CINXE.COM

Search results for: dryland crops

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dryland crops</title> <meta name="description" content="Search results for: dryland crops"> <meta name="keywords" content="dryland crops"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dryland crops" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dryland crops"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 796</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dryland crops</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">796</span> Management of Distillery Spentwash to Enhance Productivity of Dryland Crops and Reduce Environmental Pollution: A Case Study in Southern Dry Zone of Karnataka, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Sathish">A. Sathish</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Lingaraju"> N. N. Lingaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Geetha"> K. N. Geetha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Srinivasamurthy"> C. A. Srinivasamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhaskar"> S. Bhaskar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under dryland conditions, it is observed that the soil organic matter is low due to low organic carbon content due to poor management with less use of inputs. On the other hand, disposal of sugar industry waste, i.e., spentwash is a major concern with limited space for land based treatment and disposal which causes environmental pollution. Spentwash is also a resource that can be applied for productive uses since it contains nutrients that have the potential for use in agriculture. The disposal of spent wash may lead to environmental pollution. Hence as an alternative mechanism, it was applied once to dry lands, and the experiments were conducted from 2012-13 to 2016-17 in kharif season in Maddur Taluk, Mandya District, Karnataka State, India. The study conducted was in 93 different farmers field (maize-11, finger millet-80 & horsegram-14). Spentwash was applied at the rate of 100 m³ ha⁻¹ before sowing of the crops. The results showed that yield of dryland crops like finger millet, horse gram and maize was recorded 14.75 q ha⁻¹, 6 q ha⁻¹ and 31.00 q ha⁻¹, respectively and the yield increase to an extent of 10-25 per cent with one time application of spentwash to dry lands compared to farmers practice, i.e., chemical fertilizer application. The higher yield may be attributed to slow and steady release of nutrients by spentwash throughout the crop growth period. In addition, the growth promoting and other beneficial substances present in spentwash might have also helped in better plant growth and yield. The soil sample analysis after harvest of the crops indicate acidic to neutral pH, EC of 0.11 dSm⁻¹ and Na of 0.20 C mol (P⁺) kg⁻¹ in the normal range which are not harmful. Hence, it can be applied to drylands at least once in 3 years which enhances yield as well as reduces environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dryland%20crops" title="dryland crops">dryland crops</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20industry%20waste" title=" sugar industry waste"> sugar industry waste</a>, <a href="https://publications.waset.org/abstracts/search?q=spentwash" title=" spentwash"> spentwash</a> </p> <a href="https://publications.waset.org/abstracts/83602/management-of-distillery-spentwash-to-enhance-productivity-of-dryland-crops-and-reduce-environmental-pollution-a-case-study-in-southern-dry-zone-of-karnataka-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">795</span> A Comparison of the Environmental Impacts of Edible and Non-Edible Oil Crops in Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Halit%20Tutar">Halit Tutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Eren"> Omer Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20Parlakay"> Oguz Parlakay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for food and energy of mankind has been increasing every passing day. Renewable energy sources have been pushed to forefront since fossil fuels will be run out in the near future and their negative effects to the environment. As in every sector, the transport sector benefits from biofuel (biogas, bioethanol and biodiesel) one of the renewable energy sources as well. The edible oil crops are used in production of biodiesel. Utilizing edible oil crops as renewable energy source may raise a debate in the view of that there is a shortage in raw material of edible oil crops in Turkey. Researches related to utilization of non-edible oil crops as biodiesel raw materials have been recently increased, and especially studies related to their vegetative production and adaptation have been accelerated in Europe. In this review edible oil crops are compared to non-edible oil crops for biodiesel production in the sense of biodiesel production, some features of non-edible oil crops and their harmful emissions to environment are introduced. The data used in this study, obtained from articles, thesis, reports relevant to edible and non edible oil crops in biodiesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oil%20crops" title=" edible oil crops"> edible oil crops</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/66235/a-comparison-of-the-environmental-impacts-of-edible-and-non-edible-oil-crops-in-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">794</span> Potentials of Underutilised Crops in the Nigerian Farming Systems for Sustainable Food Production and Economic Empowerment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jesse%20Silas%20Mshelia">Jesse Silas Mshelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Mamman%20Degri"> Michael Mamman Degri</a>, <a href="https://publications.waset.org/abstracts/search?q=Akeweta%20Emmanuel%20Samaila"> Akeweta Emmanuel Samaila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review was conducted in the North-Eastern part of Nigeria where there are a lot of challenges of poverty and low level of productivity of farmlands as a result of dwindling soil fertility and dependence on crops that are not so much adopted to the soil and climatic condition and the prevailing farming systems of the area which is predominantly mixed cropping. The crops that are neglected are well fitted into this system of production and yield better with the low level of input and management and give a higher profit margin. These crops, the farmers have mastered the production techniques, but do not have the scientific knowledge to improve the quality of the seed and the products hence need the intervention of modern technologies to benefit maximally from the full potentials of these crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farming%20systems" title="farming systems">farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=neglected%20crops" title=" neglected crops"> neglected crops</a>, <a href="https://publications.waset.org/abstracts/search?q=potentials" title=" potentials"> potentials</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilised" title=" underutilised"> underutilised</a> </p> <a href="https://publications.waset.org/abstracts/52113/potentials-of-underutilised-crops-in-the-nigerian-farming-systems-for-sustainable-food-production-and-economic-empowerment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">793</span> Effect of Distillery Spentwash Application on Soil Properties and Yield of Maize (Zea mays L.) and Finger Millet (Eleusine coracana (L.) G)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20N.%20Lingaraju">N. N. Lingaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sathish"> A. Sathish</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Geetha"> K. N. Geetha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Srinivasamurthy"> C. A. Srinivasamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhaskar"> S. Bhaskar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on spent wash utilization as a nutrient source through 'Effect of distillery spentwash application on soil properties and yield of maize (Zea may L.) and finger millet (Eleusine coracana (L.) G)' was carried out in Malavalli Taluk, Mandya District, Karnataka State, India. The study was conducted in fourteen different locations of Malavalli (12) and Maddur taluk (2) involving maize and finger millet as a test crop. The spentwash was characterized for various parameters like pH, EC, total NPK, Na, Ca, Mg, SO₄, Fe, Zn, Cu, Mn and Cl content. It was observed from the results that the pH was slightly alkaline (7.45), EC was excess (23.3 dS m⁻¹), total NPK was 0.12, 0.02, and 1.31 percent respectively, Na, Ca, Mg and SO₄ concentration was 664, 1305, 745 and 618 (mg L⁻¹) respectively, total solid content was quite high (6.7%), Fe, Zn, Cu, Mn, values were 23.5, 5.70, 3.64, 4.0 mg L⁻¹, respectively. The crops were grown by adopting different crop management practices after application of spentwash at 100 m³ ha⁻¹ to the identified farmer fields. Soil samples were drawn at three stages i.e., before sowing of crop, during crop growth stage and after harvest of the crop at 2 depths (0-30 and 30-60 cm) and analyzed for pH, EC, available K and Na parameters by adopting standard procedures. The soil analysis showed slightly acidic reaction (5.93), normal EC (0.43 dS m⁻¹), medium available potassium (267 kg ha⁻¹) before application of spentwash. Application of spentwash has enhanced pH level of soil towards neutral (6.97), EC 0.25 dS m⁻¹, available K2O to 376 kg ha⁻¹ and sodium content of 0.73 C mol (P+) kg⁻¹ during the crop growth stage. After harvest of the crops soil analysis data indicated a decrease in pH to 6.28, EC of 0.22 dS m⁻¹, available K₂O to 316 kg ha⁻¹ and Na 0.52 C mol (P⁺) kg⁻¹ compared with crop growth stage. The study showed that, there will be enhancement of potassium levels if the spentwash is applied once to dryland. The yields of both the crops were quantified and found to be in the range of 35.65 to 65.55 q ha⁻¹ and increased yield to the extent of 13.36-22.36 percent as compared to control field (11.36-22.33 q ha⁻¹) in maize crop. Also, finger millet yield was increased with the spentwash application to the extent of 14.21-20.49 percent (9.5-17.73 q ha⁻¹) higher over farmers practice (8.15-14.15 q ha⁻¹). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillery%20spentwash" title="distillery spentwash">distillery spentwash</a>, <a href="https://publications.waset.org/abstracts/search?q=finger%20millet" title=" finger millet"> finger millet</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/83639/effect-of-distillery-spentwash-application-on-soil-properties-and-yield-of-maize-zea-mays-l-and-finger-millet-eleusine-coracana-l-g" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">792</span> Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abaoli">Mohammed Abaoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Kara"> Omer Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO<sub>3</sub>, gypsum (CaSO<sub>4</sub>), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.&nbsp; Bulk density varied from 1.1 to 1.31 g/cm<sup>3</sup>. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO<sub>3</sub> and CaSO<sub>4</sub> concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO<sub>2</sub><sup>-4</sup> and HCO<sup>-3</sup> were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commiphora%20species" title="commiphora species">commiphora species</a>, <a href="https://publications.waset.org/abstracts/search?q=dryland%20vegetation" title=" dryland vegetation"> dryland vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20significance" title=" ecological significance"> ecological significance</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20quality" title=" soil quality"> soil quality</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20problem" title=" salinity problem"> salinity problem</a> </p> <a href="https://publications.waset.org/abstracts/123086/soil-quality-status-under-dryland-vegetation-of-yabello-district-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">791</span> Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosmas%20Parwada">Cosmas Parwada</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronald%20Mandumbu"> Ronald Mandumbu</a>, <a href="https://publications.waset.org/abstracts/search?q=Handseni%20Tibugari"> Handseni Tibugari</a>, <a href="https://publications.waset.org/abstracts/search?q=Trust%20Chinyama"> Trust Chinyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evapotranspiration" title="evapotranspiration">evapotranspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=infiltration%20rate" title=" infiltration rate"> infiltration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20mulch" title=" organic mulch"> organic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/95785/effects-of-tillage-and-crop-residues-management-in-improving-rainfall-use-efficiency-in-dryland-crops-under-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">790</span> Reduced Tillage and Bio-stimulant Application Can Improve Soil Microbial Enzyme Activity in a Dryland Cropping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flackson%20Tshuma">Flackson Tshuma</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Bennett"> James Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Pieter%20Andreas%20Swanepoel"> Pieter Andreas Swanepoel</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Labuschagne"> Johan Labuschagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20van%20der%20Westhuizen"> Stephan van der Westhuizen</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Rayns"> Francis Rayns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst other things, tillage and synthetic agrochemicals can be effective methods of seedbed preparation and pest control. Nonetheless, frequent and intensive tillage and excessive application of synthetic agrochemicals, such as herbicides and insecticides, can reduce soil microbial enzyme activity. A decline in soil microbial enzyme activity can negatively affect nutrient cycling and crop productivity. In this study, the effects of four tillage treatments; continuous mouldboard plough; shallow tine-tillage to a depth of about 75 mm; no-tillage; and tillage rotation (involving shallow tine-tillage once every four years in rotation with three years of no-tillage), and two rates of synthetic agrochemicals (standard: with regular application of synthetic agrochemicals; and reduced: fewer synthetic agrochemicals in combination with bio-chemicals/ or bio-stimulants) on soil microbial enzyme activity were investigated between 2018 and 2020 in a typical Mediterranean climate zone in South Africa. Four different bio-stimulants applied contained: Trichoderma asperellum, fulvic acid, silicic acid, and Nereocystis luetkeana extracts, respectively. The study was laid out as a complete randomised block design with four replicated blocks. Each block had 14 plots, and each plot measured 50 m x 6 m. The study aimed to assess the combined impact of tillage practices and reduced rates of synthetic agrochemical application on soil microbial enzyme activity in a dryland cropping system. It was hypothesised that the application of bio-stimulants in combination with minimum soil disturbance will lead to a greater increase in microbial enzyme activity than the effect of applying either in isolation. Six soil cores were randomly and aseptically collected from each plot for microbial enzyme activity analysis from the 0-150 mm layer of a field trial under a dryland crop rotation system in the Swartland region. The activities of four microbial enzymes, β-glucosidase, acid phosphatase, alkaline phosphatase and urease, were assessed. The enzymes are essential for the cycling of glucose, phosphorus, and nitrogen, respectively. Microbial enzyme activity generally increased with a reduction of both tillage intensity and synthetic agrochemical application. The use of the mouldboard plough led to the least (P<0.05) microbial enzyme activity relative to the reduced tillage treatments, whereas the system with bio-stimulants (reduced synthetic agrochemicals) led to the highest (P<0.05) microbial enzyme activity relative to the standard systems. The application of bio-stimulants in combination with reduced tillage, particularly no-tillage, could be beneficial for enzyme activity in a dryland farming system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-stimulants" title="bio-stimulants">bio-stimulants</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20enzymes" title=" soil microbial enzymes"> soil microbial enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20agrochemicals" title=" synthetic agrochemicals"> synthetic agrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=tillage" title=" tillage"> tillage</a> </p> <a href="https://publications.waset.org/abstracts/172240/reduced-tillage-and-bio-stimulant-application-can-improve-soil-microbial-enzyme-activity-in-a-dryland-cropping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">789</span> The Status of Precision Agricultural Technology Adoption on Row Crop Farms vs. Specialty Crop Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Ghatrehsamani">Shirin Ghatrehsamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher efficiency and lower environmental impact are the consequence of using advanced technology in farming. They also help to decrease yield variability by diminishing weather variability impact, optimizing nutrient and pest management as well as reducing competition from weeds. A better understanding of the pros and cons of applying technology and finding the main reason for preventing the utilization of the technology has a significant impact on developing technology adoption among farmers and producers in the digital agriculture era. The results from two surveys carried out in 2019 and 2021 were used to investigate whether the crop types had an impact on the willingness to utilize technology on the farms. The main focus of the questionnaire was on utilizing precision agriculture (PA) technologies among farmers in some parts of the united states. Collected data was analyzed to determine the practical application of various technologies. The survey results showed more similarities in the main reason not to use PA between the two crop types, but the present application of using technology in specialty crops is generally five times larger than in row crops. GPS receiver applications were reported similar for both types of crops. Lack of knowledge and high cost of data handling were cited as the main problems. The most significant difference was among using variable rate technology, which was 43% for specialty crops while was reported 0% for row crops. Pest scouting and mapping were commonly used for specialty crops, while they were rarely applied for row crops. Survey respondents found yield mapping, soil sampling map, and irrigation scheduling were more valuable for specialty crops than row crops in management decisions. About 50% of the respondents would like to share the PA data in both types of crops. Almost 50 % of respondents got their PA information from retailers in both categories, and as the second source, using extension agents were more common in specialty crops than row crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title="precision agriculture">precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farming" title=" smart farming"> smart farming</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20agriculture" title=" digital agriculture"> digital agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20adoption" title=" technology adoption"> technology adoption</a> </p> <a href="https://publications.waset.org/abstracts/150169/the-status-of-precision-agricultural-technology-adoption-on-row-crop-farms-vs-specialty-crop-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">788</span> Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manfred%20Szerencsits">Manfred Szerencsits</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Weinberger"> Christine Weinberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Maximilian%20Kuderna"> Maximilian Kuderna</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Feichtinger"> Franz Feichtinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Erhart"> Eva Erhart</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Maier"> Stephan Maier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m&sup3; methane (CH<sub>4</sub>) ha<sup>-1</sup> can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m&sup3; CH<sub>4</sub> ha<sup>-1</sup> is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH<sub>4</sub> produced from cover crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=cover%20crops" title=" cover crops"> cover crops</a>, <a href="https://publications.waset.org/abstracts/search?q=catch%20crops" title=" catch crops"> catch crops</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20competition" title=" land use competition"> land use competition</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/20329/biogas-from-cover-crops-and-field-residues-effects-on-soil-water-climate-and-ecological-footprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> Nutritional Quality Assessment and Safety Evaluation of Food Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olawole%20Emmanuel%20Aina">Olawole Emmanuel Aina</a>, <a href="https://publications.waset.org/abstracts/search?q=Liziwe%20Lizbeth%20Mugivhisa"> Liziwe Lizbeth Mugivhisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Oluwole%20Olowoyo"> Joshua Oluwole Olowoyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikwela%20Lawrence%20Obi"> Chikwela Lawrence Obi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20crops" title="food crops">food crops</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits%20and%20vegetables" title=" fruits and vegetables"> fruits and vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20metals" title=" trace metals"> trace metals</a> </p> <a href="https://publications.waset.org/abstracts/167258/nutritional-quality-assessment-and-safety-evaluation-of-food-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Soil Nutrient Management Implications of Growing Food Crops within the Coffee Gardens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pennuel%20P.%20Togonave">Pennuel P. Togonave</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartholomew%20S.%20Apis"> Bartholomew S. Apis</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Kiup"> Emma Kiup</a>, <a href="https://publications.waset.org/abstracts/search?q=Gure%20Tumae"> Gure Tumae</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Pakatul"> Johannes Pakatul</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Webb"> Michael Webb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interplanting food crops in coffee gardens has increased in recent years. The purpose of this study was to quantify the nutrient management implications of growing food crops within the coffee garden and to investigate the sustainability of this practice through field surveys in two accessible sites (Asaro and Bena) and two remote sites (Marawaka and Baira), in Eastern Highlands Province of Papua New Guinea. Coffee gardens were selected at each site and surveys were conducted to assess the status of intercropping in each of the smallholder coffee gardens. Food crops in the coffee gardens were sampled for nutrient analysis Survey results indicate intercropping as a common practice in coffee gardens and entailed mixed cropping of food crops in an irregular pattern and spacing. More than 40% of the farmers used 40-60% of their total coffee garden area for intercropping. In remote sites, more than 50% of the coffee garden areas closest to the house were intercropped with food crops compared to 40% of inaccessible sites. In both remote and accessible sites, the most common intercropped food crops were 90% banana (Musa spp) varieties and 50% sugarcane (Saccharum spp). Nutrient analysis of the by-products and residuals of some common intercrops shows the potential to replenish the coffee plant's deficient nutrients like Potassium, Magnesium, Phosphorus, Boron and Zinc. Intercropping of coffee gardens is increasing due to land pressure, marketing opportunities, food security and labor supply <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=by-products" title="by-products">by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee" title=" coffee"> coffee</a>, <a href="https://publications.waset.org/abstracts/search?q=crops" title=" crops"> crops</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients" title=" nutrients"> nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/167007/soil-nutrient-management-implications-of-growing-food-crops-within-the-coffee-gardens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> Climate Change Impact on Economic Efficiency of Leguminous Crops Production and Perspectives in Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zh.%20Bolatova">Zh. Bolatova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zh.%20Bulkhairova"> Zh. Bulkhairova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kulshigashova"> M. Kulshigashova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the authors consider the main aspects of climate change's impact on the economic efficiency of leguminous crop production and perspectives in Kazakhstan. It is worth noting that climate change has an impact on the instability of leguminous crops and leads to a decrease in production efficiency. Ultimately, all of the above determines the relevance and significance of this topic. The level of productivity of grain and legumes in the country and by regions of Kazakhstan was also analyzed. The authors conducted a survey and a deeper analysis of agricultural producers in the Kazakhstan region. In the end, the authors considered the prospects for the development of leguminous crops in Kazakhstan. For the article have been used different literature and reports from IPCC, WMO, WTO, FAO, UNEP, UNFCCC, UNDP, IMF, WB, OECD, KAZHYDROMET, Committee of the Statistics of Kazakhstan, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20efficiency" title=" economic efficiency"> economic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=leguminous%20crops" title=" leguminous crops"> leguminous crops</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/165449/climate-change-impact-on-economic-efficiency-of-leguminous-crops-production-and-perspectives-in-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> The Effect of Multi-Stakeholder Extension Services towards Crop Choice and Farmer&#039;s Income, the Case of the Arc High Value Crop Programme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Sello%20Kau">Joseph Sello Kau</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Mashayamombe"> Elias Mashayamombe</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Washington%20Madinkana"> Brian Washington Madinkana</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Ngwane"> Cynthia Ngwane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results for the statistical (stepwise linear regression and multiple regression) analyses, carried out on a number of crops in order to evaluate how the decision for crop choice affect the level of farm income generated by the farmers participating in the High Value Crop production (referred to as the HVC). The goal of the HVC is to encourage farmers cultivate fruit crops. The farmers received planting material from different extension agencies, together with other complementary packages such as fertilizer, garden tools, water tanks etc. During the surveys, it was discovered that a significant number of farmers were cultivating traditional crops even when their plot sizes were small. Traditional crops are competing for resources with high value crops. The results of the analyses show that farmers cultivating fruit crops, maize and potatoes were generating high income than those cultivating spinach and cabbage. High farm income is associated with plot size, access to social grants and gender. Choice for a crop is influenced by the availability of planting material and the market potential for the crop. Extension agencies providing the planting materials stand a good chance of having farmers follow their directives. As a recommendation, for the farmers to cultivate more of the HVCs, the ARC must intensify provision of fruit trees. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farm%20income" title="farm income">farm income</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20of%20extension%20services" title=" nature of extension services"> nature of extension services</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20of%20crops%20cultivated" title=" type of crops cultivated"> type of crops cultivated</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20crops" title=" fruit crops"> fruit crops</a>, <a href="https://publications.waset.org/abstracts/search?q=cabbage" title=" cabbage"> cabbage</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=potato%20and%20spinach" title=" potato and spinach"> potato and spinach</a> </p> <a href="https://publications.waset.org/abstracts/41764/the-effect-of-multi-stakeholder-extension-services-towards-crop-choice-and-farmers-income-the-case-of-the-arc-high-value-crop-programme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Jibril">Hamisu Jibril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title="species diversity">species diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20kano" title=" urban kano"> urban kano</a>, <a href="https://publications.waset.org/abstracts/search?q=dryland%20environment" title=" dryland environment"> dryland environment</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20sampling" title=" vegetation sampling"> vegetation sampling</a> </p> <a href="https://publications.waset.org/abstracts/184510/plant-species-composition-and-frequency-distribution-along-a-disturbance-gradient-in-kano-metropolis-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Mobile Based Long Range Weather Prediction System for the Farmers of Rural Areas of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeeshan%20Muzammal">Zeeshan Muzammal</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Latif"> Usama Latif</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Younas"> Fouzia Younas</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muhammad%20Hassan"> Syed Muhammad Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Razaq"> Samia Razaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unexpected rainfall has always been an issue in the lifetime of crops and brings destruction for the farmers who harvest them. Unfortunately, Pakistan is one of the countries in which untimely rain impacts badly on crops like wash out of seeds and pesticides etc. Pakistan’s GDP is related to agriculture, especially in rural areas farmers sometimes quit farming because leverage of huge loss to their crops. Through our surveys and research, we came to know that farmers in the rural areas of Pakistan need rain information to avoid damages to their crops from rain. We developed a prototype using ICTs to inform the farmers about rain one week in advance. Our proposed solution has two ways of informing the farmers. In first we send daily messages about weekly prediction and also designed a helpline where they can call us to ask about possibility of rain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICTD" title="ICTD">ICTD</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20based" title=" mobile based"> mobile based</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20areas" title=" rural areas"> rural areas</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20prediction" title=" weather prediction "> weather prediction </a> </p> <a href="https://publications.waset.org/abstracts/60473/mobile-based-long-range-weather-prediction-system-for-the-farmers-of-rural-areas-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> Retrospective Analysis of the Damage of Agricultural Crops from Hail in Eastern Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valerian%20Omsarashvili">Valerian Omsarashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Jamrishvili"> Nino Jamrishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Georgia is one of the hail-dangerous countries of world. The work on action on hail processes in Georgia was conducted in 1960-1989 (East Georgia) over the total area of approximately 1.2 million hectares with average positive economic effect near 75 %. In 2015 in East Georgia, the anti-hail service was restored. Therefore, for the estimation of the effectiveness of action on the hail processes at present, arose the need for the detailed analysis of damage from the hail in the past. The work presents the analysis of the data about the number of days with the hail, the areas of damage of agricultural crops (general and to 100 %), and also the economic damage from the hail, of the caused loss to agricultural crops on the territories land of 123 separate populated areas of into 1982 and 1984-1989. In particular, on the average to one populated area, the total area of agricultural crops damaged from the hail was approximately 140 hectares, to 100% damage - 60 hectares, economic damage - 120 thousand US dollars. The corresponding maps of the distribution of the damaged areas on the investigated territory with the use of GIS-technologies are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20to%20agricultural%20crops" title="damage to agricultural crops">damage to agricultural crops</a>, <a href="https://publications.waset.org/abstracts/search?q=hail" title=" hail"> hail</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia" title=" Georgia"> Georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20damage" title=" economic damage"> economic damage</a> </p> <a href="https://publications.waset.org/abstracts/85793/retrospective-analysis-of-the-damage-of-agricultural-crops-from-hail-in-eastern-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Biodiversity of Aphid Species (Homoptera: Aphididae) in Hyderabad District, Sindh, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahpara%20Pirzada">Mahpara Pirzada</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoor%20Ali%20Shah"> Mansoor Ali Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Pthan"> Saima Pthan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Khan"> Kamal Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiza"> Faiza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present study based on biodiversity of aphid in different crops of Hyderabad district and its, surrounding area to observe the biodiversity of aphids, host plant range of the aphids in Hyderabad and their population also infestation and yield loss aphid on different crops. We have surveyed different fields of Hyderabad, Jamshoro, and collected the aphids from various parts of plants, grasses, and herb with the help of camel brush. They have been brought to the laboratory into plastic jars and preserved in Glycerin (Glycerol). As a result, 383 individuals belonging to 3 species were identified. These identified species were Aphis fabae, Myzus persicae, and Brevicoryne brassicae. Out of the 3 habitats the maximum richness, evenness, and diversity were recorded in agriculture crops followed by flowering vegetables and minimum in fodder crops. The most abundant specie is Myzus persicae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aphid%20species" title="aphid species">aphid species</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Homoptera%3AAphididae" title=" Homoptera:Aphididae"> Homoptera:Aphididae</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/80643/biodiversity-of-aphid-species-homoptera-aphididae-in-hyderabad-district-sindh-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imessaoudene%20Y.">Imessaoudene Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20B."> Mouhouche B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengouga%20A."> Sengouga A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20M."> Kadir M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20water" title="virtual water">virtual water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20requirements" title=" water requirements"> water requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=Djelfa" title=" Djelfa"> Djelfa</a> </p> <a href="https://publications.waset.org/abstracts/31138/importance-of-determining-the-water-needs-of-crops-in-the-management-of-water-resources-in-the-province-of-djelfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Strategies of Risk Management for Smallholder Farmers in South Africa: A Case Study on Pigeonpea (Cajanus cajan) Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanari%20Chalin%20Moriri">Sanari Chalin Moriri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwabena%20Kingsley%20Ayisi"> Kwabena Kingsley Ayisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alina%20Mofokeng"> Alina Mofokeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dryland smallholder farmers in South Africa are vulnerable to all kinds of risks, and it negatively affects crop productivity and profit. Pigeonpea is a leguminous and multipurpose crop that provides food, fodder, and wood for smallholder farmers. The majority of these farmers are still growing pigeonpea from traditional unimproved seeds, which comprise a mixture of genotypes. The objectives of the study were to identify the key risk factors that affect pigeonpea productivity and to develop management strategies on how to alleviate the risk factors in pigeonpea production. The study was conducted in two provinces (Limpopo and Mpumalanga) of South Africa in six municipalities during the 2020/2021 growing seasons. The non-probability sampling method using purposive and snowball sampling techniques were used to collect data from the farmers through a structured questionnaire. A total of 114 pigeonpea producers were interviewed individually using a questionnaire. Key stakeholders in each municipality were also identified, invited, and interviewed to verify the information given by farmers. Data collected were subjected to SPSS statistical software 25 version. The findings of the study were that majority of farmers affected by risk factors were women, subsistence, and old farmers resulted in low food production. Drought, unavailability of improved pigeonpea seeds for planting, access to information, and processing equipment were found to be the main risk factors contributing to low crop productivity in farmer’s fields. Above 80% of farmers lack knowledge on the improvement of the crop and also on the processing techniques to secure high prices during the crop off-season. Market availability, pricing, and incidence of pests and diseases were found to be minor risk factors which were triggered by the major risk factors. The minor risk factors can be corrected only if the major risk factors are first given the necessary attention. About 10% of the farmers found to use the crop as a mulch to reduce soil temperatures and to improve soil fertility. The study revealed that most of the farmers were unaware of its utilisation as fodder, much, medicinal, nitrogen fixation, and many more. The risk of frequent drought in dry areas of South Africa where farmers solely depend on rainfall poses a serious threat to crop productivity. The majority of these risk factors are caused by climate change due to unrealistic, low rainfall with extreme temperatures poses a threat to food security, water, and the environment. The use of drought-tolerant, multipurpose legume crops such as pigeonpea, access to new information, provision of processing equipment, and support from all stakeholders will help in addressing food security for smallholder farmers. Policies should be revisited to address the prevailing risk factors faced by farmers and involve them in addressing the risk factors. Awareness should be prioritized in promoting the crop to improve its production and commercialization in the dryland farming system of South Africa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=management%20strategies" title="management strategies">management strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=pigeonpea" title=" pigeonpea"> pigeonpea</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholder%20farmers" title=" smallholder farmers"> smallholder farmers</a> </p> <a href="https://publications.waset.org/abstracts/142420/strategies-of-risk-management-for-smallholder-farmers-in-south-africa-a-case-study-on-pigeonpea-cajanus-cajan-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Comparative Study on Productivity, Chemical Composition and Yield Quality of Some Alternative Crops in Romanian Organic Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Toader">Maria Toader</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Valentin%20Roman"> Gheorghe Valentin Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Alina%20Maria%20Ionescu"> Alina Maria Ionescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crops diversity and maintaining and enhancing the fertility of agricultural lands are basic principles of organic farming. With a wider range of crops in agroecosystem can improve the ability to control weeds, pests and diseases, and the performance of crops rotation and food safety. In this sense, the main objective of the research was to study the productivity and chemical composition of some alternative crops and their adaptability to soil and climatic conditions of the agricultural area in Southern Romania and to cultivation in the organic farming system. The alternative crops were: lentil (7 genotypes); five species of grain legumes (5 genotypes); four species of oil crops (5 genotypes). The seed production was, on average: 1343 kg/ha of lentil; 2500 kg/ha of field beans; 2400 kg/ha of chick peas and blackeyed peas; more than 2000 kg/ha of atzuki beans, over 1250 kg/ha of fenugreek; 2200 kg/ha of safflower; 570 kg/ha of oil pumpkin; 2150 kg/ha of oil flax; 1518 kg/ha of camelina. Regarding chemical composition, lentil seeds contained: 22.18% proteins, 3.03% lipids, 33.29% glucides, 4.00% minerals, and 259.97 kcal energy values. For field beans: 21.50% proteins, 4.40% lipids, 63.90% glucides, 5.85% minerals, 395.36 kcal energetic value. For chick peas: 21.23% proteins, 4.55% lipids, 53.00% glucides, 3.67% minerals, 348.22 kcal energetic value. For blackeyed peas: 23.30% proteins, 2.10% lipids, 68.10% glucides, 3.93% minerals, 350.14 kcal energetic value. For adzuki beans: 21.90% proteins, 2.60% lipids, 69.30% glucides, 4.10% minerals, 402.48 kcal energetic value. For fenugreek: 21.30% proteins, 4.65% lipids, 63.83% glucides, 5.69% minerals, 396.54 kcal energetic value. For safflower: 12.60% proteins, 28.37% lipids, 46.41% glucides, 3.60% minerals, 505.78 kcal energetic value. For camelina: 20.29% proteins, 31.68% lipids, 36.28% glucides, 4.29% minerals, 526.63 kcal energetic value. For oil pumpkin: 29.50% proteins, 36.92% lipids, 18.50% glucides, 5.41% minerals, 540.15 kcal energetic value. For oil flax: 22.56% proteins, 34.10% lipids, 27.73% glucides, 5.25% minerals, 558.45 kcal energetic value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptability" title="adaptability">adaptability</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20crops" title=" alternative crops"> alternative crops</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20farming%20productivity" title=" organic farming productivity"> organic farming productivity</a> </p> <a href="https://publications.waset.org/abstracts/28059/comparative-study-on-productivity-chemical-composition-and-yield-quality-of-some-alternative-crops-in-romanian-organic-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Assessment of Conditions and Experience for Plantation of Agro-Energy Crops on Degraded Agricultural Land in Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djordjevic%20J.%20Sladjana">Djordjevic J. Sladjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Djordjevic-Milo%C5%A1evi%C4%87%20B.%20Suzana"> Djordjevic-Milošević B. Suzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1evi%C4%87%20M.%20Slobodan"> Milošević M. Slobodan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential of biomass as a renewable energy source leads Serbia to be the top of European countries by the amount of available but unused biomass. Technologies for its use are available and ecologically acceptable. Moreover, they are not expensive high-tech solutions even for the poor investment environment of Serbia, while other options seem to be less achievable. From the other point of view, Serbia has a huge percentage of unused agriculture land. Agricultural production in Serbia languishes: a large share of agricultural land therefore remains untreated, and there is a significant proportion of degraded land. From all the above, biomass intended for energy production is becoming an increasingly important factor in the stabilization of agricultural activities. Orientation towards the growing bioenergy crops versus conventional crop cultivation becomes an interesting option. The aim of this paper is to point out the possibility of growing energy crops in accordance with the conditions and cultural practice in rural areas of Serbia. First of all, the cultivation of energy crops on lower quality land is being discussed, in order to revitalize the rural areas of crops through their inclusion into potential energy sector. Next is the theme of throwing more light on the increase in the area under this competitive agricultural production to correct land use in terms of climate change in Serbia. The goal of this paper is to point out the contribution of the share of biomass in energy production and consumption, and the effect of reducing the negative environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-energy%20crops" title="agro-energy crops">agro-energy crops</a>, <a href="https://publications.waset.org/abstracts/search?q=conditions%20for%20plantation" title=" conditions for plantation"> conditions for plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=revitalization%20of%20rural%20areas" title=" revitalization of rural areas"> revitalization of rural areas</a>, <a href="https://publications.waset.org/abstracts/search?q=degraded%20and%20unused%20soils" title=" degraded and unused soils"> degraded and unused soils</a> </p> <a href="https://publications.waset.org/abstracts/48429/assessment-of-conditions-and-experience-for-plantation-of-agro-energy-crops-on-degraded-agricultural-land-in-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Effects of Chemical and Organic Fertilizer Application on Yield of Herbaceous Crops in Succession</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarantino%20E.">Tarantino E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Disciglio%20G."> Disciglio G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagliardi%20A."> Gagliardi A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gatta%20G."> Gatta G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarantino%20A."> Tarantino A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fertilizer is a critical input for improving production and increasing crop yields. Consecutive experimental trials during six years (from 2010-2015) were carried out in Apulia region (south-eastern Italy) on seven crops grown in cylinder pots. The aim was to determinate the effects of chemical and organic fertilizer on marketable yield and other parameters of processing tomato (Lycopersicum esculentum L., cv Docet), lettuce (Lactuca sativa L., cv Canasta), cauliflower (Brassica oleracea L., cv Casper), pepper (Capsicum annum L., cv Akron), fennel (Foeniculum vulgare L., cv Tarquinia), eggplant (Solanum melongena L. cv Primato F1) and chard (Beta vulgaris L., Argentata). At harvest the quail-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA). Results showed that the yields for all of these crops were greater under the chemical system than the organic system whereas quite variable results were generally observed for the other characteristics of the yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title="fertilizers">fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=herbaceous%20crops" title=" herbaceous crops"> herbaceous crops</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20characteristics" title=" yield characteristics"> yield characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=succession" title=" succession"> succession</a> </p> <a href="https://publications.waset.org/abstracts/34730/effects-of-chemical-and-organic-fertilizer-application-on-yield-of-herbaceous-crops-in-succession" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Contemporary Changes in Agricultural Land Use in Central and Eastern Europe: Direction and Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Ba%C5%84ski">Jerzy Bański</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Central and Eastern European agriculture is characterized by large spatial variations in the structure of agricultural land and the structure of crops on arable land. In general, field crops predominate among the land used for agriculture. In the southern part of the study area, permanent crops have a relatively large share, which is due to favorable climatic conditions. Clear differences between the north and south of the region concern the structure of crop cultivation. In the north, the cultivation of cereals, mainly wheat, definitely prevails. In the south of the region, on the other hand, the structure of crops is more diverse, as more industrial crops are grown in addition to cereals. The primary cognitive objective of the study is to diagnose and identify the directions of changes in the structure of agricultural land use in the CEE region. Particular attention was paid to the spatial differentiation of this structure and its importance in its formation of various conditions. The analysis included the basic elements of the structure of agricultural land use and the structure of crops on arable land. The decrease in the area of arable land is characteristic of the entire region and is the result of the territorial growth of cities, the development of communications infrastructure (rail and road), and the increase in the rationality of crop production involving, among other things, the exclusion from the cultivation of land with the lowest agro-ecological values and their afforestation. It can be summarized that the directions of changes in the basic categories of agricultural land are related to agro-ecological conditions, which indicates an increase in the rationality of crop production. In countries with lower-quality of agricultural production space, the share of grassland generally increased, while in countries with favorable conditions -mainly soil- the share of arable land increased. As for the structure of field crops, the direction of its changes seems to be mainly due to economic and social reasons. Ownership changes shaping an unfavorable agrarian structure (fragmentation and fragmentation of arable fields) and the process of aging of the rural population resulted in the abandonment of resource- and labor-intensive crops. As a result, the importance of growing fruits and vegetables, and potatoes has declined. The structure of vegetable crops has been greatly influenced by the accession of Central and Eastern European countries to the European Union. This is primarily the increase in the importance of oil crops (rapeseed and sunflower) related to biofuel production. In the case of cereal crops, the main direction of change was the increase in the share of wheat at the expense of other cereal species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=Central%20and%20Eastern%20Europe" title=" Central and Eastern Europe"> Central and Eastern Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=crops" title=" crops"> crops</a>, <a href="https://publications.waset.org/abstracts/search?q=arable%20land" title=" arable land"> arable land</a> </p> <a href="https://publications.waset.org/abstracts/165178/contemporary-changes-in-agricultural-land-use-in-central-and-eastern-europe-direction-and-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Biodiversity Interactions Between C3 and C4 Plants under Agroforestry Cropping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezzat%20Abd%20El%20Lateef">Ezzat Abd El Lateef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agroforestry means combining the management of trees with productive agricultural activities, especially in semiarid regions where crop yield increases are limited in agroforestry systems due to the fertility and microclimate improvements and the large competitive effect of trees with crops for water and nutrients, in order to assess the effect of agroforestry of some field crops with citrus trees as an approach to establish biodiversity in fruit tree plantations. Three field crops, i.e., maize, soybean and sunflower, were inter-planted with seedless orange trees (4*4 m) or were planted as solid plantings. The results for the trees indicated a larger fruit yield was obtained when soybean and sunflowers were interplant with citrus. Statistically significant effects (P<0.05) were found for maize grain and biological yields, with increased yields when grown as solid planting. There were no differences in the yields of soya bean and sunflower, where the yields were very similar between the two cropping systems. It is evident from the trials that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Maize, unlike the other crops, was more sensitive to shade conditions under agroforestry practice and not preferred in the biodiversity system. The potential of agroforestry to improve or increase biodiversity is efficient as the understorey crops are usually C4 species, and the overstorey trees are invariably C3 species in agroforestry. Improvement in interplant species is most likely if the understorey crop is a C3 species, which are usually light saturated in the open, and partial shade may have little effect on assimilation or by a concurrent reduction in transpiration. It could be concluded that agroforestry is an efficient concept to increase biodiversity through the interaction of trees with the interplant field crop species. Some field crops could be employed successfully, like soybean or sunflowers, while others like maize are sensitive to incorporate in agroforestry system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title="agroforestry">agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20crops" title=" field crops"> field crops</a>, <a href="https://publications.waset.org/abstracts/search?q=C3%20and%20C4%20plants" title=" C3 and C4 plants"> C3 and C4 plants</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/132500/biodiversity-interactions-between-c3-and-c4-plants-under-agroforestry-cropping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> The Dynamic of Nₘᵢₙ in Clay Loam Cambisol in Alternative Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danute%20Jablonskyte-Rasce">Danute Jablonskyte-Rasce</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Masilionyte"> Laura Masilionyte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field experiments of different farming systems were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). The research was designed to identify the effects of dry matter and nitrogen accumulated in the above-ground biomass of various catch crops grown after winter wheat on soil mineral nitrogen variation during the autumn and spring period in the presence of intensive leaching complex. Research was done in the soil differing in humus status in the organic and sustainable cropping systems by growing various plant mixtures as catch crops: narrow-leafed lupine (Lupinus angustifolius L.) and oil radish (Raphanus sativus var. Oleifera L.), white mustard (Sinapis alba L.) and buckwheat (Fagopyrum exculentum Moench.) and white mustard as a sole crop. All crop and soil management practices have shown optimal efficiency in late autumn – stubble breaking, catch crops and straw used during the post-harvest period of the main crops, reduced Nmin migration into deeper (40–80 cm) soil layer. The greatest Nmin reduction in the 0–40 cm soil layer during the period from late autumn to early spring was identified in the sustainable cropping system having applied N30 for the promotion of straw mineralization and with no catch crops cultivation. The sustainable cropping system, having applied N30 for straw mineralization and growing white mustard in combination with buckwheat as catch crops, Nmin difference in the spring compared with its status in the autumn in the soil low and moderate in humus was lower by 70.1% and 34.2%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20nitrogen" title="soil nitrogen">soil nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=catch%20crops" title=" catch crops"> catch crops</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20and%20sustainable%20farming%20systems" title=" ecological and sustainable farming systems"> ecological and sustainable farming systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Cambisol" title=" Cambisol"> Cambisol</a> </p> <a href="https://publications.waset.org/abstracts/84386/the-dynamic-of-n-in-clay-loam-cambisol-in-alternative-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminah%20Muchdar">Aminah Muchdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DROUGHT" title="DROUGHT">DROUGHT</a>, <a href="https://publications.waset.org/abstracts/search?q=engineered%20physiology" title=" engineered physiology"> engineered physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=osmolit%20sorbitol" title=" osmolit sorbitol"> osmolit sorbitol</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/36414/increasing-soybean-glycine-max-l-drought-resistance-with-osmolit-sorbitol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Implication to Environmental Education of Indigenous Knowledge and the Ecosystem of Upland Farmers in Aklan, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20Arangote">Emily Arangote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper defined the association between the indigenous knowledge, cultural practices and the ecosystem its implication to the environmental education to the farmers. Farmers recognize the need for sustainability of the ecosystem they inhabit. The cultural practices of farmers on use of indigenous pest control, use of insect-repellant plants, soil management practices that suppress diseases and harmful pests and conserve soil moisture are deemed to be ecologically-friendly. Indigenous plant materials that were more drought- and pest-resistant were grown. Crop rotation was implemented with various crop seeds to increase their disease resistance. Multi-cropping, planting of perennial crops, categorization of soil and planting of appropriate crops, planting of appropriate and leguminous crops, alloting land as watershed, and preserving traditional palay seed varieties were found to be beneficial in preserving the environment. The study also found that indigenous knowledge about crops are still relevant and useful to the current generation. This ensured the sustainability of our environment and incumbent on policy makers and educators to support and preserve for generations yet to come. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20practices" title="cultural practices">cultural practices</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20education" title=" environmental education"> environmental education</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20knowledge" title=" indigenous knowledge"> indigenous knowledge</a> </p> <a href="https://publications.waset.org/abstracts/79409/implication-to-environmental-education-of-indigenous-knowledge-and-the-ecosystem-of-upland-farmers-in-aklan-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Climate Change and Food Security: Effects of Ozone on Crops in North-West Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nauman%20Ahmad">Muhammad Nauman Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20B%C3%BCker"> Patrick Büker</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Khalid"> Sofia Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Leon%20Van%20Den%20Berg"> Leon Van Den Berg</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ullah%20Shah"> Hamid Ullah Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Wahid"> Abdul Wahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Emberson"> Lisa Emberson</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20A.%20Power"> Sally A. Power</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Ashmore"> Mike Ashmore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although ozone is well-documented to affect crop yields in the densely populated Indo-Gangetic Plain, there is little knowledge of its effects around cities in more remote areas of South Asia. We surveyed crops around the city of Peshawar, Pakistan for visible injury, linking this to passive measurements of ozone concentrations. Foliar injury was found in the field on potato, onion and cotton when the mean monthly ozone concentration reached 35-55ppb. The symptoms on onion were reproduced in ozone fumigation experiments, which also showed that daytime ozone concentrations of 60ppb and above significantly reduce the growth of Pakistani varieties of both spinach (Beta vulgaris) and onion. Aphid infestation on spinach was also reduced at these elevated ozone concentrations. The ozone concentrations in Peshawar are comparable to those through many parts of northern south Asia, where ozone may therefore be a significant threat to sensitive vegetable crops in peri-urban regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozone" title="ozone">ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20crops" title=" vegetable crops"> vegetable crops</a>, <a href="https://publications.waset.org/abstracts/search?q=peshawar" title=" peshawar"> peshawar</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20asia" title=" south asia"> south asia</a> </p> <a href="https://publications.waset.org/abstracts/20539/climate-change-and-food-security-effects-of-ozone-on-crops-in-north-west-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">740</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Effect of Vermicompost and Vermitea on the Growth and Yield of Selected Vegetable Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josephine%20R.%20Migalbin">Josephine R. Migalbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jurhamid%20C.%20Imlan"> Jurhamid C. Imlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20P.%20Esteban"> Evelyn P. Esteban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to determine the effect of vermicompost and vermitea as organic fertilizers on the growth and yield of selected vegetable crops specifically eggplant, tomatoes and sweet pepper. The study was laid-out in Randomized Complete Block Design with 4 treatments replicated 4 times. The treatments were as follows: Treatment I (control), Treatment II (vermitea), Treatment III (vermicompost with buffalo manure), and Treatment IV (vermicompost with goat and sheep manure). In all the vegetable crops, almost all parameters significantly increased compared with the control except for number of fruits in eggplant and plant height in tomatoes where no significant difference was observed among treatments. The highest marketable fruit yield (tons/ha) was obtained from plants applied with vermicompost with goat and sheep manure but comparable with plants applied with vermicompost with buffalo manure and vermitea while the control plots received the lowest yield. The 28 spotted beetle (Epilachna philippinensis), and shoot and fruit borer (Leucinodes orbonalis) were the serious pests observed in the study on eggplant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marketable%20fruit%20yield" title="marketable fruit yield">marketable fruit yield</a>, <a href="https://publications.waset.org/abstracts/search?q=vermicompost" title=" vermicompost"> vermicompost</a>, <a href="https://publications.waset.org/abstracts/search?q=vermitea" title=" vermitea"> vermitea</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20crops" title=" vegetable crops"> vegetable crops</a> </p> <a href="https://publications.waset.org/abstracts/26398/effect-of-vermicompost-and-vermitea-on-the-growth-and-yield-of-selected-vegetable-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> RNA Interference Technology as a Veritable Tool for Crop Improvement and Breeding for Biotic Stress Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yusuf">M. Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent discovery of the phenomenon of RNA interference has led to its application in various aspects of plant improvement. Crops can be modified by engineering novel RNA interference pathways that create small RNA molecules to alter gene expression in crops or plant pests. RNA interference can generate new crop quality traits or provide protection against insects, nematodes and pathogens without introducing new proteins into food and feed products. This is an advantage in contrast with conventional procedures of gene transfer. RNA interference has been used to develop crop varieties resistant to diseases, pathogens and insects. Male sterility has been engineered in plants using RNA interference. Better quality crops have been developed through the application of RNA interference etc. The objective of this paper is to highlight the application of RNA interference in crop improvement and to project its potential future use to solve problems of agricultural production in relation to plant breeding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RNA%20interference" title="RNA interference">RNA interference</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20Improvement" title=" crop Improvement"> crop Improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20production" title=" agricultural production"> agricultural production</a> </p> <a href="https://publications.waset.org/abstracts/10963/rna-interference-technology-as-a-veritable-tool-for-crop-improvement-and-breeding-for-biotic-stress-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dryland%20crops&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10