CINXE.COM

Search results for: eddy current

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: eddy current</title> <meta name="description" content="Search results for: eddy current"> <meta name="keywords" content="eddy current"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="eddy current" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="eddy current"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9073</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: eddy current</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9073</span> Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Shi">Zhiguo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Ning%20Loong"> Cheng Ning Loong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazeng%20Shan"> Jiazeng Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Weichao%20Wu">Weichao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20damping" title=" eddy current damping"> eddy current damping</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/119732/equivalent-circuit-model-for-the-eddy-current-damping-with-frequency-dependence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9072</span> Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bennoud">S. Bennoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title="eddy current">eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20testing" title=" non destructive testing"> non destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/7187/modeling-and-simulation-for-3d-eddy-current-testing-in-conducting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9071</span> Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Benyahia">A. Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amir"> M. Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fodil"> M. Fodil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DT" title="DT">DT</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20eddy%20current" title=" pulsed eddy current"> pulsed eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title=" continuous wavelet transform"> continuous wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20hat%20wavelet%20mother" title=" Mexican hat wavelet mother"> Mexican hat wavelet mother</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density." title=" power spectral density."> power spectral density.</a> </p> <a href="https://publications.waset.org/abstracts/88425/enhancement-of-pulsed-eddy-current-response-based-on-power-spectral-density-after-continuous-wavelet-transform-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9070</span> Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Schmidt">Jan Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20K%C3%B6hring"> Pierre Köhring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title="analytical model">analytical model</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title=" eddy current"> eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=losses" title=" losses"> losses</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20network" title=" lattice network"> lattice network</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a> </p> <a href="https://publications.waset.org/abstracts/38170/lattice-network-model-for-calculation-of-eddy-current-losses-in-a-solid-permanent-magnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9069</span> Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cao%20Bin">Cao Bin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yi"> Yuan Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Qiang"> Wang Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Amor%20Abdelkader"> Amor Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Kamali"> Ali Reza Kamali</a>, <a href="https://publications.waset.org/abstracts/search?q=Diogo%20Montalv%C3%A3o"> Diogo Montalvão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20separation" title="eddy current separation">eddy current separation</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size" title=" particle size"> particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a> </p> <a href="https://publications.waset.org/abstracts/164756/optimization-principles-of-eddy-current-separator-for-mixtures-with-different-particle-sizes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9068</span> Study on the Retaining Sleeve Structure for the Reduction of Eddy Current in SPMSM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Woo%20Jun">Hyun-Woo Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Seok%20Hong"> Hyun Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang"> Dong-Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In high-speed SPMSM design, the rotor-retaining sleeve is inserted into rotor to prevent permanent magnet’s damage. It is quite efficient way considering manufacturability, but the sleeve becomes major source of ohm loss in high-speed operation. In this paper, the high-speed motor for turbo-blower at the rating of 100kW was introduced. To improve its efficiency, the retaining sleeve’s optimal design was needed. Within the range of satisfies the mechanical safety, sleeve’s some design variables have been changed. The effect of changing design variables of the sleeve was studied. This paper presents the optimized sleeve’s advantages in electrical efficiency from the result of electromagnetic FEA (finite element analysis) software. Finally, it suggests the optimal sleeve design to reduce eddy current loss, which is related to motor shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPMSM" title="SPMSM">SPMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sleeve" title=" sleeve"> sleeve</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title=" eddy current"> eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency" title=" high efficiency"> high efficiency</a> </p> <a href="https://publications.waset.org/abstracts/41355/study-on-the-retaining-sleeve-structure-for-the-reduction-of-eddy-current-in-spmsm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9067</span> Effect of Eddy Irrigant Activation on Cleanliness of the Root Canal Wall during Pulpectomy of Primary Teeth </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Sharaf">Rasha Sharaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehal%20Sharaf"> Nehal Sharaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulpectomy of primary teeth aims to remove the necrotic pulp tissue from the infected root canal and clean the root canal walls from any remnant of pulp tissue. Different irrigant activation systems have been recently used, and one of these devices is the Eddy which helps in removal of smear layer and improves the intimate contact between the filling material and the root canal wall. Aim: To evaluate the efficacy of Eddy in cleanliness of the root canal during pulpectomy of primary teeth. Materials and methods: 45 freshly extracted primary anterior teeth were divided into 3 equal groups, in the 1st group sodium hypochlorite only was used during pulpectomy, in the 2nd group irrigation using sodium hypochlorite with file agitation was performed and in the 3rd group sodium hypochlorite was used with Eddy for irrigant activation. All samples were sectioned longitudinally and scanned using scanning electron microscope to evaluate the cleanliness of the root canals. Results: It was found that Eddy showed high efficacy in removal of smear layer during pulpectomy of primary teeth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eddy" title="Eddy">Eddy</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigant%20activation" title=" irrigant activation"> irrigant activation</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=pulpectomy" title=" pulpectomy"> pulpectomy</a> </p> <a href="https://publications.waset.org/abstracts/131150/effect-of-eddy-irrigant-activation-on-cleanliness-of-the-root-canal-wall-during-pulpectomy-of-primary-teeth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9066</span> Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20L.%20Yanagihara">Adam L. Yanagihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seok%20Park"> Yong Seok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a &ldquo;comfortable&rdquo; deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20brake" title="eddy current brake">eddy current brake</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title=" engineering design"> engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20synthesis" title=" design synthesis"> design synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors%20engineering" title=" human factors engineering"> human factors engineering</a> </p> <a href="https://publications.waset.org/abstracts/123650/design-of-an-eddy-current-brake-system-for-the-use-of-roller-coasters-based-on-a-human-factors-engineering-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9065</span> Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mezghani">S. Mezghani</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Perrin"> E. Perrin</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Bodnar"> J. L. Bodnar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Marthe"> J. Marthe</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Cauwe"> B. Cauwe</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vrabie"> V. Vrabie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows to obtain a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 µm and 130 µm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for non conductive substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20destructive" title="non destructive">non destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating" title=" paint coating"> paint coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser" title=" laser"> laser</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a> </p> <a href="https://publications.waset.org/abstracts/20665/evaluation-of-heterogeneity-of-paint-coating-on-metal-substrate-using-laser-infrared-thermography-and-eddy-current" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">639</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9064</span> Compare Hot Forming and Cold Forming in Rolling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moarrefzadeh">Ali Moarrefzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forming" title="hot forming">hot forming</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20forming" title=" cold forming"> cold forming</a>, <a href="https://publications.waset.org/abstracts/search?q=metal" title=" metal"> metal</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation "> simulation </a> </p> <a href="https://publications.waset.org/abstracts/11373/compare-hot-forming-and-cold-forming-in-rolling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9063</span> Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xi%20Gu">Xi Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guan%20Heng%20Yeoh"> Guan Heng Yeoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Timchenko"> Victoria Timchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation" title="Large Eddy Simulation">Large Eddy Simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fluid%20Structural%20Interaction" title=" Fluid Structural Interaction"> Fluid Structural Interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=constricted%20artery" title=" constricted artery"> constricted artery</a>, <a href="https://publications.waset.org/abstracts/search?q=Computational%20Fluid%20Dynamics" title=" Computational Fluid Dynamics"> Computational Fluid Dynamics</a> </p> <a href="https://publications.waset.org/abstracts/21203/three-dimensional-large-eddy-simulation-of-blood-flow-and-deformation-in-an-elastic-constricted-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9062</span> Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20A.%20Nazukin">Vladislav A. Nazukin</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20G.%20Avgustinovich"> Valery G. Avgustinovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20V.%20Tsatiashvili"> Vakhtang V. Tsatiashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DES%20simulation" title="DES simulation">DES simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=swirler" title=" swirler"> swirler</a>, <a href="https://publications.waset.org/abstracts/search?q=vortical%20structures" title=" vortical structures"> vortical structures</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20chamber" title=" combustion chamber"> combustion chamber</a> </p> <a href="https://publications.waset.org/abstracts/15056/analysis-of-vortical-structures-generated-by-the-swirler-of-combustion-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9061</span> Numerical Analysis of Swirling Chamber Using Improved Delayed Detached Eddy Simulation Turbulence Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamad%20M.%20Alhajeri">Hamad M. Alhajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swirling chamber is a promising cooling method for heavily thermally loaded parts like turbine blades due to the additional circumferential velocity and therefore improved turbulent mixing of the fluid. This paper investigates numerically the effect of turbulence model on the heat convection of the swirling chamber. Grid independence analysis is conducted to obtain the proper grid dimension. The work validated with experimental data available in the literature. Flow analysis using improved delayed detached eddy simulation turbulence model and Reynolds averaged Navier-Stokes k-ɛ turbulence model is carried. The flow characteristic near the exit is reformed when improved delayed detached eddy simulation model used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20characteristics" title=" flow characteristics"> flow characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/104037/numerical-analysis-of-swirling-chamber-using-improved-delayed-detached-eddy-simulation-turbulence-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9060</span> Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Habibnia%20Rami">Mehdi Habibnia Rami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Sabour"> Mohammad H. Sabour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Hassannia"> Hossein Hassannia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-pressure%20turbine%20cascade" title="low-pressure turbine cascade">low-pressure turbine cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=large-Eddy%20simulation%20%28LES%29" title=" large-Eddy simulation (LES)"> large-Eddy simulation (LES)</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS%20turbulence%20models" title=" RANS turbulence models"> RANS turbulence models</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20flow%20measurements" title=" unsteady flow measurements"> unsteady flow measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a> </p> <a href="https://publications.waset.org/abstracts/62574/shear-layer-investigation-through-a-high-load-cascade-in-low-pressure-gas-turbine-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9059</span> Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Ruano">Jesus Ruano</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesc%20Xavier%20Trias"> Francesc Xavier Trias</a>, <a href="https://publications.waset.org/abstracts/search?q=Asensi%20Oliva"> Asensi Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=far-field%20noise" title="far-field noise">far-field noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings" title=" Ffowcs-Williams and Hawkings"> Ffowcs-Williams and Hawkings</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=long-span%20bodies" title=" long-span bodies"> long-span bodies</a> </p> <a href="https://publications.waset.org/abstracts/58458/far-field-noise-prediction-of-tandem-cylinders-using-incompressible-large-eddy-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9058</span> Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DuckHwan%20Bae">DuckHwan Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=YongSung%20Kwon"> YongSung Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Young%20Shon"> Min Young Shon</a>, <a href="https://publications.waset.org/abstracts/search?q=SanTaek%20Oh"> SanTaek Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=GuNi%20Kim"> GuNi Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20heating" title="induction heating">induction heating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polyurethane" title=" thermoplastic polyurethane"> thermoplastic polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loss" title=" hysteresis loss"> hysteresis loss</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20loss" title=" eddy current loss"> eddy current loss</a>, <a href="https://publications.waset.org/abstracts/search?q=curie%20temperature" title=" curie temperature"> curie temperature</a> </p> <a href="https://publications.waset.org/abstracts/46412/heating-behavior-of-ni-embedded-thermoplastic-polyurethane-adhesive-film-by-induction-heating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9057</span> Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesus%20Ruano">Jesus Ruano</a>, <a href="https://publications.waset.org/abstracts/search?q=Asensi%20Oliva"> Asensi Oliva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=far-field%20noise" title="far-field noise">far-field noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Ffowcs-Williams%20and%20Hawkings" title=" Ffowcs-Williams and Hawkings"> Ffowcs-Williams and Hawkings</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20noise" title=" jet noise"> jet noise</a> </p> <a href="https://publications.waset.org/abstracts/58460/far-field-acoustic-prediction-of-a-supersonic-expanding-jet-using-large-eddy-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9056</span> BLDC Motor Design Considering Core Loss Caused by Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong">Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye-Jun%20Oh"> Ye-Jun Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=welding" title="welding">welding</a>, <a href="https://publications.waset.org/abstracts/search?q=stator" title=" stator"> stator</a>, <a href="https://publications.waset.org/abstracts/search?q=Eddy%20current" title=" Eddy current"> Eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a> </p> <a href="https://publications.waset.org/abstracts/41389/bldc-motor-design-considering-core-loss-caused-by-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9055</span> Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yilei%20Song">Yilei Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Linlin%20Tian"> Linlin Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Zhao"> Ning Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large-eddy%20simulation" title="large-eddy simulation">large-eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=stably-stratified%20atmospheric%20boundary%20layer" title=" stably-stratified atmospheric boundary layer"> stably-stratified atmospheric boundary layer</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20model" title=" wake model"> wake model</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20wake" title=" wind turbine wake"> wind turbine wake</a> </p> <a href="https://publications.waset.org/abstracts/111209/wind-turbine-wake-prediction-and-validation-under-a-stably-stratified-atmospheric-boundary-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9054</span> A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Panda">J. P. Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sasmal"> K. Sasmal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Warrior"> H. V. Warrior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX&#39; 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eddy%20viscosity" title="Eddy viscosity">Eddy viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modeling" title=" turbulence modeling"> turbulence modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=GOTM" title=" GOTM"> GOTM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/84098/a-non-linear-eddy-viscosity-model-for-turbulent-natural-convection-in-geophysical-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9053</span> Energy Budget Equation of Superfluid HVBK Model: LES Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bakhtaoui">M. Bakhtaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Merahi"> L. Merahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reliability of the filtered HVBK model is now investigated via some large eddy simulations of freely decaying isotropic superfluid turbulence. For homogeneous turbulence at very high Reynolds numbers, comparison of the terms in the spectral kinetic energy budget equation indicates, in the energy-containing range, that the production and energy transfer effects become significant except for dissipation. In the inertial range, where the two fluids are perfectly locked, the mutual friction maybe neglected with respect to other terms. Also the LES results for the other terms of the energy balance are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superfluid%20turbulence" title="superfluid turbulence">superfluid turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=HVBK" title=" HVBK"> HVBK</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20budget" title=" energy budget"> energy budget</a>, <a href="https://publications.waset.org/abstracts/search?q=Large%20Eddy%20Simulation" title=" Large Eddy Simulation"> Large Eddy Simulation</a> </p> <a href="https://publications.waset.org/abstracts/15607/energy-budget-equation-of-superfluid-hvbk-model-les-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9052</span> Large Eddy Simulation of Particle Clouds Using Open-Source CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruo-Qian%20Wang">Ruo-Qian Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=four-way%20coupling" title="four-way coupling">four-way coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=dredging" title=" dredging"> dredging</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20reclamation" title=" land reclamation"> land reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flows" title=" multiphase flows"> multiphase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a> </p> <a href="https://publications.waset.org/abstracts/30749/large-eddy-simulation-of-particle-clouds-using-open-source-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9051</span> A Novel Harmonic Compensation Algorithm for High Speed Drives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakdar%20Sadi-Haddad">Lakdar Sadi-Haddad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20harmonic%20compensation" title="active harmonic compensation">active harmonic compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20losses" title=" eddy current losses"> eddy current losses</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20machine" title=" high speed machine"> high speed machine</a> </p> <a href="https://publications.waset.org/abstracts/37114/a-novel-harmonic-compensation-algorithm-for-high-speed-drives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9050</span> Reduction of Planar Transformer AC Resistance Using a Planar Litz Wire Structure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Belloumi">Hamed Belloumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Ammouri"> Aymen Ammouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Kourda"> Ferid Kourda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded litz wires. In order to further illustrate the eddy current effect in different arrangements, a finite-element analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20transformer" title="planar transformer">planar transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20analysis%20%28FEA%29" title=" finite-element analysis (FEA)"> finite-element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20losses" title=" winding losses"> winding losses</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20litz%20wire" title=" planar litz wire"> planar litz wire</a> </p> <a href="https://publications.waset.org/abstracts/29429/reduction-of-planar-transformer-ac-resistance-using-a-planar-litz-wire-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9049</span> CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Sona">C. S. Sona</a>, <a href="https://publications.waset.org/abstracts/search?q=Makrand%20A.%20Khanwale"> Makrand A. Khanwale</a>, <a href="https://publications.waset.org/abstracts/search?q=Channamallikarjun%20S.%20Mathpati"> Channamallikarjun S. Mathpati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLiNaK" title="FLiNaK">FLiNaK</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structures" title=" turbulent structures"> turbulent structures</a> </p> <a href="https://publications.waset.org/abstracts/6732/cfd-simulation-of-near-wall-turbulence-and-heat-transfer-of-molten-salts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9048</span> Reduction of High-Frequency Planar Transformer Conduction Losses Using a Planar Litz Wire Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Belloumi">Hamed Belloumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Zouaoui"> Amira Zouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferid%20kourda"> Ferid kourda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new trend in power converters is to design planar transformer that aim for low profile. However, at high frequency, the planar transformer ac losses become significant due to the proximity and skin effects. In this paper, the design and implementation of a novel planar Litz conductor is presented in order to equalize the flux linkage and improving the current distribution. The developed PCB litz wire structure minimizes the losses in a similar way to the conventional multi stranded Litz wires. In order to further illustrate the eddy current effect in different arrangements, a Finite-Element Analysis (FEA) tool is used to analyze current distribution inside the conductors. Finally, the proposed planar transformer has been integrated in an electronic stage to test at high signal levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=planar%20transformer" title="planar transformer">planar transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20analysis" title=" finite-element analysis"> finite-element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=winding%20losses" title=" winding losses"> winding losses</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20Litz%20wire" title=" planar Litz wire"> planar Litz wire</a> </p> <a href="https://publications.waset.org/abstracts/7425/reduction-of-high-frequency-planar-transformer-conduction-losses-using-a-planar-litz-wire-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9047</span> Large-Eddy Simulations for Aeronautical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Mankbadi">R. R. Mankbadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title=" aerodynamics"> aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulations" title=" large eddy simulations"> large eddy simulations</a> </p> <a href="https://publications.waset.org/abstracts/74281/large-eddy-simulations-for-aeronautical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9046</span> Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhijie%20Li">Zhijie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhui%20Peng"> Wenhui Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zelong%20Yuan"> Zelong Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchun%20Wang"> Jianchun Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data-driven" title="data-driven">data-driven</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20neural%20operator" title=" Fourier neural operator"> Fourier neural operator</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/171945/implicit-u-net-enhanced-fourier-neural-operator-for-long-term-dynamics-prediction-in-turbulence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9045</span> Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Meron%20Mebrahtu">W. Meron Mebrahtu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Absi"> R. Absi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20viscosity" title=" eddy viscosity"> eddy viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=sewers" title=" sewers"> sewers</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20profile" title=" velocity profile"> velocity profile</a> </p> <a href="https://publications.waset.org/abstracts/114475/towards-accurate-velocity-profile-models-in-turbulent-open-channel-flows-improved-eddy-viscosity-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9044</span> Large Eddy Simulation Approach for Unsteady Analysis of the Flow Behavior inside a Dual Counter Rotating Axial Swirler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Foad%20Vashahi">Foad Vashahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahnaz%20Rezaei"> Shahnaz Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeekeun%20Lee"> Jeekeun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large Eddy Simulation (LES) was performed on a dual counter rotating axial swirler in a confined rectangular configuration. Grids were constructed based on a primary Reynolds Averaged Navier-Stokes (RANS) simulation and then were refined based on the Kolmogorov length scale. Water as cold flow condition was applied and results were compared via Particle Image Velocimetry (PIV) experimental results. The focus was to investigate the flow behavior within the region before the flare and very close to the exit of the swirler. This region contributes to a highly unsteady flow behavior and requires great attention to enhancing the flame stability in gas turbine combustor and swirl burners. The PVC formation within the central core flow is strongly related to the peaks of pressure or axial velocity spectrum and up to two distinct peaks at the swirler mouth could be observed. Here, spectra analysis in iso-thermal condition inside the swirler where the inner swirler dominates the flow, showed a higher potential of instabilities with three to four distinct peaks where moving forward to the exit of swirler the number of peaks is decreased. In addition to this, the central axis corresponds to no peaks of instabilities while further away in the radial direction, several peaks exist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20counter%20rotating%20swirler" title="axial counter rotating swirler">axial counter rotating swirler</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation%20%28LES%29" title=" large eddy simulation (LES)"> large eddy simulation (LES)</a>, <a href="https://publications.waset.org/abstracts/search?q=precessing%20vortex%20core%20%28PVC%29" title=" precessing vortex core (PVC)"> precessing vortex core (PVC)</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density%20%28PSD%29" title=" power spectral density (PSD)"> power spectral density (PSD)</a> </p> <a href="https://publications.waset.org/abstracts/68069/large-eddy-simulation-approach-for-unsteady-analysis-of-the-flow-behavior-inside-a-dual-counter-rotating-axial-swirler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=302">302</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=303">303</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=eddy%20current&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10