\begin{bmatrix}\alpha &amp;\beta \\-{\overline {\beta }}&amp;{\overline {\alpha }}\end{bmatrix}}=U}"></span> restricted to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle a^{2}+b^{2}+c^{2}+d^{2}=|\alpha |^{2}+|\beta |^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle a^{2}+b^{2}+c^{2}+d^{2}=|\alpha |^{2}+|\beta |^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d2c98f0ac4153f86226e446fd89db4987b49305" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.906ex; height:3.343ex;" alt="{\textstyle a^{2}+b^{2}+c^{2}+d^{2}=|\alpha |^{2}+|\beta |^{2}=1}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle q\in \mathbb {H} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">H</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle q\in \mathbb {H} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e618d5daa1be1c10782e6ba5c231e71041b16397" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.718ex; height:2.509ex;" alt="{\textstyle q\in \mathbb {H} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle a,b,c,d\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mi>d</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle a,b,c,d\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/771c12a66ce5c339701694d32ee8a1b556b2c81b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.071ex; height:2.509ex;" alt="{\textstyle a,b,c,d\in \mathbb {R} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle U\in \operatorname {SU} (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>U</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle U\in \operatorname {SU} (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca7ea747ca20bede37094d1c2032e4444dc5a0a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.631ex; height:2.843ex;" alt="{\textstyle U\in \operatorname {SU} (2)}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =a+bi\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =a+bi\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bf4b2b879c14129fbfc446d06f3a6610c9871d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.975ex; height:2.343ex;" alt="{\displaystyle \alpha =a+bi\in \mathbb {C} }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta =c+di\in \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>i</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta =c+di\in \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ac599d8c272460331eaf2bb2f4975c446b22eff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.815ex; height:2.509ex;" alt="{\displaystyle \beta =c+di\in \mathbb {C} }"></span>. </p><p>Let us now identify <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> with the span of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0ff20e01dd78f8f2149bcd2193013bd4aa8035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.037ex; height:2.509ex;" alt="{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }"></span>. One can then verify that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> is in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is a unit quaternion, then <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qvq^{-1}\in \mathbb {R} ^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mi>v</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qvq^{-1}\in \mathbb {R} ^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8c9e28a565e979fc227ea796af35b5e9493d2ac" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.829ex; height:3.009ex;" alt="{\displaystyle qvq^{-1}\in \mathbb {R} ^{3}.}"></span> </p><p>Furthermore, the map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\mapsto qvq^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mi>q</mi> <mi>v</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\mapsto qvq^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b4be07ce2ccd2a07afd7de386589bc28046c3fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.351ex; height:3.009ex;" alt="{\displaystyle v\mapsto qvq^{-1}}"></span> is a rotation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b00b2b4fd27c2cbffa02df568472f77b194a6db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}.}"></span> Moreover, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-q)v(-q)^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <mo stretchy="false">)</mo> <mi>v</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-q)v(-q)^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd8bca5eeb2c21ffdcf5d010927c01d700693997" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.834ex; height:3.176ex;" alt="{\displaystyle (-q)v(-q)^{-1}}"></span> is the same as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle qvq^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mi>v</mi> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle qvq^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6321214bc52695b7e410628dfa92da50eee04ea9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.609ex; height:3.009ex;" alt="{\displaystyle qvq^{-1}}"></span>. This means that there is a <span class="texhtml">2:1</span> homomorphism from quaternions of unit norm to the 3D rotation group <span class="texhtml">SO(3)</span>. </p><p>One can work this homomorphism out explicitly: the unit quaternion, <span class="texhtml mvar" style="font-style:italic;">q</span>, with <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}q&amp;=w+x\mathbf {i} +y\mathbf {j} +z\mathbf {k} ,\\1&amp;=w^{2}+x^{2}+y^{2}+z^{2},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>w</mi> <mo>+</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>+</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>+</mo> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}q&amp;=w+x\mathbf {i} +y\mathbf {j} +z\mathbf {k} ,\\1&amp;=w^{2}+x^{2}+y^{2}+z^{2},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369445259e51e13f2c8faa1224933f37f6bbdfe7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:23.642ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}q&amp;=w+x\mathbf {i} +y\mathbf {j} +z\mathbf {k} ,\\1&amp;=w^{2}+x^{2}+y^{2}+z^{2},\end{aligned}}}"></span> is mapped to the rotation matrix <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q={\begin{bmatrix}1-2y^{2}-2z^{2}&amp;2xy-2zw&amp;2xz+2yw\\2xy+2zw&amp;1-2x^{2}-2z^{2}&amp;2yz-2xw\\2xz-2yw&amp;2yz+2xw&amp;1-2x^{2}-2y^{2}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>2</mn> <mi>x</mi> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>z</mi> <mi>w</mi> </mtd> <mtd> <mn>2</mn> <mi>x</mi> <mi>z</mi> <mo>+</mo> <mn>2</mn> <mi>y</mi> <mi>w</mi> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>x</mi> <mi>y</mi> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mi>w</mi> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>2</mn> <mi>y</mi> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <mi>w</mi> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>x</mi> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>y</mi> <mi>w</mi> </mtd> <mtd> <mn>2</mn> <mi>y</mi> <mi>z</mi> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi>w</mi> </mtd> <mtd> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q={\begin{bmatrix}1-2y^{2}-2z^{2}&amp;2xy-2zw&amp;2xz+2yw\\2xy+2zw&amp;1-2x^{2}-2z^{2}&amp;2yz-2xw\\2xz-2yw&amp;2yz+2xw&amp;1-2x^{2}-2y^{2}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e462d99341f03df03fe2faabecb908cd60a21860" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.973ex; margin-bottom: -0.198ex; width:55.072ex; height:9.509ex;" alt="{\displaystyle Q={\begin{bmatrix}1-2y^{2}-2z^{2}&amp;2xy-2zw&amp;2xz+2yw\\2xy+2zw&amp;1-2x^{2}-2z^{2}&amp;2yz-2xw\\2xz-2yw&amp;2yz+2xw&amp;1-2x^{2}-2y^{2}\end{bmatrix}}.}"></span> </p><p>This is a rotation around the vector <span class="texhtml">(<i>x</i>, <i>y</i>, <i>z</i>)</span> by an angle <span class="texhtml">2<i>θ</i></span>, where <span class="texhtml">cos <i>θ</i> = <i>w</i></span> and <span class="texhtml">|sin <i>θ</i>| = &#x2016;<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">(<i>x</i>, <i>y</i>, <i>z</i>)</span>&#x2016;</span>. The proper sign for <span class="texhtml">sin <i>θ</i></span> is implied, once the signs of the axis components are fixed. The <span class="nowrap"><span class="texhtml">2:1</span>-nature</span> is apparent since both <span class="texhtml"><i>q</i></span> and <span class="texhtml">−<i>q</i></span> map to the same <span class="texhtml"><i>Q</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Using_Möbius_transformations"><span id="Using_M.C3.B6bius_transformations"></span>Using Möbius transformations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=9" title="Edit section: Using Möbius transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Stereoprojnegone.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Stereoprojnegone.svg/300px-Stereoprojnegone.svg.png" decoding="async" width="300" height="300" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Stereoprojnegone.svg/450px-Stereoprojnegone.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2c/Stereoprojnegone.svg/600px-Stereoprojnegone.svg.png 2x" data-file-width="232" data-file-height="232" /></a><figcaption>Stereographic projection from the sphere of radius <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span> from the north pole <span class="texhtml">(<i>x</i>, <i>y</i>, <i>z</i>) = (0, 0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span>)</span> onto the plane <span class="texhtml mvar" style="font-style:italic;">M</span> given by <span class="texhtml"><i>z</i> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span> coordinatized by <span class="texhtml">(<i>ξ</i>, <i>η</i>)</span>, here shown in cross section.</figcaption></figure> <p>The general reference for this section is <a href="#CITEREFGelfandMinlosShapiro1963">Gelfand, Minlos &amp; Shapiro (1963)</a>. The points <span class="texhtml"><i>P</i></span> on the sphere </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {S} =\left\{(x,y,z)\in \mathbb {R} ^{3}:x^{2}+y^{2}+z^{2}={\frac {1}{4}}\right\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>:</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {S} =\left\{(x,y,z)\in \mathbb {R} ^{3}:x^{2}+y^{2}+z^{2}={\frac {1}{4}}\right\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39623077830169fb70dc52dfb7e86bdd4dbc7cb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.552ex; height:6.176ex;" alt="{\displaystyle \mathbf {S} =\left\{(x,y,z)\in \mathbb {R} ^{3}:x^{2}+y^{2}+z^{2}={\frac {1}{4}}\right\}}"></span></dd></dl> <p>can, barring the north pole <span class="texhtml"><i>N</i></span>, be put into one-to-one bijection with points <span class="texhtml"><i>S</i>(<i>P</i>) = <i>P'</i></span> on the plane <span class="texhtml"><i>M</i></span> defined by <span class="texhtml"><i>z</i> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, see figure. The map <span class="texhtml"><i>S</i></span> is called <a href="/wiki/Stereographic_projection" title="Stereographic projection">stereographic projection</a>. </p><p>Let the coordinates on <span class="texhtml mvar" style="font-style:italic;">M</span> be <span class="texhtml">(<i>ξ</i>, <i>η</i>)</span>. The line <span class="texhtml"><i>L</i></span> passing through <span class="texhtml"><i>N</i></span> and <span class="texhtml"><i>P</i></span> can be parametrized as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(t)=N+t(N-P)=\left(0,0,{\frac {1}{2}}\right)+t\left(\left(0,0,{\frac {1}{2}}\right)-(x,y,z)\right),\quad t\in \mathbb {R} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>N</mi> <mo>+</mo> <mi>t</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>t</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>t</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(t)=N+t(N-P)=\left(0,0,{\frac {1}{2}}\right)+t\left(\left(0,0,{\frac {1}{2}}\right)-(x,y,z)\right),\quad t\in \mathbb {R} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f744cc4126c0fa13bcf3abfb45bc787698225cb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:71.784ex; height:6.176ex;" alt="{\displaystyle L(t)=N+t(N-P)=\left(0,0,{\frac {1}{2}}\right)+t\left(\left(0,0,{\frac {1}{2}}\right)-(x,y,z)\right),\quad t\in \mathbb {R} .}"></span></dd></dl> <p>Demanding that the <span class="nowrap"><span class="texhtml"><i>z</i></span>-coordinate</span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27777fe9cd5e27daa7fc2bcefe88d8b79936db42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.286ex; height:2.843ex;" alt="{\displaystyle L(t_{0})}"></span> equals <span class="texhtml">−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span></span>, one finds </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{0}={\frac {1}{z-{\frac {1}{2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{0}={\frac {1}{z-{\frac {1}{2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4fab98a5bb129545ef548a3faaa8f13fe286c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:12.062ex; height:6.676ex;" alt="{\displaystyle t_{0}={\frac {1}{z-{\frac {1}{2}}}}.}"></span></dd></dl> <p>We have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(t_{0})=(\xi ,\eta ,-1/2).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03B7;<!-- η --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(t_{0})=(\xi ,\eta ,-1/2).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/153133882839c421d9d9d2fef1ba344efc40a1fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.403ex; height:2.843ex;" alt="{\displaystyle L(t_{0})=(\xi ,\eta ,-1/2).}"></span> Hence the map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}S:\mathbf {S} \to M\\P=(x,y,z)\longmapsto P'=(\xi ,\eta )=\left({\frac {x}{{\frac {1}{2}}-z}},{\frac {y}{{\frac {1}{2}}-z}}\right)\equiv \zeta =\xi +i\eta \end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>S</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>M</mi> </mtd> </mtr> <mtr> <mtd> <mi>P</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x27FC;<!-- ⟼ --></mo> <msup> <mi>P</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>y</mi> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2261;<!-- ≡ --></mo> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>+</mo> <mi>i</mi> <mi>&#x03B7;<!-- η --></mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}S:\mathbf {S} \to M\\P=(x,y,z)\longmapsto P'=(\xi ,\eta )=\left({\frac {x}{{\frac {1}{2}}-z}},{\frac {y}{{\frac {1}{2}}-z}}\right)\equiv \zeta =\xi +i\eta \end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22160cbbded3475d2cf441400470fead286e3802" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:60.578ex; height:10.176ex;" alt="{\displaystyle {\begin{cases}S:\mathbf {S} \to M\\P=(x,y,z)\longmapsto P&#039;=(\xi ,\eta )=\left({\frac {x}{{\frac {1}{2}}-z}},{\frac {y}{{\frac {1}{2}}-z}}\right)\equiv \zeta =\xi +i\eta \end{cases}}}"></span></dd></dl> <p>where, for later convenience, the plane <span class="texhtml"><i>M</i></span> is identified with the complex plane <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f4d5d3ec97eee8b915d3b14d3fb38579ee639d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} .}"></span> </p><p>For the inverse, write <span class="texhtml"><i>L</i></span> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=N+s(P'-N)=\left(0,0,{\frac {1}{2}}\right)+s\left(\left(\xi ,\eta ,-{\frac {1}{2}}\right)-\left(0,0,{\frac {1}{2}}\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>N</mi> <mo>+</mo> <mi>s</mi> <mo stretchy="false">(</mo> <msup> <mi>P</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>s</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03B7;<!-- η --></mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=N+s(P'-N)=\left(0,0,{\frac {1}{2}}\right)+s\left(\left(\xi ,\eta ,-{\frac {1}{2}}\right)-\left(0,0,{\frac {1}{2}}\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9270b308a50b4fad11ce0746f01d9c31b4cc42f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:65.728ex; height:6.176ex;" alt="{\displaystyle L=N+s(P&#039;-N)=\left(0,0,{\frac {1}{2}}\right)+s\left(\left(\xi ,\eta ,-{\frac {1}{2}}\right)-\left(0,0,{\frac {1}{2}}\right)\right),}"></span></dd></dl> <p>and demand <span class="texhtml"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span></span> to find <span class="texhtml"><i>s</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">1 + <i>ξ</i><sup>2</sup> + <i>η</i><sup>2</sup></span></span>&#8288;</span></span> and thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}S^{-1}:M\to \mathbf {S} \\P'=(\xi ,\eta )\longmapsto P=(x,y,z)=\left({\frac {\xi }{1+\xi ^{2}+\eta ^{2}}},{\frac {\eta }{1+\xi ^{2}+\eta ^{2}}},{\frac {-1+\xi ^{2}+\eta ^{2}}{2+2\xi ^{2}+2\eta ^{2}}}\right)\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>:</mo> <mi>M</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>P</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>&#x03BE;<!-- ξ --></mi> <mo>,</mo> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x27FC;<!-- ⟼ --></mo> <mi>P</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03BE;<!-- ξ --></mi> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B7;<!-- η --></mi> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>+</mo> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo>+</mo> <mn>2</mn> <msup> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>&#x03B7;<!-- η --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}S^{-1}:M\to \mathbf {S} \\P'=(\xi ,\eta )\longmapsto P=(x,y,z)=\left({\frac {\xi }{1+\xi ^{2}+\eta ^{2}}},{\frac {\eta }{1+\xi ^{2}+\eta ^{2}}},{\frac {-1+\xi ^{2}+\eta ^{2}}{2+2\xi ^{2}+2\eta ^{2}}}\right)\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3a4e15da4658b0d2df30b0b2447766337cb467b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:63.404ex; height:8.843ex;" alt="{\displaystyle {\begin{cases}S^{-1}:M\to \mathbf {S} \\P&#039;=(\xi ,\eta )\longmapsto P=(x,y,z)=\left({\frac {\xi }{1+\xi ^{2}+\eta ^{2}}},{\frac {\eta }{1+\xi ^{2}+\eta ^{2}}},{\frac {-1+\xi ^{2}+\eta ^{2}}{2+2\xi ^{2}+2\eta ^{2}}}\right)\end{cases}}}"></span></dd></dl> <p>If <span class="texhtml"><i>g</i> ∈ SO(3)</span> is a rotation, then it will take points on <span class="texhtml"><b>S</b></span> to points on <span class="texhtml"><b>S</b></span> by its standard action <span class="texhtml">Π<sub><i>s</i></sub>(<i>g</i>)</span> on the embedding space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b00b2b4fd27c2cbffa02df568472f77b194a6db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}.}"></span> By composing this action with <span class="texhtml"><i>S</i></span> one obtains a transformation <span class="texhtml"><i>S</i> ∘ Π<sub><i>s</i></sub>(<i>g</i>) ∘ <i>S</i><sup>−1</sup></span> of <span class="texhtml mvar" style="font-style:italic;">M</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta =P'\longmapsto P\longmapsto \Pi _{s}(g)P=gP\longmapsto S(gP)\equiv \Pi _{u}(g)\zeta =\zeta '.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <msup> <mi>P</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x27FC;<!-- ⟼ --></mo> <mi>P</mi> <mo stretchy="false">&#x27FC;<!-- ⟼ --></mo> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo>=</mo> <mi>g</mi> <mi>P</mi> <mo stretchy="false">&#x27FC;<!-- ⟼ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mi>P</mi> <mo stretchy="false">)</mo> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta =P'\longmapsto P\longmapsto \Pi _{s}(g)P=gP\longmapsto S(gP)\equiv \Pi _{u}(g)\zeta =\zeta '.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f624854e9dd2fc4536050e9ce136d732bc485cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.863ex; height:3.009ex;" alt="{\displaystyle \zeta =P&#039;\longmapsto P\longmapsto \Pi _{s}(g)P=gP\longmapsto S(gP)\equiv \Pi _{u}(g)\zeta =\zeta &#039;.}"></span></dd></dl> <p>Thus <span class="texhtml">Π<sub><i>u</i></sub>(<i>g</i>)</span> is a transformation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> associated to the transformation <span class="texhtml">Π<sub><i>s</i></sub>(<i>g</i>)</span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span>. </p><p>It turns out that <span class="texhtml"><i>g</i> ∈ SO(3)</span> represented in this way by <span class="texhtml">Π<sub><i>u</i></sub>(<i>g</i>)</span> can be expressed as a matrix <span class="texhtml">Π<sub><i>u</i></sub>(<i>g</i>) ∈ SU(2)</span> (where the notation is recycled to use the same name for the matrix as for the transformation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span> it represents). To identify this matrix, consider first a rotation <span class="texhtml"><i>g</i><sub><i>φ</i></sub></span> about the <span class="nowrap"><span class="texhtml"><i>z</i></span>-axis</span> through an angle <span class="texhtml mvar" style="font-style:italic;"><i>φ</i></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x'&amp;=x\cos \phi -y\sin \phi ,\\y'&amp;=x\sin \phi +y\cos \phi ,\\z'&amp;=z.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>+</mo> <mi>y</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>z</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x'&amp;=x\cos \phi -y\sin \phi ,\\y'&amp;=x\sin \phi +y\cos \phi ,\\z'&amp;=z.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7adcf12eabf85bff8a48a92451a69a70bc2f6d2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:22.123ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}x&#039;&amp;=x\cos \phi -y\sin \phi ,\\y&#039;&amp;=x\sin \phi +y\cos \phi ,\\z&#039;&amp;=z.\end{aligned}}}"></span></dd></dl> <p>Hence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '={\frac {x'+iy'}{{\frac {1}{2}}-z'}}={\frac {e^{i\phi }(x+iy)}{{\frac {1}{2}}-z}}=e^{i\phi }\zeta ={\frac {e^{\frac {i\phi }{2}}\zeta +0}{0\zeta +e^{-{\frac {i\phi }{2}}}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <mi>i</mi> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>i</mi> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>+</mo> <mn>0</mn> </mrow> <mrow> <mn>0</mn> <mi>&#x03B6;<!-- ζ --></mi> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '={\frac {x'+iy'}{{\frac {1}{2}}-z'}}={\frac {e^{i\phi }(x+iy)}{{\frac {1}{2}}-z}}=e^{i\phi }\zeta ={\frac {e^{\frac {i\phi }{2}}\zeta +0}{0\zeta +e^{-{\frac {i\phi }{2}}}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f11eb6c0aebb6af4a7b47b24b68a4e08351f26f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:49.397ex; height:9.176ex;" alt="{\displaystyle \zeta &#039;={\frac {x&#039;+iy&#039;}{{\frac {1}{2}}-z&#039;}}={\frac {e^{i\phi }(x+iy)}{{\frac {1}{2}}-z}}=e^{i\phi }\zeta ={\frac {e^{\frac {i\phi }{2}}\zeta +0}{0\zeta +e^{-{\frac {i\phi }{2}}}}},}"></span></dd></dl> <p>which, unsurprisingly, is a rotation in the complex plane. In an analogous way, if <span class="texhtml"><i>g</i><sub><i>θ</i></sub></span> is a rotation about the <span class="nowrap"><span class="texhtml"><i>x</i></span>-axis</span> through an angle <span class="texhtml mvar" style="font-style:italic;">θ</span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w'=e^{i\theta }w,\quad w={\frac {y+iz}{{\frac {1}{2}}-x}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>w</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> <mi>w</mi> <mo>,</mo> <mspace width="1em" /> <mi>w</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>y</mi> <mo>+</mo> <mi>i</mi> <mi>z</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w'=e^{i\theta }w,\quad w={\frac {y+iz}{{\frac {1}{2}}-x}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c2b3dfe5bb9ce68f4bee4f35eb3fa597a885fbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:25.254ex; height:6.843ex;" alt="{\displaystyle w&#039;=e^{i\theta }w,\quad w={\frac {y+iz}{{\frac {1}{2}}-x}},}"></span></dd></dl> <p>which, after a little algebra, becomes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '={\frac {\cos {\frac {\theta }{2}}\zeta +i\sin {\frac {\theta }{2}}}{i\sin {\frac {\theta }{2}}\zeta +\cos {\frac {\theta }{2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mrow> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mi>&#x03B6;<!-- ζ --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '={\frac {\cos {\frac {\theta }{2}}\zeta +i\sin {\frac {\theta }{2}}}{i\sin {\frac {\theta }{2}}\zeta +\cos {\frac {\theta }{2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4570940e1529243572cebe39846e607e4c46458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:21.567ex; height:8.176ex;" alt="{\displaystyle \zeta &#039;={\frac {\cos {\frac {\theta }{2}}\zeta +i\sin {\frac {\theta }{2}}}{i\sin {\frac {\theta }{2}}\zeta +\cos {\frac {\theta }{2}}}}.}"></span></dd></dl> <p>These two rotations, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\phi },g_{\theta },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\phi },g_{\theta },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4997463b1e060a7fbfaeaa877b1af29b5e471b38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.114ex; height:2.343ex;" alt="{\displaystyle g_{\phi },g_{\theta },}"></span> thus correspond to <a href="/wiki/Bilinear_transform" title="Bilinear transform">bilinear transforms</a> of <span class="texhtml"><b>R</b><sup>2</sup> ≃ <b>C</b> ≃ <i>M</i></span>, namely, they are examples of <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformations</a>. </p><p>A general Möbius transformation is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta '={\frac {\alpha \zeta +\beta }{\gamma \zeta +\delta }},\quad \alpha \delta -\beta \gamma \neq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03B6;<!-- ζ --></mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B6;<!-- ζ --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B6;<!-- ζ --></mi> <mo>+</mo> <mi>&#x03B4;<!-- δ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta '={\frac {\alpha \zeta +\beta }{\gamma \zeta +\delta }},\quad \alpha \delta -\beta \gamma \neq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93fd5b026af4e5e8c1f07a42aaae41336f935c46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.728ex; height:6.009ex;" alt="{\displaystyle \zeta &#039;={\frac {\alpha \zeta +\beta }{\gamma \zeta +\delta }},\quad \alpha \delta -\beta \gamma \neq 0.}"></span></dd></dl> <p>The rotations, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\phi },g_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\phi },g_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c258a3cb0f4727cc571b971767fbc99b4436e91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.467ex; height:2.343ex;" alt="{\displaystyle g_{\phi },g_{\theta }}"></span> generate all of <span class="texhtml">SO(3)</span> and the composition rules of the Möbius transformations show that any composition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\phi },g_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\phi },g_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c258a3cb0f4727cc571b971767fbc99b4436e91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.467ex; height:2.343ex;" alt="{\displaystyle g_{\phi },g_{\theta }}"></span> translates to the corresponding composition of Möbius transformations. The Möbius transformations can be represented by matrices </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}\alpha &amp;\beta \\\gamma &amp;\delta \end{pmatrix}},\qquad \alpha \delta -\beta \gamma =1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> </mtd> <mtd> <mi>&#x03B2;<!-- β --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B3;<!-- γ --></mi> </mtd> <mtd> <mi>&#x03B4;<!-- δ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}\alpha &amp;\beta \\\gamma &amp;\delta \end{pmatrix}},\qquad \alpha \delta -\beta \gamma =1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e081f99a19f12cbe9dfe44567a92e06edd587452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.873ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}\alpha &amp;\beta \\\gamma &amp;\delta \end{pmatrix}},\qquad \alpha \delta -\beta \gamma =1,}"></span></dd></dl> <p>since a common factor of <span class="texhtml"><i>α</i>, <i>β</i>, <i>γ</i>, <i>δ</i></span> cancels. </p><p>For the same reason, the matrix is <i>not</i> uniquely defined since multiplication by <span class="texhtml">−<i>I</i></span> has no effect on either the determinant or the Möbius transformation. The composition law of Möbius transformations follow that of the corresponding matrices. The conclusion is that each Möbius transformation corresponds to two matrices <span class="texhtml"><i>g</i>, −<i>g</i> ∈ SL(2, <b>C</b>)</span>. </p><p>Using this correspondence one may write </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Pi _{u}(g_{\phi })&amp;=\Pi _{u}\left[{\begin{pmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\right]=\pm {\begin{pmatrix}e^{i{\frac {\phi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\phi }{2}}}\end{pmatrix}},\\\Pi _{u}(g_{\theta })&amp;=\Pi _{u}\left[{\begin{pmatrix}1&amp;0&amp;0\\0&amp;\cos \theta &amp;-\sin \theta \\0&amp;\sin \theta &amp;\cos \theta \end{pmatrix}}\right]=\pm {\begin{pmatrix}\cos {\frac {\theta }{2}}&amp;i\sin {\frac {\theta }{2}}\\i\sin {\frac {\theta }{2}}&amp;\cos {\frac {\theta }{2}}\end{pmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\Pi _{u}(g_{\phi })&amp;=\Pi _{u}\left[{\begin{pmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\right]=\pm {\begin{pmatrix}e^{i{\frac {\phi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\phi }{2}}}\end{pmatrix}},\\\Pi _{u}(g_{\theta })&amp;=\Pi _{u}\left[{\begin{pmatrix}1&amp;0&amp;0\\0&amp;\cos \theta &amp;-\sin \theta \\0&amp;\sin \theta &amp;\cos \theta \end{pmatrix}}\right]=\pm {\begin{pmatrix}\cos {\frac {\theta }{2}}&amp;i\sin {\frac {\theta }{2}}\\i\sin {\frac {\theta }{2}}&amp;\cos {\frac {\theta }{2}}\end{pmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22565ba61ca4a960754f63a9332628a797792ac4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:63.532ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}\Pi _{u}(g_{\phi })&amp;=\Pi _{u}\left[{\begin{pmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\right]=\pm {\begin{pmatrix}e^{i{\frac {\phi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\phi }{2}}}\end{pmatrix}},\\\Pi _{u}(g_{\theta })&amp;=\Pi _{u}\left[{\begin{pmatrix}1&amp;0&amp;0\\0&amp;\cos \theta &amp;-\sin \theta \\0&amp;\sin \theta &amp;\cos \theta \end{pmatrix}}\right]=\pm {\begin{pmatrix}\cos {\frac {\theta }{2}}&amp;i\sin {\frac {\theta }{2}}\\i\sin {\frac {\theta }{2}}&amp;\cos {\frac {\theta }{2}}\end{pmatrix}}.\end{aligned}}}"></span></dd></dl> <p>These matrices are unitary and thus <span class="texhtml">Π<sub><i>u</i></sub>(SO(3)) ⊂ SU(2) ⊂ SL(2, <b>C</b>)</span>. In terms of <a href="/wiki/Euler_angles" title="Euler angles">Euler angles</a><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>nb 1<span class="cite-bracket">&#93;</span></a></sup> one finds for a general rotation </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}g(\phi ,\theta ,\psi )=g_{\phi }g_{\theta }g_{\psi }&amp;={\begin{pmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{pmatrix}}{\begin{pmatrix}1&amp;0&amp;0\\0&amp;\cos \theta &amp;-\sin \theta \\0&amp;\sin \theta &amp;\cos \theta \end{pmatrix}}{\begin{pmatrix}\cos \psi &amp;-\sin \psi &amp;0\\\sin \psi &amp;\cos \psi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\\&amp;={\begin{pmatrix}\cos \phi \cos \psi -\cos \theta \sin \phi \sin \psi &amp;-\cos \phi \sin \psi -\cos \theta \sin \phi \cos \psi &amp;\sin \phi \sin \theta \\\sin \phi \cos \psi +\cos \theta \cos \phi \sin \psi &amp;-\sin \phi \sin \psi +\cos \theta \cos \phi \cos \psi &amp;-\cos \phi \sin \theta \\\sin \psi \sin \theta &amp;\cos \psi \sin \theta &amp;\cos \theta \end{pmatrix}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo>+</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}g(\phi ,\theta ,\psi )=g_{\phi }g_{\theta }g_{\psi }&amp;={\begin{pmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{pmatrix}}{\begin{pmatrix}1&amp;0&amp;0\\0&amp;\cos \theta &amp;-\sin \theta \\0&amp;\sin \theta &amp;\cos \theta \end{pmatrix}}{\begin{pmatrix}\cos \psi &amp;-\sin \psi &amp;0\\\sin \psi &amp;\cos \psi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\\&amp;={\begin{pmatrix}\cos \phi \cos \psi -\cos \theta \sin \phi \sin \psi &amp;-\cos \phi \sin \psi -\cos \theta \sin \phi \cos \psi &amp;\sin \phi \sin \theta \\\sin \phi \cos \psi +\cos \theta \cos \phi \sin \psi &amp;-\sin \phi \sin \psi +\cos \theta \cos \phi \cos \psi &amp;-\cos \phi \sin \theta \\\sin \psi \sin \theta &amp;\cos \psi \sin \theta &amp;\cos \theta \end{pmatrix}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d8390d24d69712dd7c475961c67270b072644cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:102.619ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}g(\phi ,\theta ,\psi )=g_{\phi }g_{\theta }g_{\psi }&amp;={\begin{pmatrix}\cos \phi &amp;-\sin \phi &amp;0\\\sin \phi &amp;\cos \phi &amp;0\\0&amp;0&amp;1\end{pmatrix}}{\begin{pmatrix}1&amp;0&amp;0\\0&amp;\cos \theta &amp;-\sin \theta \\0&amp;\sin \theta &amp;\cos \theta \end{pmatrix}}{\begin{pmatrix}\cos \psi &amp;-\sin \psi &amp;0\\\sin \psi &amp;\cos \psi &amp;0\\0&amp;0&amp;1\end{pmatrix}}\\&amp;={\begin{pmatrix}\cos \phi \cos \psi -\cos \theta \sin \phi \sin \psi &amp;-\cos \phi \sin \psi -\cos \theta \sin \phi \cos \psi &amp;\sin \phi \sin \theta \\\sin \phi \cos \psi +\cos \theta \cos \phi \sin \psi &amp;-\sin \phi \sin \psi +\cos \theta \cos \phi \cos \psi &amp;-\cos \phi \sin \theta \\\sin \psi \sin \theta &amp;\cos \psi \sin \theta &amp;\cos \theta \end{pmatrix}},\end{aligned}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>one has<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\Pi _{u}(g(\phi ,\theta ,\psi ))&amp;=\pm {\begin{pmatrix}e^{i{\frac {\phi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\phi }{2}}}\end{pmatrix}}{\begin{pmatrix}\cos {\frac {\theta }{2}}&amp;i\sin {\frac {\theta }{2}}\\i\sin {\frac {\theta }{2}}&amp;\cos {\frac {\theta }{2}}\end{pmatrix}}{\begin{pmatrix}e^{i{\frac {\psi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\psi }{2}}}\end{pmatrix}}\\&amp;=\pm {\begin{pmatrix}\cos {\frac {\theta }{2}}e^{i{\frac {\phi +\psi }{2}}}&amp;i\sin {\frac {\theta }{2}}e^{i{\frac {\phi -\psi }{2}}}\\i\sin {\frac {\theta }{2}}e^{-i{\frac {\phi -\psi }{2}}}&amp;\cos {\frac {\theta }{2}}e^{-i{\frac {\phi +\psi }{2}}}\end{pmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C8;<!-- ψ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C8;<!-- ψ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>+</mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> <mtd> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>+</mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\Pi _{u}(g(\phi ,\theta ,\psi ))&amp;=\pm {\begin{pmatrix}e^{i{\frac {\phi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\phi }{2}}}\end{pmatrix}}{\begin{pmatrix}\cos {\frac {\theta }{2}}&amp;i\sin {\frac {\theta }{2}}\\i\sin {\frac {\theta }{2}}&amp;\cos {\frac {\theta }{2}}\end{pmatrix}}{\begin{pmatrix}e^{i{\frac {\psi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\psi }{2}}}\end{pmatrix}}\\&amp;=\pm {\begin{pmatrix}\cos {\frac {\theta }{2}}e^{i{\frac {\phi +\psi }{2}}}&amp;i\sin {\frac {\theta }{2}}e^{i{\frac {\phi -\psi }{2}}}\\i\sin {\frac {\theta }{2}}e^{-i{\frac {\phi -\psi }{2}}}&amp;\cos {\frac {\theta }{2}}e^{-i{\frac {\phi +\psi }{2}}}\end{pmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad6fc3558a803a13c84ca4ad60b57cd8bd5dfed0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.838ex; width:69.345ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}\Pi _{u}(g(\phi ,\theta ,\psi ))&amp;=\pm {\begin{pmatrix}e^{i{\frac {\phi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\phi }{2}}}\end{pmatrix}}{\begin{pmatrix}\cos {\frac {\theta }{2}}&amp;i\sin {\frac {\theta }{2}}\\i\sin {\frac {\theta }{2}}&amp;\cos {\frac {\theta }{2}}\end{pmatrix}}{\begin{pmatrix}e^{i{\frac {\psi }{2}}}&amp;0\\0&amp;e^{-i{\frac {\psi }{2}}}\end{pmatrix}}\\&amp;=\pm {\begin{pmatrix}\cos {\frac {\theta }{2}}e^{i{\frac {\phi +\psi }{2}}}&amp;i\sin {\frac {\theta }{2}}e^{i{\frac {\phi -\psi }{2}}}\\i\sin {\frac {\theta }{2}}e^{-i{\frac {\phi -\psi }{2}}}&amp;\cos {\frac {\theta }{2}}e^{-i{\frac {\phi +\psi }{2}}}\end{pmatrix}}.\end{aligned}}}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>For the converse, consider a general matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm \Pi _{u}(g_{\alpha ,\beta })=\pm {\begin{pmatrix}\alpha &amp;\beta \\-{\overline {\beta }}&amp;{\overline {\alpha }}\end{pmatrix}}\in \operatorname {SU} (2).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> </mtd> <mtd> <mi>&#x03B2;<!-- β --></mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm \Pi _{u}(g_{\alpha ,\beta })=\pm {\begin{pmatrix}\alpha &amp;\beta \\-{\overline {\beta }}&amp;{\overline {\alpha }}\end{pmatrix}}\in \operatorname {SU} (2).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30578f2b7ed280a30053fcf681b8d9eb83de2ff4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.09ex; height:6.509ex;" alt="{\displaystyle \pm \Pi _{u}(g_{\alpha ,\beta })=\pm {\begin{pmatrix}\alpha &amp;\beta \\-{\overline {\beta }}&amp;{\overline {\alpha }}\end{pmatrix}}\in \operatorname {SU} (2).}"></span></dd></dl> <p>Make the substitutions </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\cos {\frac {\theta }{2}}&amp;=|\alpha |,&amp;\sin {\frac {\theta }{2}}&amp;=|\beta |,&amp;(0\leq \theta \leq \pi ),\\{\frac {\phi +\psi }{2}}&amp;=\arg \alpha ,&amp;{\frac {\psi -\phi }{2}}&amp;=\arg \beta .&amp;\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mo stretchy="false">(</mo> <mn>0</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x03C0;<!-- π --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>+</mo> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>arg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>arg</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>.</mo> </mtd> <mtd /> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\cos {\frac {\theta }{2}}&amp;=|\alpha |,&amp;\sin {\frac {\theta }{2}}&amp;=|\beta |,&amp;(0\leq \theta \leq \pi ),\\{\frac {\phi +\psi }{2}}&amp;=\arg \alpha ,&amp;{\frac {\psi -\phi }{2}}&amp;=\arg \beta .&amp;\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db80f4c3e21dde038386915f923871017e310c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.619ex; margin-bottom: -0.219ex; width:52.988ex; height:10.843ex;" alt="{\displaystyle {\begin{aligned}\cos {\frac {\theta }{2}}&amp;=|\alpha |,&amp;\sin {\frac {\theta }{2}}&amp;=|\beta |,&amp;(0\leq \theta \leq \pi ),\\{\frac {\phi +\psi }{2}}&amp;=\arg \alpha ,&amp;{\frac {\psi -\phi }{2}}&amp;=\arg \beta .&amp;\end{aligned}}}"></span></dd></dl> <p>With the substitutions, <span class="texhtml">Π(<i>g</i><sub><i>α</i>, <i>β</i></sub>)</span> assumes the form of the right hand side (<a href="/wiki/Right-hand_side" class="mw-redirect" title="Right-hand side">RHS</a>) of (<b><a href="#math_2">2</a></b>), which corresponds under <span class="texhtml">Π<sub><i>u</i></sub></span> to a matrix on the form of the RHS of (<b><a href="#math_1">1</a></b>) with the same <span class="texhtml"><i>φ</i>, <i>θ</i>, <i>ψ</i></span>. In terms of the complex parameters <span class="texhtml"><i>α</i>, <i>β</i></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\alpha ,\beta }={\begin{pmatrix}{\frac {1}{2}}\left(\alpha ^{2}-\beta ^{2}+{\overline {\alpha ^{2}}}-{\overline {\beta ^{2}}}\right)&amp;{\frac {i}{2}}\left(-\alpha ^{2}-\beta ^{2}+{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;-\alpha \beta -{\overline {\alpha }}{\overline {\beta }}\\{\frac {i}{2}}\left(\alpha ^{2}-\beta ^{2}-{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;{\frac {1}{2}}\left(\alpha ^{2}+\beta ^{2}+{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;-i\left(+\alpha \beta -{\overline {\alpha }}{\overline {\beta }}\right)\\\alpha {\overline {\beta }}+{\overline {\alpha }}\beta &amp;i\left(-\alpha {\overline {\beta }}+{\overline {\alpha }}\beta \right)&amp;\alpha {\overline {\alpha }}-\beta {\overline {\beta }}\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <msup> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow> <mo>(</mo> <mrow> <mo>+</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>&#x03B2;<!-- β --></mi> </mtd> <mtd> <mi>i</mi> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>&#x03B2;<!-- β --></mi> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\alpha ,\beta }={\begin{pmatrix}{\frac {1}{2}}\left(\alpha ^{2}-\beta ^{2}+{\overline {\alpha ^{2}}}-{\overline {\beta ^{2}}}\right)&amp;{\frac {i}{2}}\left(-\alpha ^{2}-\beta ^{2}+{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;-\alpha \beta -{\overline {\alpha }}{\overline {\beta }}\\{\frac {i}{2}}\left(\alpha ^{2}-\beta ^{2}-{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;{\frac {1}{2}}\left(\alpha ^{2}+\beta ^{2}+{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;-i\left(+\alpha \beta -{\overline {\alpha }}{\overline {\beta }}\right)\\\alpha {\overline {\beta }}+{\overline {\alpha }}\beta &amp;i\left(-\alpha {\overline {\beta }}+{\overline {\alpha }}\beta \right)&amp;\alpha {\overline {\alpha }}-\beta {\overline {\beta }}\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea2ab88ff2215e9e7822cea22f158232ef0550f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:81.987ex; height:14.843ex;" alt="{\displaystyle g_{\alpha ,\beta }={\begin{pmatrix}{\frac {1}{2}}\left(\alpha ^{2}-\beta ^{2}+{\overline {\alpha ^{2}}}-{\overline {\beta ^{2}}}\right)&amp;{\frac {i}{2}}\left(-\alpha ^{2}-\beta ^{2}+{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;-\alpha \beta -{\overline {\alpha }}{\overline {\beta }}\\{\frac {i}{2}}\left(\alpha ^{2}-\beta ^{2}-{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;{\frac {1}{2}}\left(\alpha ^{2}+\beta ^{2}+{\overline {\alpha ^{2}}}+{\overline {\beta ^{2}}}\right)&amp;-i\left(+\alpha \beta -{\overline {\alpha }}{\overline {\beta }}\right)\\\alpha {\overline {\beta }}+{\overline {\alpha }}\beta &amp;i\left(-\alpha {\overline {\beta }}+{\overline {\alpha }}\beta \right)&amp;\alpha {\overline {\alpha }}-\beta {\overline {\beta }}\end{pmatrix}}.}"></span></dd></dl> <p>To verify this, substitute for <span class="texhtml"><i>α</i>. <i>β</i></span> the elements of the matrix on the RHS of (<b><a href="#math_2">2</a></b>). After some manipulation, the matrix assumes the form of the RHS of (<b><a href="#math_1">1</a></b>). </p><p>It is clear from the explicit form in terms of Euler angles that the map </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}p:\operatorname {SU} (2)\to \operatorname {SO} (3)\\\pm \Pi _{u}(g_{\alpha \beta })\mapsto g_{\alpha \beta }\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>p</mi> <mo>:</mo> <mi>SU</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}p:\operatorname {SU} (2)\to \operatorname {SO} (3)\\\pm \Pi _{u}(g_{\alpha \beta })\mapsto g_{\alpha \beta }\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a531860bd071aa03a8b6fddd843382d7efc4703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:21.295ex; height:6.176ex;" alt="{\displaystyle {\begin{cases}p:\operatorname {SU} (2)\to \operatorname {SO} (3)\\\pm \Pi _{u}(g_{\alpha \beta })\mapsto g_{\alpha \beta }\end{cases}}}"></span></dd></dl> <p>just described is a smooth, <span class="texhtml">2:1</span> and surjective <a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphism</a>. It is hence an explicit description of the <a href="/wiki/Universal_covering_space" class="mw-redirect" title="Universal covering space">universal covering space</a> of <span class="texhtml">SO(3)</span> from the <a href="/wiki/Universal_covering_group" class="mw-redirect" title="Universal covering group">universal covering group</a> <span class="texhtml">SU(2)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Lie_algebra">Lie algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=10" title="Edit section: Lie algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Associated with every <a href="/wiki/Lie_group" title="Lie group">Lie group</a> is its <a href="/wiki/Lie_algebra" title="Lie algebra">Lie algebra</a>, a linear space of the same dimension as the Lie group, closed under a bilinear alternating product called the <a href="/wiki/Lie_bracket" class="mw-redirect" title="Lie bracket">Lie bracket</a>. The Lie algebra of <span class="texhtml">SO(3)</span> is denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> and consists of all <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric</a> <span class="texhtml">3 × 3</span> matrices.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> This may be seen by differentiating the <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonality condition</a>, <span class="texhtml"><i>A</i><sup>T</sup><i>A</i> = <i>I</i>, <i>A</i> ∈ SO(3)</span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>nb 2<span class="cite-bracket">&#93;</span></a></sup> The Lie bracket of two elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> is, as for the Lie algebra of every matrix group, given by the matrix <a href="/wiki/Commutator" title="Commutator">commutator</a>, <span class="texhtml">[<i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>] = <i>A</i><sub>1</sub><i>A</i><sub>2</sub> − <i>A</i><sub>2</sub><i>A</i><sub>1</sub></span>, which is again a skew-symmetric matrix. The Lie algebra bracket captures the essence of the Lie group product in a sense made precise by the <a href="/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula" title="Baker–Campbell–Hausdorff formula">Baker–Campbell–Hausdorff formula</a>. </p><p>The elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> are the "infinitesimal generators" of rotations, i.e., they are the elements of the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> of the manifold SO(3) at the identity element. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(\phi ,{\boldsymbol {n}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">n</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(\phi ,{\boldsymbol {n}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9099b4e9721d58ed9554336e0041496850706973" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.65ex; height:2.843ex;" alt="{\displaystyle R(\phi ,{\boldsymbol {n}})}"></span> denotes a counterclockwise rotation with angle φ about the axis specified by the unit vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {n}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">n</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {n}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/336c0aeeee838a26734050e07d045b040a8bfed2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.304ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {n}},}"></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall {\boldsymbol {u}}\in \mathbb {R} ^{3}:\qquad \left.{\frac {\operatorname {d} }{\operatorname {d} \phi }}\right|_{\phi =0}R(\phi ,{\boldsymbol {n}}){\boldsymbol {u}}={\boldsymbol {n}}\times {\boldsymbol {u}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>:</mo> <mspace width="2em" /> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">d</mi> <mrow> <mi mathvariant="normal">d</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> <mi>R</mi> <mo stretchy="false">(</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">n</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">n</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall {\boldsymbol {u}}\in \mathbb {R} ^{3}:\qquad \left.{\frac {\operatorname {d} }{\operatorname {d} \phi }}\right|_{\phi =0}R(\phi ,{\boldsymbol {n}}){\boldsymbol {u}}={\boldsymbol {n}}\times {\boldsymbol {u}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1db89b93c6e6c1a577734788aca73da24ebdbb88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:41.95ex; height:6.343ex;" alt="{\displaystyle \forall {\boldsymbol {u}}\in \mathbb {R} ^{3}:\qquad \left.{\frac {\operatorname {d} }{\operatorname {d} \phi }}\right|_{\phi =0}R(\phi ,{\boldsymbol {n}}){\boldsymbol {u}}={\boldsymbol {n}}\times {\boldsymbol {u}}.}"></span></dd></dl> <p>This can be used to show that the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> (with commutator) is isomorphic to the Lie algebra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> (with <a href="/wiki/Cross_product" title="Cross product">cross product</a>). Under this isomorphism, an <a href="/wiki/Axis%E2%80%93angle_representation#Rotation_vector" title="Axis–angle representation">Euler vector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}\in \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}\in \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91a22435f9cba0a4ff8cd335d43d54991be8717" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.242ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {\omega }}\in \mathbb {R} ^{3}}"></span> corresponds to the linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\boldsymbol {\omega }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\boldsymbol {\omega }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/982e8b8c2d4d591af4059190bcd8ee062b115d70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.021ex; margin-bottom: -0.317ex; width:1.669ex; height:2.176ex;" alt="{\displaystyle {\widetilde {\boldsymbol {\omega }}}}"></span> defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widetilde {\boldsymbol {\omega }}}({\boldsymbol {u}})={\boldsymbol {\omega }}\times {\boldsymbol {u}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> <mo>&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widetilde {\boldsymbol {\omega }}}({\boldsymbol {u}})={\boldsymbol {\omega }}\times {\boldsymbol {u}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e16ab14ded114a3e77f788d972116546edcca00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.898ex; height:2.843ex;" alt="{\displaystyle {\widetilde {\boldsymbol {\omega }}}({\boldsymbol {u}})={\boldsymbol {\omega }}\times {\boldsymbol {u}}.}"></span> </p><p>In more detail, most often a suitable basis for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> as a <span class="nowrap"><span class="texhtml">3</span>-dimensional</span> vector space is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {L}}_{x}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;0&amp;-1\\0&amp;1&amp;0\end{bmatrix}},\quad {\boldsymbol {L}}_{y}={\begin{bmatrix}0&amp;0&amp;1\\0&amp;0&amp;0\\-1&amp;0&amp;0\end{bmatrix}},\quad {\boldsymbol {L}}_{z}={\begin{bmatrix}0&amp;-1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;0\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {L}}_{x}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;0&amp;-1\\0&amp;1&amp;0\end{bmatrix}},\quad {\boldsymbol {L}}_{y}={\begin{bmatrix}0&amp;0&amp;1\\0&amp;0&amp;0\\-1&amp;0&amp;0\end{bmatrix}},\quad {\boldsymbol {L}}_{z}={\begin{bmatrix}0&amp;-1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;0\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eb7f297e9859218d3edc956e79c948d0980c5b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:66.528ex; height:9.176ex;" alt="{\displaystyle {\boldsymbol {L}}_{x}={\begin{bmatrix}0&amp;0&amp;0\\0&amp;0&amp;-1\\0&amp;1&amp;0\end{bmatrix}},\quad {\boldsymbol {L}}_{y}={\begin{bmatrix}0&amp;0&amp;1\\0&amp;0&amp;0\\-1&amp;0&amp;0\end{bmatrix}},\quad {\boldsymbol {L}}_{z}={\begin{bmatrix}0&amp;-1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;0\end{bmatrix}}.}"></span></dd></dl> <p>The <a href="/wiki/Commutation_relation" class="mw-redirect" title="Commutation relation">commutation relations</a> of these basis elements are, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\boldsymbol {L}}_{x},{\boldsymbol {L}}_{y}]={\boldsymbol {L}}_{z},\quad [{\boldsymbol {L}}_{z},{\boldsymbol {L}}_{x}]={\boldsymbol {L}}_{y},\quad [{\boldsymbol {L}}_{y},{\boldsymbol {L}}_{z}]={\boldsymbol {L}}_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\boldsymbol {L}}_{x},{\boldsymbol {L}}_{y}]={\boldsymbol {L}}_{z},\quad [{\boldsymbol {L}}_{z},{\boldsymbol {L}}_{x}]={\boldsymbol {L}}_{y},\quad [{\boldsymbol {L}}_{y},{\boldsymbol {L}}_{z}]={\boldsymbol {L}}_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21b43a3a337e8450064d485be4433ce497ddd0b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.475ex; height:3.009ex;" alt="{\displaystyle [{\boldsymbol {L}}_{x},{\boldsymbol {L}}_{y}]={\boldsymbol {L}}_{z},\quad [{\boldsymbol {L}}_{z},{\boldsymbol {L}}_{x}]={\boldsymbol {L}}_{y},\quad [{\boldsymbol {L}}_{y},{\boldsymbol {L}}_{z}]={\boldsymbol {L}}_{x}}"></span></dd></dl> <p>which agree with the relations of the three <a href="/wiki/Standard_basis" title="Standard basis">standard unit vectors</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> under the cross product. </p><p>As announced above, one can identify any matrix in this Lie algebra with an Euler vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\omega }}=(x,y,z)\in \mathbb {R} ^{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\omega }}=(x,y,z)\in \mathbb {R} ^{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c46b371dc7404f2cfbcf67f8819dc42775a8799e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.438ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {\omega }}=(x,y,z)\in \mathbb {R} ^{3},}"></span><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\boldsymbol {\omega }}}={\boldsymbol {\omega }}\cdot {\boldsymbol {L}}=x{\boldsymbol {L}}_{x}+y{\boldsymbol {L}}_{y}+z{\boldsymbol {L}}_{z}={\begin{bmatrix}0&amp;-z&amp;y\\z&amp;0&amp;-x\\-y&amp;x&amp;0\end{bmatrix}}\in {\mathfrak {so}}(3).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mo>=</mo> <mi>x</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <mi>y</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mi>z</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mtd> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mtd> <mtd> <mi>x</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\boldsymbol {\omega }}}={\boldsymbol {\omega }}\cdot {\boldsymbol {L}}=x{\boldsymbol {L}}_{x}+y{\boldsymbol {L}}_{y}+z{\boldsymbol {L}}_{z}={\begin{bmatrix}0&amp;-z&amp;y\\z&amp;0&amp;-x\\-y&amp;x&amp;0\end{bmatrix}}\in {\mathfrak {so}}(3).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c711ca67c4c13799bf6db0f14eb9ab929939edaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:59.939ex; height:9.509ex;" alt="{\displaystyle {\widehat {\boldsymbol {\omega }}}={\boldsymbol {\omega }}\cdot {\boldsymbol {L}}=x{\boldsymbol {L}}_{x}+y{\boldsymbol {L}}_{y}+z{\boldsymbol {L}}_{z}={\begin{bmatrix}0&amp;-z&amp;y\\z&amp;0&amp;-x\\-y&amp;x&amp;0\end{bmatrix}}\in {\mathfrak {so}}(3).}"></span></dd></dl> <p>This identification is sometimes called the <b>hat-map</b>.<sup id="cite_ref-Engø_2001_11-0" class="reference"><a href="#cite_note-Engø_2001-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Under this identification, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> bracket corresponds in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> to the <a href="/wiki/Cross_product" title="Cross product">cross product</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\widehat {\boldsymbol {u}}},{\widehat {\boldsymbol {v}}}\right]={\widehat {{\boldsymbol {u}}\times {\boldsymbol {v}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">u</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">v</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[{\widehat {\boldsymbol {u}}},{\widehat {\boldsymbol {v}}}\right]={\widehat {{\boldsymbol {u}}\times {\boldsymbol {v}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88bb32c38386e402116e3386f7600d72b0d95988" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.776ex; height:3.176ex;" alt="{\displaystyle \left[{\widehat {\boldsymbol {u}}},{\widehat {\boldsymbol {v}}}\right]={\widehat {{\boldsymbol {u}}\times {\boldsymbol {v}}}}.}"></span></dd></dl> <p>The matrix identified with a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {u}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {u}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d60e374e33b2c1d75888c0e8759f9e770e718f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {u}}}"></span> has the property that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\boldsymbol {u}}}{\boldsymbol {v}}={\boldsymbol {u}}\times {\boldsymbol {v}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">u</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\boldsymbol {u}}}{\boldsymbol {v}}={\boldsymbol {u}}\times {\boldsymbol {v}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8efe267986fc12390d7901e2eec8ae7e2011950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.388ex; height:2.676ex;" alt="{\displaystyle {\widehat {\boldsymbol {u}}}{\boldsymbol {v}}={\boldsymbol {u}}\times {\boldsymbol {v}},}"></span></dd></dl> <p>where the left-hand side we have ordinary matrix multiplication. This implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {u}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {u}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d60e374e33b2c1d75888c0e8759f9e770e718f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {u}}}"></span> is in the <a href="/wiki/Null_space" class="mw-redirect" title="Null space">null space</a> of the skew-symmetric matrix with which it is identified, because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {u}}\times {\boldsymbol {u}}={\boldsymbol {0}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {u}}\times {\boldsymbol {u}}={\boldsymbol {0}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df60f2b23bdfa2af5e16677db7feaf1b99287e79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.088ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {u}}\times {\boldsymbol {u}}={\boldsymbol {0}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="A_note_on_Lie_algebras">A note on Lie algebras</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=11" title="Edit section: A note on Lie algebras"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Angular_momentum_operator" title="Angular momentum operator">Angular momentum operator</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Representation_theory_of_SU(2)" title="Representation theory of SU(2)">Representation theory of SU(2)</a> and <a href="/wiki/Jordan_map" title="Jordan map">Jordan map</a></div> <p>In <a href="/wiki/Lie_algebra_representation" title="Lie algebra representation">Lie algebra representations</a>, the group SO(3) is compact and simple of rank 1, and so it has a single independent <a href="/wiki/Casimir_element" title="Casimir element">Casimir element</a>, a quadratic invariant function of the three generators which commutes with all of them. The Killing form for the rotation group is just the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>, and so this Casimir invariant is simply the sum of the squares of the generators, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a70f7cc60947545d505aa58dc0d48603d5240abc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.338ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z},}"></span> of the algebra </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y}]={\boldsymbol {J}}_{z},\quad [{\boldsymbol {J}}_{z},{\boldsymbol {J}}_{x}]={\boldsymbol {J}}_{y},\quad [{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z}]={\boldsymbol {J}}_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y}]={\boldsymbol {J}}_{z},\quad [{\boldsymbol {J}}_{z},{\boldsymbol {J}}_{x}]={\boldsymbol {J}}_{y},\quad [{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z}]={\boldsymbol {J}}_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6eb35b6ad6e2c39742ca6423fac8bf75ad4a2c9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.509ex; height:3.009ex;" alt="{\displaystyle [{\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y}]={\boldsymbol {J}}_{z},\quad [{\boldsymbol {J}}_{z},{\boldsymbol {J}}_{x}]={\boldsymbol {J}}_{y},\quad [{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z}]={\boldsymbol {J}}_{x}.}"></span></dd></dl> <p>That is, the Casimir invariant is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {J}}^{2}\equiv {\boldsymbol {J}}\cdot {\boldsymbol {J}}={\boldsymbol {J}}_{x}^{2}+{\boldsymbol {J}}_{y}^{2}+{\boldsymbol {J}}_{z}^{2}\propto {\boldsymbol {I}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x221D;<!-- ∝ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">I</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {J}}^{2}\equiv {\boldsymbol {J}}\cdot {\boldsymbol {J}}={\boldsymbol {J}}_{x}^{2}+{\boldsymbol {J}}_{y}^{2}+{\boldsymbol {J}}_{z}^{2}\propto {\boldsymbol {I}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec64044c017e6a267c63737f0bc1d4a38042dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:32.705ex; height:3.509ex;" alt="{\displaystyle {\boldsymbol {J}}^{2}\equiv {\boldsymbol {J}}\cdot {\boldsymbol {J}}={\boldsymbol {J}}_{x}^{2}+{\boldsymbol {J}}_{y}^{2}+{\boldsymbol {J}}_{z}^{2}\propto {\boldsymbol {I}}.}"></span></dd></dl> <p>For unitary irreducible <a href="/wiki/Lie_algebra_representation" title="Lie algebra representation">representations</a> <span class="texhtml mvar" style="font-style:italic;">D<sup>j</sup></span>, the eigenvalues of this invariant are real and discrete, and characterize each representation, which is finite dimensional, of dimensionality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2j+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2j+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0a258cc33d54429124aedc154d9b3a968c4d99b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.123ex; height:2.509ex;" alt="{\displaystyle 2j+1}"></span>. That is, the eigenvalues of this Casimir operator are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {J}}^{2}=-j(j+1){\boldsymbol {I}}_{2j+1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>j</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {J}}^{2}=-j(j+1){\boldsymbol {I}}_{2j+1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/955a6240a4be70673e13d7b7492d72ea95df4fb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.013ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {J}}^{2}=-j(j+1){\boldsymbol {I}}_{2j+1},}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">j</span> is integer or half-integer, and referred to as the <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> or <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a>. </p><p>So, the 3 × 3 generators <i><b>L</b></i> displayed above act on the triplet (spin 1) representation, while the 2 × 2 generators below, <i><b>t</b></i>, act on the <a href="/wiki/Spinor" title="Spinor">doublet</a> (<a href="/wiki/Spin-1/2" title="Spin-1/2">spin-1/2</a>) representation. By taking <a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker products</a> of <span class="texhtml"><i>D</i><sup>1/2</sup></span> with itself repeatedly, one may construct all higher irreducible representations <span class="texhtml mvar" style="font-style:italic;">D<sup>j</sup></span>. That is, the resulting generators for higher spin systems in three spatial dimensions, for arbitrarily large <span class="texhtml mvar" style="font-style:italic;">j</span>, can be calculated using these <a href="/wiki/Spin_operator" class="mw-redirect" title="Spin operator">spin operators</a> and <a href="/wiki/Ladder_operator" title="Ladder operator">ladder operators</a>. </p><p>For every unitary irreducible representations <span class="texhtml mvar" style="font-style:italic;">D<sup>j</sup></span> there is an equivalent one, <span class="texhtml"><i>D</i><sup>−<i>j</i>−1</sup></span>. All infinite-dimensional irreducible representations must be non-unitary, since the group is compact. </p><p>In <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, the Casimir invariant is the "angular-momentum-squared" operator; integer values of spin <span class="texhtml mvar" style="font-style:italic;">j</span> characterize <a href="/wiki/Boson" title="Boson">bosonic representations</a>, while half-integer values <a href="/wiki/Fermion" title="Fermion">fermionic representations</a>. The <a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">antihermitian</a> matrices used above are utilized as <a href="/wiki/Spin_operator" class="mw-redirect" title="Spin operator">spin operators</a>, after they are multiplied by <span class="texhtml mvar" style="font-style:italic;">i</span>, so they are now <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">hermitian</a> (like the Pauli matrices). Thus, in this language, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y}]=i{\boldsymbol {J}}_{z},\quad [{\boldsymbol {J}}_{z},{\boldsymbol {J}}_{x}]=i{\boldsymbol {J}}_{y},\quad [{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z}]=i{\boldsymbol {J}}_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y}]=i{\boldsymbol {J}}_{z},\quad [{\boldsymbol {J}}_{z},{\boldsymbol {J}}_{x}]=i{\boldsymbol {J}}_{y},\quad [{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z}]=i{\boldsymbol {J}}_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77cbe4e368f4f50472c0d68f8375936e9d6a055b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.916ex; height:3.009ex;" alt="{\displaystyle [{\boldsymbol {J}}_{x},{\boldsymbol {J}}_{y}]=i{\boldsymbol {J}}_{z},\quad [{\boldsymbol {J}}_{z},{\boldsymbol {J}}_{x}]=i{\boldsymbol {J}}_{y},\quad [{\boldsymbol {J}}_{y},{\boldsymbol {J}}_{z}]=i{\boldsymbol {J}}_{x}.}"></span></dd></dl> <p>and hence </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {J}}^{2}=j(j+1){\boldsymbol {I}}_{2j+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>j</mi> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {J}}^{2}=j(j+1){\boldsymbol {I}}_{2j+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87d1634e5cc6655f8fdec7ce15ef6472d285c525" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.205ex; height:3.343ex;" alt="{\displaystyle {\boldsymbol {J}}^{2}=j(j+1){\boldsymbol {I}}_{2j+1}.}"></span></dd></dl> <p>Explicit expressions for these <span class="texhtml mvar" style="font-style:italic;">D<sup>j</sup></span> are, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left({\boldsymbol {J}}_{z}^{(j)}\right)_{ba}&amp;=(j+1-a)\delta _{b,a}\\\left({\boldsymbol {J}}_{x}^{(j)}\right)_{ba}&amp;={\frac {1}{2}}\left(\delta _{b,a+1}+\delta _{b+1,a}\right){\sqrt {(j+1)(a+b-1)-ab}}\\\left({\boldsymbol {J}}_{y}^{(j)}\right)_{ba}&amp;={\frac {1}{2i}}\left(\delta _{b,a+1}-\delta _{b+1,a}\right){\sqrt {(j+1)(a+b-1)-ab}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>a</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>,</mo> <mi>a</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>a</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>a</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>b</mi> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mi>a</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>,</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>a</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>b</mi> </msqrt> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left({\boldsymbol {J}}_{z}^{(j)}\right)_{ba}&amp;=(j+1-a)\delta _{b,a}\\\left({\boldsymbol {J}}_{x}^{(j)}\right)_{ba}&amp;={\frac {1}{2}}\left(\delta _{b,a+1}+\delta _{b+1,a}\right){\sqrt {(j+1)(a+b-1)-ab}}\\\left({\boldsymbol {J}}_{y}^{(j)}\right)_{ba}&amp;={\frac {1}{2i}}\left(\delta _{b,a+1}-\delta _{b+1,a}\right){\sqrt {(j+1)(a+b-1)-ab}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fdc76b81a12cc92cc3b5c6325b4bac1c43a8d72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:56.34ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}\left({\boldsymbol {J}}_{z}^{(j)}\right)_{ba}&amp;=(j+1-a)\delta _{b,a}\\\left({\boldsymbol {J}}_{x}^{(j)}\right)_{ba}&amp;={\frac {1}{2}}\left(\delta _{b,a+1}+\delta _{b+1,a}\right){\sqrt {(j+1)(a+b-1)-ab}}\\\left({\boldsymbol {J}}_{y}^{(j)}\right)_{ba}&amp;={\frac {1}{2i}}\left(\delta _{b,a+1}-\delta _{b+1,a}\right){\sqrt {(j+1)(a+b-1)-ab}}\\\end{aligned}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">j</span> is arbitrary and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq a,b\leq 2j+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>2</mn> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq a,b\leq 2j+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f299d7753bb1df8cc351cd527c4aef5964c46a64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.744ex; height:2.509ex;" alt="{\displaystyle 1\leq a,b\leq 2j+1}"></span>. </p><p>For example, the resulting spin matrices for spin 1 (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91423fb032c471061948939f4a6811bf463780e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:5.246ex; height:2.509ex;" alt="{\displaystyle j=1}"></span>) are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{\sqrt {2}}}{\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{\sqrt {2}}}{\begin{pmatrix}0&amp;-i&amp;0\\i&amp;0&amp;-i\\0&amp;i&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\begin{pmatrix}1&amp;0&amp;0\\0&amp;0&amp;0\\0&amp;0&amp;-1\end{pmatrix}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{\sqrt {2}}}{\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{\sqrt {2}}}{\begin{pmatrix}0&amp;-i&amp;0\\i&amp;0&amp;-i\\0&amp;i&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\begin{pmatrix}1&amp;0&amp;0\\0&amp;0&amp;0\\0&amp;0&amp;-1\end{pmatrix}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe7c423226c7bdbfea35ab165e1ea786e3261ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.671ex; width:26.271ex; height:28.509ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{\sqrt {2}}}{\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;1\\0&amp;1&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{\sqrt {2}}}{\begin{pmatrix}0&amp;-i&amp;0\\i&amp;0&amp;-i\\0&amp;i&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\begin{pmatrix}1&amp;0&amp;0\\0&amp;0&amp;0\\0&amp;0&amp;-1\end{pmatrix}}\end{aligned}}}"></span></dd></dl> <p>Note, however, how these are in an equivalent, but different basis, the <a href="/wiki/Spherical_basis#Change_of_basis_matrix" title="Spherical basis">spherical basis</a>, than the above <span class="texhtml mvar" style="font-style:italic;">i</span><i><b>L</b></i> in the Cartesian basis.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>nb 3<span class="cite-bracket">&#93;</span></a></sup> </p><p>For higher spins, such as spin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j={\tfrac {3}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j={\tfrac {3}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/475370dbf5495aee4664cf82b0c1c8a035a303c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-left: -0.027ex; width:5.741ex; height:3.509ex;" alt="{\displaystyle j={\tfrac {3}{2}}}"></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;{\sqrt {3}}&amp;0&amp;0\\{\sqrt {3}}&amp;0&amp;2&amp;0\\0&amp;2&amp;0&amp;{\sqrt {3}}\\0&amp;0&amp;{\sqrt {3}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;-i{\sqrt {3}}&amp;0&amp;0\\i{\sqrt {3}}&amp;0&amp;-2i&amp;0\\0&amp;2i&amp;0&amp;-i{\sqrt {3}}\\0&amp;0&amp;i{\sqrt {3}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\frac {1}{2}}{\begin{pmatrix}3&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;-1&amp;0\\0&amp;0&amp;0&amp;-3\end{pmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;{\sqrt {3}}&amp;0&amp;0\\{\sqrt {3}}&amp;0&amp;2&amp;0\\0&amp;2&amp;0&amp;{\sqrt {3}}\\0&amp;0&amp;{\sqrt {3}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;-i{\sqrt {3}}&amp;0&amp;0\\i{\sqrt {3}}&amp;0&amp;-2i&amp;0\\0&amp;2i&amp;0&amp;-i{\sqrt {3}}\\0&amp;0&amp;i{\sqrt {3}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\frac {1}{2}}{\begin{pmatrix}3&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;-1&amp;0\\0&amp;0&amp;0&amp;-3\end{pmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d982fbfb23786b5e4691c3fce45d9faedf9987b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -19.338ex; width:39.493ex; height:39.843ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;{\sqrt {3}}&amp;0&amp;0\\{\sqrt {3}}&amp;0&amp;2&amp;0\\0&amp;2&amp;0&amp;{\sqrt {3}}\\0&amp;0&amp;{\sqrt {3}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;-i{\sqrt {3}}&amp;0&amp;0\\i{\sqrt {3}}&amp;0&amp;-2i&amp;0\\0&amp;2i&amp;0&amp;-i{\sqrt {3}}\\0&amp;0&amp;i{\sqrt {3}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\frac {1}{2}}{\begin{pmatrix}3&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;-1&amp;0\\0&amp;0&amp;0&amp;-3\end{pmatrix}}.\end{aligned}}}"></span></dd></dl> <p>For spin <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j={\tfrac {5}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j={\tfrac {5}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29faf5a5b97663200ccf93d8153f7671b746fcd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-left: -0.027ex; width:5.741ex; height:3.509ex;" alt="{\displaystyle j={\tfrac {5}{2}}}"></span>), </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;{\sqrt {5}}&amp;0&amp;0&amp;0&amp;0\\{\sqrt {5}}&amp;0&amp;2{\sqrt {2}}&amp;0&amp;0&amp;0\\0&amp;2{\sqrt {2}}&amp;0&amp;3&amp;0&amp;0\\0&amp;0&amp;3&amp;0&amp;2{\sqrt {2}}&amp;0\\0&amp;0&amp;0&amp;2{\sqrt {2}}&amp;0&amp;{\sqrt {5}}\\0&amp;0&amp;0&amp;0&amp;{\sqrt {5}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;-i{\sqrt {5}}&amp;0&amp;0&amp;0&amp;0\\i{\sqrt {5}}&amp;0&amp;-2i{\sqrt {2}}&amp;0&amp;0&amp;0\\0&amp;2i{\sqrt {2}}&amp;0&amp;-3i&amp;0&amp;0\\0&amp;0&amp;3i&amp;0&amp;-2i{\sqrt {2}}&amp;0\\0&amp;0&amp;0&amp;2i{\sqrt {2}}&amp;0&amp;-i{\sqrt {5}}\\0&amp;0&amp;0&amp;0&amp;i{\sqrt {5}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\frac {1}{2}}{\begin{pmatrix}5&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;3&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;-1&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;-3&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;-5\end{pmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>5</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;{\sqrt {5}}&amp;0&amp;0&amp;0&amp;0\\{\sqrt {5}}&amp;0&amp;2{\sqrt {2}}&amp;0&amp;0&amp;0\\0&amp;2{\sqrt {2}}&amp;0&amp;3&amp;0&amp;0\\0&amp;0&amp;3&amp;0&amp;2{\sqrt {2}}&amp;0\\0&amp;0&amp;0&amp;2{\sqrt {2}}&amp;0&amp;{\sqrt {5}}\\0&amp;0&amp;0&amp;0&amp;{\sqrt {5}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;-i{\sqrt {5}}&amp;0&amp;0&amp;0&amp;0\\i{\sqrt {5}}&amp;0&amp;-2i{\sqrt {2}}&amp;0&amp;0&amp;0\\0&amp;2i{\sqrt {2}}&amp;0&amp;-3i&amp;0&amp;0\\0&amp;0&amp;3i&amp;0&amp;-2i{\sqrt {2}}&amp;0\\0&amp;0&amp;0&amp;2i{\sqrt {2}}&amp;0&amp;-i{\sqrt {5}}\\0&amp;0&amp;0&amp;0&amp;i{\sqrt {5}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\frac {1}{2}}{\begin{pmatrix}5&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;3&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;-1&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;-3&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;-5\end{pmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d16c65731050552d06fc06cd60728b1eaea676b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -29.332ex; margin-bottom: -0.172ex; width:59.044ex; height:60.176ex;" alt="{\displaystyle {\begin{aligned}{\boldsymbol {J}}_{x}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;{\sqrt {5}}&amp;0&amp;0&amp;0&amp;0\\{\sqrt {5}}&amp;0&amp;2{\sqrt {2}}&amp;0&amp;0&amp;0\\0&amp;2{\sqrt {2}}&amp;0&amp;3&amp;0&amp;0\\0&amp;0&amp;3&amp;0&amp;2{\sqrt {2}}&amp;0\\0&amp;0&amp;0&amp;2{\sqrt {2}}&amp;0&amp;{\sqrt {5}}\\0&amp;0&amp;0&amp;0&amp;{\sqrt {5}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{y}&amp;={\frac {1}{2}}{\begin{pmatrix}0&amp;-i{\sqrt {5}}&amp;0&amp;0&amp;0&amp;0\\i{\sqrt {5}}&amp;0&amp;-2i{\sqrt {2}}&amp;0&amp;0&amp;0\\0&amp;2i{\sqrt {2}}&amp;0&amp;-3i&amp;0&amp;0\\0&amp;0&amp;3i&amp;0&amp;-2i{\sqrt {2}}&amp;0\\0&amp;0&amp;0&amp;2i{\sqrt {2}}&amp;0&amp;-i{\sqrt {5}}\\0&amp;0&amp;0&amp;0&amp;i{\sqrt {5}}&amp;0\end{pmatrix}}\\{\boldsymbol {J}}_{z}&amp;={\frac {1}{2}}{\begin{pmatrix}5&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;3&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;-1&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;-3&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;-5\end{pmatrix}}.\end{aligned}}}"></span></dd></dl> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spin_(physics)#Higher_spins" title="Spin (physics)">Spin (physics) §&#160;Higher spins</a></div> <div class="mw-heading mw-heading3"><h3 id="Isomorphism_with_𝖘𝖚(2)"><span id="Isomorphism_with_.F0.9D.96.98.F0.9D.96.9A.282.29"></span>Isomorphism with 𝖘𝖚(2)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=12" title="Edit section: Isomorphism with 𝖘𝖚(2)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lie algebras <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369267d5eae15a7478ebb52c71fcec1449a10dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.244ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(2)}"></span> are isomorphic. One basis for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369267d5eae15a7478ebb52c71fcec1449a10dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.244ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(2)}"></span> is given by<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {t}}_{1}={\frac {1}{2}}{\begin{bmatrix}0&amp;-i\\-i&amp;0\end{bmatrix}},\quad {\boldsymbol {t}}_{2}={\frac {1}{2}}{\begin{bmatrix}0&amp;-1\\1&amp;0\end{bmatrix}},\quad {\boldsymbol {t}}_{3}={\frac {1}{2}}{\begin{bmatrix}-i&amp;0\\0&amp;i\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {t}}_{1}={\frac {1}{2}}{\begin{bmatrix}0&amp;-i\\-i&amp;0\end{bmatrix}},\quad {\boldsymbol {t}}_{2}={\frac {1}{2}}{\begin{bmatrix}0&amp;-1\\1&amp;0\end{bmatrix}},\quad {\boldsymbol {t}}_{3}={\frac {1}{2}}{\begin{bmatrix}-i&amp;0\\0&amp;i\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0117b11bb7d14277fcd7cc885a33235109480262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:58.423ex; height:6.176ex;" alt="{\displaystyle {\boldsymbol {t}}_{1}={\frac {1}{2}}{\begin{bmatrix}0&amp;-i\\-i&amp;0\end{bmatrix}},\quad {\boldsymbol {t}}_{2}={\frac {1}{2}}{\begin{bmatrix}0&amp;-1\\1&amp;0\end{bmatrix}},\quad {\boldsymbol {t}}_{3}={\frac {1}{2}}{\begin{bmatrix}-i&amp;0\\0&amp;i\end{bmatrix}}.}"></span></dd></dl> <p>These are related to the <a href="/wiki/Pauli_matrix" class="mw-redirect" title="Pauli matrix">Pauli matrices</a> by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {t}}_{i}\longleftrightarrow {\frac {1}{2i}}\sigma _{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </mfrac> </mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {t}}_{i}\longleftrightarrow {\frac {1}{2i}}\sigma _{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae6399637414517fb7892246fa2628b2b8e869d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.949ex; height:5.176ex;" alt="{\displaystyle {\boldsymbol {t}}_{i}\longleftrightarrow {\frac {1}{2i}}\sigma _{i}.}"></span></dd></dl> <p>The Pauli matrices abide by the physicists' convention for Lie algebras. In that convention, Lie algebra elements are multiplied by <span class="texhtml mvar" style="font-style:italic;">i</span>, the exponential map (below) is defined with an extra factor of <span class="texhtml mvar" style="font-style:italic;">i</span> in the exponent and the <a href="/wiki/Structure_constant" class="mw-redirect" title="Structure constant">structure constants</a> remain the same, but the <i>definition</i> of them acquires a factor of <span class="texhtml mvar" style="font-style:italic;">i</span>. Likewise, commutation relations acquire a factor of <span class="texhtml mvar" style="font-style:italic;">i</span>. The commutation relations for the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {t}}_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {t}}_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8c0976a680fe420e26a0760edcbed33e92aed2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.765ex; height:2.343ex;" alt="{\displaystyle {\boldsymbol {t}}_{i}}"></span> are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\boldsymbol {t}}_{i},{\boldsymbol {t}}_{j}]=\varepsilon _{ijk}{\boldsymbol {t}}_{k},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>k</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\boldsymbol {t}}_{i},{\boldsymbol {t}}_{j}]=\varepsilon _{ijk}{\boldsymbol {t}}_{k},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28856ed20f15fbc3ba113622cf650f1fecffe0e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.183ex; height:3.009ex;" alt="{\displaystyle [{\boldsymbol {t}}_{i},{\boldsymbol {t}}_{j}]=\varepsilon _{ijk}{\boldsymbol {t}}_{k},}"></span></dd></dl> <p>where <span class="texhtml"><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol"><i>ε</i><sub><i>ijk</i></sub></a></span> is the totally anti-symmetric symbol with <span class="texhtml"><i>ε</i><sub>123</sub> = 1</span>. The isomorphism between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369267d5eae15a7478ebb52c71fcec1449a10dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.244ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(2)}"></span> can be set up in several ways. For later convenience, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {su}}(2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {su}}(2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/369267d5eae15a7478ebb52c71fcec1449a10dc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.244ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {su}}(2)}"></span> are identified by mapping </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {L}}_{x}\longleftrightarrow {\boldsymbol {t}}_{1},\quad {\boldsymbol {L}}_{y}\longleftrightarrow {\boldsymbol {t}}_{2},\quad {\boldsymbol {L}}_{z}\longleftrightarrow {\boldsymbol {t}}_{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">&#x27F7;<!-- ⟷ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {L}}_{x}\longleftrightarrow {\boldsymbol {t}}_{1},\quad {\boldsymbol {L}}_{y}\longleftrightarrow {\boldsymbol {t}}_{2},\quad {\boldsymbol {L}}_{z}\longleftrightarrow {\boldsymbol {t}}_{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73bd9d4a47bd7665e4f0c58662cec8da2caa0a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:38.74ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {L}}_{x}\longleftrightarrow {\boldsymbol {t}}_{1},\quad {\boldsymbol {L}}_{y}\longleftrightarrow {\boldsymbol {t}}_{2},\quad {\boldsymbol {L}}_{z}\longleftrightarrow {\boldsymbol {t}}_{3},}"></span></dd></dl> <p>and extending by linearity. </p> <div class="mw-heading mw-heading2"><h2 id="Exponential_map">Exponential map</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=13" title="Edit section: Exponential map"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The exponential map for <span class="texhtml">SO(3)</span>, is, since <span class="texhtml">SO(3)</span> is a matrix Lie group, defined using the standard <a href="/wiki/Matrix_exponential" title="Matrix exponential">matrix exponential</a> series, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{cases}\exp :{\mathfrak {so}}(3)\to \operatorname {SO} (3)\\A\mapsto e^{A}=\sum _{k=0}^{\infty }{\frac {1}{k!}}A^{k}=I+A+{\tfrac {1}{2}}A^{2}+\cdots .\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>exp</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>+</mo> <mi>A</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{cases}\exp :{\mathfrak {so}}(3)\to \operatorname {SO} (3)\\A\mapsto e^{A}=\sum _{k=0}^{\infty }{\frac {1}{k!}}A^{k}=I+A+{\tfrac {1}{2}}A^{2}+\cdots .\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1a3092df3649d460df0ca5c400c6f1848e47cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.258ex; height:6.509ex;" alt="{\displaystyle {\begin{cases}\exp :{\mathfrak {so}}(3)\to \operatorname {SO} (3)\\A\mapsto e^{A}=\sum _{k=0}^{\infty }{\frac {1}{k!}}A^{k}=I+A+{\tfrac {1}{2}}A^{2}+\cdots .\end{cases}}}"></span></dd></dl> <p>For any <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric matrix</a> <span class="texhtml"><i>A</i> ∈ 𝖘𝖔(3)</span>, <span class="texhtml"><i>e<sup>A</sup></i></span> is always in <span class="texhtml">SO(3)</span>. The proof uses the elementary properties of the matrix exponential </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(e^{A}\right)^{\textsf {T}}e^{A}=e^{A^{\textsf {T}}}e^{A}=e^{A^{\textsf {T}}+A}=e^{-A+A}=e^{A-A}=e^{A}\left(e^{A}\right)^{\textsf {T}}=e^{0}=I.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mo>+</mo> <mi>A</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <mo>+</mo> <mi>A</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif">T</mtext> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(e^{A}\right)^{\textsf {T}}e^{A}=e^{A^{\textsf {T}}}e^{A}=e^{A^{\textsf {T}}+A}=e^{-A+A}=e^{A-A}=e^{A}\left(e^{A}\right)^{\textsf {T}}=e^{0}=I.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26552a11b20b05e67e348953bc03296380702863" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:66.501ex; height:3.843ex;" alt="{\displaystyle \left(e^{A}\right)^{\textsf {T}}e^{A}=e^{A^{\textsf {T}}}e^{A}=e^{A^{\textsf {T}}+A}=e^{-A+A}=e^{A-A}=e^{A}\left(e^{A}\right)^{\textsf {T}}=e^{0}=I.}"></span></dd></dl> <p>since the matrices <span class="texhtml"><i>A</i></span> and <span class="texhtml"><i>A</i><sup>T</sup></span> commute, this can be easily proven with the skew-symmetric matrix condition. This is not enough to show that <span class="texhtml">𝖘𝖔(3)</span> is the corresponding Lie algebra for <span class="texhtml">SO(3)</span>, and shall be proven separately. </p><p>The level of difficulty of proof depends on how a matrix group Lie algebra is defined. <a href="#CITEREFHall2003">Hall (2003)</a> defines the Lie algebra as the set of matrices </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{A\in \operatorname {M} (n,\mathbb {R} )\left|e^{tA}\in \operatorname {SO} (3)\forall t\right.\right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">M</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>A</mi> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>t</mi> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{A\in \operatorname {M} (n,\mathbb {R} )\left|e^{tA}\in \operatorname {SO} (3)\forall t\right.\right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9409c19331edd1319b169798d86fc2a7a7487a5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:31.596ex; height:3.509ex;" alt="{\displaystyle \left\{A\in \operatorname {M} (n,\mathbb {R} )\left|e^{tA}\in \operatorname {SO} (3)\forall t\right.\right\},}"></span></dd></dl> <p>in which case it is trivial. <a href="#CITEREFRossmann2002">Rossmann (2002)</a> uses for a definition derivatives of smooth curve segments in <span class="texhtml">SO(3)</span> through the identity taken at the identity, in which case it is harder.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>For a fixed <span class="texhtml"><i>A</i> ≠ 0</span>, <span class="texhtml"><i>e<sup>tA</sup></i>, −∞ &lt; <i>t</i> &lt; ∞</span> is a <a href="/wiki/One-parameter_subgroup" class="mw-redirect" title="One-parameter subgroup">one-parameter subgroup</a> along a <a href="/wiki/Geodesic" title="Geodesic">geodesic</a> in <span class="texhtml">SO(3)</span>. That this gives a one-parameter subgroup follows directly from properties of the exponential map.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>The exponential map provides a <a href="/wiki/Diffeomorphism" title="Diffeomorphism">diffeomorphism</a> between a neighborhood of the origin in the <span class="texhtml">𝖘𝖔(3)</span> and a neighborhood of the identity in the <span class="texhtml">SO(3)</span>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> For a proof, see <a href="/wiki/Closed_subgroup_theorem" class="mw-redirect" title="Closed subgroup theorem">Closed subgroup theorem</a>. </p><p>The exponential map is <a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a>. This follows from the fact that every <span class="texhtml"><i>R</i> ∈ SO(3)</span>, since every rotation leaves an axis fixed (<a href="/wiki/Euler%27s_rotation_theorem" title="Euler&#39;s rotation theorem">Euler's rotation theorem</a>), and is conjugate to a <a href="/wiki/Block_diagonal_matrix" class="mw-redirect" title="Block diagonal matrix">block diagonal matrix</a> of the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D={\begin{pmatrix}\cos \theta &amp;-\sin \theta &amp;0\\\sin \theta &amp;\cos \theta &amp;0\\0&amp;0&amp;1\end{pmatrix}}=e^{\theta L_{z}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D={\begin{pmatrix}\cos \theta &amp;-\sin \theta &amp;0\\\sin \theta &amp;\cos \theta &amp;0\\0&amp;0&amp;1\end{pmatrix}}=e^{\theta L_{z}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/097f9f9753d513863b0ba88b5c601ab42b4b2397" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:34.506ex; height:9.176ex;" alt="{\displaystyle D={\begin{pmatrix}\cos \theta &amp;-\sin \theta &amp;0\\\sin \theta &amp;\cos \theta &amp;0\\0&amp;0&amp;1\end{pmatrix}}=e^{\theta L_{z}},}"></span></dd></dl> <p>such that <span class="texhtml"><i>A</i> = <i>BDB</i><sup>−1</sup></span>, and that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Be^{\theta L_{z}}B^{-1}=e^{B\theta L_{z}B^{-1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Be^{\theta L_{z}}B^{-1}=e^{B\theta L_{z}B^{-1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2119ada2c6b41c467bb81692c4ecc132a8e329d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.96ex; height:3.343ex;" alt="{\displaystyle Be^{\theta L_{z}}B^{-1}=e^{B\theta L_{z}B^{-1}},}"></span></dd></dl> <p>together with the fact that <span class="texhtml">𝖘𝖔(3)</span> is closed under the <a href="/wiki/Adjoint_representation" title="Adjoint representation">adjoint action</a> of <span class="texhtml">SO(3)</span>, meaning that <span class="texhtml"><i>BθL<sub>z</sub>B</i><sup>−1</sup> ∈ 𝖘𝖔(3)</span>. </p><p>Thus, e.g., it is easy to check the popular identity </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-\pi L_{x}/2}e^{\theta L_{z}}e^{\pi L_{x}/2}=e^{\theta L_{y}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-\pi L_{x}/2}e^{\theta L_{z}}e^{\pi L_{x}/2}=e^{\theta L_{y}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5ad2422addeca40a7338218449fea4d115c1ea3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:24.949ex; height:2.843ex;" alt="{\displaystyle e^{-\pi L_{x}/2}e^{\theta L_{z}}e^{\pi L_{x}/2}=e^{\theta L_{y}}.}"></span></dd></dl> <p>As shown above, every element <span class="texhtml"><i>A</i> ∈ 𝖘𝖔(3)</span> is associated with a vector <span class="texhtml"><i><b>ω</b></i> = <i>θ</i> <i><b>u</b></i></span>, where <span class="texhtml"><i><b>u</b></i> = (<i>x</i>,<i>y</i>,<i>z</i>)</span> is a unit magnitude vector. Since <span class="texhtml"><i><b>u</b></i></span> is in the null space of <span class="texhtml mvar" style="font-style:italic;">A</span>, if one now rotates to a new basis, through some other orthogonal matrix <span class="texhtml"><i>O</i></span>, with <span class="texhtml"><b>u</b></span> as the <span class="texhtml mvar" style="font-style:italic;">z</span> axis, the final column and row of the rotation matrix in the new basis will be zero. </p><p>Thus, we know in advance from the formula for the exponential that <span class="texhtml">exp(<i>OAO</i><sup>T</sup>)</span> must leave <span class="texhtml"><i><b>u</b></i></span> fixed. It is mathematically impossible to supply a straightforward formula for such a basis as a function of <span class="texhtml"><i><b>u</b></i></span>, because its existence would violate the <a href="/wiki/Hairy_ball_theorem" title="Hairy ball theorem">hairy ball theorem</a>; but direct exponentiation is possible, and <a href="/wiki/Axis%E2%80%93angle_representation#Exponential_map_from_𝖘𝖔(3)_to_SO(3)" title="Axis–angle representation">yields</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\exp({\tilde {\boldsymbol {\omega }}})&amp;=\exp(\theta ({\boldsymbol {u\cdot L}}))=\exp \left(\theta {\begin{bmatrix}0&amp;-z&amp;y\\z&amp;0&amp;-x\\-y&amp;x&amp;0\end{bmatrix}}\right)\\[4pt]&amp;={\boldsymbol {I}}+2cs({\boldsymbol {u\cdot L}})+2s^{2}({\boldsymbol {u\cdot L}})^{2}\\[4pt]&amp;={\begin{bmatrix}2\left(x^{2}-1\right)s^{2}+1&amp;2xys^{2}-2zcs&amp;2xzs^{2}+2ycs\\2xys^{2}+2zcs&amp;2\left(y^{2}-1\right)s^{2}+1&amp;2yzs^{2}-2xcs\\2xzs^{2}-2ycs&amp;2yzs^{2}+2xcs&amp;2\left(z^{2}-1\right)s^{2}+1\end{bmatrix}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">&#x03C9;<!-- ω --></mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> <mo mathvariant="bold">&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold-italic">L</mi> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> </mtd> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> </mtd> <mtd> <mi>x</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">I</mi> </mrow> <mo>+</mo> <mn>2</mn> <mi>c</mi> <mi>s</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> <mo mathvariant="bold">&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold-italic">L</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">u</mi> <mo mathvariant="bold">&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="bold-italic">L</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> <mi>x</mi> <mi>y</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>z</mi> <mi>c</mi> <mi>s</mi> </mtd> <mtd> <mn>2</mn> <mi>x</mi> <mi>z</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>y</mi> <mi>c</mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>x</mi> <mi>y</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>z</mi> <mi>c</mi> <mi>s</mi> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> <mi>y</mi> <mi>z</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <mi>c</mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mi>x</mi> <mi>z</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>y</mi> <mi>c</mi> <mi>s</mi> </mtd> <mtd> <mn>2</mn> <mi>y</mi> <mi>z</mi> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>x</mi> <mi>c</mi> <mi>s</mi> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\exp({\tilde {\boldsymbol {\omega }}})&amp;=\exp(\theta ({\boldsymbol {u\cdot L}}))=\exp \left(\theta {\begin{bmatrix}0&amp;-z&amp;y\\z&amp;0&amp;-x\\-y&amp;x&amp;0\end{bmatrix}}\right)\\[4pt]&amp;={\boldsymbol {I}}+2cs({\boldsymbol {u\cdot L}})+2s^{2}({\boldsymbol {u\cdot L}})^{2}\\[4pt]&amp;={\begin{bmatrix}2\left(x^{2}-1\right)s^{2}+1&amp;2xys^{2}-2zcs&amp;2xzs^{2}+2ycs\\2xys^{2}+2zcs&amp;2\left(y^{2}-1\right)s^{2}+1&amp;2yzs^{2}-2xcs\\2xzs^{2}-2ycs&amp;2yzs^{2}+2xcs&amp;2\left(z^{2}-1\right)s^{2}+1\end{bmatrix}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/287344e780fc2e78c2663d1416868b30eefb3269" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.171ex; width:69.418ex; height:25.509ex;" alt="{\displaystyle {\begin{aligned}\exp({\tilde {\boldsymbol {\omega }}})&amp;=\exp(\theta ({\boldsymbol {u\cdot L}}))=\exp \left(\theta {\begin{bmatrix}0&amp;-z&amp;y\\z&amp;0&amp;-x\\-y&amp;x&amp;0\end{bmatrix}}\right)\\[4pt]&amp;={\boldsymbol {I}}+2cs({\boldsymbol {u\cdot L}})+2s^{2}({\boldsymbol {u\cdot L}})^{2}\\[4pt]&amp;={\begin{bmatrix}2\left(x^{2}-1\right)s^{2}+1&amp;2xys^{2}-2zcs&amp;2xzs^{2}+2ycs\\2xys^{2}+2zcs&amp;2\left(y^{2}-1\right)s^{2}+1&amp;2yzs^{2}-2xcs\\2xzs^{2}-2ycs&amp;2yzs^{2}+2xcs&amp;2\left(z^{2}-1\right)s^{2}+1\end{bmatrix}},\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle c=\cos {\frac {\theta }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>c</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle c=\cos {\frac {\theta }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c6829664d944e124b69068d2a8581af98ca5281" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.262ex; height:3.676ex;" alt="{\textstyle c=\cos {\frac {\theta }{2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle s=\sin {\frac {\theta }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>s</mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle s=\sin {\frac {\theta }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b874e9bbc837a55627945ed5669f9f1ab3113f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:9.09ex; height:3.676ex;" alt="{\textstyle s=\sin {\frac {\theta }{2}}}"></span>. This is recognized as a matrix for a rotation around axis <span class="texhtml"><i><b>u</b></i></span> by the angle <span class="texhtml mvar" style="font-style:italic;">θ</span>: cf. <a href="/wiki/Rodrigues%27_rotation_formula" title="Rodrigues&#39; rotation formula">Rodrigues' rotation formula</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Logarithm_map">Logarithm map</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=14" title="Edit section: Logarithm map"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given <span class="texhtml"><i>R</i> ∈ SO(3)</span>, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\tfrac {1}{2}}\left(R-R^{\mathrm {T} }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <mi>R</mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\tfrac {1}{2}}\left(R-R^{\mathrm {T} }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fac798d86a511f66c8d113123b600d0cd57ec56d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:16.804ex; height:3.509ex;" alt="{\displaystyle A={\tfrac {1}{2}}\left(R-R^{\mathrm {T} }\right)}"></span> denote the antisymmetric part and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \|A\|={\sqrt {-{\frac {1}{2}}\operatorname {Tr} \left(A^{2}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>Tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \|A\|={\sqrt {-{\frac {1}{2}}\operatorname {Tr} \left(A^{2}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/772c27848ef001a5e3d7642524dd20031020b065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:21.187ex; height:4.676ex;" alt="{\textstyle \|A\|={\sqrt {-{\frac {1}{2}}\operatorname {Tr} \left(A^{2}\right)}}.}"></span> Then, the logarithm of <span class="texhtml mvar" style="font-style:italic;">R</span> is given by<sup id="cite_ref-Engø_2001_11-1" class="reference"><a href="#cite_note-Engø_2001-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log R={\frac {\sin ^{-1}\|A\|}{\|A\|}}A.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> </mfrac> </mrow> <mi>A</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log R={\frac {\sin ^{-1}\|A\|}{\|A\|}}A.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8400301197be3c7315ee6dc2400cb39b6cffff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:21.091ex; height:6.676ex;" alt="{\displaystyle \log R={\frac {\sin ^{-1}\|A\|}{\|A\|}}A.}"></span></dd></dl> <p>This is manifest by inspection of the mixed symmetry form of Rodrigues' formula, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{X}=I+{\frac {\sin \theta }{\theta }}X+2{\frac {\sin ^{2}{\frac {\theta }{2}}}{\theta ^{2}}}X^{2},\quad \theta =\|X\|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mrow> <mi>&#x03B8;<!-- θ --></mi> </mfrac> </mrow> <mi>X</mi> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> <msup> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{X}=I+{\frac {\sin \theta }{\theta }}X+2{\frac {\sin ^{2}{\frac {\theta }{2}}}{\theta ^{2}}}X^{2},\quad \theta =\|X\|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36169c5a8500d0e3bbeda6639670680a0b3cd036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:43.318ex; height:6.843ex;" alt="{\displaystyle e^{X}=I+{\frac {\sin \theta }{\theta }}X+2{\frac {\sin ^{2}{\frac {\theta }{2}}}{\theta ^{2}}}X^{2},\quad \theta =\|X\|,}"></span></dd></dl> <p>where the first and last term on the right-hand side are symmetric. </p> <div class="mw-heading mw-heading2"><h2 id="Uniform_random_sampling">Uniform random sampling</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=15" title="Edit section: Uniform random sampling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SO(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SO(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c677fee782e584fd417726201ce27c567f1e11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.244ex; height:2.843ex;" alt="{\displaystyle SO(3)}"></span> is doubly covered by the group of unit quaternions, which is isomorphic to the 3-sphere. Since the <a href="/wiki/Haar_measure" title="Haar measure">Haar measure</a> on the unit quaternions is just the 3-area measure in 4 dimensions, the Haar measure on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SO(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SO(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16c677fee782e584fd417726201ce27c567f1e11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.244ex; height:2.843ex;" alt="{\displaystyle SO(3)}"></span> is just the pushforward of the 3-area measure. </p><p>Consequently, generating a uniformly random rotation in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></span> is equivalent to generating a uniformly random point on the 3-sphere. This can be accomplished by the following<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\sqrt {1-u_{1}}}\sin(2\pi u_{2}),{\sqrt {1-u_{1}}}\cos(2\pi u_{2}),{\sqrt {u_{1}}}\sin(2\pi u_{3}),{\sqrt {u_{1}}}\cos(2\pi u_{3}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </msqrt> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </msqrt> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </msqrt> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </msqrt> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\sqrt {1-u_{1}}}\sin(2\pi u_{2}),{\sqrt {1-u_{1}}}\cos(2\pi u_{2}),{\sqrt {u_{1}}}\sin(2\pi u_{3}),{\sqrt {u_{1}}}\cos(2\pi u_{3}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e19e1ebfc8ab0113fa2904819021088392909c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:71.204ex; height:3.509ex;" alt="{\displaystyle ({\sqrt {1-u_{1}}}\sin(2\pi u_{2}),{\sqrt {1-u_{1}}}\cos(2\pi u_{2}),{\sqrt {u_{1}}}\sin(2\pi u_{3}),{\sqrt {u_{1}}}\cos(2\pi u_{3}))}"></span> </p><p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1},u_{2},u_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1},u_{2},u_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f5a52b84973e274c62eef0f3afce7c377f11d2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.22ex; height:2.009ex;" alt="{\displaystyle u_{1},u_{2},u_{3}}"></span> are uniformly random samples of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span>.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Baker–Campbell–Hausdorff_formula"><span id="Baker.E2.80.93Campbell.E2.80.93Hausdorff_formula"></span>Baker–Campbell–Hausdorff formula</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=16" title="Edit section: Baker–Campbell–Hausdorff formula"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula" title="Baker–Campbell–Hausdorff formula">Baker–Campbell–Hausdorff formula</a></div> <p>Suppose <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> in the Lie algebra are given. Their exponentials, <span class="texhtml">exp(<i>X</i>)</span> and <span class="texhtml">exp(<i>Y</i>)</span>, are rotation matrices, which can be multiplied. Since the exponential map is a surjection, for some <span class="texhtml mvar" style="font-style:italic;">Z</span> in the Lie algebra, <span class="texhtml">exp(<i>Z</i>) = exp(<i>X</i>) exp(<i>Y</i>)</span>, and one may tentatively write </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=C(X,Y),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=C(X,Y),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ba1bf19a610b8c4f4b7e7e82439b2d0219b76f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.789ex; height:2.843ex;" alt="{\displaystyle Z=C(X,Y),}"></span></dd></dl> <p>for <span class="texhtml mvar" style="font-style:italic;">C</span> some expression in <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span>. When <span class="texhtml">exp(<i>X</i>)</span> and <span class="texhtml">exp(<i>Y</i>)</span> commute, then <span class="texhtml"><i>Z</i> = <i>X</i> + <i>Y</i></span>, mimicking the behavior of complex exponentiation. </p><p>The general case is given by the more elaborate <a href="/wiki/BCH_formula" class="mw-redirect" title="BCH formula">BCH formula</a>, a series expansion of nested Lie brackets.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> For matrices, the Lie bracket is the same operation as the <a href="/wiki/Commutator" title="Commutator">commutator</a>, which monitors lack of commutativity in multiplication. This general expansion unfolds as follows,<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>nb 4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=C(X,Y)=X+Y+{\frac {1}{2}}[X,Y]+{\tfrac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mi>C</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=C(X,Y)=X+Y+{\frac {1}{2}}[X,Y]+{\tfrac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deb50254cdee1dcfdbb89e3c9994d201051418bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:72.244ex; height:5.176ex;" alt="{\displaystyle Z=C(X,Y)=X+Y+{\frac {1}{2}}[X,Y]+{\tfrac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots .}"></span></dd></dl> <p>The infinite expansion in the BCH formula for <span class="texhtml">SO(3)</span> reduces to a compact form, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=\alpha X+\beta Y+\gamma [X,Y],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mi>X</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mi>Y</mi> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=\alpha X+\beta Y+\gamma [X,Y],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cdd2c4da063f9ec30359beaacd3767b962f3875" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.023ex; height:2.843ex;" alt="{\displaystyle Z=\alpha X+\beta Y+\gamma [X,Y],}"></span></dd></dl> <p>for suitable trigonometric function coefficients <span class="texhtml">(<i>α</i>, <i>β</i>, <i>γ</i>)</span>. </p> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="color:green;background:lightgrey;">The trigonometric coefficients</div><div class="hidden-content mw-collapsible-content" style=""> <p>The <span class="texhtml">(<i>α</i>, <i>β</i>, <i>γ</i>)</span> are given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha =\phi \cot \left({\frac {\phi }{2}}\right)\gamma ,\qquad \beta =\theta \cot \left({\frac {\theta }{2}}\right)\gamma ,\qquad \gamma ={\frac {\sin ^{-1}d}{d}}{\frac {c}{\theta \phi }},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mspace width="2em" /> <mi>&#x03B2;<!-- β --></mi> <mo>=</mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mspace width="2em" /> <mi>&#x03B3;<!-- γ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>d</mi> </mrow> <mi>d</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha =\phi \cot \left({\frac {\phi }{2}}\right)\gamma ,\qquad \beta =\theta \cot \left({\frac {\theta }{2}}\right)\gamma ,\qquad \gamma ={\frac {\sin ^{-1}d}{d}}{\frac {c}{\theta \phi }},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba9c7379f942b183ea07c848a566f943c1c3ea09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:59.358ex; height:6.343ex;" alt="{\displaystyle \alpha =\phi \cot \left({\frac {\phi }{2}}\right)\gamma ,\qquad \beta =\theta \cot \left({\frac {\theta }{2}}\right)\gamma ,\qquad \gamma ={\frac {\sin ^{-1}d}{d}}{\frac {c}{\theta \phi }},}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}c&amp;={\frac {1}{2}}\sin \theta \sin \phi -2\sin ^{2}{\frac {\theta }{2}}\sin ^{2}{\frac {\phi }{2}}\cos(\angle (u,v)),\quad a=c\cot \left({\frac {\phi }{2}}\right),\quad b=c\cot \left({\frac {\theta }{2}}\right),\\d&amp;={\sqrt {a^{2}+b^{2}+2ab\cos(\angle (u,v))+c^{2}\sin ^{2}(\angle (u,v))}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>a</mi> <mo>=</mo> <mi>c</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>b</mi> <mo>=</mo> <mi>c</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}c&amp;={\frac {1}{2}}\sin \theta \sin \phi -2\sin ^{2}{\frac {\theta }{2}}\sin ^{2}{\frac {\phi }{2}}\cos(\angle (u,v)),\quad a=c\cot \left({\frac {\phi }{2}}\right),\quad b=c\cot \left({\frac {\theta }{2}}\right),\\d&amp;={\sqrt {a^{2}+b^{2}+2ab\cos(\angle (u,v))+c^{2}\sin ^{2}(\angle (u,v))}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18a5e82ce8fd897568c813162242f9c0e8fd95f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.005ex; width:82.511ex; height:11.176ex;" alt="{\displaystyle {\begin{aligned}c&amp;={\frac {1}{2}}\sin \theta \sin \phi -2\sin ^{2}{\frac {\theta }{2}}\sin ^{2}{\frac {\phi }{2}}\cos(\angle (u,v)),\quad a=c\cot \left({\frac {\phi }{2}}\right),\quad b=c\cot \left({\frac {\theta }{2}}\right),\\d&amp;={\sqrt {a^{2}+b^{2}+2ab\cos(\angle (u,v))+c^{2}\sin ^{2}(\angle (u,v))}},\end{aligned}}}"></span></dd></dl> <p>for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta =\|X\|,\quad \phi =\|Y\|,\quad \angle (u,v)=\cos ^{-1}{\frac {\langle X,Y\rangle }{\|X\|\|Y\|}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>,</mo> <mspace width="1em" /> <mi>&#x03D5;<!-- ϕ --></mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>Y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>,</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <mrow> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>Y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta =\|X\|,\quad \phi =\|Y\|,\quad \angle (u,v)=\cos ^{-1}{\frac {\langle X,Y\rangle }{\|X\|\|Y\|}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f481953ae0b2ffe0de3b0de678ba39ea050a38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:49.583ex; height:6.509ex;" alt="{\displaystyle \theta =\|X\|,\quad \phi =\|Y\|,\quad \angle (u,v)=\cos ^{-1}{\frac {\langle X,Y\rangle }{\|X\|\|Y\|}}.}"></span></dd></dl> <p>The inner product is the <a href="/wiki/Hilbert%E2%80%93Schmidt_inner_product" class="mw-redirect" title="Hilbert–Schmidt inner product">Hilbert–Schmidt inner product</a> and the norm is the associated norm. Under the hat-isomorphism, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u,v\rangle ={\frac {1}{2}}\operatorname {Tr} X^{\mathrm {T} }Y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>Tr</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mi>Y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u,v\rangle ={\frac {1}{2}}\operatorname {Tr} X^{\mathrm {T} }Y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0f64d759bacef13c360870791ad5c6db6d46dfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.597ex; height:5.176ex;" alt="{\displaystyle \langle u,v\rangle ={\frac {1}{2}}\operatorname {Tr} X^{\mathrm {T} }Y,}"></span></dd></dl> which explains the factors for <span class="texhtml mvar" style="font-style:italic;">θ</span> and <span class="texhtml mvar" style="font-style:italic;">φ</span>. This drops out in the expression for the angle. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Rotation_formalisms_in_three_dimensions#Rodrigues_parameters_and_Gibbs_representation" title="Rotation formalisms in three dimensions">Rotation formalisms in three dimensions §&#160;Rodrigues parameters and Gibbs representation</a></div> </div></div> <p>It is worthwhile to write this composite rotation generator as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha X+\beta Y+\gamma [X,Y]{\underset {{\mathfrak {so}}(3)}{=}}X+Y+{\frac {1}{2}}[X,Y]+{\frac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mi>X</mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mi>Y</mi> <mo>+</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mo>=</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </munder> </mrow> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo stretchy="false">[</mo> <mi>Y</mi> <mo>,</mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha X+\beta Y+\gamma [X,Y]{\underset {{\mathfrak {so}}(3)}{=}}X+Y+{\frac {1}{2}}[X,Y]+{\frac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11e64023ced100d20590d64041bc325a08fba789" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:79.915ex; height:5.509ex;" alt="{\displaystyle \alpha X+\beta Y+\gamma [X,Y]{\underset {{\mathfrak {so}}(3)}{=}}X+Y+{\frac {1}{2}}[X,Y]+{\frac {1}{12}}[X,[X,Y]]-{\frac {1}{12}}[Y,[X,Y]]+\cdots ,}"></span></dd></dl> <p>to emphasize that this is a <i>Lie algebra identity</i>. </p><p>The above identity holds for all <a href="/wiki/Faithful_representation" title="Faithful representation">faithful representations</a> of <span class="texhtml">𝖘𝖔(3)</span>. The <a href="/wiki/Kernel_(algebra)" title="Kernel (algebra)">kernel</a> of a Lie algebra homomorphism is an <a href="/wiki/Ideal_(Lie_algebra)" class="mw-redirect" title="Ideal (Lie algebra)">ideal</a>, but <span class="texhtml">𝖘𝖔(3)</span>, being <a href="/wiki/Simple_(abstract_algebra)" title="Simple (abstract algebra)">simple</a>, has no nontrivial ideals and all nontrivial representations are hence faithful. It holds in particular in the doublet or spinor representation. The same explicit formula thus follows in a simpler way through Pauli matrices, cf. the <a href="/wiki/Pauli_matrices#Exponential_of_a_Pauli_vector" title="Pauli matrices">2×2 derivation for SU(2)</a>. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214851843"><div class="hidden-begin mw-collapsible mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="color:green;background:lightgrey;">The SU(2) case</div><div class="hidden-content mw-collapsible-content" style=""> <p>The <a href="/wiki/Pauli_matrices#Exponential_of_a_Pauli_vector" title="Pauli matrices">Pauli vector version</a> of the same BCH formula is the somewhat simpler group composition law of SU(2), </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{ia'\left({\hat {u}}\cdot {\vec {\sigma }}\right)}e^{ib'\left({\hat {v}}\cdot {\vec {\sigma }}\right)}=\exp \left({\frac {c'}{\sin c'}}\sin a'\sin b'\left(\left(i\cot b'{\hat {u}}+i\cot a'{\hat {v}}\right)\cdot {\vec {\sigma }}+{\frac {1}{2}}\left[i{\hat {u}}\cdot {\vec {\sigma }},i{\hat {v}}\cdot {\vec {\sigma }}\right]\right)\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> </mrow> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>i</mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{ia'\left({\hat {u}}\cdot {\vec {\sigma }}\right)}e^{ib'\left({\hat {v}}\cdot {\vec {\sigma }}\right)}=\exp \left({\frac {c'}{\sin c'}}\sin a'\sin b'\left(\left(i\cot b'{\hat {u}}+i\cot a'{\hat {v}}\right)\cdot {\vec {\sigma }}+{\frac {1}{2}}\left[i{\hat {u}}\cdot {\vec {\sigma }},i{\hat {v}}\cdot {\vec {\sigma }}\right]\right)\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b8fd1e518377c5c96334d61622523e44a4cd258" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:87.008ex; height:6.176ex;" alt="{\displaystyle e^{ia&#039;\left({\hat {u}}\cdot {\vec {\sigma }}\right)}e^{ib&#039;\left({\hat {v}}\cdot {\vec {\sigma }}\right)}=\exp \left({\frac {c&#039;}{\sin c&#039;}}\sin a&#039;\sin b&#039;\left(\left(i\cot b&#039;{\hat {u}}+i\cot a&#039;{\hat {v}}\right)\cdot {\vec {\sigma }}+{\frac {1}{2}}\left[i{\hat {u}}\cdot {\vec {\sigma }},i{\hat {v}}\cdot {\vec {\sigma }}\right]\right)\right),}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos c'=\cos a'\cos b'-{\hat {u}}\cdot {\hat {v}}\sin a'\sin b',}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos c'=\cos a'\cos b'-{\hat {u}}\cdot {\hat {v}}\sin a'\sin b',}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bbf9895667dbaca6b9fef2a614d66d02518493d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:37.848ex; height:2.843ex;" alt="{\displaystyle \cos c&#039;=\cos a&#039;\cos b&#039;-{\hat {u}}\cdot {\hat {v}}\sin a&#039;\sin b&#039;,}"></span></dd></dl> <p>the <a href="/wiki/Spherical_law_of_cosines" title="Spherical law of cosines">spherical law of cosines</a>. (Note <span class="texhtml"> <i> a', b', c' </i></span> are angles, not the <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i></span> above.) </p><p>This is manifestly of the same format as above, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=\alpha 'X+\beta 'Y+\gamma '[X,Y],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <msup> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2032;</mo> </msup> <mi>X</mi> <mo>+</mo> <msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2032;</mo> </msup> <mi>Y</mi> <mo>+</mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">[</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=\alpha 'X+\beta 'Y+\gamma '[X,Y],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c19c2a544b1f7101840f86cc505df9d42b697df8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.099ex; height:3.009ex;" alt="{\displaystyle Z=\alpha &#039;X+\beta &#039;Y+\gamma &#039;[X,Y],}"></span></dd></dl> <p>with </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=ia'{\hat {u}}\cdot \mathbf {\sigma } ,\quad Y=ib'{\hat {v}}\cdot \mathbf {\sigma } \in {\mathfrak {su}}(2),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mi>i</mi> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>Y</mi> <mo>=</mo> <mi>i</mi> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=ia'{\hat {u}}\cdot \mathbf {\sigma } ,\quad Y=ib'{\hat {v}}\cdot \mathbf {\sigma } \in {\mathfrak {su}}(2),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/539200d0258ea4ea87c1db9604742ee0ad7d2760" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.774ex; height:3.009ex;" alt="{\displaystyle X=ia&#039;{\hat {u}}\cdot \mathbf {\sigma } ,\quad Y=ib&#039;{\hat {v}}\cdot \mathbf {\sigma } \in {\mathfrak {su}}(2),}"></span></dd></dl> <p>so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\alpha '&amp;={\frac {c'}{\sin c'}}{\frac {\sin a'}{a'}}\cos b'\\\beta '&amp;={\frac {c'}{\sin c'}}{\frac {\sin b'}{b'}}\cos a'\\\gamma '&amp;={\frac {1}{2}}{\frac {c'}{\sin c'}}{\frac {\sin a'}{a'}}{\frac {\sin b'}{b'}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mrow> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mrow> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2032;</mo> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>c</mi> <mo>&#x2032;</mo> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mrow> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mrow> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\alpha '&amp;={\frac {c'}{\sin c'}}{\frac {\sin a'}{a'}}\cos b'\\\beta '&amp;={\frac {c'}{\sin c'}}{\frac {\sin b'}{b'}}\cos a'\\\gamma '&amp;={\frac {1}{2}}{\frac {c'}{\sin c'}}{\frac {\sin a'}{a'}}{\frac {\sin b'}{b'}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7db9d6cc4f9d35ab4b099b09e8018818c55fb6a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.838ex; margin-top: -0.203ex; width:26.193ex; height:16.843ex;" alt="{\displaystyle {\begin{aligned}\alpha &#039;&amp;={\frac {c&#039;}{\sin c&#039;}}{\frac {\sin a&#039;}{a&#039;}}\cos b&#039;\\\beta &#039;&amp;={\frac {c&#039;}{\sin c&#039;}}{\frac {\sin b&#039;}{b&#039;}}\cos a&#039;\\\gamma &#039;&amp;={\frac {1}{2}}{\frac {c&#039;}{\sin c&#039;}}{\frac {\sin a&#039;}{a&#039;}}{\frac {\sin b&#039;}{b&#039;}}.\end{aligned}}}"></span></dd></dl> <p>For uniform normalization of the generators in the Lie algebra involved, express the Pauli matrices in terms of <span class="texhtml mvar" style="font-style:italic;">t</span>-matrices, <span class="texhtml"><i><b>σ</b></i> → 2<i>i</i> <i><b>t</b></i></span>, so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a'\mapsto -{\frac {\theta }{2}},\quad b'\mapsto -{\frac {\phi }{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mspace width="1em" /> <msup> <mi>b</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a'\mapsto -{\frac {\theta }{2}},\quad b'\mapsto -{\frac {\phi }{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6354f9ce67ed7574e56ffc4c65abd39ab6aa47b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.665ex; height:5.343ex;" alt="{\displaystyle a&#039;\mapsto -{\frac {\theta }{2}},\quad b&#039;\mapsto -{\frac {\phi }{2}}.}"></span></dd></dl> <p>To verify then these are the same coefficients as above, compute the ratios of the coefficients, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\alpha '}{\gamma '}}&amp;=\theta \cot {\frac {\theta }{2}}&amp;={\frac {\alpha }{\gamma }}\\{\frac {\beta '}{\gamma '}}&amp;=\phi \cot {\frac {\phi }{2}}&amp;={\frac {\beta }{\gamma }}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2032;</mo> </msup> <msup> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2032;</mo> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B8;<!-- θ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2032;</mo> </msup> <msup> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x2032;</mo> </msup> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mi>cot</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\alpha '}{\gamma '}}&amp;=\theta \cot {\frac {\theta }{2}}&amp;={\frac {\alpha }{\gamma }}\\{\frac {\beta '}{\gamma '}}&amp;=\phi \cot {\frac {\phi }{2}}&amp;={\frac {\beta }{\gamma }}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611bf931fa0ae2fd5dde0222404e55771122b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.289ex; margin-bottom: -0.216ex; width:24.253ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {\alpha &#039;}{\gamma &#039;}}&amp;=\theta \cot {\frac {\theta }{2}}&amp;={\frac {\alpha }{\gamma }}\\{\frac {\beta &#039;}{\gamma &#039;}}&amp;=\phi \cot {\frac {\phi }{2}}&amp;={\frac {\beta }{\gamma }}.\end{aligned}}}"></span></dd></dl> <p>Finally, <span class="texhtml"><i>γ</i> = <i>γ' </i></span> given the identity <span class="texhtml"><i>d</i> = sin 2<i>c'</i></span>. </p> </div></div> <p>For the general <span class="texhtml"><i>n</i> × <i>n</i></span> case, one might use Ref.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214851843"><div class="hidden-begin mw-collapsible mw-collapsed" style=""><div class="hidden-title skin-nightmode-reset-color" style="color:green;background:lightgrey;">The quaternion case</div><div class="hidden-content mw-collapsible-content" style=""> <p>The <a href="/wiki/Quaternion" title="Quaternion">quaternion</a> formulation of the composition of two rotations R<sub>B</sub> and R<sub>A</sub> also yields directly the <a href="/wiki/Axis_of_rotation" class="mw-redirect" title="Axis of rotation">rotation axis</a> and angle of the composite rotation R<sub>C</sub> = R<sub>B</sub>R<sub>A</sub>. </p><p>Let the quaternion associated with a spatial rotation R is constructed from its <a href="/wiki/Axis_of_rotation" class="mw-redirect" title="Axis of rotation">rotation axis</a> <b>S</b> and the rotation angle <i>φ</i> this axis. The associated quaternion is given by, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\cos {\frac {\phi }{2}}+\sin {\frac {\phi }{2}}\mathbf {S} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03D5;<!-- ϕ --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\cos {\frac {\phi }{2}}+\sin {\frac {\phi }{2}}\mathbf {S} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75ddd7ad477f57f3ed531218aef24eb163110d88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.754ex; height:5.343ex;" alt="{\displaystyle S=\cos {\frac {\phi }{2}}+\sin {\frac {\phi }{2}}\mathbf {S} .}"></span></dd></dl> <p>Then the composition of the rotation R<sub>R</sub> with R<sub>A</sub> is the rotation R<sub>C</sub> = R<sub>B</sub>R<sub>A</sub> with rotation axis and angle defined by the product of the quaternions </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\cos {\frac {\alpha }{2}}+\sin {\frac {\alpha }{2}}\mathbf {A} \quad {\text{ and }}\quad B=\cos {\frac {\beta }{2}}+\sin {\frac {\beta }{2}}\mathbf {B} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;and&#xA0;</mtext> </mrow> <mspace width="1em" /> <mi>B</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\cos {\frac {\alpha }{2}}+\sin {\frac {\alpha }{2}}\mathbf {A} \quad {\text{ and }}\quad B=\cos {\frac {\beta }{2}}+\sin {\frac {\beta }{2}}\mathbf {B} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb16979fc48ade8f81aa314262101a7e41fe03f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.972ex; height:5.343ex;" alt="{\displaystyle A=\cos {\frac {\alpha }{2}}+\sin {\frac {\alpha }{2}}\mathbf {A} \quad {\text{ and }}\quad B=\cos {\frac {\beta }{2}}+\sin {\frac {\beta }{2}}\mathbf {B} ,}"></span></dd></dl> <p>that is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=\cos {\frac {\gamma }{2}}+\sin {\frac {\gamma }{2}}\mathbf {C} =\left(\cos {\frac {\beta }{2}}+\sin {\frac {\beta }{2}}\mathbf {B} \right)\left(\cos {\frac {\alpha }{2}}+\sin {\frac {\alpha }{2}}\mathbf {A} \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=\cos {\frac {\gamma }{2}}+\sin {\frac {\gamma }{2}}\mathbf {C} =\left(\cos {\frac {\beta }{2}}+\sin {\frac {\beta }{2}}\mathbf {B} \right)\left(\cos {\frac {\alpha }{2}}+\sin {\frac {\alpha }{2}}\mathbf {A} \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9db2dd23c88ff87547e521b0b236c6f585c29f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.357ex; height:6.176ex;" alt="{\displaystyle C=\cos {\frac {\gamma }{2}}+\sin {\frac {\gamma }{2}}\mathbf {C} =\left(\cos {\frac {\beta }{2}}+\sin {\frac {\beta }{2}}\mathbf {B} \right)\left(\cos {\frac {\alpha }{2}}+\sin {\frac {\alpha }{2}}\mathbf {A} \right).}"></span></dd></dl> <p>Expand this product to obtain </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {\frac {\gamma }{2}}+\sin {\frac {\gamma }{2}}\mathbf {C} =\left(\cos {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}-\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} \right)+\left(\sin {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}\mathbf {B} +\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\mathbf {A} +\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \times \mathbf {A} \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {\frac {\gamma }{2}}+\sin {\frac {\gamma }{2}}\mathbf {C} =\left(\cos {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}-\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} \right)+\left(\sin {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}\mathbf {B} +\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\mathbf {A} +\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \times \mathbf {A} \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1da63d7a0e5eb4d57db489162bd6618a9408d028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:112.171ex; height:6.176ex;" alt="{\displaystyle \cos {\frac {\gamma }{2}}+\sin {\frac {\gamma }{2}}\mathbf {C} =\left(\cos {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}-\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} \right)+\left(\sin {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}\mathbf {B} +\sin {\frac {\alpha }{2}}\cos {\frac {\beta }{2}}\mathbf {A} +\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \times \mathbf {A} \right).}"></span></dd></dl> <p>Divide both sides of this equation by the identity, which is the <a href="/wiki/Spherical_law_of_cosines" title="Spherical law of cosines">law of cosines on a sphere</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos {\frac {\gamma }{2}}=\cos {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}-\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos {\frac {\gamma }{2}}=\cos {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}-\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/071c736128aedb24fbedffadf91aedc9d1e526a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:41.022ex; height:5.343ex;" alt="{\displaystyle \cos {\frac {\gamma }{2}}=\cos {\frac {\beta }{2}}\cos {\frac {\alpha }{2}}-\sin {\frac {\beta }{2}}\sin {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} ,}"></span></dd></dl> <p>and compute </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan {\frac {\gamma }{2}}\mathbf {C} ={\frac {\tan {\frac {\beta }{2}}\mathbf {B} +\tan {\frac {\alpha }{2}}\mathbf {A} +\tan {\frac {\beta }{2}}\tan {\frac {\alpha }{2}}\mathbf {B} \times \mathbf {A} }{1-\tan {\frac {\beta }{2}}\tan {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B3;<!-- γ --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B2;<!-- β --></mi> <mn>2</mn> </mfrac> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan {\frac {\gamma }{2}}\mathbf {C} ={\frac {\tan {\frac {\beta }{2}}\mathbf {B} +\tan {\frac {\alpha }{2}}\mathbf {A} +\tan {\frac {\beta }{2}}\tan {\frac {\alpha }{2}}\mathbf {B} \times \mathbf {A} }{1-\tan {\frac {\beta }{2}}\tan {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6beebd8e0b921524bd82b4675d58dc984250fdc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:51.426ex; height:8.843ex;" alt="{\displaystyle \tan {\frac {\gamma }{2}}\mathbf {C} ={\frac {\tan {\frac {\beta }{2}}\mathbf {B} +\tan {\frac {\alpha }{2}}\mathbf {A} +\tan {\frac {\beta }{2}}\tan {\frac {\alpha }{2}}\mathbf {B} \times \mathbf {A} }{1-\tan {\frac {\beta }{2}}\tan {\frac {\alpha }{2}}\mathbf {B} \cdot \mathbf {A} }}.}"></span></dd></dl> <p>This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two rotations. He derived this formula in 1840 (see page 408).<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>The three rotation axes <b>A</b>, <b>B</b>, and <b>C</b> form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation angles. </p> </div></div> <div class="mw-heading mw-heading2"><h2 id="Infinitesimal_rotations">Infinitesimal rotations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=17" title="Edit section: Infinitesimal rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="excerpt-block"><style data-mw-deduplicate="TemplateStyles:r1066933788">.mw-parser-output .excerpt-hat .mw-editsection-like{font-style:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable dablink excerpt-hat selfref">This section is an excerpt from <a href="/wiki/Infinitesimal_rotation_matrix" title="Infinitesimal rotation matrix">Infinitesimal rotation matrix</a>.<span class="mw-editsection-like plainlinks"><span class="mw-editsection-bracket">[</span><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Infinitesimal_rotation_matrix&amp;action=edit">edit</a><span class="mw-editsection-bracket">]</span></span></div><div class="excerpt"> <p>An <a href="/wiki/Infinitesimal_rotation_matrix" title="Infinitesimal rotation matrix">infinitesimal rotation matrix</a> or differential rotation matrix is a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> representing an <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitely</a> small <a href="/wiki/Rotation" title="Rotation">rotation</a>. </p><p>While a <a href="/wiki/Rotation_matrix" title="Rotation matrix">rotation matrix</a> is an <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{\mathsf {T}}=R^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{\mathsf {T}}=R^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85439c87cf2430c0c01e9eb25f6d6cee89ee3238" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.311ex; height:2.676ex;" alt="{\displaystyle R^{\mathsf {T}}=R^{-1}}"></span> representing an element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle SO(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mi>O</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle SO(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f8243929248730d44fbb8ee9d267361713332ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.477ex; height:2.843ex;" alt="{\displaystyle SO(n)}"></span> (the <a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">special orthogonal group</a>), the <a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">differential</a> of a rotation is a <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\mathsf {T}}=-A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\mathsf {T}}=-A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f020a5cc94f0fd27929041f589affa0e575a083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.744ex; height:2.843ex;" alt="{\displaystyle A^{\mathsf {T}}=-A}"></span> in the <a href="/wiki/Tangent_space" title="Tangent space">tangent space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57c18bd074c7bdc79ea650563edde2e2bc080321" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.412ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(n)}"></span> (the <a href="/wiki/Special_orthogonal_Lie_algebra" class="mw-redirect" title="Special orthogonal Lie algebra">special orthogonal Lie algebra</a>), which is not itself a rotation matrix. </p><p>An infinitesimal rotation matrix has the form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I+d\theta \,A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>+</mo> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I+d\theta \,A,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3da72e5ca97ba81447afc60fae1a089f4c1a20f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.096ex; height:2.509ex;" alt="{\displaystyle I+d\theta \,A,}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is the identity matrix, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75ae6ca1248d081ef3fcfdd3e17ba0e3f6c02ee9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.306ex; height:2.176ex;" alt="{\displaystyle d\theta }"></span> is vanishingly small, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\in {\mathfrak {so}}(n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\in {\mathfrak {so}}(n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/392ece43ea9ed9515d3cf7e3e4e2f36f1b8474db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.602ex; height:2.843ex;" alt="{\displaystyle A\in {\mathfrak {so}}(n).}"></span> </p><p>For example, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=L_{x},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=L_{x},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/622657009d214614f9d7329bab84c67762534d8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.244ex; height:2.509ex;" alt="{\displaystyle A=L_{x},}"></span> representing an infinitesimal three-dimensional rotation about the <span class="texhtml mvar" style="font-style:italic;">x</span>-axis, a basis element of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0b216599a18df448fe258d3e160a969c64c7dc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.826ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3),}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dL_{x}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;1&amp;-d\theta \\0&amp;d\theta &amp;1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dL_{x}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;1&amp;-d\theta \\0&amp;d\theta &amp;1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d81596610fbd23af0d094a16c6d0c4d33e2cab2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:23.797ex; height:9.176ex;" alt="{\displaystyle dL_{x}={\begin{bmatrix}1&amp;0&amp;0\\0&amp;1&amp;-d\theta \\0&amp;d\theta &amp;1\end{bmatrix}}.}"></span></dd></dl> The computation rules for infinitesimal rotation matrices are as usual except that infinitesimals of second order are routinely dropped. With these rules, these matrices do not satisfy all the same properties as ordinary finite rotation matrices under the usual treatment of infinitesimals.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> It turns out that <i>the order in which infinitesimal rotations are applied is irrelevant</i>.</div></div> <div class="mw-heading mw-heading2"><h2 id="Realizations_of_rotations">Realizations of rotations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=18" title="Edit section: Realizations of rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Rotation_formalisms_in_three_dimensions" title="Rotation formalisms in three dimensions">Rotation formalisms in three dimensions</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Charts_on_SO(3)" title="Charts on SO(3)">Charts on SO(3)</a></div> <p>We have seen that there are a variety of ways to represent rotations: </p> <ul><li>as orthogonal matrices with determinant 1,</li> <li>by axis and rotation angle</li> <li>in <a href="/wiki/Quaternion" title="Quaternion">quaternion</a> algebra with <a href="/wiki/Versor" title="Versor">versors</a> and the map <a href="/wiki/3-sphere" title="3-sphere">3-sphere</a> <i>S</i><sup>3</sup> → SO(3) (see <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">quaternions and spatial rotations</a>)</li> <li>in <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebra</a> as a <a href="/wiki/Rotor_(mathematics)" title="Rotor (mathematics)">rotor</a></li> <li>as a sequence of three rotations about three fixed axes; see <a href="/wiki/Euler_angle" class="mw-redirect" title="Euler angle">Euler angles</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Spherical_harmonics">Spherical harmonics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=19" title="Edit section: Spherical harmonics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Spherical_harmonics" title="Spherical harmonics">Spherical harmonics</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Representation_of_a_Lie_group#An_example:_The_rotation_group_SO.283.29" title="Representation of a Lie group">Representations of SO(3)</a></div> <p>The group <span class="texhtml">SO(3)</span> of three-dimensional Euclidean rotations has an infinite-dimensional representation on the Hilbert space </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}\left(\mathbf {S} ^{2}\right)=\operatorname {span} \left\{Y_{m}^{\ell },\ell \in \mathbb {N} ^{+},-\ell \leq m\leq \ell \right\},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>span</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>{</mo> <mrow> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mo>,</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x2113;<!-- ℓ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>m</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mo>}</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}\left(\mathbf {S} ^{2}\right)=\operatorname {span} \left\{Y_{m}^{\ell },\ell \in \mathbb {N} ^{+},-\ell \leq m\leq \ell \right\},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3bc85e3aa871572201b562763217a9b989a84f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.891ex; height:3.343ex;" alt="{\displaystyle L^{2}\left(\mathbf {S} ^{2}\right)=\operatorname {span} \left\{Y_{m}^{\ell },\ell \in \mathbb {N} ^{+},-\ell \leq m\leq \ell \right\},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{m}^{\ell }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{m}^{\ell }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eec221a8066161cb86ec6711256ef71c3cf5791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.026ex; height:2.843ex;" alt="{\displaystyle Y_{m}^{\ell }}"></span> are <a href="/wiki/Spherical_harmonics" title="Spherical harmonics">spherical harmonics</a>. Its elements are square integrable complex-valued functions<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>nb 5<span class="cite-bracket">&#93;</span></a></sup> on the sphere. The inner product on this space is given by </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle =\int _{\mathbf {S} ^{2}}{\overline {f}}g\,d\Omega =\int _{0}^{2\pi }\int _{0}^{\pi }{\overline {f}}g\sin \theta \,d\theta \,d\phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>g</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>g</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle =\int _{\mathbf {S} ^{2}}{\overline {f}}g\,d\Omega =\int _{0}^{2\pi }\int _{0}^{\pi }{\overline {f}}g\sin \theta \,d\theta \,d\phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2088f1508e232caad82c50f0cb9c3dac8e27a3c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:43.632ex; height:6.176ex;" alt="{\displaystyle \langle f,g\rangle =\int _{\mathbf {S} ^{2}}{\overline {f}}g\,d\Omega =\int _{0}^{2\pi }\int _{0}^{\pi }{\overline {f}}g\sin \theta \,d\theta \,d\phi .}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_H1" class="reference nourlexpansion" style="font-weight:bold;">H1</span>)</b></td></tr></tbody></table> <p>If <span class="texhtml mvar" style="font-style:italic;">f</span> is an arbitrary square integrable function defined on the unit sphere <span class="texhtml"><b>S</b><sup>2</sup></span>, then it can be expressed as<sup id="cite_ref-Gelfand_M_S_24-0" class="reference"><a href="#cite_note-Gelfand_M_S-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |f\rangle =\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }\left|Y_{m}^{\ell }\right\rangle \left\langle Y_{m}^{\ell }|f\right\rangle ,\qquad f(\theta ,\phi )=\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }f_{\ell m}Y_{m}^{\ell }(\theta ,\phi ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </munderover> <mrow> <mo>|</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mo>&#x27E9;</mo> </mrow> <mrow> <mo>&#x27E8;</mo> <mrow> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>f</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mi>m</mi> </mrow> </msub> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |f\rangle =\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }\left|Y_{m}^{\ell }\right\rangle \left\langle Y_{m}^{\ell }|f\right\rangle ,\qquad f(\theta ,\phi )=\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }f_{\ell m}Y_{m}^{\ell }(\theta ,\phi ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e84afefce7669a38b9d21715f3277a0ced631d5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:64.115ex; height:7.509ex;" alt="{\displaystyle |f\rangle =\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }\left|Y_{m}^{\ell }\right\rangle \left\langle Y_{m}^{\ell }|f\right\rangle ,\qquad f(\theta ,\phi )=\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }f_{\ell m}Y_{m}^{\ell }(\theta ,\phi ),}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_H2" class="reference nourlexpansion" style="font-weight:bold;">H2</span>)</b></td></tr></tbody></table> <p>where the expansion coefficients are given by </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{\ell m}=\left\langle Y_{m}^{\ell },f\right\rangle =\int _{\mathbf {S} ^{2}}{\overline {Y_{m}^{\ell }}}f\,d\Omega =\int _{0}^{2\pi }\int _{0}^{\pi }{\overline {Y_{m}^{\ell }}}(\theta ,\phi )f(\theta ,\phi )\sin \theta \,d\theta \,d\phi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>&#x27E8;</mo> <mrow> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mo>,</mo> <mi>f</mi> </mrow> <mo>&#x27E9;</mo> </mrow> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>f</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{\ell m}=\left\langle Y_{m}^{\ell },f\right\rangle =\int _{\mathbf {S} ^{2}}{\overline {Y_{m}^{\ell }}}f\,d\Omega =\int _{0}^{2\pi }\int _{0}^{\pi }{\overline {Y_{m}^{\ell }}}(\theta ,\phi )f(\theta ,\phi )\sin \theta \,d\theta \,d\phi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ce2a69e69fff86e2f243bfb7514a82d5f64c350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:66.801ex; height:6.176ex;" alt="{\displaystyle f_{\ell m}=\left\langle Y_{m}^{\ell },f\right\rangle =\int _{\mathbf {S} ^{2}}{\overline {Y_{m}^{\ell }}}f\,d\Omega =\int _{0}^{2\pi }\int _{0}^{\pi }{\overline {Y_{m}^{\ell }}}(\theta ,\phi )f(\theta ,\phi )\sin \theta \,d\theta \,d\phi .}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_H3" class="reference nourlexpansion" style="font-weight:bold;">H3</span>)</b></td></tr></tbody></table> <p>The Lorentz group action restricts to that of <span class="texhtml">SO(3)</span> and is expressed as </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\Pi (R)f)(\theta (x),\phi (x))=\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }\sum _{m'=-\ell }^{m'=\ell }D_{mm'}^{(\ell )}(R)f_{\ell m'}Y_{m}^{\ell }\left(\theta \left(R^{-1}x\right),\phi \left(R^{-1}x\right)\right),\qquad R\in \operatorname {SO} (3),\quad x\in \mathbf {S} ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </munderover> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </munderover> <msubsup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">)</mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> <msup> <mi>m</mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x2113;<!-- ℓ --></mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>R</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\Pi (R)f)(\theta (x),\phi (x))=\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }\sum _{m'=-\ell }^{m'=\ell }D_{mm'}^{(\ell )}(R)f_{\ell m'}Y_{m}^{\ell }\left(\theta \left(R^{-1}x\right),\phi \left(R^{-1}x\right)\right),\qquad R\in \operatorname {SO} (3),\quad x\in \mathbf {S} ^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc3368a8ffafb5960be67166351209e979b6569d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:103.48ex; height:7.843ex;" alt="{\displaystyle (\Pi (R)f)(\theta (x),\phi (x))=\sum _{\ell =1}^{\infty }\sum _{m=-\ell }^{m=\ell }\sum _{m&#039;=-\ell }^{m&#039;=\ell }D_{mm&#039;}^{(\ell )}(R)f_{\ell m&#039;}Y_{m}^{\ell }\left(\theta \left(R^{-1}x\right),\phi \left(R^{-1}x\right)\right),\qquad R\in \operatorname {SO} (3),\quad x\in \mathbf {S} ^{2}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_H4" class="reference nourlexpansion" style="font-weight:bold;">H4</span>)</b></td></tr></tbody></table> <p>This action is unitary, meaning that </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \Pi (R)f,\Pi (R)g\rangle =\langle f,g\rangle \qquad \forall f,g\in \mathbf {S} ^{2},\quad \forall R\in \operatorname {SO} (3).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo>,</mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="2em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>R</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \Pi (R)f,\Pi (R)g\rangle =\langle f,g\rangle \qquad \forall f,g\in \mathbf {S} ^{2},\quad \forall R\in \operatorname {SO} (3).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6bcbe64a890bd54a4b6bedb81b97cec938975ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.926ex; height:3.176ex;" alt="{\displaystyle \langle \Pi (R)f,\Pi (R)g\rangle =\langle f,g\rangle \qquad \forall f,g\in \mathbf {S} ^{2},\quad \forall R\in \operatorname {SO} (3).}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_H5" class="reference nourlexpansion" style="font-weight:bold;">H5</span>)</b></td></tr></tbody></table> <p>The <span class="texhtml"><i>D</i><sup>(<i>ℓ</i>)</sup></span> can be obtained from the <span class="texhtml"><i>D</i><sup>(<i>m</i>, <i>n</i>)</sup></span> of above using <a href="/wiki/Clebsch%E2%80%93Gordan_coefficients" title="Clebsch–Gordan coefficients">Clebsch–Gordan decomposition</a>, but they are more easily directly expressed as an exponential of an odd-dimensional <span class="texhtml"><b>su</b>(2)</span>-representation (the 3-dimensional one is exactly <span class="texhtml">𝖘𝖔(3)</span>).<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> In this case the space <span class="texhtml"><i>L</i><sup>2</sup>(<b>S</b><sup>2</sup>)</span> decomposes neatly into an infinite direct sum of irreducible odd finite-dimensional representations <span class="texhtml"><i>V</i><sub>2<i>i</i> + 1</sub>, <i>i</i> = 0, 1, ...</span> according to<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}\left(\mathbf {S} ^{2}\right)=\sum _{i=0}^{\infty }V_{2i+1}\equiv \bigoplus _{i=0}^{\infty }\operatorname {span} \left\{Y_{m}^{2i+1}\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <munderover> <mo>&#x2A01;<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mi>span</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>{</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}\left(\mathbf {S} ^{2}\right)=\sum _{i=0}^{\infty }V_{2i+1}\equiv \bigoplus _{i=0}^{\infty }\operatorname {span} \left\{Y_{m}^{2i+1}\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ae5af5894e798d0b87223ab1c3db3b16bb292ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.251ex; height:6.843ex;" alt="{\displaystyle L^{2}\left(\mathbf {S} ^{2}\right)=\sum _{i=0}^{\infty }V_{2i+1}\equiv \bigoplus _{i=0}^{\infty }\operatorname {span} \left\{Y_{m}^{2i+1}\right\}.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_H6" class="reference nourlexpansion" style="font-weight:bold;">H6</span>)</b></td></tr></tbody></table> <p>This is characteristic of infinite-dimensional unitary representations of <span class="texhtml">SO(3)</span>. If <span class="texhtml mvar" style="font-style:italic;">Π</span> is an infinite-dimensional unitary representation on a <a href="/wiki/Separable_space" title="Separable space">separable</a><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>nb 6<span class="cite-bracket">&#93;</span></a></sup> Hilbert space, then it decomposes as a direct sum of finite-dimensional unitary representations.<sup id="cite_ref-Gelfand_M_S_24-1" class="reference"><a href="#cite_note-Gelfand_M_S-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Such a representation is thus never irreducible. All irreducible finite-dimensional representations <span class="texhtml">(Π, <i>V</i>)</span> can be made unitary by an appropriate choice of inner product,<sup id="cite_ref-Gelfand_M_S_24-2" class="reference"><a href="#cite_note-Gelfand_M_S-24"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle f,g\rangle _{U}\equiv \int _{\operatorname {SO} (3)}\langle \Pi (R)f,\Pi (R)g\rangle \,dg={\frac {1}{8\pi ^{2}}}\int _{0}^{2\pi }\int _{0}^{\pi }\int _{0}^{2\pi }\langle \Pi (R)f,\Pi (R)g\rangle \sin \theta \,d\phi \,d\theta \,d\psi ,\quad f,g\in V,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>g</mi> <msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>SO</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo>,</mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>g</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>8</mn> <msup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </msubsup> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>f</mi> <mo>,</mo> <mi mathvariant="normal">&#x03A0;<!-- Π --></mi> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mi>g</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03D5;<!-- ϕ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B8;<!-- θ --></mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C8;<!-- ψ --></mi> <mo>,</mo> <mspace width="1em" /> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle f,g\rangle _{U}\equiv \int _{\operatorname {SO} (3)}\langle \Pi (R)f,\Pi (R)g\rangle \,dg={\frac {1}{8\pi ^{2}}}\int _{0}^{2\pi }\int _{0}^{\pi }\int _{0}^{2\pi }\langle \Pi (R)f,\Pi (R)g\rangle \sin \theta \,d\phi \,d\theta \,d\psi ,\quad f,g\in V,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45dbd7a26dd69a84707bfdbe4bf50e407b117bbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:96.892ex; height:6.509ex;" alt="{\displaystyle \langle f,g\rangle _{U}\equiv \int _{\operatorname {SO} (3)}\langle \Pi (R)f,\Pi (R)g\rangle \,dg={\frac {1}{8\pi ^{2}}}\int _{0}^{2\pi }\int _{0}^{\pi }\int _{0}^{2\pi }\langle \Pi (R)f,\Pi (R)g\rangle \sin \theta \,d\phi \,d\theta \,d\psi ,\quad f,g\in V,}"></span></dd></dl> <p>where the integral is the unique invariant integral over <span class="texhtml">SO(3)</span> normalized to <span class="texhtml">1</span>, here expressed using the <a href="/wiki/Euler_angles" title="Euler angles">Euler angles</a> parametrization. The inner product inside the integral is any inner product on <span class="texhtml"><i>V</i></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=20" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The rotation group generalizes quite naturally to <i>n</i>-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> with its standard Euclidean structure. The group of all proper and improper rotations in <i>n</i> dimensions is called the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> O(<i>n</i>), and the subgroup of proper rotations is called the <a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">special orthogonal group</a> SO(<i>n</i>), which is a <a href="/wiki/Lie_group" title="Lie group">Lie group</a> of dimension <span class="nowrap"><i>n</i>(<i>n</i> − 1)/2</span>. </p><p>In <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, one works in a 4-dimensional vector space, known as <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a> rather than 3-dimensional Euclidean space. Unlike Euclidean space, Minkowski space has an inner product with an indefinite <a href="/wiki/Metric_signature" title="Metric signature">signature</a>. However, one can still define <i>generalized rotations</i> which preserve this inner product. Such generalized rotations are known as <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a> and the group of all such transformations is called the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a>. </p><p>The rotation group SO(3) can be described as a subgroup of <a href="/wiki/SE(3)" class="mw-redirect" title="SE(3)">E<sup>+</sup>(3)</a>, the <a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean group</a> of <a href="/wiki/Euclidean_group#Direct_and_indirect_isometries" title="Euclidean group">direct isometries</a> of Euclidean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b00b2b4fd27c2cbffa02df568472f77b194a6db9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}.}"></span> This larger group is the group of all motions of a <a href="/wiki/Rigid_body" title="Rigid body">rigid body</a>: each of these is a combination of a rotation about an arbitrary axis and a translation, or put differently, a combination of an element of SO(3) and an arbitrary translation. </p><p>In general, the rotation group of an object is the <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> within the group of direct isometries; in other words, the intersection of the full symmetry group and the group of direct isometries. For <a href="/wiki/Chirality_(mathematics)" title="Chirality (mathematics)">chiral</a> objects it is the same as the full symmetry group. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 22em;"> <ul><li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal group</a></li> <li><a href="/wiki/Angular_momentum" title="Angular momentum">Angular momentum</a></li> <li><a href="/wiki/Coordinate_rotation" class="mw-redirect" title="Coordinate rotation">Coordinate rotations</a></li> <li><a href="/wiki/Charts_on_SO(3)" title="Charts on SO(3)">Charts on SO(3)</a></li> <li><a href="/wiki/Representation_of_a_Lie_group#An_example:_The_rotation_group_SO(3)" title="Representation of a Lie group">Representations of SO(3)</a></li> <li><a href="/wiki/Euler_angles" title="Euler angles">Euler angles</a></li> <li><a href="/wiki/Rodrigues%27_rotation_formula" title="Rodrigues&#39; rotation formula">Rodrigues' rotation formula</a></li> <li><a href="/wiki/Infinitesimal_rotation" class="mw-redirect" title="Infinitesimal rotation">Infinitesimal rotation</a></li> <li><a href="/wiki/Pin_group" title="Pin group">Pin group</a></li> <li><a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">Quaternions and spatial rotations</a></li> <li><a href="/wiki/Rigid_body" title="Rigid body">Rigid body</a></li> <li><a href="/wiki/Spherical_harmonics" title="Spherical harmonics">Spherical harmonics</a></li> <li><a href="/wiki/Plane_of_rotation" title="Plane of rotation">Plane of rotation</a></li> <li><a href="/wiki/Lie_group" title="Lie group">Lie group</a></li> <li><a href="/wiki/Pauli_matrix" class="mw-redirect" title="Pauli matrix">Pauli matrix</a></li> <li><a href="/wiki/Plate_trick" title="Plate trick">Plate trick</a></li> <li><a href="/wiki/Three-dimensional_rotation_operator" class="mw-redirect" title="Three-dimensional rotation operator">Three-dimensional rotation operator</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Footnotes">Footnotes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=22" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-6"><span class="mw-cite-backlink">'<i><a href="#cite_ref-6">^</a><b></b></i></span><i><b> <span class="reference-text">This is effected by first applying a rotation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aedf5ba36e3a9362424d65717feae5cc7cbada2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.009ex;" alt="{\displaystyle g_{\theta }}"></span> through <span class="texhtml mvar" style="font-style:italic;"></span></span></b></i><b>φ<i> about the <span class="nowrap"><span class="texhtml"></span></span></i>z<i>-axis to take the <span class="nowrap"><span class="texhtml"></span></span></i>x<i>-axis to the line <span class="texhtml"></span></i>L<i>, the intersection between the planes <span class="texhtml"></span></i>xy<i> and <span class="texhtml"></span></i>x'y</b>, the latter being the rotated <span class="nowrap"><span class="texhtml"><i>xy</i></span>-plane</span>. Then rotate with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aedf5ba36e3a9362424d65717feae5cc7cbada2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.009ex;" alt="{\displaystyle g_{\theta }}"></span> through <span class="texhtml mvar" style="font-style:italic;">θ</span> about <span class="texhtml"><i>L</i></span> to obtain the new <span class="nowrap"><span class="texhtml"><i>z</i></span>-axis</span> from the old one, and finally rotate by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\psi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\psi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc8ca165904d0990611ca4aefb77482a62a7e821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.411ex; height:2.343ex;" alt="{\displaystyle g_{\psi }}"></span> through an angle <span class="texhtml mvar" style="font-style:italic;">ψ</span> about the <i>new</i> <span class="nowrap"><span class="texhtml"><i>z</i></span>-axis</span>, where <span class="texhtml mvar" style="font-style:italic;">ψ</span> is the angle between <span class="texhtml mvar" style="font-style:italic;">L</span> and the new <span class="nowrap"><span class="texhtml"><i>x</i></span>-axis</span>. In the equation, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aedf5ba36e3a9362424d65717feae5cc7cbada2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.009ex;" alt="{\displaystyle g_{\theta }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\psi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\psi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc8ca165904d0990611ca4aefb77482a62a7e821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.411ex; height:2.343ex;" alt="{\displaystyle g_{\psi }}"></span> are expressed in a temporary <i>rotated basis</i> at each step, which is seen from their simple form. To transform these back to the original basis, observe that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} _{\theta }=g_{\phi }g_{\theta }g_{\phi }^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} _{\theta }=g_{\phi }g_{\theta }g_{\phi }^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc73f074699b35ce50916b3cfb95e6fc3ac2510" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:13.97ex; height:3.676ex;" alt="{\displaystyle \mathbf {g} _{\theta }=g_{\phi }g_{\theta }g_{\phi }^{-1}.}"></span> Here boldface means that the rotation is expressed in the <i>original</i> basis. Likewise, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} _{\psi }=g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }g_{\psi }\left[g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }\right]^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <msup> <mrow> <mo>[</mo> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} _{\psi }=g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }g_{\psi }\left[g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }\right]^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f0c1b4f9dae05dcdb68b7dbac5631fc70e8cffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.734ex; height:5.176ex;" alt="{\displaystyle \mathbf {g} _{\psi }=g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }g_{\psi }\left[g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }\right]^{-1}.}"></span></dd></dl> Thus <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {g} _{\psi }\mathbf {g} _{\theta }\mathbf {g} _{\phi }=g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }g_{\psi }\left[g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }\right]^{-1}*g_{\phi }g_{\theta }g_{\phi }^{-1}*g_{\phi }=g_{\phi }g_{\theta }g_{\psi }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">g</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <msup> <mrow> <mo>[</mo> <mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msubsup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>&#x2217;<!-- ∗ --></mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03D5;<!-- ϕ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C8;<!-- ψ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {g} _{\psi }\mathbf {g} _{\theta }\mathbf {g} _{\phi }=g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }g_{\psi }\left[g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }\right]^{-1}*g_{\phi }g_{\theta }g_{\phi }^{-1}*g_{\phi }=g_{\phi }g_{\theta }g_{\psi }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2f40e8079a8f380e4f598c51335f31f825fbfa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:63.16ex; height:5.176ex;" alt="{\displaystyle \mathbf {g} _{\psi }\mathbf {g} _{\theta }\mathbf {g} _{\phi }=g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }g_{\psi }\left[g_{\phi }g_{\theta }g_{\phi }^{-1}g_{\phi }\right]^{-1}*g_{\phi }g_{\theta }g_{\phi }^{-1}*g_{\phi }=g_{\phi }g_{\theta }g_{\psi }.}"></span></dd></dl> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">For an alternative derivation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {so}}(3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">s</mi> <mi mathvariant="fraktur">o</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {so}}(3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb4f1d3d3bf3da64b92af1a1018ce00545808b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.041ex; width:5.179ex; height:2.843ex;" alt="{\displaystyle {\mathfrak {so}}(3)}"></span>, see <a href="/wiki/Classical_group" title="Classical group">Classical group</a>.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Specifically, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {U}}{\boldsymbol {J}}_{\alpha }{\boldsymbol {U}}^{\dagger }=i{\boldsymbol {L}}_{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">U</mi> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">J</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">U</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <mi>i</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {U}}{\boldsymbol {J}}_{\alpha }{\boldsymbol {U}}^{\dagger }=i{\boldsymbol {L}}_{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/763718a9caccd90d88c6b227a2b187ea3c0ca7e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.785ex; height:3.009ex;" alt="{\displaystyle {\boldsymbol {U}}{\boldsymbol {J}}_{\alpha }{\boldsymbol {U}}^{\dagger }=i{\boldsymbol {L}}_{\alpha }}"></span> for <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {U}}=\left({\begin{array}{ccc}-{\frac {i}{\sqrt {2}}}&amp;0&amp;{\frac {i}{\sqrt {2}}}\\{\frac {1}{\sqrt {2}}}&amp;0&amp;{\frac {1}{\sqrt {2}}}\\0&amp;i&amp;0\\\end{array}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">U</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>i</mi> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {U}}=\left({\begin{array}{ccc}-{\frac {i}{\sqrt {2}}}&amp;0&amp;{\frac {i}{\sqrt {2}}}\\{\frac {1}{\sqrt {2}}}&amp;0&amp;{\frac {1}{\sqrt {2}}}\\0&amp;i&amp;0\\\end{array}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef5240ab232bfd7fbe2d8058ef9506c2e5411029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:24.659ex; height:12.176ex;" alt="{\displaystyle {\boldsymbol {U}}=\left({\begin{array}{ccc}-{\frac {i}{\sqrt {2}}}&amp;0&amp;{\frac {i}{\sqrt {2}}}\\{\frac {1}{\sqrt {2}}}&amp;0&amp;{\frac {1}{\sqrt {2}}}\\0&amp;i&amp;0\\\end{array}}\right).}"></span></dd></dl> </span></li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">For a full proof, see <a href="/wiki/Derivative_of_the_exponential_map" title="Derivative of the exponential map">Derivative of the exponential map</a>. Issues of convergence of this series to the correct element of the Lie algebra are here swept under the carpet. Convergence is guaranteed when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|X\|+\|Y\|&lt;\log 2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>+</mo> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>Y</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&lt;</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|X\|+\|Y\|&lt;\log 2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc45dd2dad2bbfe24b25c14b20f4e2bc4c159ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.863ex; height:2.843ex;" alt="{\displaystyle \|X\|+\|Y\|&lt;\log 2}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|Z\|&lt;\log 2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mi>Z</mi> <mo fence="false" stretchy="false">&#x2016;<!-- ‖ --></mo> <mo>&lt;</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \|Z\|&lt;\log 2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd02484062e1cb0ff1fdd3bf40ad0de15a9cef1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.272ex; height:2.843ex;" alt="{\displaystyle \|Z\|&lt;\log 2.}"></span> The series may still converge even if these conditions are not fulfilled. A solution always exists since <span class="texhtml">exp</span> is onto in the cases under consideration.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">The elements of <span class="texhtml"><i>L</i><sup>2</sup>(<b>S</b><sup>2</sup>)</span> are actually equivalence classes of functions. two functions are declared equivalent if they differ merely on a set of <a href="/wiki/Measure_zero" class="mw-redirect" title="Measure zero">measure zero</a>. The integral is the Lebesgue integral in order to obtain a <i>complete</i> inner product space.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">A Hilbert space is separable if and only if it has a countable basis. All separable Hilbert spaces are isomorphic.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Jacobson (2009), p. 34, Ex. 14.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><i>n</i>&#160;×&#160;<i>n</i> real matrices are identical to linear transformations of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> expressed in its <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a>.</span> </li> <li id="cite_note-coxeter-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-coxeter_3-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCoxeter1973" class="citation book cs1">Coxeter, H. S. M. (1973). <i>Regular polytopes</i> (Third&#160;ed.). New York. p.&#160;53. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-61480-8" title="Special:BookSources/0-486-61480-8"><bdi>0-486-61480-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Regular+polytopes&amp;rft.place=New+York&amp;rft.pages=53&amp;rft.edition=Third&amp;rft.date=1973&amp;rft.isbn=0-486-61480-8&amp;rft.aulast=Coxeter&amp;rft.aufirst=H.+S.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 1.17</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="#CITEREFRossmann2002">Rossmann 2002</a> p. 95.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">These expressions were, in fact, seminal in the development of quantum mechanics in the 1930s, cf. Ch III,  § 16, B.L. van der Waerden, 1932/1932</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Proposition 3.24</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><a href="#CITEREFRossmann2002">Rossmann 2002</a></span> </li> <li id="cite_note-Engø_2001-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Engø_2001_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Engø_2001_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFEngø2001">Engø 2001</a></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2015">Hall 2015</a> Example 3.27</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">See <a href="#CITEREFRossmann2002">Rossmann 2002</a>, theorem 3, section 2.2.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a href="#CITEREFRossmann2002">Rossmann 2002</a> Section 1.1.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2003">Hall 2003</a> Theorem 2.27.</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShoemake1992" class="citation cs2">Shoemake, Ken (1992-01-01), Kirk, DAVID (ed.), <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/B9780080507552500361">"III.6 - Uniform Random Rotations"</a>, <i>Graphics Gems III (IBM Version)</i>, San Francisco: Morgan Kaufmann, pp.&#160;124–132, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-12-409673-8" title="Special:BookSources/978-0-12-409673-8"><bdi>978-0-12-409673-8</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2022-07-29</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Graphics+Gems+III+%28IBM+Version%29&amp;rft.atitle=III.6+-+Uniform+Random+Rotations&amp;rft.pages=124-132&amp;rft.date=1992-01-01&amp;rft.isbn=978-0-12-409673-8&amp;rft.aulast=Shoemake&amp;rft.aufirst=Ken&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FB9780080507552500361&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2003">Hall 2003</a>, Ch.&#160;3; <a href="#CITEREFVaradarajan1984">Varadarajan 1984</a>, §2.15</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><a href="#CITEREFCurtrightFairlieZachos2014">Curtright, Fairlie &amp; Zachos 2014</a> Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Rodrigues, O. (1840), Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et la variation des coordonnées provenant de ses déplacements con- sidérés indépendamment des causes qui peuvent les produire, Journal de Mathématiques Pures et Appliquées de Liouville 5, 380–440.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">(<a href="#CITEREFGoldsteinPooleSafko2002">Goldstein, Poole &amp; Safko 2002</a>, §4.8)</span> </li> <li id="cite_note-Gelfand_M_S-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gelfand_M_S_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gelfand_M_S_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Gelfand_M_S_24-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFGelfandMinlosShapiro1963">Gelfand, Minlos &amp; Shapiro 1963</a></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">In <i>Quantum Mechanics – non-relativistic theory</i> by <a href="/wiki/Course_of_Theoretical_Physics" title="Course of Theoretical Physics">Landau and Lifshitz</a> the lowest order <span class="texhtml"><i>D</i></span> are calculated analytically.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><a href="#CITEREFCurtrightFairlieZachos2014">Curtright, Fairlie &amp; Zachos 2014</a> A formula for <span class="texhtml"><i>D</i><sup>(<i>ℓ</i>)</sup></span> valid for all <i>ℓ</i> is given.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><a href="#CITEREFHall2003">Hall 2003</a> Section 4.3.5.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=3D_rotation_group&amp;action=edit&amp;section=24" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoas2006" class="citation cs2"><a href="/wiki/Mary_L._Boas" title="Mary L. Boas">Boas, Mary L.</a> (2006), <i><a href="/wiki/Mathematical_Methods_in_the_Physical_Sciences" title="Mathematical Methods in the Physical Sciences">Mathematical Methods in the Physical Sciences</a></i> (3rd&#160;ed.), John Wiley &amp; sons, pp.&#160;120, 127, 129, 155ff and 535, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0471198260" title="Special:BookSources/978-0471198260"><bdi>978-0471198260</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+Methods+in+the+Physical+Sciences&amp;rft.pages=120%2C+127%2C+129%2C+155ff+and+535&amp;rft.edition=3rd&amp;rft.pub=John+Wiley+%26+sons&amp;rft.date=2006&amp;rft.isbn=978-0471198260&amp;rft.aulast=Boas&amp;rft.aufirst=Mary+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCurtrightFairlieZachos2014" class="citation cs2"><a href="/wiki/David_Fairlie" title="David Fairlie">Curtright, T. L.</a>; <a href="/wiki/Thomas_Curtright" title="Thomas Curtright">Fairlie, D. B.</a>; <a href="/wiki/Cosmas_Zachos" title="Cosmas Zachos">Zachos, C. K.</a> (2014), "A compact formula for rotations as spin matrix polynomials", <i>SIGMA</i>, <b>10</b>: 084, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1402.3541">1402.3541</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014SIGMA..10..084C">2014SIGMA..10..084C</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3842%2FSIGMA.2014.084">10.3842/SIGMA.2014.084</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18776942">18776942</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SIGMA&amp;rft.atitle=A+compact+formula+for+rotations+as+spin+matrix+polynomials&amp;rft.volume=10&amp;rft.pages=084&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1402.3541&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18776942%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.3842%2FSIGMA.2014.084&amp;rft_id=info%3Abibcode%2F2014SIGMA..10..084C&amp;rft.aulast=Curtright&amp;rft.aufirst=T.+L.&amp;rft.au=Fairlie%2C+D.+B.&amp;rft.au=Zachos%2C+C.+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEngø2001" class="citation cs2">Engø, Kenth (2001), "On the BCH-formula in 𝖘𝖔(3)", <i>BIT Numerical Mathematics</i>, <b>41</b> (3): 629–632, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1021979515229">10.1023/A:1021979515229</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0006-3835">0006-3835</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:126053191">126053191</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BIT+Numerical+Mathematics&amp;rft.atitle=On+the+BCH-formula+in+%F0%9D%96%98%F0%9D%96%94%283%29&amp;rft.volume=41&amp;rft.issue=3&amp;rft.pages=629-632&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A126053191%23id-name%3DS2CID&amp;rft.issn=0006-3835&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1021979515229&amp;rft.aulast=Eng%C3%B8&amp;rft.aufirst=Kenth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span> <a rel="nofollow" class="external autonumber" href="http://www.ii.uib.no/publikasjoner/texrap/pdf/2000-201.pdf">[1]</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGelfandMinlosShapiro1963" class="citation cs2"><a href="/wiki/Israel_Gelfand" title="Israel Gelfand">Gelfand, I.M.</a>; <a href="/wiki/Robert_Adol%27fovich_Minlos" class="mw-redirect" title="Robert Adol&#39;fovich Minlos">Minlos, R.A.</a>; Shapiro, Z.Ya. (1963), <i>Representations of the Rotation and Lorentz Groups and their Applications</i>, New York: Pergamon Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Representations+of+the+Rotation+and+Lorentz+Groups+and+their+Applications&amp;rft.place=New+York&amp;rft.pub=Pergamon+Press&amp;rft.date=1963&amp;rft.aulast=Gelfand&amp;rft.aufirst=I.M.&amp;rft.au=Minlos%2C+R.A.&amp;rft.au=Shapiro%2C+Z.Ya.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldsteinPooleSafko2002" class="citation cs2"><a href="/wiki/Herbert_Goldstein" title="Herbert Goldstein">Goldstein, Herbert</a>; <a href="/w/index.php?title=Charles_P._Poole&amp;action=edit&amp;redlink=1" class="new" title="Charles P. Poole (page does not exist)">Poole, Charles P.</a>; Safko, John L. (2002), <i>Classical Mechanics</i> (third&#160;ed.), <a href="/wiki/Addison_Wesley" class="mw-redirect" title="Addison Wesley">Addison Wesley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-201-65702-9" title="Special:BookSources/978-0-201-65702-9"><bdi>978-0-201-65702-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Classical+Mechanics&amp;rft.edition=third&amp;rft.pub=Addison+Wesley&amp;rft.date=2002&amp;rft.isbn=978-0-201-65702-9&amp;rft.aulast=Goldstein&amp;rft.aufirst=Herbert&amp;rft.au=Poole%2C+Charles+P.&amp;rft.au=Safko%2C+John+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2015" class="citation cs2">Hall, Brian C. (2015), <i>Lie Groups, Lie Algebras, and Representations: An Elementary Introduction</i>, Graduate Texts in Mathematics, vol.&#160;222 (2nd&#160;ed.), Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3319134666" title="Special:BookSources/978-3319134666"><bdi>978-3319134666</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Groups%2C+Lie+Algebras%2C+and+Representations%3A+An+Elementary+Introduction&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft.isbn=978-3319134666&amp;rft.aulast=Hall&amp;rft.aufirst=Brian+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2003" class="citation book cs1">Hall, Brian C. (2003). <i>Lie groups, Lie algebras, and representations&#160;: an elementary introduction</i>. Graduate Texts in Mathematics. Vol.&#160;222. New York: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-387-40122-9" title="Special:BookSources/0-387-40122-9"><bdi>0-387-40122-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+groups%2C+Lie+algebras%2C+and+representations+%3A+an+elementary+introduction&amp;rft.place=New+York&amp;rft.series=Graduate+Texts+in+Mathematics&amp;rft.pub=Springer&amp;rft.date=2003&amp;rft.isbn=0-387-40122-9&amp;rft.aulast=Hall&amp;rft.aufirst=Brian+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobson2009" class="citation cs2"><a href="/wiki/Nathan_Jacobson" title="Nathan Jacobson">Jacobson, Nathan</a> (2009), <i>Basic algebra</i>, vol.&#160;1 (2nd&#160;ed.), Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-47189-1" title="Special:BookSources/978-0-486-47189-1"><bdi>978-0-486-47189-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Basic+algebra&amp;rft.edition=2nd&amp;rft.pub=Dover+Publications&amp;rft.date=2009&amp;rft.isbn=978-0-486-47189-1&amp;rft.aulast=Jacobson&amp;rft.aufirst=Nathan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoshi2007" class="citation cs2">Joshi, A. W. (2007), <i>Elements of Group Theory for Physicists</i>, New Age International, pp.&#160;111ff, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-224-0975-8" title="Special:BookSources/978-81-224-0975-8"><bdi>978-81-224-0975-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Group+Theory+for+Physicists&amp;rft.pages=111ff&amp;rft.pub=New+Age+International&amp;rft.date=2007&amp;rft.isbn=978-81-224-0975-8&amp;rft.aulast=Joshi&amp;rft.aufirst=A.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRossmann2002" class="citation cs2">Rossmann, Wulf (2002), <i>Lie Groups – An Introduction Through Linear Groups</i>, Oxford Graduate Texts in Mathematics, Oxford Science Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-19-859683-9" title="Special:BookSources/0-19-859683-9"><bdi>0-19-859683-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+Groups+%E2%80%93+An+Introduction+Through+Linear+Groups&amp;rft.series=Oxford+Graduate+Texts+in+Mathematics&amp;rft.pub=Oxford+Science+Publications&amp;rft.date=2002&amp;rft.isbn=0-19-859683-9&amp;rft.aulast=Rossmann&amp;rft.aufirst=Wulf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_der_Waerden1952" class="citation cs2"><a href="/wiki/Bartel_Leendert_van_der_Waerden" title="Bartel Leendert van der Waerden">van der Waerden, B. L.</a> (1952), <i>Group Theory and Quantum Mechanics</i>, Springer Publishing, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3642658624" title="Special:BookSources/978-3642658624"><bdi>978-3642658624</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Group+Theory+and+Quantum+Mechanics&amp;rft.pub=Springer+Publishing&amp;rft.date=1952&amp;rft.isbn=978-3642658624&amp;rft.aulast=van+der+Waerden&amp;rft.aufirst=B.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span> (translation of the original 1932 edition, <i>Die Gruppentheoretische Methode in Der Quantenmechanik</i>).</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVaradarajan1984" class="citation book cs1">Varadarajan, V. S. (1984). <i>Lie groups, Lie algebras, and their representations</i>. New York: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-90969-1" title="Special:BookSources/978-0-387-90969-1"><bdi>978-0-387-90969-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lie+groups%2C+Lie+algebras%2C+and+their+representations&amp;rft.place=New+York&amp;rft.pub=Springer-Verlag&amp;rft.date=1984&amp;rft.isbn=978-0-387-90969-1&amp;rft.aulast=Varadarajan&amp;rft.aufirst=V.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVeltman&#39;t_Hooftde_Wit2007" class="citation web cs1"><a href="/wiki/Martinus_Veltman" class="mw-redirect" title="Martinus Veltman">Veltman, M.</a>; <a href="/wiki/Gerard_%27t_Hooft" title="Gerard &#39;t Hooft">'t Hooft, G.</a>; <a href="/wiki/Bernard_de_Wit" title="Bernard de Wit">de Wit, B.</a> (2007). <a rel="nofollow" class="external text" href="http://www.staff.science.uu.nl/~hooft101/lectures/lieg07.pdf">"Lie Groups in Physics (online lecture)"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">2016-10-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lie+Groups+in+Physics+%28online+lecture%29&amp;rft.date=2007&amp;rft.aulast=Veltman&amp;rft.aufirst=M.&amp;rft.au=%27t+Hooft%2C+G.&amp;rft.au=de+Wit%2C+B.&amp;rft_id=http%3A%2F%2Fwww.staff.science.uu.nl%2F~hooft101%2Flectures%2Flieg07.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3A3D+rotation+group" class="Z3988"></span>.</li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐2hwd8 Cached time: 20241122140727 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.880 seconds Real time usage: 1.101 seconds Preprocessor visited node count: 11916/1000000 Post‐expand include size: 86079/2097152 bytes Template argument size: 17812/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 17/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 71740/5000000 bytes Lua time usage: 0.374/10.000 seconds Lua memory usage: 6606046/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 730.674 1 -total 23.82% 174.070 2 Template:Reflist 22.58% 164.988 168 Template:Math 17.94% 131.080 1 Template:Short_description 16.57% 121.049 3 Template:Cite_book 11.14% 81.365 2 Template:Pagetype 8.20% 59.927 173 Template:Main_other 7.84% 57.274 1 Template:Excerpt 7.57% 55.280 11 Template:Citation 4.79% 35.031 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:idhash:173965-0!canonical and timestamp 20241122140727 and revision id 1254216031. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=3D_rotation_group&amp;oldid=1254216031">https://en.wikipedia.org/w/index.php?title=3D_rotation_group&amp;oldid=1254216031</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Lie_groups" title="Category:Lie groups">Lie groups</a></li><li><a href="/wiki/Category:Rotational_symmetry" title="Category:Rotational symmetry">Rotational symmetry</a></li><li><a href="/wiki/Category:Rotation_in_three_dimensions" title="Category:Rotation in three dimensions">Rotation in three dimensions</a></li><li><a href="/wiki/Category:Euclidean_solid_geometry" title="Category:Euclidean solid geometry">Euclidean solid geometry</a></li><li><a href="/wiki/Category:3-manifolds" title="Category:3-manifolds">3-manifolds</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_with_excerpts" title="Category:Articles with excerpts">Articles with excerpts</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 29 October 2024, at 23:22<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=3D_rotation_group&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-rp9p7","wgBackendResponseTime":131,"wgPageParseReport":{"limitreport":{"cputime":"0.880","walltime":"1.101","ppvisitednodes":{"value":11916,"limit":1000000},"postexpandincludesize":{"value":86079,"limit":2097152},"templateargumentsize":{"value":17812,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":17,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":71740,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 730.674 1 -total"," 23.82% 174.070 2 Template:Reflist"," 22.58% 164.988 168 Template:Math"," 17.94% 131.080 1 Template:Short_description"," 16.57% 121.049 3 Template:Cite_book"," 11.14% 81.365 2 Template:Pagetype"," 8.20% 59.927 173 Template:Main_other"," 7.84% 57.274 1 Template:Excerpt"," 7.57% 55.280 11 Template:Citation"," 4.79% 35.031 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.374","limit":"10.000"},"limitreport-memusage":{"value":6606046,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBoas2006\"] = 1,\n [\"CITEREFCoxeter1973\"] = 1,\n [\"CITEREFCurtrightFairlieZachos2014\"] = 1,\n [\"CITEREFEngø2001\"] = 1,\n [\"CITEREFGelfandMinlosShapiro1963\"] = 1,\n [\"CITEREFGoldsteinPooleSafko2002\"] = 1,\n [\"CITEREFHall2003\"] = 1,\n [\"CITEREFHall2015\"] = 1,\n [\"CITEREFJacobson2009\"] = 1,\n [\"CITEREFJoshi2007\"] = 1,\n [\"CITEREFRossmann2002\"] = 1,\n [\"CITEREFShoemake1992\"] = 1,\n [\"CITEREFVaradarajan1984\"] = 1,\n [\"CITEREFVeltman\u0026#039;t_Hooftde_Wit2007\"] = 1,\n [\"CITEREFvan_der_Waerden1952\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 3,\n [\"Citation\"] = 11,\n [\"Cite book\"] = 3,\n [\"Cite web\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"EquationNote\"] = 4,\n [\"EquationRef\"] = 8,\n [\"Excerpt\"] = 1,\n [\"Harvnb\"] = 15,\n [\"Harvtxt\"] = 3,\n [\"Hidden begin\"] = 3,\n [\"Hidden end\"] = 3,\n [\"Main\"] = 9,\n [\"Math\"] = 168,\n [\"Mvar\"] = 39,\n [\"Norm\"] = 1,\n [\"Nowrap\"] = 12,\n [\"NumBlk\"] = 8,\n [\"Pi\"] = 14,\n [\"Reflist\"] = 2,\n [\"Sans-serif\"] = 2,\n [\"See also\"] = 4,\n [\"Sfrac\"] = 9,\n [\"Short description\"] = 1,\n [\"Sup\"] = 1,\n [\"Theta\"] = 1,\n [\"Y^\\\\ell_m\"] = 1,\n [\"Y_m^\\\\ell\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-2hwd8","timestamp":"20241122140727","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"3D rotation group","url":"https:\/\/en.wikipedia.org\/wiki\/3D_rotation_group","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1256500","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1256500","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-01-24T21:03:22Z","dateModified":"2024-10-29T23:22:04Z","headline":"group of rotations in 3 dimensions"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10