CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;26 of 26 results for author: <span class="mathjax">Wan, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Wan%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Wan, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Wan%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Wan, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17158">arXiv:2411.17158</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17158">pdf</a>, <a href="https://arxiv.org/format/2411.17158">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Molecular Networks">q-bio.MN</span> </div> </div> <p class="title is-5 mathjax"> Synthetic frequency-controlled gene circuits unlock expanded cellular states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Rongrong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shengjie Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+J">Jiarui Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+L">Lei Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Ye Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yajia Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Bing Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Mei Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shuai Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+F">Fan Jin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17158v1-abstract-short" style="display: inline;"> Natural biological systems process environmental information through both amplitude and frequency-modulated signals, yet engineered biological circuits have largely relied on amplitude-based regulation alone. Despite the prevalence of frequency-encoded signals in natural systems, fundamental challenges in designing and implementing frequency-responsive gene circuits have limited their development&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17158v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17158v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17158v1-abstract-full" style="display: none;"> Natural biological systems process environmental information through both amplitude and frequency-modulated signals, yet engineered biological circuits have largely relied on amplitude-based regulation alone. Despite the prevalence of frequency-encoded signals in natural systems, fundamental challenges in designing and implementing frequency-responsive gene circuits have limited their development in synthetic biology. Here we present a Time-Resolved Gene Circuit (TRGC) architecture that enables frequency-to-amplitude signal conversion in engineered biological systems. Through systematic analysis, we establish a theoretical framework that guides the design of synthetic circuits capable of distinct frequency-dependent responses, implementing both high-pass and low-pass filtering behaviors. To enable rigorous characterization of these dynamic circuits, we developed a high-throughput automated platform that ensures stable and reproducible measurements of frequency-dependent r esponses across diverse conditions. Using this platform, we demonstrate that these frequency-modulated circuits can access cellular states unreachable through conventional amplitude modulation, significantly expanding the controllable gene expression space in multi-gene systems. Our results show that frequency modulation expands the range of achievable expression patterns when controlling multiple genes through a single input, demonstrating a new paradigm for engineering cellular behaviors. This work establishes frequency modulation as a powerful strategy for expanding the capabilities of engineered biological systems and enhancing cellular response to dynamic signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17158v1-abstract-full').style.display = 'none'; document.getElementById('2411.17158v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20078">arXiv:2409.20078</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20078">pdf</a>, <a href="https://arxiv.org/format/2409.20078">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantifying discriminability of evaluation metrics in link prediction for real networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuyan Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y">Yilin Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+X">Xinshan Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20078v1-abstract-short" style="display: inline;"> Link prediction is one of the most productive branches in network science, aiming to predict links that would have existed but have not yet been observed, or links that will appear during the evolution of the network. Over nearly two decades, the field of link prediction has amassed a substantial body of research, encompassing a plethora of algorithms and diverse applications. For any algorithm, o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20078v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20078v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20078v1-abstract-full" style="display: none;"> Link prediction is one of the most productive branches in network science, aiming to predict links that would have existed but have not yet been observed, or links that will appear during the evolution of the network. Over nearly two decades, the field of link prediction has amassed a substantial body of research, encompassing a plethora of algorithms and diverse applications. For any algorithm, one or more evaluation metrics are required to assess its performance. Because using different evaluation metrics can provide different assessments of the algorithm performance, how to select appropriate evaluation metrics is a fundamental issue in link prediction. To address this issue, we propose a novel measure that quantifiers the discriminability of any evaluation metric given a real network and an algorithm. Based on 131 real networks and 20 representative algorithms, we systematically compare the discriminabilities of eight evaluation metrics, and demonstrate that H-measure and Area Under the ROC Curve (AUC) exhibit the strongest discriminabilities, followed by Normalized Discounted Cumulative Gain (NDCG). Our finding is robust for networks in different domains and algorithms of different types. This study provides insights into the selection of evaluation metrics, which may further contribute to standardizing the evaluating process of link prediction algorithms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20078v1-abstract-full').style.display = 'none'; document.getElementById('2409.20078v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00287">arXiv:2408.00287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00287">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Construction of various time-dependent Hamiltonians on a single photonic chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ye%2C+R">Rui Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guangzhen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+X">Xiaotian Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Piyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+X">Xin Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shijie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jiayu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yuanlin Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chunhua Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+L">Luqi Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xianfeng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00287v1-abstract-short" style="display: inline;"> Integrated photonics provides an important platform for simulating physical models with high-performance chip-scale devices, where the lattice size and the time-dependence of a model are key ingredients for further enriching the functionality of a photonic chip. Here, we propose and demonstrate the construction of various time-dependent Hamiltonian models using a single microresonator on thin-film&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00287v1-abstract-full').style.display = 'inline'; document.getElementById('2408.00287v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00287v1-abstract-full" style="display: none;"> Integrated photonics provides an important platform for simulating physical models with high-performance chip-scale devices, where the lattice size and the time-dependence of a model are key ingredients for further enriching the functionality of a photonic chip. Here, we propose and demonstrate the construction of various time-dependent Hamiltonian models using a single microresonator on thin-film lithium niobate chip. Such an integrated microresonator holds high quality factor to 10^6, and supports the construction of the synthetic frequency lattice with effective lattice sites up to 152 under the electro-optic modulation. By further applying a bichromatic modulation composed of two radio-frequency signals oppositely detuned from the resonant frequency in the microresonator, we build different time-dependent Hamiltonians with the time-varying nearest-neighbor coupling strength in synthetic frequency lattice. We measure the temporal features from capturing the dynamic band structures of the lattice and demonstrate a variety of time-dependent synthetic lattice models by engineering the driven pattern of the modulation, highlighting great flexibility of the microresonator. Our work shows a photonic chip for simulating versatile time-dependent Hamiltonians, which pushes forward quantum simulations in integrated photonics with great experimental tunability and reconfigurability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00287v1-abstract-full').style.display = 'none'; document.getElementById('2408.00287v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07853">arXiv:2406.07853</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07853">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Targeted marine cloud brightening can dampen El Ni帽o </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+J+S">Jessica S. Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Fasullo%2C+J+T">John T. Fasullo</a>, <a href="/search/physics?searchtype=author&amp;query=Rosenbloom%2C+N">Nan Rosenbloom</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C+J">Chih-Chieh Jack Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ricke%2C+K">Katharine Ricke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07853v1-abstract-short" style="display: inline;"> Many record-breaking climate extremes arise from both greenhouse gas-induced warming and natural climate variability. Marine cloud brightening, a solar geoengineering strategy originally proposed to reduce long-term warming, could potentially mitigate extreme events by instead targeting seasonal phenomena, such as El Ni帽o-Southern Oscillation (ENSO). By exploiting the 2019-2020 Australian wildfire&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07853v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07853v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07853v1-abstract-full" style="display: none;"> Many record-breaking climate extremes arise from both greenhouse gas-induced warming and natural climate variability. Marine cloud brightening, a solar geoengineering strategy originally proposed to reduce long-term warming, could potentially mitigate extreme events by instead targeting seasonal phenomena, such as El Ni帽o-Southern Oscillation (ENSO). By exploiting the 2019-2020 Australian wildfire experiment-of-opportunity, we show that simulated marine cloud brightening in the southeast Pacific reproduces observed cloud changes and induces La Ni帽a-like responses. We then explore how cloud brightening timing and duration modifies the 1997-1998 and 2015-2016 El Ni帽o events. We find the earliest and longest interventions effectively restore neutral ENSO conditions and dampen El Ni帽o&#39;s impacts. Solar geoengineering that targets climate variability could complement tools such as ENSO forecasting and provide a pathway for climate risk mitigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07853v1-abstract-full').style.display = 'none'; document.getElementById('2406.07853v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19989">arXiv:2405.19989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.19989">pdf</a>, <a href="https://arxiv.org/ps/2405.19989">ps</a>, <a href="https://arxiv.org/format/2405.19989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Self-locked broadband Raman-electro-optic microcomb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Pi-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+F">Fang-Wen Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19989v1-abstract-short" style="display: inline;"> Optical frequency combs (OFCs), composed of equally spaced frequency tones, have spurred advancements in communications, spectroscopy, precision measurement and fundamental physics research. A prevalent method for generating OFCs involves the electro-optic (EO) effect, i.e., EO comb, renowned for its rapid tunability via precise microwave field control. Recent advances in integrated lithium niobat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19989v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19989v1-abstract-full" style="display: none;"> Optical frequency combs (OFCs), composed of equally spaced frequency tones, have spurred advancements in communications, spectroscopy, precision measurement and fundamental physics research. A prevalent method for generating OFCs involves the electro-optic (EO) effect, i.e., EO comb, renowned for its rapid tunability via precise microwave field control. Recent advances in integrated lithium niobate (LN) photonics have greatly enhanced the efficiency of EO effect, enabling the generation of broadband combs with reduced microwave power. However, parasitic nonlinear effects, such as Raman scattering and four-wave mixing, often emerge in high quality nonlinear devices, impeding the expansion of comb bandwidth and the minimization of frequency noise. Here, we tame these nonlinear effects and present a novel type of OFC, i.e., the self-locked Raman-electro-optic (REO) microcomb by leveraging the collaboration of EO, Kerr and Raman scattering processes. The spectral width of the REO microcomb benefits from the Raman gain and Kerr effect, encompassing nearly 1400 comb lines spanning over 300 nm with a fine repetition rate of 26.03 GHz, much larger than the pure EO combs. Remarkably, the system can maintain a self-locked low-noise state in the presence of multiple nonlinearities without the need for external active feedback. Our approach points to a direction for improving the performance of microcombs and paves the way for exploring new nonlinear physics, such as new laser locking techniques, through the collaboration of inevitable multiple nonlinear effects in integrated photonics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19989v1-abstract-full').style.display = 'none'; document.getElementById('2405.19989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05670">arXiv:2401.05670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05670">pdf</a>, <a href="https://arxiv.org/format/2401.05670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of zero and reversed magnetic shear on resistive wall modes in a limiter tokamak plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Sui Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haolong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+R">Rui Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05670v1-abstract-short" style="display: inline;"> Advanced tokamak scenarios often feature equilibriums with zero and reversed magnetic shear. To isolate and investigate their impacts on the resistive wall mode (RWM) instability analytically, we construct a series of cylindrical limiter equilibriums with reversed magnetic shear in the core and zero magnetic shear towards plasma edge, as a prototype of the configurations in advanced tokamak scenar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05670v1-abstract-full').style.display = 'inline'; document.getElementById('2401.05670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05670v1-abstract-full" style="display: none;"> Advanced tokamak scenarios often feature equilibriums with zero and reversed magnetic shear. To isolate and investigate their impacts on the resistive wall mode (RWM) instability analytically, we construct a series of cylindrical limiter equilibriums with reversed magnetic shear in the core and zero magnetic shear towards plasma edge, as a prototype of the configurations in advanced tokamak scenarios. Uniform plasma pressure is assumed, so that we can focus our analysis on the current-driven RWMs. Based on the reduced ideal MHD equations, analytical solutions for the $n=1$ resistive wall mode are obtained, which indicate that increasing the reversal of magnetic shear in the core region enhances the RWM instability, whereas the widened region of zero shear near edge leads to lower growth rate of RWM, except when the $q$ value with zero magnetic shear approaches rational values. On the other hand, enhanced positive shear at plasma edge is found to be stabilizing on RWM. NIMROD calculation results confirm these analytical findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05670v1-abstract-full').style.display = 'none'; document.getElementById('2401.05670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03673">arXiv:2401.03673</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03673">pdf</a>, <a href="https://arxiv.org/format/2401.03673">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Comparing discriminating abilities of evaluation metrics in link prediction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiao%2C+X">Xinshan Jiao</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuyan Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Qian Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+Y">Yilin Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+Y">Yan-Li Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+E">En Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Hao%2C+D">Dong Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tao Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03673v1-abstract-short" style="display: inline;"> Link prediction aims to predict the potential existence of links between two unconnected nodes within a network based on the known topological characteristics. Evaluation metrics are used to assess the effectiveness of algorithms in link prediction. The discriminating ability of these evaluation metrics is vitally important for accurately evaluating link prediction algorithms. In this study, we pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03673v1-abstract-full').style.display = 'inline'; document.getElementById('2401.03673v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03673v1-abstract-full" style="display: none;"> Link prediction aims to predict the potential existence of links between two unconnected nodes within a network based on the known topological characteristics. Evaluation metrics are used to assess the effectiveness of algorithms in link prediction. The discriminating ability of these evaluation metrics is vitally important for accurately evaluating link prediction algorithms. In this study, we propose an artificial network model, based on which one can adjust a single parameter to monotonically and continuously turn the prediction accuracy of the specifically designed link prediction algorithm. Building upon this foundation, we show a framework to depict the effectiveness of evaluating metrics by focusing on their discriminating ability. Specifically, a quantitative comparison in the abilities of correctly discerning varying prediction accuracies was conducted encompassing nine evaluation metrics: Precision, Recall, F1-Measure, Matthews Correlation Coefficient (MCC), Balanced Precision (BP), the Area Under the receiver operating characteristic Curve (AUC), the Area Under the Precision-Recall curve (AUPR), Normalized Discounted Cumulative Gain (NDCG), and the Area Under the magnified ROC (AUC-mROC). The results indicate that the discriminating abilities of the three metrics, AUC, AUPR, and NDCG, are significantly higher than those of other metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03673v1-abstract-full').style.display = 'none'; document.getElementById('2401.03673v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12756">arXiv:2310.12756</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12756">pdf</a>, <a href="https://arxiv.org/ps/2310.12756">ps</a>, <a href="https://arxiv.org/format/2310.12756">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Locally Resonant Metagrating by Elastic Impedance Modulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">Liyun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Sheng Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Assouar%2C+B">Badreddine Assouar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12756v1-abstract-short" style="display: inline;"> The optical and acoustic metagratings have addressed the limitations of low-efficiency wave manipulation and high-complexity fabrication of metamaterials and metasurfaces. In this research, we introduce the concept of elastic metagrating and present the theoretical and experimental demonstration of locally resonant elastic metagrating (LREM). Remarkably, the LREM, with dimensions two orders of mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12756v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12756v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12756v1-abstract-full" style="display: none;"> The optical and acoustic metagratings have addressed the limitations of low-efficiency wave manipulation and high-complexity fabrication of metamaterials and metasurfaces. In this research, we introduce the concept of elastic metagrating and present the theoretical and experimental demonstration of locally resonant elastic metagrating (LREM). Remarkably, the LREM, with dimensions two orders of magnitude smaller than the relevant wavelength, overcomes the size limitations of conventional metagratings and offers a unique design paradigm for highly efficient wave manipulation with an extremely compact structure in elastic wave systems. Based on a distinctive elastic impedance engineering with hybridization of intrinsic evanescent waves, the proposed LREM achieves wide-angle perfect absorption. This tackles a fundamental challenge faced by all elastic metastructures designed for wave manipulation, which consists in the unavoidable vibration modes in finite structures hindering their implementations in real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12756v1-abstract-full').style.display = 'none'; document.getElementById('2310.12756v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11434">arXiv:2305.11434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11434">pdf</a>, <a href="https://arxiv.org/ps/2305.11434">ps</a>, <a href="https://arxiv.org/format/2305.11434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> The Spectral Integral Method (SIM) for the Scattering from an Arbitrary Number of Circular PEC Cylinders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q+H">Qing Huo Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Siwei Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+C">Chunhui Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11434v1-abstract-short" style="display: inline;"> We present an accurate spectral integral method (SIM) for the analyses of scattering from multiple circular perfect electric conductor (PEC) cylinders. It solves the coupled surface integral equations by using the Fourier series and addition theorem to decouple the system. The SIM has exponential convergence so that the error decreases exponentially with the sample density on the surfaces, and req&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11434v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11434v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11434v1-abstract-full" style="display: none;"> We present an accurate spectral integral method (SIM) for the analyses of scattering from multiple circular perfect electric conductor (PEC) cylinders. It solves the coupled surface integral equations by using the Fourier series and addition theorem to decouple the system. The SIM has exponential convergence so that the error decreases exponentially with the sample density on the surfaces, and requires only about 2-3 points per wavelength (PPW) to reach engineering accuracy with less than 1% error. Numerical results demonstrate that the SIM is much more accurate and efficient than the method of moments (MoM), and thus can be potentially used as the exact radiation boundary condition in the finite element and spectral element methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11434v1-abstract-full').style.display = 'none'; document.getElementById('2305.11434v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02590">arXiv:2305.02590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02590">pdf</a>, <a href="https://arxiv.org/ps/2305.02590">ps</a>, <a href="https://arxiv.org/format/2305.02590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photorefraction-assisted self-emergence of dissipative Kerr solitons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+P">Pi-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zheng-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+D">De-Yong He</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Bo%2C+F">Fang Bo</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Junqiu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02590v1-abstract-short" style="display: inline;"> Generated in high-Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter-wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks and frequency synthesizers, octave-spanning soliton microcombs generated in dispersion optimized microresonator a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02590v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02590v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02590v1-abstract-full" style="display: none;"> Generated in high-Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter-wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks and frequency synthesizers, octave-spanning soliton microcombs generated in dispersion optimized microresonator are required, which allow self-referencing for full frequency stabilization. In addition, field-deployable applications require the generation of such soliton microcombs simple, deterministic, and reproducible. Here, we demonstrate a novel scheme to generate self-emerging solitons in integrated lithium niobate microresonators. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f-3f self-referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, we observe a spontaneous yet deterministic single-soliton formation. The soliton is immune to external perturbation and can operate continuously over 13 hours without active feedback control. Finally, via integration with a pre-programed DFB laser, we demonstrate turnkey soliton generation. With further improvement of microresonator Q and hybrid integration with chip-scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics and optical telecommunications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02590v1-abstract-full').style.display = 'none'; document.getElementById('2305.02590v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01474">arXiv:2304.01474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01474">pdf</a>, <a href="https://arxiv.org/ps/2304.01474">ps</a>, <a href="https://arxiv.org/format/2304.01474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Atom-referenced on-chip soliton microcomb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Hua%2C+T">Tian-Peng Hua</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei-Qiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zheng-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhu-Bo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z">Zhen Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y+R">Y. R. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shui-Ming Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Little%2C+B+E">B. E. Little</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+S+T">S. T. Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Wei Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Y">Yun-Feng Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wen-Fu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01474v2-abstract-short" style="display: inline;"> For the applications of the frequency comb in microresonators, it is essential to obtain a fully frequency-stabilized microcomb laser source. Here, we demonstrate an atom-referenced stabilized soliton microcomb generation system based on the integrated microring resonator. The pump light around $1560.48\,\mathrm{nm}$ locked to an ultra-low-expansion (ULE) cavity, is frequency-doubled and reference&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01474v2-abstract-full').style.display = 'inline'; document.getElementById('2304.01474v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01474v2-abstract-full" style="display: none;"> For the applications of the frequency comb in microresonators, it is essential to obtain a fully frequency-stabilized microcomb laser source. Here, we demonstrate an atom-referenced stabilized soliton microcomb generation system based on the integrated microring resonator. The pump light around $1560.48\,\mathrm{nm}$ locked to an ultra-low-expansion (ULE) cavity, is frequency-doubled and referenced to the atomic transition of $^{87}\mathrm{Rb}$. The repetition rate of the soliton microcomb is injection-locked to an atomic-clock-stabilized radio frequency (RF) source, leading to mHz stabilization at $1$ seconds. As a result, all comb lines have been frequency-stabilized based on the atomic reference and could be determined with very high precision reaching $\sim18\,\mathrm{Hz}$ at 1 second, corresponding to the frequency stability of $9.5\times10^{-14}$. Our approach provides an integrated and fully stabilized microcomb experiment scheme with no requirement of $f-2f$ technique, which could be easily implemented and generalized to various photonic platforms, thus paving the way towards the portable and ultraprecise optical sources for high precision spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01474v2-abstract-full').style.display = 'none'; document.getElementById('2304.01474v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.10448">arXiv:2303.10448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.10448">pdf</a>, <a href="https://arxiv.org/ps/2303.10448">ps</a>, <a href="https://arxiv.org/format/2303.10448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunneling magnetoresistance in Mn$_2$Au-based pure antiferromagnetic tunnel junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+X">Xingtao Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hui-Min Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shi-Zhuo Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.10448v1-abstract-short" style="display: inline;"> Antiferromagnetic (AF) spintronics is merit on ultra-high operator speed and stability in the presence of magnetic field. To fully use the merit, the device should be pure rather than hybrid with ferromagnet or ferrimagnet. For the magnetism in the antiferromagnet is canceled by that of different sublattices, breaking the symmetry in the material can revive the native magnetism, which can be detec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10448v1-abstract-full').style.display = 'inline'; document.getElementById('2303.10448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.10448v1-abstract-full" style="display: none;"> Antiferromagnetic (AF) spintronics is merit on ultra-high operator speed and stability in the presence of magnetic field. To fully use the merit, the device should be pure rather than hybrid with ferromagnet or ferrimagnet. For the magnetism in the antiferromagnet is canceled by that of different sublattices, breaking the symmetry in the material can revive the native magnetism, which can be detected by the magnetoresistance (MR) effect. Achieving noticeable MR effect in the pure AF device is diffcult but essential for the AF spintronic applications. Here, we study the tunnel magnetoresistance(TMR) effect in the Nb/Mn$_2$Au/CdO/Mn$_2$Au/Nb pure AF magnetic tunnel junctions (AF-MTJs) based on a first-principle scattering theory. Giant TMRs with order of 1000% are predicted in some symmetric junctions, which is originated from the interfacial resonance tunneling effect related with the k dependent complex band structures of CdO and Mn$_2$Au in companion with the enhanced spin polarization of the interfacial magnetic atoms. The effect of voltage bias and interfacial disorder such as Oxygen vacancy, Manganese vacancy, and Manganese-Cadmium exchanges at Mn2Au/CdO interfaces are studied also. Our studies suggest Nb/Mn$_2$Au/CdO/Mn$_2$Au/Nb AFMTJs promising material for AF spintronic application, and rocksalt CdO a potential symmetry filtering material for spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.10448v1-abstract-full').style.display = 'none'; document.getElementById('2303.10448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01525">arXiv:2302.01525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01525">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0135138">10.1063/5.0135138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the Interlayer Microstructure and Residual Stress of Buffer-Free Direct Bonding GaN/Si Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yan Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+S">Shi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shun Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+B">Bo Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+Y">Yuxia Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Mei%2C+R">Rui Mei</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Heng Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+P">Pingheng Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Shigekawa%2C+N">Naoteru Shigekawa</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+J">Jianbo Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Kuball%2C+M">Martin Kuball</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01525v1-abstract-short" style="display: inline;"> The direct integration of GaN with Si can boost great potential for low-cost, large-scale, and high-power device applications. However, it is still challengeable to directly grow GaN on Si without using thick strain relief buffer layers due to their large lattice and thermal-expansion-coefficient mismatches. In this work, a GaN/Si heterointerface without any buffer layer is successfully fabricated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01525v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01525v1-abstract-full" style="display: none;"> The direct integration of GaN with Si can boost great potential for low-cost, large-scale, and high-power device applications. However, it is still challengeable to directly grow GaN on Si without using thick strain relief buffer layers due to their large lattice and thermal-expansion-coefficient mismatches. In this work, a GaN/Si heterointerface without any buffer layer is successfully fabricated at room temperature via surface activated bonding (SAB). The residual stress states and interfacial microstructures of GaN/Si heterostructures were systematically investigated through micro-Raman spectroscopy and transmission electron microscopy. Compared to the large compressive stress that existed in GaN layers grown-on-Si by MOCVD, a significantly relaxed and uniform small tensile stress was observed in GaN layers bonded-to-Si by SAB; this is mainly ascribed to the amorphous layer formed at the bonding interface. In addition, the interfacial microstructure and stress states of bonded GaN/Si heterointerfaces was found can be significantly tuned by appropriate thermal annealing. This work moves an important step forward directly integrating GaN to the present Si CMOS technology with high quality thin interfaces, and brings great promises for wafer-scale low-cost fabrication of GaN electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01525v1-abstract-full').style.display = 'none'; document.getElementById('2302.01525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10167">arXiv:2301.10167</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.10167">pdf</a>, <a href="https://arxiv.org/format/2301.10167">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> EEG Opto-processor: epileptic seizure detection using diffractive photonic computing units </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+T">Tao Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M">Maoqi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Sen Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+K">Kaifeng Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Haiou Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X">Xun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X">Xing Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Q">Qionghai Dai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10167v1-abstract-short" style="display: inline;"> Electroencephalography (EEG) analysis extracts critical information from brain signals, which has provided fundamental support for various applications, including brain-disease diagnosis and brain-computer interface. However, the real-time processing of large-scale EEG signals at high energy efficiency has placed great challenges for electronic processors on edge computing devices. Here, we propos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10167v1-abstract-full').style.display = 'inline'; document.getElementById('2301.10167v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10167v1-abstract-full" style="display: none;"> Electroencephalography (EEG) analysis extracts critical information from brain signals, which has provided fundamental support for various applications, including brain-disease diagnosis and brain-computer interface. However, the real-time processing of large-scale EEG signals at high energy efficiency has placed great challenges for electronic processors on edge computing devices. Here, we propose the EEG opto-processor based on diffractive photonic computing units (DPUs) to effectively process the extracranial and intracranial EEG signals and perform epileptic seizure detection. The signals of EEG channels within a second-time window are optically encoded as inputs to the constructed diffractive neural networks for classification, which monitors the brain state to determine whether it&#39;s the symptom of an epileptic seizure or not. We developed both the free-space and integrated DPUs as edge computing systems and demonstrated their applications for real-time epileptic seizure detection with the benchmark datasets, i.e., the CHB-MIT extracranial EEG dataset and Epilepsy-iEEG-Multicenter intracranial EEG dataset, at high computing performance. Along with the channel selection mechanism, both the numerical evaluations and experimental results validated the sufficient high classification accuracies of the proposed opto-processors for supervising the clinical diagnosis. Our work opens up a new research direction of utilizing photonic computing techniques for processing large-scale EEG signals in promoting its broader applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10167v1-abstract-full').style.display = 'none'; document.getElementById('2301.10167v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12706">arXiv:2209.12706</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.12706">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Phononic Skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">Liyun Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Sheng Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+Y">Yi Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yifan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Assouar%2C+B">Badreddine Assouar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12706v1-abstract-short" style="display: inline;"> Skyrmions with topologically stable configurations have shown a promising route toward magnetic and photonic materials for information processing due to their defect-immune and low-driven energy. However, the practical application of magnetic skyrmions is severely hindered by their harsh cryogenic environment and complex carriers. In addition, the narrowband nature of magnetic and photonic skyrmio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12706v1-abstract-full').style.display = 'inline'; document.getElementById('2209.12706v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12706v1-abstract-full" style="display: none;"> Skyrmions with topologically stable configurations have shown a promising route toward magnetic and photonic materials for information processing due to their defect-immune and low-driven energy. However, the practical application of magnetic skyrmions is severely hindered by their harsh cryogenic environment and complex carriers. In addition, the narrowband nature of magnetic and photonic skyrmions leads to lower data rate transmissions, restricting the development of high-speed information processing technologies. Here, we introduce and demonstrate the concept of phononic skyrmion as new topological structures to break the above barriers. The phononic skyrmion can be produced in any solid structure at room temperature, including chip-scale structures, with high robustness and ultra-bandwidth, which could pave a new path for high-speed and topological information processing technologies. We experimentally demonstrate the existence of phononic skyrmion formed by breaking the rotational symmetry of the three-dimensional hybrid spin of elastic waves. The frequency-independent spin configuration leads to the remarkable ultra-broadband and tunable feature of phononic skyrmions. We further experimentally show the excellent robustness of the flexibly movable phononic skyrmion lattices against local defects of disorder, sharp corners, and even rectangular holes. Our research also opens a vibrant horizon towards an unprecedented way for elastic wave manipulation and structuration by spin configuration, and offers a promising lever for alternative phononic technologies, including quantum information, biomedical testing, and wave engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12706v1-abstract-full').style.display = 'none'; document.getElementById('2209.12706v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04804">arXiv:2205.04804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04804">pdf</a>, <a href="https://arxiv.org/format/2205.04804">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L241112">10.1103/PhysRevB.106.L241112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic skin effects in non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haoshu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shaolong Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04804v3-abstract-short" style="display: inline;"> We study the time evolution processes of non-Hermitian systems under the open boundary condition and confirm that the dynamical skin effect exists in non-Hermitian systems analytically, and unveil the mechanism of its formation, which is caused by both the non-Hermitian skin effect and the Hermitian wave packet spreading. Furthermore, we find that in contrast to the uniform speed motion in Hermiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04804v3-abstract-full').style.display = 'inline'; document.getElementById('2205.04804v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04804v3-abstract-full" style="display: none;"> We study the time evolution processes of non-Hermitian systems under the open boundary condition and confirm that the dynamical skin effect exists in non-Hermitian systems analytically, and unveil the mechanism of its formation, which is caused by both the non-Hermitian skin effect and the Hermitian wave packet spreading. Furthermore, we find that in contrast to the uniform speed motion in Hermitian situations, the Gaussian wave packet can be accelerated and amplified during its time evolution in non-Hermitian systems. This additional motion is found to be responsible for the dynamic skin effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04804v3-abstract-full').style.display = 'none'; document.getElementById('2205.04804v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 9 figures, including Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, L241112 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.07978">arXiv:2204.07978</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.07978">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Quasi-static magnetic compression of field-reversed configuration plasma: Amended scalings and limits from two-dimensional MHD equilibrium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bala%2C+A+A">Abba Alhaji Bala</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+P">Ping Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haolong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yonghua Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jiaxing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Sui Wan</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Ying He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Da Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+N">Nengchao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Rao%2C+B">Bo Rao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhijiang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.07978v1-abstract-short" style="display: inline;"> In this work, several key scaling laws of the quasi-static magnetic compression of field reversed configuration (FRC) plasma [Spencer, Tuszewski, and Linford, 1983] are amended from a series of 2D FRC MHD equilibriums numerically obtained using the Grad-Shafranov equation solver NIMEQ. Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall, the empirical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07978v1-abstract-full').style.display = 'inline'; document.getElementById('2204.07978v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.07978v1-abstract-full" style="display: none;"> In this work, several key scaling laws of the quasi-static magnetic compression of field reversed configuration (FRC) plasma [Spencer, Tuszewski, and Linford, 1983] are amended from a series of 2D FRC MHD equilibriums numerically obtained using the Grad-Shafranov equation solver NIMEQ. Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall, the empirically stable limits for the compression ratio, the fusion gain, and the neutron yield are evaluated, which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.07978v1-abstract-full').style.display = 'none'; document.getElementById('2204.07978v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01233">arXiv:2111.01233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01233">pdf</a>, <a href="https://arxiv.org/format/2111.01233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jcp.2022.111357">10.1016/j.jcp.2022.111357 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Conservative Integrators for Vortex Blob Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gormezano%2C+C">Cem Gormezano</a>, <a href="/search/physics?searchtype=author&amp;query=Nave%2C+J">Jean-Christophe Nave</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+A+T+S">Andy T. S. Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01233v1-abstract-short" style="display: inline;"> Conservative symmetric second-order one-step integrators are derived using the Discrete Multiplier Method for a family of vortex-blob models approximating the incompressible Euler&#39;s equations on the plane. Conservative properties and second order convergence are proved. A rational function approximation was used to approximate the exponential integral that appears in the Hamiltonian. Numerical exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01233v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01233v1-abstract-full" style="display: none;"> Conservative symmetric second-order one-step integrators are derived using the Discrete Multiplier Method for a family of vortex-blob models approximating the incompressible Euler&#39;s equations on the plane. Conservative properties and second order convergence are proved. A rational function approximation was used to approximate the exponential integral that appears in the Hamiltonian. Numerical experiments are shown to verify the conservative property of these integrators, their second-order accuracy, and as well as the resulting spatial and temporal accuracy of the vortex blob method. Moreover, the derived implicit conservative integrators are shown to be better at preserving conserved quantities than standard higher-order explicit integrators on comparable computation times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01233v1-abstract-full').style.display = 'none'; document.getElementById('2111.01233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 65L05; 65L12; 65P10; 37M05; 37M15; 70F10; 76M23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.03045">arXiv:2109.03045</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.03045">pdf</a>, <a href="https://arxiv.org/format/2109.03045">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.045122">10.1103/PhysRevB.105.045122 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exact formulas of the end-to-end Green&#39;s functions in non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Haoshu Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shaolong Wan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.03045v3-abstract-short" style="display: inline;"> Green&#39;s function in non-Hermitian systems has recently been revealed to be capable of directional amplification in some cases. The exact formulas for end-to-end Green&#39;s functions are significantly important for studies of both non-Hermitian systems and their applications. In this work, based on the Widom&#39;s formula, we derive exact formulas for the end-to-end Green&#39;s functions of single-band system&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03045v3-abstract-full').style.display = 'inline'; document.getElementById('2109.03045v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.03045v3-abstract-full" style="display: none;"> Green&#39;s function in non-Hermitian systems has recently been revealed to be capable of directional amplification in some cases. The exact formulas for end-to-end Green&#39;s functions are significantly important for studies of both non-Hermitian systems and their applications. In this work, based on the Widom&#39;s formula, we derive exact formulas for the end-to-end Green&#39;s functions of single-band systems which depend on the roots of a simple algebraic equation. These exact formulas allow direct and accurate comparisons between theoretical results and experimentally measured quantities. In addition, we verify the prior established integral formula in the bulk region to agree with the result in our framework. We also find that the speed at which the Green&#39;s functions in the bulk region approach the prior established integral formula is not slower than an exponential decay as the system size increases. The correspondence between the signal amplification and the non-Hermitian skin effect is confirmed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.03045v3-abstract-full').style.display = 'none'; document.getElementById('2109.03045v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 105, 045122 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02843">arXiv:2103.02843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02843">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Engineering, Finance, and Science">cs.CE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsfs.2021.0018">10.1098/rsfs.2021.0018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pandemic Drugs at Pandemic Speed: Infrastructure for Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhati%2C+A+P">Agastya P. Bhati</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shunzhou Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Alf%C3%A8%2C+D">Dario Alf猫</a>, <a href="/search/physics?searchtype=author&amp;query=Clyde%2C+A+R">Austin R. Clyde</a>, <a href="/search/physics?searchtype=author&amp;query=Bode%2C+M">Mathis Bode</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+L">Li Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Titov%2C+M">Mikhail Titov</a>, <a href="/search/physics?searchtype=author&amp;query=Merzky%2C+A">Andre Merzky</a>, <a href="/search/physics?searchtype=author&amp;query=Turilli%2C+M">Matteo Turilli</a>, <a href="/search/physics?searchtype=author&amp;query=Jha%2C+S">Shantenu Jha</a>, <a href="/search/physics?searchtype=author&amp;query=Highfield%2C+R+R">Roger R. Highfield</a>, <a href="/search/physics?searchtype=author&amp;query=Rocchia%2C+W">Walter Rocchia</a>, <a href="/search/physics?searchtype=author&amp;query=Scafuri%2C+N">Nicola Scafuri</a>, <a href="/search/physics?searchtype=author&amp;query=Succi%2C+S">Sauro Succi</a>, <a href="/search/physics?searchtype=author&amp;query=Kranzlm%C3%BCller%2C+D">Dieter Kranzlm眉ller</a>, <a href="/search/physics?searchtype=author&amp;query=Mathias%2C+G">Gerald Mathias</a>, <a href="/search/physics?searchtype=author&amp;query=Wifling%2C+D">David Wifling</a>, <a href="/search/physics?searchtype=author&amp;query=Donon%2C+Y">Yann Donon</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Meglio%2C+A">Alberto Di Meglio</a>, <a href="/search/physics?searchtype=author&amp;query=Vallecorsa%2C+S">Sofia Vallecorsa</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Heng Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Trifan%2C+A">Anda Trifan</a>, <a href="/search/physics?searchtype=author&amp;query=Ramanathan%2C+A">Arvind Ramanathan</a>, <a href="/search/physics?searchtype=author&amp;query=Brettin%2C+T">Tom Brettin</a>, <a href="/search/physics?searchtype=author&amp;query=Partin%2C+A">Alexander Partin</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02843v2-abstract-short" style="display: inline;"> The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02843v2-abstract-full').style.display = 'inline'; document.getElementById('2103.02843v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02843v2-abstract-full" style="display: none;"> The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods, in this case developed for linear accelerators, and physics-based methods. The two in silico methods, each have their own advantages and limitations which, interestingly, complement each other. Here, we present an innovative infrastructural development that combines both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02843v2-abstract-full').style.display = 'none'; document.getElementById('2103.02843v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Interface Focus. 2021. 11 (6): 20210018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10656">arXiv:2011.10656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10656">pdf</a>, <a href="https://arxiv.org/format/2011.10656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSEN.2020.3049015">10.1109/JSEN.2020.3049015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental demonstration of multimode microresonator sensing by machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lu%2C+J">Jin Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Le%2C+Z">Zichun Le</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+Y">Yali Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yingtian Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+W">Weisheng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+a+H">and Hongliang Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10656v1-abstract-short" style="display: inline;"> A multimode microcavity sensor based on a self-interference microring resonator is demonstrated experimentally. The proposed multimode sensing method is implemented by recording wideband transmission spectra that consist of multiple resonant modes. It is different from the previous dissipative sensing scheme, which aims at measuring the transmission depth changes of a single resonant mode in a mic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10656v1-abstract-full').style.display = 'inline'; document.getElementById('2011.10656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10656v1-abstract-full" style="display: none;"> A multimode microcavity sensor based on a self-interference microring resonator is demonstrated experimentally. The proposed multimode sensing method is implemented by recording wideband transmission spectra that consist of multiple resonant modes. It is different from the previous dissipative sensing scheme, which aims at measuring the transmission depth changes of a single resonant mode in a microcavity. Here, by combining the dissipative sensing mechanism and the machine learning algorithm, the multimode sensing information extracted from a broadband spectrum can be efficiently fused to estimate the target parameter. The multimode sensing method is immune to laser frequency noises and robust against system imperfection, thus our work presents a great step towards practical applications of microcavity sensors outside the research laboratory. The voltage applied across the microheater on the chip was adjusted to bring its influence on transmittance through the thermo-optic effects. As a proof-of-principle experiment, the voltage was detected by the multimode sensing approach. The experimental results demonstrate that the limit of detection of the multimode sensing by the general regression neural network is reduced to 6.7% of that of single-mode sensing within a large measuring range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10656v1-abstract-full').style.display = 'none'; document.getElementById('2011.10656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Sensors Journal 21, 9046 - 9053 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.07104">arXiv:2006.07104</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.07104">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2020.0082">10.1098/rsta.2020.0082 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncertainty Quantification in Classical Molecular Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shunzhou Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Sinclair%2C+R+C">Robert C. Sinclair</a>, <a href="/search/physics?searchtype=author&amp;query=Coveney%2C+P+V">Peter V. Coveney</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.07104v4-abstract-short" style="display: inline;"> Molecular dynamics simulation is now a widespread approach for understanding complex systems on the atomistic scale. It finds applications from physics and chemistry to engineering, life and medical science. In the last decade, the approach has begun to advance from being a computer-based means of rationalising experimental observations, to producing apparently credible predictions for a number of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07104v4-abstract-full').style.display = 'inline'; document.getElementById('2006.07104v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.07104v4-abstract-full" style="display: none;"> Molecular dynamics simulation is now a widespread approach for understanding complex systems on the atomistic scale. It finds applications from physics and chemistry to engineering, life and medical science. In the last decade, the approach has begun to advance from being a computer-based means of rationalising experimental observations, to producing apparently credible predictions for a number of real-world applications within industrial sectors such as advanced materials and drug discovery. However, key aspects concerning the reproducibility of the method have not kept pace with the speed of its uptake in the scientific community. Here, we present a discussion of uncertainty quantification for molecular dynamics simulation designed to endow the method with better error estimates that will enable the method to be used to report actionable results. The approach adopted is a standard one in the field of uncertainty quantification, namely using ensemble methods, in which a sufficiently large number of replicas are run concurrently, from which reliable statistics can be extracted. Indeed, because molecular dynamics is intrinsically chaotic, the need to use ensemble methods is fundamental and holds regardless of the duration of the simulations performed. We discuss the approach and illustrate it in a range of applications from materials science to ligand-protein binding free energy estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.07104v4-abstract-full').style.display = 'none'; document.getElementById('2006.07104v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00824">arXiv:2004.00824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.00824">pdf</a>, <a href="https://arxiv.org/ps/2004.00824">ps</a>, <a href="https://arxiv.org/format/2004.00824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Frequency stabilization and tuning of breathing soliton in SiN microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zheng-Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+J">Jin-Lan Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00824v1-abstract-short" style="display: inline;"> Dissipative Kerr soliton offers broadband coherent and low-noise frequency comb and stable temporal pulse train, having shown great potential applications in spectroscopy, communications, and metrology. Breathing soliton is a particular dissipative Kerr soliton that the pulse duration and peak intensity show periodic oscillation. However, the noise and stability of the breathing soliton is still r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00824v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00824v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00824v1-abstract-full" style="display: none;"> Dissipative Kerr soliton offers broadband coherent and low-noise frequency comb and stable temporal pulse train, having shown great potential applications in spectroscopy, communications, and metrology. Breathing soliton is a particular dissipative Kerr soliton that the pulse duration and peak intensity show periodic oscillation. However, the noise and stability of the breathing soliton is still remaining unexplored, which would be the main obstacle for future applications. Here, we have investigated the breathing dissipative Kerr solitons in the silicon nitride (SiN) microrings, while the breather period shows uncertainties around MHz in both simulation and experiments. By applying a modulated pump, the breathing frequency can be injectively locked to the modulation and tuned over tens of MHz with frequency noise significantly suppressed. Our demonstration offers an alternative knob for the controlling of soliton dynamics in microresonator and paves a new avenue towards practical applications of breathing soliton. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00824v1-abstract-full').style.display = 'none'; document.getElementById('2004.00824v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06490">arXiv:1809.06490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.06490">pdf</a>, <a href="https://arxiv.org/ps/1809.06490">ps</a>, <a href="https://arxiv.org/format/1809.06490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Repetition rate tuning of soliton in microrod resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Niu%2C+R">Rui Niu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Shuai Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+S">Shu-Man Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+T">Tai-Gao Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hao-Jing Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wei-Qiang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhi-Zhou Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wen-Fu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+G">Guang-Can Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+C">Chang-Ling Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+C">Chun-Hua Dong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06490v1-abstract-short" style="display: inline;"> The coherent temporal soliton in optical microresonators has attracted great attention recently. Here, we demonstrate the dissipative Kerr soliton generation in a microrod resonator, by utilizing an auxiliary-laser-assisted thermal response control. By external stress tuning, the repetition rate of the soliton has been controlled over a large range of 30 MHz. Our platform promises precise tuning a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06490v1-abstract-full').style.display = 'inline'; document.getElementById('1809.06490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06490v1-abstract-full" style="display: none;"> The coherent temporal soliton in optical microresonators has attracted great attention recently. Here, we demonstrate the dissipative Kerr soliton generation in a microrod resonator, by utilizing an auxiliary-laser-assisted thermal response control. By external stress tuning, the repetition rate of the soliton has been controlled over a large range of 30 MHz. Our platform promises precise tuning and locking of the repetition frequency of coherent mode-locked comb in the microresonator, and holds great potential for applications in spectroscopy and precision measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06490v1-abstract-full').style.display = 'none'; document.getElementById('1809.06490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 Pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.00934">arXiv:1707.00934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.00934">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nature23675">10.1038/nature23675 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-to-satellite quantum teleportation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ren%2C+J">Ji-Gang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Ping Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yong%2C+H">Hai-Lin Yong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Liang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liao%2C+S">Sheng-Kai Liao</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+J">Juan Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei-Yue Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+W">Wen-Qi Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+M">Meng Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Li Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+K">Kui-Xing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xuan Han</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Y">Yong-Qiang Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Ji Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+H">Hai-Yan Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+S">Song Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+L">Lei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+D">Ding-Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+Y">Yao-Wu Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zhi-Ping He</a>, <a href="/search/physics?searchtype=author&amp;query=Shang%2C+P">Peng Shang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+C">Cheng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+R">Ru-Hua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+K">Kai Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Z">Zhen-Cai Zhu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.00934v1-abstract-short" style="display: inline;"> An arbitrary unknown quantum state cannot be precisely measured or perfectly replicated. However, quantum teleportation allows faithful transfer of unknown quantum states from one object to another over long distance, without physical travelling of the object itself. Long-distance teleportation has been recognized as a fundamental element in protocols such as large-scale quantum networks and distr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00934v1-abstract-full').style.display = 'inline'; document.getElementById('1707.00934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.00934v1-abstract-full" style="display: none;"> An arbitrary unknown quantum state cannot be precisely measured or perfectly replicated. However, quantum teleportation allows faithful transfer of unknown quantum states from one object to another over long distance, without physical travelling of the object itself. Long-distance teleportation has been recognized as a fundamental element in protocols such as large-scale quantum networks and distributed quantum computation. However, the previous teleportation experiments between distant locations were limited to a distance on the order of 100 kilometers, due to photon loss in optical fibres or terrestrial free-space channels. An outstanding open challenge for a global-scale &#34;quantum internet&#34; is to significantly extend the range for teleportation. A promising solution to this problem is exploiting satellite platform and space-based link, which can conveniently connect two remote points on the Earth with greatly reduced channel loss because most of the photons&#39; propagation path is in empty space. Here, we report the first quantum teleportation of independent single-photon qubits from a ground observatory to a low Earth orbit satellite - through an up-link channel - with a distance up to 1400 km. To optimize the link efficiency and overcome the atmospheric turbulence in the up-link, a series of techniques are developed, including a compact ultra-bright source of multi-photon entanglement, narrow beam divergence, high-bandwidth and high-accuracy acquiring, pointing, and tracking (APT). We demonstrate successful quantum teleportation for six input states in mutually unbiased bases with an average fidelity of 0.80+/-0.01, well above the classical limit. This work establishes the first ground-to-satellite up-link for faithful and ultra-long-distance quantum teleportation, an essential step toward global-scale quantum internet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.00934v1-abstract-full').style.display = 'none'; document.getElementById('1707.00934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/plasm-ph/9507002">arXiv:plasm-ph/9507002</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/plasm-ph/9507002">pdf</a>, <a href="https://arxiv.org/ps/plasm-ph/9507002">ps</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/0022-3115(94)00482-X">10.1016/0022-3115(94)00482-X <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detailed Radiative Transport Modeling of a Radiative Divertor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wan%2C+A+S">A. S. Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Dalhed%2C+H+E">H. E. Dalhed</a>, <a href="/search/physics?searchtype=author&amp;query=Scott%2C+H+A">H. A. Scott</a>, <a href="/search/physics?searchtype=author&amp;query=Post%2C+D+E">D. E. Post</a>, <a href="/search/physics?searchtype=author&amp;query=Rognlien%2C+T+D">T. D. Rognlien</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="plasm-ph/9507002v1-abstract-short" style="display: inline;"> An effective radiative divertor maximizes the utilization of atomic processes to spread out the energy deposition to the divertor chamber walls and to reduce the peak heat flux. Because the mixture of neutral atoms and ions in the divertor can be optically thick to a portion of radiated power, it is necessary to accurately model the magnitude and distribution of line radiation in this complex re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('plasm-ph/9507002v1-abstract-full').style.display = 'inline'; document.getElementById('plasm-ph/9507002v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="plasm-ph/9507002v1-abstract-full" style="display: none;"> An effective radiative divertor maximizes the utilization of atomic processes to spread out the energy deposition to the divertor chamber walls and to reduce the peak heat flux. Because the mixture of neutral atoms and ions in the divertor can be optically thick to a portion of radiated power, it is necessary to accurately model the magnitude and distribution of line radiation in this complex region. To assess their importance we calculate the effects of radiation transport using CRETIN, a multi-dimensional, non-local thermodynamic equilibrium simulation code that includes the atomic kinetics and radiative transport processes necessary to model the complex environment of a radiative divertor. We also include neutral transport to model radiation from recycling neutral atoms. This paper presents a case study of a high-recycling radiative divertor with a typical large neutral pressure at the divertor plate to estimate the impact of H line radiation on the overall power balance in the divertor region with consideration for line opacities and atomic kinetics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('plasm-ph/9507002v1-abstract-full').style.display = 'none'; document.getElementById('plasm-ph/9507002v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 1995; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 1995. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preprint for the 11th International Conference on Plasma Surface Interactions in Mito, Japan (1994), uuencoded and gzipped postscript with 3 figures, 15 pages</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10