CINXE.COM

Search results for: rectenna

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rectenna</title> <meta name="description" content="Search results for: rectenna"> <meta name="keywords" content="rectenna"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rectenna" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rectenna"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rectenna</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design of a Rectifier with Enhanced Efficiency and a High-gain Antenna for Integrated and Compact-size Rectenna Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawaa%20Maher">Rawaa Maher</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Allam"> Ahmed Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruichi%20Kanaya"> Haruichi Kanaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20B.%20Abdelrahman"> Adel B. Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a compact, high-efficiency integrated rectenna is presented to operate in the 2.45 GHz band. A comparison between two rectifier topologies is performed to verify the benefits of removing the matching network from the rectifier. A rectifier high conversion efficiency of 74.1% is achieved. To complete the rectenna system, a novel omnidirectional antenna with high gain (3.72 dB) and compact size (25 mm * 29 mm) is designed and fabricated. The same antenna is used with a reflector for raising the gain to nearly 8.3 dB. The simulation and measurement results of the antenna are in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20rectenna" title=" integrated rectenna"> integrated rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=rectenna" title=" rectenna"> rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20energy%20harvesting" title=" RF energy harvesting"> RF energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks%28WSN%29" title=" wireless sensor networks(WSN)"> wireless sensor networks(WSN)</a> </p> <a href="https://publications.waset.org/abstracts/146075/design-of-a-rectifier-with-enhanced-efficiency-and-a-high-gain-antenna-for-integrated-and-compact-size-rectenna-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Connected Objects with Optical Rectenna for Wireless Information Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayma%20Bahar">Chayma Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Baccouch"> Chokri Baccouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedi%20Sakli"> Hedi Sakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nizar%20Sakli"> Nizar Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20rectenna" title=" optical rectenna"> optical rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a> </p> <a href="https://publications.waset.org/abstracts/129451/connected-objects-with-optical-rectenna-for-wireless-information-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Rectenna Modeling Based on MoM-GEC Method for RF Energy Harvesting </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soulayma%20Smirani">Soulayma Smirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Aidi"> Mourad Aidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Taoufik%20Aguili"> Taoufik Aguili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy harvesting has arisen as a prominent research area for low power delivery to RF devices. Rectennas have become a key element in this technology. In this paper, electromagnetic modeling of a rectenna system is presented. In our approach, a hybrid technique was demonstrated to associate both the method of auxiliary sources (MAS) and MoM-GEC (the method of moments combined with the generalized equivalent circuit technique). Auxiliary sources were used in order to substitute specific electronic devices. Therefore, a simple and controllable model is obtained. Also, it can easily be interconnected to form different topologies of rectenna arrays for more energy harvesting. At last, simulation results show the feasibility and simplicity of the proposed rectenna model with high precision and computation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20electromagnetics" title="computational electromagnetics">computational electromagnetics</a>, <a href="https://publications.waset.org/abstracts/search?q=MoM-GEC%20method" title=" MoM-GEC method"> MoM-GEC method</a>, <a href="https://publications.waset.org/abstracts/search?q=rectennas" title=" rectennas"> rectennas</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20energy%20harvesting" title=" RF energy harvesting"> RF energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/104394/rectenna-modeling-based-on-mom-gec-method-for-rf-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Electromagnetic Energy Harvesting by Using a Rectenna with a Metamaterial Lens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ursula%20D.%20C.%20Resende">Ursula D. C. Resende</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabiano%20S.%20Bicalho"> Fabiano S. Bicalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20T.%20M.%20Gon%C3%A7alves"> Sandro T. M. Gonçalves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing demand for cheap and clean energy sources have been motivated by the study and development of distinct technologies and devices able to provide different amounts of energy. In order to supply energy for small loads, the energy from the electromagnetic spectrum can be harvested. This possibility is particularly interesting because this kind of energy is constantly available in the environment and the number of radiofrequency sources is permanently increasing, due to advances in telecommunications services. A rectenna, which is a combination of an antenna and a rectifier circuit, is an equipment that can efficiently perform the electromagnetic energy harvesting. However, since the amount of electromagnetic energy available in the environment is very small, limited values of power can be harvested by the rectenna. Therefore, several technical strategies have been investigated in order to increase this amount of power. In this work, a metamaterial electromagnetic lens is used to improve the electromagnetic energy harvesting. The rectenna investigated was designed and optimized to charge a Li-Ion battery using the electromagnetic energy from an internet Wi-Fi commercial router model TL-WR841HP operating in 2.45 GHz with maximal output power equal to 18 dBm. The rectenna consists of a high directive antenna, a double voltage rectifier circuit and a metamaterial lens. The printed antenna, constituted of two rectangular radiator elements, was projected and optimized by using the Computer Simulation Software (CST) in order to obtain high directivities and values of S11 parameter below -10 dB in 2.45 GHz. The antenna was printed over a double-sided copper fiberglass substrate, FR4, with characterized relative electric permittivity εr = 4.3 and tangent of losses δ = 0.01. The rectifier circuit, which incorporates a circuit for impedance matching and uses the Schottky diode HSMS-2852, was projected and optimized by using Advanced Design Software (ADS) and built over the same FR4 substrate. The metamaterial cell is composed of two Square Split Ring Resonator (S-SRR) and a thin wire in order to operate with negative values of εr and relative magnetic permeability in 2.45 GHz. In order to evaluate the performance of the purposed rectenna two experimental charging tests were performed, one without and other with the metamaterial lens. The result obtained demonstrate that the electromagnetic lens was able to significantly increase the levels of electric current delivered to the battery, approximately 44%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20energy%20harvesting" title="electromagnetic energy harvesting">electromagnetic energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20lens" title=" electromagnetic lens"> electromagnetic lens</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=rectenna" title=" rectenna"> rectenna</a> </p> <a href="https://publications.waset.org/abstracts/107084/electromagnetic-energy-harvesting-by-using-a-rectenna-with-a-metamaterial-lens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Proposal of a Rectenna Built by Using Paper as a Dielectric Substrate for Electromagnetic Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ursula%20D.%20C.%20Resende">Ursula D. C. Resende</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20G.%20Santos"> Yan G. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20M.%20de%20O.%20Andrade"> Lucas M. de O. Andrade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent and fast development of the internet, wireless, telecommunication technologies and low-power electronic devices has led to an expressive amount of electromagnetic energy available in the environment and the smart applications technology expansion. These applications have been used in the Internet of Things devices, 4G and 5G solutions. The main feature of this technology is the use of the wireless sensor. Although these sensors are low-power loads, their use imposes huge challenges in terms of an efficient and reliable way for power supply in order to avoid the traditional battery. The radio frequency based energy harvesting technology is especially suitable to wireless power sensors by using a rectenna since it can be completely integrated into the distributed hosting sensors structure, reducing its cost, maintenance and environmental impact. The rectenna is an equipment composed of an antenna and a rectifier circuit. The antenna function is to collect as much radio frequency radiation as possible and transfer it to the rectifier, which is a nonlinear circuit, that converts the very low input radio frequency energy into direct current voltage. In this work, a set of rectennas, mounted on a paper substrate, which can be used for the inner coating of buildings and simultaneously harvest electromagnetic energy from the environment, is proposed. Each proposed individual rectenna is composed of a 2.45 GHz patch antenna and a voltage doubler rectifier circuit, built in the same paper substrate. The antenna contains a rectangular radiator element and a microstrip transmission line that was projected and optimized by using the Computer Simulation Software (CST) in order to obtain values of S11 parameter below -10 dB in 2.45 GHz. In order to increase the amount of harvested power, eight individual rectennas, incorporating metamaterial cells, were connected in parallel forming a system, denominated Electromagnetic Wall (EW). In order to evaluate the EW performance, it was positioned at a variable distance from the internet router, and a 27 kΩ resistive load was fed. The results obtained showed that if more than one rectenna is associated in parallel, enough power level can be achieved in order to feed very low consumption sensors. The 0.12 m2 EW proposed in this work was able to harvest 0.6 mW from the environment. It also observed that the use of metamaterial structures provide an expressive growth in the amount of electromagnetic energy harvested, which was increased from 0. 2mW to 0.6 mW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20energy%20harvesting" title="electromagnetic energy harvesting">electromagnetic energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=rectenna" title=" rectenna"> rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=rectifier%20circuit" title=" rectifier circuit"> rectifier circuit</a> </p> <a href="https://publications.waset.org/abstracts/107086/proposal-of-a-rectenna-built-by-using-paper-as-a-dielectric-substrate-for-electromagnetic-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakelane%20A.%20Mendes">Rakelane A. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20T.%20M.%20Goncalves"> Sandro T. M. Goncalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphaella%20L.%20R.%20Silva"> Raphaella L. R. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipole%20antenna" title="dipole antenna">dipole antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=double-band" title=" double-band"> double-band</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency" title=" high efficiency"> high efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rectenna" title=" rectenna"> rectenna</a> </p> <a href="https://publications.waset.org/abstracts/107089/high-efficiency-double-band-printed-rectenna-model-for-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Modeling and Design of Rectenna for Low Power Medical Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhav%20Pant">Madhav Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Khem%20N.%20Poudel"> Khem N. Poudel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless power transfer is continuously becoming more powerful and compact in medical implantable devices and the wide range of applications. A rectenna is designed for wireless power transfer technique that can be applied to medical implant devices. The experiment is performed using ANSYS HFSS, a full wave electromagnetic simulation. The dipole antenna combinations operating at 2.4 GHz are used for wireless power transfer and the maximum DC voltage reception by the implant considering International Commission on Non-Ionizing Radiation Protection (ICNIRP) regulation. The power receiving dipole antenna is placed inside the cylindrical geometry having the similar properties of the human body at the frequency of 2.4 GHz. Our design can provide the power at the depth of 5 mm skin and 5mm of bone for the implant. The voltage doubler/quadrupler rectifier in ANSYS Simplorer is used to calculate the exact DC current utilized by implant inside the human body. The qualitative design and analysis of this wireless power transfer method could also be used for other biomedical implants systems such as cardiac pacemaker, insulin pump, and retinal implants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipole%20antenna" title="dipole antenna">dipole antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20implants" title=" medical implants"> medical implants</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=rectifier" title=" rectifier"> rectifier</a> </p> <a href="https://publications.waset.org/abstracts/98975/modeling-and-design-of-rectenna-for-low-power-medical-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felipe%20M.%20de%20Freitas">Felipe M. de Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%8Dcaro%20V.%20Soares"> Ícaro V. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20L.%20L.%20Fortes"> Lucas L. L. Fortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20T.%20M.%20Gon%C3%A7alves"> Sandro T. M. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Arsula%20D.%20C.%20Resende"> Úrsula D. C. Resende</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting%20system" title="energy harvesting system">energy harvesting system</a>, <a href="https://publications.waset.org/abstracts/search?q=LE-FDTD" title=" LE-FDTD"> LE-FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=rectenna" title=" rectenna"> rectenna</a>, <a href="https://publications.waset.org/abstracts/search?q=rectifier" title=" rectifier"> rectifier</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20systems" title=" wireless power systems"> wireless power systems</a> </p> <a href="https://publications.waset.org/abstracts/107124/design-of-an-ultra-high-frequency-rectifier-for-wireless-power-systems-by-using-finite-difference-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10