CINXE.COM

{"title":"A Modified Fuzzy C-Means Algorithm for Natural Data Exploration","authors":"Binu Thomas, Raju G., Sonam Wangmo","volume":25,"journal":"International Journal of Computer and Information Engineering","pagesStart":52,"pagesEnd":56,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/11192","abstract":"In Data mining, Fuzzy clustering algorithms have\ndemonstrated advantage over crisp clustering algorithms in dealing\nwith the challenges posed by large collections of vague and uncertain\nnatural data. This paper reviews concept of fuzzy logic and fuzzy\nclustering. The classical fuzzy c-means algorithm is presented and its\nlimitations are highlighted. Based on the study of the fuzzy c-means\nalgorithm and its extensions, we propose a modification to the cmeans\nalgorithm to overcome the limitations of it in calculating the\nnew cluster centers and in finding the membership values with\nnatural data. The efficiency of the new modified method is\ndemonstrated on real data collected for Bhutan-s Gross National\nHappiness (GNH) program.","references":"[1] Sankar K. Pal, P. Mitra, \"Data Mining in Soft Computing Framework: A\nSurvey\", IEEE transactions on neural networks, vol. 13, no. 1, January\n2002.\n[2] R. Cruse, C. Borgelt, \"Fuzzy Data Analysis Challenges and\nPerspective\". Available: http:\/\/citeseer.ist.psu.edu\/ kruse99fuzzy.html\n[3] Lei Jiang and Wenhui Yang, \"A Modified Fuzzy C-Means Algorithm\nfor Segmentation of Magnetic Resonance Images\" Proc. VIIth Digital\nImage Computing: Techniques and Applications, pp. 225-231, 10-12\nDec. 2003, Sydney.\n[4] Frank Klawonn and Annette Keller, \"Fuzzy Clustering Based on\nModified Distance Measures\", Available:\nhttp:\/\/citeseer.istpsu.edu\/fuzzy_clustering_62\n[5] W. H. Inmon, \"The data warehouse and data mining\", Commn. ACM,\nvol. 39, pp. 49-50, 1996.\n[6] U. Fayyad and R. Uthurusamy, \"Data mining and knowledge discovery\nin databases\", Commn. ACM, vol. 39, pp. 24-27, 1996.\n[7] Pavel Berkhin, \"Survey of Clustering Data Mining Techniques\",\nAvailable: http:\/\/citeseer.ist.psu.edu\/berkhin02survey.html\n[8] Chau, M., Cheng, R., and Kao, B, \"Uncertain Data Mining: A New\nResearch Direction\", Available: www.business.hku.hk\n\/~mchau\/papers\/UncertainDataMining_WSA.pdf\n[9] Keith C.C, C. Wai-Ho Au, B. Choi, \"Mining Fuzzy Rules in A Donor\nDatabase for Direct Marketing by A Charitable Organization\", Proc of\nFirst IEEE International Conference on Cognitive Informatics, pp: 239 -\n246, 2002\n[10] E. Cox, Fuzzy Modeling And Genetic Algorithms For Data Mining And\nExploration, Elsevier, 2005\n[11] G. J Klir, T A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice\nHall,1988\n[12] J Han, M Kamber, Data Mining Concepts and Techniques, Elsevier,\n2003\n[13] J. C. Bezdek, Fuzzy Mathematics in Pattern Classification, Ph.D. thesis,\nCenter for Applied Mathematics, Cornell University, Ithica, N.Y., 1973.\n[14] Carl G. Looney, \"A Fuzzy Clustering and Fuzzy Merging Algorithm\"\nAvailable: http:\/\/citeseer.ist.psu.edu\/399498.html\n[15] G. Raju, A. Singh, Th. Shanta Kumar, Binu Thomas, \" Integration of\nFuzzy Logic in Data Mining: A comparative Case Study\", Proc. of\nInternational Conf. on Mathematics and Computer Science, Loyola\nCollege, Chennai, 128-136, 2008\n[16] Sullen Donnelly, \"How Bhutan Can Develop and Measure GNH\",\nAvailable: www.bhutanstudies.org.bt\/seminar\/ 0402-gnh\/GNH-papers-\n1st_18-20.pdf","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 25, 2009"}