CINXE.COM

Vassil Guliashki - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Vassil Guliashki - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="XCQHo9aR7RoUZw3Njv0e2lO7KuD0gEAc27NPLCqzqP_hj7b9AVyZzh4rQlhofkgzmd91mHP7GGsMFx3Nvu0Hcg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="vassil guliashki" /> <meta name="description" content="Vassil Guliashki: 3 Followers, 5 Following, 63 Research papers. Research interests: Simulated Annealing, Scientific Computing, and Firefly Algorithm." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '9edfe5ffde42435a7fdbf4ab166bfd436281cd36'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14029,"monthly_visitors":"101 million","monthly_visitor_count":101265493,"monthly_visitor_count_in_millions":101,"user_count":283129243,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1739917877000); window.Aedu.timeDifference = new Date().getTime() - 1739917877000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-40698df34f913bd208bb70f09d2feb7c6286046250be17a4db35bba2c08b0e2f.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-a22f75d8519394c21253dae46c8c5d60ad36ea68c7d494347ec64229d8c1cf85.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-a2c5122faf5fcaf00ecbad8beaeea2e22d822fc6d62b0007dc47c774a0786459.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/VassilGuliashki" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-26c495e270e11255e8a37083a9d2d8996339f85c9579fb966d471b4fe2424b05.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki","photo":"https://0.academia-photos.com/47469692/23569546/22616471/s65_vassil.guliashki.jpg","has_photo":true,"is_analytics_public":false,"interests":[{"id":6421,"name":"Simulated Annealing","url":"https://www.academia.edu/Documents/in/Simulated_Annealing"},{"id":35639,"name":"Scientific Computing","url":"https://www.academia.edu/Documents/in/Scientific_Computing"},{"id":176826,"name":"Firefly Algorithm","url":"https://www.academia.edu/Documents/in/Firefly_Algorithm"},{"id":131957,"name":"Bat Algorithm","url":"https://www.academia.edu/Documents/in/Bat_Algorithm"},{"id":85344,"name":"Model Selection","url":"https://www.academia.edu/Documents/in/Model_Selection"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/VassilGuliashki&quot;,&quot;location&quot;:&quot;/VassilGuliashki&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/VassilGuliashki&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-b12237af-38c3-4d8c-8464-cf14e799ae71"></div> <div id="ProfileCheckPaperUpdate-react-component-b12237af-38c3-4d8c-8464-cf14e799ae71"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Vassil Guliashki" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/47469692/23569546/22616471/s200_vassil.guliashki.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Vassil Guliashki</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Vassil" data-follow-user-id="47469692" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="47469692"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">3</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">5</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/VassilGuliashki/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/CESARAUGUSTOGARCIAGALINDO"><img class="profile-avatar u-positionAbsolute" alt="CESAR AUGUSTO GARCIA GALINDO" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/189125302/52476654/40586943/s200_cesar_augusto.garcia_galindo.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/CESARAUGUSTOGARCIAGALINDO">CESAR AUGUSTO GARCIA GALINDO</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/ManaliChatterjee2"><img class="profile-avatar u-positionAbsolute" alt="Manali Mnl" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/60833155/15853761/16380868/s200_manali.chatterjee.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/ManaliChatterjee2">Manali Mnl</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://qlu.academia.edu/JungBinSu"><img class="profile-avatar u-positionAbsolute" alt="Jung-Bin Su" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/179859528/104500686/93689231/s200_jung-bin.su.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://qlu.academia.edu/JungBinSu">Jung-Bin Su</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Qilu University of Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://imst.academia.edu/AndreiPopescu"><img class="profile-avatar u-positionAbsolute" alt="Andrei-Dragos Popescu" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/174080753/48290357/41532529/s200_andrei.popescu.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://imst.academia.edu/AndreiPopescu">Andrei-Dragos Popescu</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Craiova</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/EricWiah"><img class="profile-avatar u-positionAbsolute" alt="Eric Wiah" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/14845776/4048229/36024444/s200_eric.wiah.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/EricWiah">Eric Wiah</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uniroma1.academia.edu/AndreaDelleFoglie"><img class="profile-avatar u-positionAbsolute" alt="Andrea Delle Foglie" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/108590599/26686118/36528052/s200_andrea.delle_foglie.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uniroma1.academia.edu/AndreaDelleFoglie">Andrea Delle Foglie</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universit脿 degli Studi &quot;La Sapienza&quot; di Roma</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/M%C3%A9zianeA%C3%AFder"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/M%C3%A9zianeA%C3%AFder">M茅ziane A茂der</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://iitbbs.academia.edu/avishekbhandari"><img class="profile-avatar u-positionAbsolute" alt="avishek bhandari" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/1001981/356057/428239/s200_avishek.bhandari.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://iitbbs.academia.edu/avishekbhandari">avishek bhandari</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">IIT Bhubaneswar</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/LorneSwitzer"><img class="profile-avatar u-positionAbsolute" alt="Lorne Switzer" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/35205782/20248303/19964329/s200_lorne.switzer.jpeg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/LorneSwitzer">Lorne Switzer</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/GualterManuelMedeirosCouto"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/GualterManuelMedeirosCouto">Gualter Manuel Medeiros Couto</a></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47469692" href="https://www.academia.edu/Documents/in/Simulated_Annealing"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/VassilGuliashki&quot;,&quot;location&quot;:&quot;/VassilGuliashki&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/VassilGuliashki&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Simulated Annealing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-3eb6d243-6592-4883-8dcf-898ce7066132"></div> <div id="Pill-react-component-3eb6d243-6592-4883-8dcf-898ce7066132"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47469692" href="https://www.academia.edu/Documents/in/Scientific_Computing"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Scientific Computing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-c426e11d-665d-48d3-b1dd-388932859bdc"></div> <div id="Pill-react-component-c426e11d-665d-48d3-b1dd-388932859bdc"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47469692" href="https://www.academia.edu/Documents/in/Firefly_Algorithm"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Firefly Algorithm&quot;]}" data-trace="false" data-dom-id="Pill-react-component-fac6f050-1a1d-4e8d-9c4c-f3ab74984df8"></div> <div id="Pill-react-component-fac6f050-1a1d-4e8d-9c4c-f3ab74984df8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47469692" href="https://www.academia.edu/Documents/in/Bat_Algorithm"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Bat Algorithm&quot;]}" data-trace="false" data-dom-id="Pill-react-component-64c282b6-f22e-4cd7-a125-692bd8756263"></div> <div id="Pill-react-component-64c282b6-f22e-4cd7-a125-692bd8756263"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="47469692" href="https://www.academia.edu/Documents/in/Model_Selection"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Model Selection&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1214b4b0-1fcc-458e-be45-63134532482d"></div> <div id="Pill-react-component-1214b4b0-1fcc-458e-be45-63134532482d"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Vassil Guliashki</h3></div><div class="js-work-strip profile--work_container" data-work-id="108414772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414772/Two_stage_portfolio_risk_optimisation_based_on_MVO_model"><img alt="Research paper thumbnail of Two-stage portfolio risk optimisation based on MVO model" class="work-thumbnail" src="https://attachments.academia-assets.com/106805361/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414772/Two_stage_portfolio_risk_optimisation_based_on_MVO_model">Two-stage portfolio risk optimisation based on MVO model</a></div><div class="wp-workCard_item"><span>International Journal of Reasoning-based Intelligent Systems</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents a two-stage portfolio risk optimisation based on Markowitz&#39;s mean variance op...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents a two-stage portfolio risk optimisation based on Markowitz&#39;s mean variance optimisation (MVO) model. Historical return data for six asset classes are used to calculate the optimal proportions of assets, included in a portfolio, so that the expected return of each asset is no less than in advance given target value. Optimisation procedure is performed at the first stage, in order to select a limited number of assets among a large assets sample. At the second stage the optimal proportions of selected assets in the portfolio are calculated, minimising a risk objective function for a given rate of return. Ten optimisation problems are solved for different expected rate of return. The optimisation is performed in MATLAB. The proposed approach is robust and could be used successfully to solve large-scale portfolio optimisation problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65b1da296a627f3847395f8fbe1b814b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805361,&quot;asset_id&quot;:108414772,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805361/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414772]").text(description); $(".js-view-count[data-work-id=108414772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65b1da296a627f3847395f8fbe1b814b" } } $('.js-work-strip[data-work-id=108414772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414772,"title":"Two-stage portfolio risk optimisation based on MVO model","internal_url":"https://www.academia.edu/108414772/Two_stage_portfolio_risk_optimisation_based_on_MVO_model","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805361,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805361/thumbnails/1.jpg","file_name":"IJRIS.2020.pdf","download_url":"https://www.academia.edu/attachments/106805361/download_file","bulk_download_file_name":"Two_stage_portfolio_risk_optimisation_ba.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805361/IJRIS.2020-libre.pdf?1697887864=\u0026response-content-disposition=attachment%3B+filename%3DTwo_stage_portfolio_risk_optimisation_ba.pdf\u0026Expires=1739921476\u0026Signature=V9fh-UYhxAoAyjoBN-EIOb~G4nbCAB-AkwMzq~gpDqUBysKJYGgufEK9DnItGv-hU36v-KtEKemZuClEm0id9J8uEWIitDF10zagnedMNcf-Y~w7CpdZOUQ1Bz3XwiBt0YCDP~W0EnFb2WhQ3g-qHu9p36fDwGo4QbpLHaIDuN2GSHeTuuYBgPauBvbdhch4~lID7k8MXGe~JR5YcwMuk6b1rjPh3dnYCQc3tG1ojQAYjZh8T2aVLOpgYUuAErDqwVBNVGOImZbmf1khFFUiGxMtMMGFoRWM0DqrzMKjuPpkPJLd0eOTOaiBgtHX~ZnQpo-vY-eF7IahrkC9jPCDRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414771"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414771/An_Algorithm_for_Speed_Optimization_in_Autonomous_Vehicles"><img alt="Research paper thumbnail of An Algorithm for Speed Optimization in Autonomous Vehicles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414771/An_Algorithm_for_Speed_Optimization_in_Autonomous_Vehicles">An Algorithm for Speed Optimization in Autonomous Vehicles</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414771"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414771"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414771; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414771]").text(description); $(".js-view-count[data-work-id=108414771]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414771; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414771']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414771]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414771,"title":"An Algorithm for Speed Optimization in Autonomous Vehicles","internal_url":"https://www.academia.edu/108414771/An_Algorithm_for_Speed_Optimization_in_Autonomous_Vehicles","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414770"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414770/An_accelerated_genetic_reconstruction_algorithm_for_inverse_EIT_problems"><img alt="Research paper thumbnail of An accelerated genetic reconstruction algorithm for inverse EIT problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414770/An_accelerated_genetic_reconstruction_algorithm_for_inverse_EIT_problems">An accelerated genetic reconstruction algorithm for inverse EIT problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use the Finite Element Method (FEM) (see [18, 22]) to solve the forward problem. It is very di...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use the Finite Element Method (FEM) (see [18, 22]) to solve the forward problem. It is very difficult to use an exact method to solve the inverse problem, taking into ac-count the ill-posedness of the problem. It is known that the complexity of the exact optimization methods for such ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414770"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414770"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414770; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414770]").text(description); $(".js-view-count[data-work-id=108414770]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414770; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414770']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414770]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414770,"title":"An accelerated genetic reconstruction algorithm for inverse EIT problems","internal_url":"https://www.academia.edu/108414770/An_accelerated_genetic_reconstruction_algorithm_for_inverse_EIT_problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414769/Application_of_Mathematical_Induction_for_Inheritance_Law_Interpretations"><img alt="Research paper thumbnail of Application of Mathematical Induction for Inheritance Law Interpretations" class="work-thumbnail" src="https://attachments.academia-assets.com/106805332/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414769/Application_of_Mathematical_Induction_for_Inheritance_Law_Interpretations">Application of Mathematical Induction for Inheritance Law Interpretations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f07d137e6aa8be1b0b86ac497b1dfe90" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805332,&quot;asset_id&quot;:108414769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805332/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414769]").text(description); $(".js-view-count[data-work-id=108414769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f07d137e6aa8be1b0b86ac497b1dfe90" } } $('.js-work-strip[data-work-id=108414769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414769,"title":"Application of Mathematical Induction for Inheritance Law Interpretations","internal_url":"https://www.academia.edu/108414769/Application_of_Mathematical_Induction_for_Inheritance_Law_Interpretations","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805332,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805332/thumbnails/1.jpg","file_name":"ijitk04-3-p07.pdf","download_url":"https://www.academia.edu/attachments/106805332/download_file","bulk_download_file_name":"Application_of_Mathematical_Induction_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805332/ijitk04-3-p07-libre.pdf?1697887863=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Mathematical_Induction_fo.pdf\u0026Expires=1739921476\u0026Signature=ABWhci8aJ3-vg4qm5Jf3tsmUFMRH5JPmbzhgyam8w0g8SLUxs7l03SSrNeBAYLUHs~IAXTcT7FoiSPd~gUUtA3kW~jUqKsZMdpRZ5uD-Mw~bmhdqppi5el-uaZOo9PUhpgFQLlqRfnnKdKamrQqF4xeDQx4B~MiO9NNGYQFC36Fip8~FgPkNeqIY~oYXfryzdw4WANqu4zzkKtLThNJmTXqD9gdQN969wcNlUHIz8sBiaW5Z37mcbalkRpNkyOA2a2VTuZ~lmkHrxwbO5kKUkON7zU2zJipjft~0UnjB5OdsZfRfwfAtHESSfsrwUnAymViNAiytkHryfPvUeTv-gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106805336,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805336/thumbnails/1.jpg","file_name":"ijitk04-3-p07.pdf","download_url":"https://www.academia.edu/attachments/106805336/download_file","bulk_download_file_name":"Application_of_Mathematical_Induction_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805336/ijitk04-3-p07-libre.pdf?1697887862=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Mathematical_Induction_fo.pdf\u0026Expires=1739921476\u0026Signature=EZlzi9Ei9gwxuSoHyLwsGQx1U2OhiRkJq1PY08xuH4fG1hShJkotTVkaLx9oY0-3DGuSa6gxtBfOBVqIgzwdtatNX4gSReK~hKtd86x9MpnVngaBBT6dgjMlc5xbhMqSQkU-6jpsvMyyHv12x~CQG9QhjvNJ4O7ctNQPt1YAjaQYIJiiXSAru7wiaU3Op4DzBYgHu3mrosEG41G3sALBIitrpRAjHUCJ-sEqIU0zS18-9mWzerPWcZEEnl5LwTBzWMWWDcj9l4e2hyQnUGEHfEmvJ7DhJjlwxH3hp1JGJFePANcTBgZZDOZTAoE4WYF~9isLn-HpniO38ynrNT9UsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414709"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414709/Multi_Objective_Optimization_Approach_for_Energy_Efficiency_in_Microgrids"><img alt="Research paper thumbnail of Multi-Objective Optimization Approach for Energy Efficiency in Microgrids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414709/Multi_Objective_Optimization_Approach_for_Energy_Efficiency_in_Microgrids">Multi-Objective Optimization Approach for Energy Efficiency in Microgrids</a></div><div class="wp-workCard_item"><span>IFAC-PapersOnLine</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The aim of this article is to present a methodology and an approach for energy efficienc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The aim of this article is to present a methodology and an approach for energy efficiency optimization for buildings, connected in microgrids. The initial investment costs for the building and the energy costs are optimized while the environmental pollution is minimized at the same time. A bi-criterion optimization problem is formulated. It is solved by a multi-objective genetic algorithm in MATLAB. The possibilities of the approach are illustrated by the optimization of the energy efficiency of a group of three-storey houses connected in a microgrid. The obtained results demonstrate that the proposed approach could be implemented for different real problems concerning the buildings energy efficiency and may be helpful for construction managers, architects and decision makers in this area.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414709"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414709"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414709; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414709]").text(description); $(".js-view-count[data-work-id=108414709]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414709; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414709']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414709]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414709,"title":"Multi-Objective Optimization Approach for Energy Efficiency in Microgrids","internal_url":"https://www.academia.edu/108414709/Multi_Objective_Optimization_Approach_for_Energy_Efficiency_in_Microgrids","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414706"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414706/An_Accelerated_Genetic_Single_Objective_Algorithm_for_Optimization_of_Energy_Flows_in_Microgrids"><img alt="Research paper thumbnail of An Accelerated Genetic Single Objective Algorithm for Optimization of Energy Flows in Microgrids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414706/An_Accelerated_Genetic_Single_Objective_Algorithm_for_Optimization_of_Energy_Flows_in_Microgrids">An Accelerated Genetic Single Objective Algorithm for Optimization of Energy Flows in Microgrids</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An accelerated genetic algorithm called ASOGA for solving multi-objective optimization problems i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An accelerated genetic algorithm called ASOGA for solving multi-objective optimization problems in a grid-connected microgrid is proposed in this paper. One four-criterial optimization problem is formulated. By means of the weighted sum scalarization the problem is transformed into single objective one and corresponding Pareto-optimal schedules of energy flows in the microgrid are obtained. The comparison of the novel algorithm with a trivial genetic algorithm shows an essential reduction of iterations number, necessary to achieve the final solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414706"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414706"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414706; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414706]").text(description); $(".js-view-count[data-work-id=108414706]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414706; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414706']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414706]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414706,"title":"An Accelerated Genetic Single Objective Algorithm for Optimization of Energy Flows in Microgrids","internal_url":"https://www.academia.edu/108414706/An_Accelerated_Genetic_Single_Objective_Algorithm_for_Optimization_of_Energy_Flows_in_Microgrids","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414704"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414704/Energy_Scheduling_for_Island_Microgrid_Applications"><img alt="Research paper thumbnail of Energy Scheduling for Island Microgrid Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/106805256/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414704/Energy_Scheduling_for_Island_Microgrid_Applications">Energy Scheduling for Island Microgrid Applications</a></div><div class="wp-workCard_item"><span>Journal of Communication and Computer</span><span>, Jun 28, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper considers the calculation of an effective energy schedule in an islanded microgrid. Gri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper considers the calculation of an effective energy schedule in an islanded microgrid. GridLab-D open source simulation tool is used for simulation of microgrid elements. Matlab environment is used to run an optimization solver. The product GridMat is used as an interface tool between Matlab and GridLab-D. An economic scheduling optimization problem for the considered microgrid is formulated and solved. Analysis of the obtained results is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7f9eb71b78232e6d2293a9c3327ea131" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805256,&quot;asset_id&quot;:108414704,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805256/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414704"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414704"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414704; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414704]").text(description); $(".js-view-count[data-work-id=108414704]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414704; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414704']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7f9eb71b78232e6d2293a9c3327ea131" } } $('.js-work-strip[data-work-id=108414704]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414704,"title":"Energy Scheduling for Island Microgrid Applications","internal_url":"https://www.academia.edu/108414704/Energy_Scheduling_for_Island_Microgrid_Applications","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805256,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805256/thumbnails/1.jpg","file_name":"582bb7727270e.pdf","download_url":"https://www.academia.edu/attachments/106805256/download_file","bulk_download_file_name":"Energy_Scheduling_for_Island_Microgrid_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805256/582bb7727270e-libre.pdf?1697887873=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_Scheduling_for_Island_Microgrid_A.pdf\u0026Expires=1739921476\u0026Signature=hKa1-XCEglI688Tx8KsieEitiYkJGz3F8zrSxeqaLAANHRLeTJ3z~QBiqmRgkH49cwto2mhYYb0c6YQAD8oQDY4-rD53ixY1wo~ajLUxo-Ymxaw289rncPHKUGFDWPn9mufS~hjQlsxH1wDoK9UZlskGq6sn2PNtDCHfadPahtpehd6XgM4dSGx~AzyiZNqB9o8swQ8vId90LE6DXmU46CEPHQDRVKq4g0htWajRf7mS~QPDp7fRa6vnVG7ke34jauIy9~UGnsdTXF0OEgtMfZOLUqD9EeQgNJt3IECwsp5ybkZWOUL7MQI78sNYtAhOrNyxdGPW3Sc0TTunxGTdtQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106805252,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805252/thumbnails/1.jpg","file_name":"582bb7727270e.pdf","download_url":"https://www.academia.edu/attachments/106805252/download_file","bulk_download_file_name":"Energy_Scheduling_for_Island_Microgrid_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805252/582bb7727270e-libre.pdf?1697887876=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_Scheduling_for_Island_Microgrid_A.pdf\u0026Expires=1739921476\u0026Signature=XM~XqrmuM-CNsHaASvyaA-thf402hW18gr7ekR8zlwUDjG8OFINUs2hoQ~hUB8jaoMx5ATmfbOAg1cCUIi4Wg-0AG8BIiM2WZkBdxMQXZcMRTbZ1o9JfYlhOi~Ir8VFz8Q3l3fAKkYc5kz~eIBAx99TPPHAKygb51P70kpJ8o1Y~lHbTaK-nPAo5vTBMrkUDEfHvX6VX1QlHfDqZSQOr20dtWyGOBvM7Y-Su78wpwIVbAXwaVPz9uclOFFyldzv9xe9ZY43yxhFqBRvg4xvUCLiKqvfhSx0bMzpagTrIzX8vlF3r4h48e3azpdAOXWYPWthKIw3k0UyY3XKJxqz06Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414702/A_Survey_of_Solving_Approaches_for_Multiple_Objective_Flexible_Job_Shop_Scheduling_Problems"><img alt="Research paper thumbnail of A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/106805257/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414702/A_Survey_of_Solving_Approaches_for_Multiple_Objective_Flexible_Job_Shop_Scheduling_Problems">A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems</a></div><div class="wp-workCard_item"><span>Cybernetics and Information Technologies</span><span>, Jun 1, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Many real life scheduling problems can be formulated as Flexible Job Shop Scheduling Problems (FJ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Many real life scheduling problems can be formulated as Flexible Job Shop Scheduling Problems (FJSSPs) which simultaneously optimize several conflicting criteria. A typical feature of such problems is their high computational complexity. The purpose of this paper is to provide a review of the techniques, developed to solve multiple objective FJSSPs during the last decade. These techniques could be classified into two groups: approaches with application of mathematical models and heuristic approaches. Usually hybrid metaheuristic algorithms are proposed for large dimensional real life problems and they outlay the tendency for the future developments of efficient solution approaches for multiple objective FJSSPs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a811ebdb207a61a709e65fdbb21a6b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805257,&quot;asset_id&quot;:108414702,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805257/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414702]").text(description); $(".js-view-count[data-work-id=108414702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a811ebdb207a61a709e65fdbb21a6b2" } } $('.js-work-strip[data-work-id=108414702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414702,"title":"A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems","internal_url":"https://www.academia.edu/108414702/A_Survey_of_Solving_Approaches_for_Multiple_Objective_Flexible_Job_Shop_Scheduling_Problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805257,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805257/thumbnails/1.jpg","file_name":"cait-2015-0025.pdf","download_url":"https://www.academia.edu/attachments/106805257/download_file","bulk_download_file_name":"A_Survey_of_Solving_Approaches_for_Multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805257/cait-2015-0025-libre.pdf?1697887876=\u0026response-content-disposition=attachment%3B+filename%3DA_Survey_of_Solving_Approaches_for_Multi.pdf\u0026Expires=1739921476\u0026Signature=R1TPgozYHSHbRWE5Xnd9np6GjblHRNnzcxs5-fqD7r86MixpI--HaHEWbyJWE5p~QBzDgwnox7NCyjCUYEQAH6XF9T3DHrCrHd19mfHnVuvWiPg5NS1GynnSNZDGppwZOtBf67Wshxx1vmKyp~96hWu6ikg7eIr2NJbF5WC7ywEJ3At1PlUJ35sp~ERkSloJ1fmtoW7KVrJ8UZfiVUr-LXzsGRzgWmUQ8dJtKq1~6JzsBx6DwBZXWTMzIGu~0eBt6L4LmwRcLQs2AMv4Owowtfsr-CELCncs6FHyH4r5Nm6Gsc8QGsdVbb~5tGUNmga462-n61K~4Ic9X3cNBGCuSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106805255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805255/thumbnails/1.jpg","file_name":"cait-2015-0025.pdf","download_url":"https://www.academia.edu/attachments/106805255/download_file","bulk_download_file_name":"A_Survey_of_Solving_Approaches_for_Multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805255/cait-2015-0025-libre.pdf?1697887876=\u0026response-content-disposition=attachment%3B+filename%3DA_Survey_of_Solving_Approaches_for_Multi.pdf\u0026Expires=1739921476\u0026Signature=A83-NCMwQO0NXRhGd21FZzELemOEreTGKSglSiEu121kKr-hhf8gUVsKTI8czmsuHAXjMhWgK-H1hEJ1yl7JOm7hIGngyzgTsuaZgNHqKbe1VjuR-qSErtDl8r--GUmLFopgUrPXY8Wum6~W-DtuYfGVp5uXOX-Ck7o1g4yygN7hRAgtL9JBX-BF2XniO95ZIztbAnG~xZ1O78~ERoARhKribcFwRupIa~DRzwEJgVcOWY~jtwo5vLIsFzlrMX9Uztv~sEazFJopNZYZZpY8tzbnfcjir0Z~97Sue8mG9IyeDgwnYrAUPQyIRoxWjQ3pKyIOUswCPC~a7UqsEeJZjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414701/Algorithm_Generating_Initial_Population_of_Schedules_for_Population_based_Algorithms_Solving_Flexible_Job_Shop_Problems"><img alt="Research paper thumbnail of Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414701/Algorithm_Generating_Initial_Population_of_Schedules_for_Population_based_Algorithms_Solving_Flexible_Job_Shop_Problems">Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414701]").text(description); $(".js-view-count[data-work-id=108414701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414701,"title":"Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems","internal_url":"https://www.academia.edu/108414701/Algorithm_Generating_Initial_Population_of_Schedules_for_Population_based_Algorithms_Solving_Flexible_Job_Shop_Problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414699/Optimization_Techniques_in_Data_Management_A_Survey"><img alt="Research paper thumbnail of Optimization Techniques in Data Management: A Survey" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414699/Optimization_Techniques_in_Data_Management_A_Survey">Optimization Techniques in Data Management: A Survey</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Data Management can be defined as the process of extracting, storing, organizing, and maintaining...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Data Management can be defined as the process of extracting, storing, organizing, and maintaining the data created and collected in organizations. Today&amp;#39;s organizations invest in data management solutions that provide an efficient way to manage data in a unified structure. The enormously growth of data in the last decades has created a necessity for the fast extracting, accessing, and processing of the data. Optimization has been a key component in improving the system&amp;#39;s performance, searching and accessing data in different data management solutions. Optimization is a mathematical discipline that formulates mathematical models and finds the best solution among a set of feasible solutions. This paper aims to give a general overview of applications of optimization techniques and algorithms in different areas of data management in the last decades. Data management includes a large group of functionalities, but we will focus on studying and reviewing the recent development of optimization algorithms used in databases, data warehouses, big data and machine learning. Furthermore, this paper will identify applications of optimization in data management, reviews the current solutions proposed and emphasize future topics where there is a lack of studies in data management.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414699]").text(description); $(".js-view-count[data-work-id=108414699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414699,"title":"Optimization Techniques in Data Management: A Survey","internal_url":"https://www.academia.edu/108414699/Optimization_Techniques_in_Data_Management_A_Survey","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414697"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414697/Interactive_environment_WebOptim_for_solving_multiple_objective_problems_using_scalarising_and_evolutionary_approaches"><img alt="Research paper thumbnail of Interactive environment WebOptim for solving multiple-objective problems using scalarising and evolutionary approaches" class="work-thumbnail" src="https://attachments.academia-assets.com/106805312/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414697/Interactive_environment_WebOptim_for_solving_multiple_objective_problems_using_scalarising_and_evolutionary_approaches">Interactive environment WebOptim for solving multiple-objective problems using scalarising and evolutionary approaches</a></div><div class="wp-workCard_item"><span>International Journal of Reasoning-based Intelligent Systems</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A web-based decision support system (DSS) is presented in this paper. It is an interactive enviro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A web-based decision support system (DSS) is presented in this paper. It is an interactive environment for solving multiple-objective problems with continuous and/or integer decision variables. The system is targeted at different types of users-researchers, educators and business people. The system supports a number of fifteen interactive methods. They are incorporated into original generalised scalarising interactive method (GENS-IM). The choice of a method is organised in an implicit way on the base of decision maker&#39;s (DM) preferences. An evolutionary method is also included in the system. The DM can switch the methods in one solution process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5fc07da077b8d3f958e151e4dfb9cf52" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805312,&quot;asset_id&quot;:108414697,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805312/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414697"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414697"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414697; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414697]").text(description); $(".js-view-count[data-work-id=108414697]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414697; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414697']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5fc07da077b8d3f958e151e4dfb9cf52" } } $('.js-work-strip[data-work-id=108414697]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414697,"title":"Interactive environment WebOptim for solving multiple-objective problems using scalarising and evolutionary approaches","internal_url":"https://www.academia.edu/108414697/Interactive_environment_WebOptim_for_solving_multiple_objective_problems_using_scalarising_and_evolutionary_approaches","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805312,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805312/thumbnails/1.jpg","file_name":"ijris.2015.07090720231021-1-jrjtzp.pdf","download_url":"https://www.academia.edu/attachments/106805312/download_file","bulk_download_file_name":"Interactive_environment_WebOptim_for_sol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805312/ijris.2015.07090720231021-1-jrjtzp-libre.pdf?1697887871=\u0026response-content-disposition=attachment%3B+filename%3DInteractive_environment_WebOptim_for_sol.pdf\u0026Expires=1739921476\u0026Signature=fEJMgQJkL909eaxvV89m3FLB-2ULle9aCXRvqPY1f3P6KIH8Ll~pCTc6tSCZGu3~UbDjd8EzWZzv0b9kfkgVUjyhsr0zmkHrAsZ8A0ZcDGFQLdUVFs6cK8iVQVmpNcL7f4SQ74Tc9IGX-Dbbg4D7PWp9KsHNiudO-7FXMtEA7NfD255pzM1frG6nvyeKgIhb8nbVfPdPbFeJYooyE6wh7O2Axj0Hj044w5A1iWArjs-vjP8BJcWHajZG1AlnQ6pOfNXFD3mus-XKG5Aa8CCigmkvy-YSDzqpt2gFyEvxOhrJIN2IX56xaZ0QqUb0-4xnTurIF-yeL8s7N4O8UqyAkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414695"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414695/A_prototype_of_a_web_based_decision_support_system_for_building_models_and_solving_optimization_and_decision_making_problems"><img alt="Research paper thumbnail of A prototype of a web-based decision support system for building models and solving optimization and decision making problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414695/A_prototype_of_a_web_based_decision_support_system_for_building_models_and_solving_optimization_and_decision_making_problems">A prototype of a web-based decision support system for building models and solving optimization and decision making problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A prototype of a Web-based software system for optimization and multiple criteria decision making...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A prototype of a Web-based software system for optimization and multiple criteria decision making, applicable to business, research and learning purposes is presented. The system facilitates the construction of mathematical models and the solution of some popular real optimization and decision making problems. It has user friendly interface designed for different groups of users. The system software is accessible from anywhere by means of a standard browser and an Internet connection.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414695"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414695"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414695; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414695]").text(description); $(".js-view-count[data-work-id=108414695]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414695; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414695']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414695]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414695,"title":"A prototype of a web-based decision support system for building models and solving optimization and decision making problems","internal_url":"https://www.academia.edu/108414695/A_prototype_of_a_web_based_decision_support_system_for_building_models_and_solving_optimization_and_decision_making_problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414693"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414693/An_Evolutionary_Algorithm_for_Integer_Multicriteria_Optimization_Evalimco_"><img alt="Research paper thumbnail of An Evolutionary Algorithm for Integer Multicriteria Optimization (Evalimco)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414693/An_Evolutionary_Algorithm_for_Integer_Multicriteria_Optimization_Evalimco_">An Evolutionary Algorithm for Integer Multicriteria Optimization (Evalimco)</a></div><div class="wp-workCard_item"><span>World Scientific proceedings series on computer engingeering and information science</span><span>, Oct 1, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414693"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414693"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414693; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414693]").text(description); $(".js-view-count[data-work-id=108414693]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414693; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414693']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414693]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414693,"title":"An Evolutionary Algorithm for Integer Multicriteria Optimization (Evalimco)","internal_url":"https://www.academia.edu/108414693/An_Evolutionary_Algorithm_for_Integer_Multicriteria_Optimization_Evalimco_","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414691"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414691/Efficient_Energy_Management_in_a_Microgrid"><img alt="Research paper thumbnail of Efficient Energy Management in a Microgrid" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414691/Efficient_Energy_Management_in_a_Microgrid">Efficient Energy Management in a Microgrid</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Small scale renewable energy sources like photo-voltaic panels, wind turbines, etc can be easily ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Small scale renewable energy sources like photo-voltaic panels, wind turbines, etc can be easily installed on home roof top and such architecture can minimize cost of energy and load on the main grid. Our approach is to generate energy at home through renewable energy (RE) resources and store surplus energy in the battery bank. If RE generation sources and battery reserve fails to satisfy the load, then power is supplied by the main grid. The major work is to develop an autonomous system that can manage all these sources effectively and efficiently. Despite many advantages of renewable energy sources its drawback is that these sources are weather and climate dependent. Night hours, clouds, wind speed, fog, etc are the factors that effect the performance of renewable energy sources with big impact. This research is based on a group of three prosumers who can generate energy via RE sources at home, stores it in a battery bank and takes the extra energy from nearby grid to fulfill the local demand if it is required. A heuristic algorithm is proposed and implemented for this study.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414691"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414691"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414691; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414691]").text(description); $(".js-view-count[data-work-id=108414691]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414691; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414691']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414691]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414691,"title":"Efficient Energy Management in a Microgrid","internal_url":"https://www.academia.edu/108414691/Efficient_Energy_Management_in_a_Microgrid","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414690"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414690/IoT_Approach_for_Improving_the_Energy_Efficiency_in_the_Durres_Port_Authority_Buildings"><img alt="Research paper thumbnail of IoT Approach for Improving the Energy Efficiency in the Durres Port Authority Buildings" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414690/IoT_Approach_for_Improving_the_Energy_Efficiency_in_the_Durres_Port_Authority_Buildings">IoT Approach for Improving the Energy Efficiency in the Durres Port Authority Buildings</a></div><div class="wp-workCard_item"><span>2023 17th International Conference on Telecommunications (ConTEL)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414690"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414690"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414690; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414690]").text(description); $(".js-view-count[data-work-id=108414690]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414690; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414690']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414690]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414690,"title":"IoT Approach for Improving the Energy Efficiency in the Durres Port Authority Buildings","internal_url":"https://www.academia.edu/108414690/IoT_Approach_for_Improving_the_Energy_Efficiency_in_the_Durres_Port_Authority_Buildings","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414688"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414688/An_Algorithm_for_Generating_a_Dispersed_Population_of_Feasible_Schedules_for_Flexible_Job_Shop_Problems"><img alt="Research paper thumbnail of An Algorithm for Generating a Dispersed Population of Feasible Schedules for Flexible Job Shop Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/106805311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414688/An_Algorithm_for_Generating_a_Dispersed_Population_of_Feasible_Schedules_for_Flexible_Job_Shop_Problems">An Algorithm for Generating a Dispersed Population of Feasible Schedules for Flexible Job Shop Problems</a></div><div class="wp-workCard_item"><span>Information Technologies and Control</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The flexible job shop problems (FJSP) are an important class of scheduling problems and they have...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The flexible job shop problems (FJSP) are an important class of scheduling problems and they have a significant practical value. Unfortunately it is not easy to solve job shop problems and in particular FJSPs because they are NP-hard problems. In this paper we propose a method for generating a set of feasible schedules for a given FJSP.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a50ef1614f1838b0fc315bab7f8085e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805311,&quot;asset_id&quot;:108414688,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805311/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414688"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414688"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414688; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414688]").text(description); $(".js-view-count[data-work-id=108414688]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414688; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414688']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a50ef1614f1838b0fc315bab7f8085e8" } } $('.js-work-strip[data-work-id=108414688]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414688,"title":"An Algorithm for Generating a Dispersed Population of Feasible Schedules for Flexible Job Shop Problems","internal_url":"https://www.academia.edu/108414688/An_Algorithm_for_Generating_a_Dispersed_Population_of_Feasible_Schedules_for_Flexible_Job_Shop_Problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805311/thumbnails/1.jpg","file_name":"itc-2017-0029.pdf","download_url":"https://www.academia.edu/attachments/106805311/download_file","bulk_download_file_name":"An_Algorithm_for_Generating_a_Dispersed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805311/itc-2017-0029-libre.pdf?1697887872=\u0026response-content-disposition=attachment%3B+filename%3DAn_Algorithm_for_Generating_a_Dispersed.pdf\u0026Expires=1739921476\u0026Signature=GQ6RN2-h84044jE2cW1V524w61cQSImzGlW-uceU1IfT9ctAnP-S-qEjPusIHQQ8Le8Y4L7UraDZ9iRCKUDDoWWDMFeqIGkFwIJkLu8N~0CBDvnNowZg5WSiOIGuh9iHqvLhc-97dSVK2CobowvRFgjOBHwxwi-yD5ihO0zHeQitKlk78V5MXOSdTezh62QfNVuN5QxFcU-2~vA5YdaxQiT0OKmasG7ujRfGVcFpTsZVN-RrW0tbBPdY6RooCiZ9KhxbV~JJELkvSntw~1A5cmdV1DtFBxeo1o2UBaZ7okcz7f1xcE2JidHDYvAm8g5tyb8gM2EbAkiHN~PwliPSeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414531/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection"><img alt="Research paper thumbnail of B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414531/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection">B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414531]").text(description); $(".js-view-count[data-work-id=108414531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414531,"title":"B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection","internal_url":"https://www.academia.edu/108414531/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="102126056"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/102126056/A_Decision_Making_Approach_for_Improvement_of_Energy_Flows_Stability_in_Microgrids"><img alt="Research paper thumbnail of A Decision-Making Approach for Improvement of Energy Flows Stability in Microgrids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/102126056/A_Decision_Making_Approach_for_Improvement_of_Energy_Flows_Stability_in_Microgrids">A Decision-Making Approach for Improvement of Energy Flows Stability in Microgrids</a></div><div class="wp-workCard_item"><span>IFAC-PapersOnLine</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="102126056"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="102126056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 102126056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=102126056]").text(description); $(".js-view-count[data-work-id=102126056]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 102126056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='102126056']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=102126056]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":102126056,"title":"A Decision-Making Approach for Improvement of Energy Flows Stability in Microgrids","internal_url":"https://www.academia.edu/102126056/A_Decision_Making_Approach_for_Improvement_of_Energy_Flows_Stability_in_Microgrids","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94977859"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/94977859/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection"><img alt="Research paper thumbnail of B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/94977859/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection">B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection</a></div><div class="wp-workCard_item"><span>2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94977859"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94977859"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94977859; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94977859]").text(description); $(".js-view-count[data-work-id=94977859]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94977859; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94977859']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94977859]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94977859,"title":"B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection","internal_url":"https://www.academia.edu/94977859/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94977858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/94977858/An_Approach_for_Coefficients_optimization_in_Adaptive_Filter_Signal_Equalization"><img alt="Research paper thumbnail of An Approach for Coefficients optimization in Adaptive Filter Signal Equalization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/94977858/An_Approach_for_Coefficients_optimization_in_Adaptive_Filter_Signal_Equalization">An Approach for Coefficients optimization in Adaptive Filter Signal Equalization</a></div><div class="wp-workCard_item"><span>2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94977858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94977858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94977858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94977858]").text(description); $(".js-view-count[data-work-id=94977858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94977858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94977858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94977858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94977858,"title":"An Approach for Coefficients optimization in Adaptive Filter Signal Equalization","internal_url":"https://www.academia.edu/94977858/An_Approach_for_Coefficients_optimization_in_Adaptive_Filter_Signal_Equalization","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5081377" id="papers"><div class="js-work-strip profile--work_container" data-work-id="108414772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414772/Two_stage_portfolio_risk_optimisation_based_on_MVO_model"><img alt="Research paper thumbnail of Two-stage portfolio risk optimisation based on MVO model" class="work-thumbnail" src="https://attachments.academia-assets.com/106805361/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414772/Two_stage_portfolio_risk_optimisation_based_on_MVO_model">Two-stage portfolio risk optimisation based on MVO model</a></div><div class="wp-workCard_item"><span>International Journal of Reasoning-based Intelligent Systems</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper presents a two-stage portfolio risk optimisation based on Markowitz&#39;s mean variance op...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper presents a two-stage portfolio risk optimisation based on Markowitz&#39;s mean variance optimisation (MVO) model. Historical return data for six asset classes are used to calculate the optimal proportions of assets, included in a portfolio, so that the expected return of each asset is no less than in advance given target value. Optimisation procedure is performed at the first stage, in order to select a limited number of assets among a large assets sample. At the second stage the optimal proportions of selected assets in the portfolio are calculated, minimising a risk objective function for a given rate of return. Ten optimisation problems are solved for different expected rate of return. The optimisation is performed in MATLAB. The proposed approach is robust and could be used successfully to solve large-scale portfolio optimisation problems.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65b1da296a627f3847395f8fbe1b814b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805361,&quot;asset_id&quot;:108414772,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805361/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414772]").text(description); $(".js-view-count[data-work-id=108414772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65b1da296a627f3847395f8fbe1b814b" } } $('.js-work-strip[data-work-id=108414772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414772,"title":"Two-stage portfolio risk optimisation based on MVO model","internal_url":"https://www.academia.edu/108414772/Two_stage_portfolio_risk_optimisation_based_on_MVO_model","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805361,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805361/thumbnails/1.jpg","file_name":"IJRIS.2020.pdf","download_url":"https://www.academia.edu/attachments/106805361/download_file","bulk_download_file_name":"Two_stage_portfolio_risk_optimisation_ba.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805361/IJRIS.2020-libre.pdf?1697887864=\u0026response-content-disposition=attachment%3B+filename%3DTwo_stage_portfolio_risk_optimisation_ba.pdf\u0026Expires=1739921476\u0026Signature=V9fh-UYhxAoAyjoBN-EIOb~G4nbCAB-AkwMzq~gpDqUBysKJYGgufEK9DnItGv-hU36v-KtEKemZuClEm0id9J8uEWIitDF10zagnedMNcf-Y~w7CpdZOUQ1Bz3XwiBt0YCDP~W0EnFb2WhQ3g-qHu9p36fDwGo4QbpLHaIDuN2GSHeTuuYBgPauBvbdhch4~lID7k8MXGe~JR5YcwMuk6b1rjPh3dnYCQc3tG1ojQAYjZh8T2aVLOpgYUuAErDqwVBNVGOImZbmf1khFFUiGxMtMMGFoRWM0DqrzMKjuPpkPJLd0eOTOaiBgtHX~ZnQpo-vY-eF7IahrkC9jPCDRg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414771"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414771/An_Algorithm_for_Speed_Optimization_in_Autonomous_Vehicles"><img alt="Research paper thumbnail of An Algorithm for Speed Optimization in Autonomous Vehicles" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414771/An_Algorithm_for_Speed_Optimization_in_Autonomous_Vehicles">An Algorithm for Speed Optimization in Autonomous Vehicles</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414771"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414771"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414771; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414771]").text(description); $(".js-view-count[data-work-id=108414771]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414771; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414771']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414771]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414771,"title":"An Algorithm for Speed Optimization in Autonomous Vehicles","internal_url":"https://www.academia.edu/108414771/An_Algorithm_for_Speed_Optimization_in_Autonomous_Vehicles","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414770"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414770/An_accelerated_genetic_reconstruction_algorithm_for_inverse_EIT_problems"><img alt="Research paper thumbnail of An accelerated genetic reconstruction algorithm for inverse EIT problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414770/An_accelerated_genetic_reconstruction_algorithm_for_inverse_EIT_problems">An accelerated genetic reconstruction algorithm for inverse EIT problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We use the Finite Element Method (FEM) (see [18, 22]) to solve the forward problem. It is very di...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We use the Finite Element Method (FEM) (see [18, 22]) to solve the forward problem. It is very difficult to use an exact method to solve the inverse problem, taking into ac-count the ill-posedness of the problem. It is known that the complexity of the exact optimization methods for such ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414770"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414770"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414770; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414770]").text(description); $(".js-view-count[data-work-id=108414770]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414770; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414770']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414770]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414770,"title":"An accelerated genetic reconstruction algorithm for inverse EIT problems","internal_url":"https://www.academia.edu/108414770/An_accelerated_genetic_reconstruction_algorithm_for_inverse_EIT_problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414769/Application_of_Mathematical_Induction_for_Inheritance_Law_Interpretations"><img alt="Research paper thumbnail of Application of Mathematical Induction for Inheritance Law Interpretations" class="work-thumbnail" src="https://attachments.academia-assets.com/106805332/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414769/Application_of_Mathematical_Induction_for_Inheritance_Law_Interpretations">Application of Mathematical Induction for Inheritance Law Interpretations</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f07d137e6aa8be1b0b86ac497b1dfe90" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805332,&quot;asset_id&quot;:108414769,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805332/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414769]").text(description); $(".js-view-count[data-work-id=108414769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f07d137e6aa8be1b0b86ac497b1dfe90" } } $('.js-work-strip[data-work-id=108414769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414769,"title":"Application of Mathematical Induction for Inheritance Law Interpretations","internal_url":"https://www.academia.edu/108414769/Application_of_Mathematical_Induction_for_Inheritance_Law_Interpretations","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805332,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805332/thumbnails/1.jpg","file_name":"ijitk04-3-p07.pdf","download_url":"https://www.academia.edu/attachments/106805332/download_file","bulk_download_file_name":"Application_of_Mathematical_Induction_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805332/ijitk04-3-p07-libre.pdf?1697887863=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Mathematical_Induction_fo.pdf\u0026Expires=1739921476\u0026Signature=ABWhci8aJ3-vg4qm5Jf3tsmUFMRH5JPmbzhgyam8w0g8SLUxs7l03SSrNeBAYLUHs~IAXTcT7FoiSPd~gUUtA3kW~jUqKsZMdpRZ5uD-Mw~bmhdqppi5el-uaZOo9PUhpgFQLlqRfnnKdKamrQqF4xeDQx4B~MiO9NNGYQFC36Fip8~FgPkNeqIY~oYXfryzdw4WANqu4zzkKtLThNJmTXqD9gdQN969wcNlUHIz8sBiaW5Z37mcbalkRpNkyOA2a2VTuZ~lmkHrxwbO5kKUkON7zU2zJipjft~0UnjB5OdsZfRfwfAtHESSfsrwUnAymViNAiytkHryfPvUeTv-gw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106805336,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805336/thumbnails/1.jpg","file_name":"ijitk04-3-p07.pdf","download_url":"https://www.academia.edu/attachments/106805336/download_file","bulk_download_file_name":"Application_of_Mathematical_Induction_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805336/ijitk04-3-p07-libre.pdf?1697887862=\u0026response-content-disposition=attachment%3B+filename%3DApplication_of_Mathematical_Induction_fo.pdf\u0026Expires=1739921476\u0026Signature=EZlzi9Ei9gwxuSoHyLwsGQx1U2OhiRkJq1PY08xuH4fG1hShJkotTVkaLx9oY0-3DGuSa6gxtBfOBVqIgzwdtatNX4gSReK~hKtd86x9MpnVngaBBT6dgjMlc5xbhMqSQkU-6jpsvMyyHv12x~CQG9QhjvNJ4O7ctNQPt1YAjaQYIJiiXSAru7wiaU3Op4DzBYgHu3mrosEG41G3sALBIitrpRAjHUCJ-sEqIU0zS18-9mWzerPWcZEEnl5LwTBzWMWWDcj9l4e2hyQnUGEHfEmvJ7DhJjlwxH3hp1JGJFePANcTBgZZDOZTAoE4WYF~9isLn-HpniO38ynrNT9UsA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414709"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414709/Multi_Objective_Optimization_Approach_for_Energy_Efficiency_in_Microgrids"><img alt="Research paper thumbnail of Multi-Objective Optimization Approach for Energy Efficiency in Microgrids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414709/Multi_Objective_Optimization_Approach_for_Energy_Efficiency_in_Microgrids">Multi-Objective Optimization Approach for Energy Efficiency in Microgrids</a></div><div class="wp-workCard_item"><span>IFAC-PapersOnLine</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract The aim of this article is to present a methodology and an approach for energy efficienc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract The aim of this article is to present a methodology and an approach for energy efficiency optimization for buildings, connected in microgrids. The initial investment costs for the building and the energy costs are optimized while the environmental pollution is minimized at the same time. A bi-criterion optimization problem is formulated. It is solved by a multi-objective genetic algorithm in MATLAB. The possibilities of the approach are illustrated by the optimization of the energy efficiency of a group of three-storey houses connected in a microgrid. The obtained results demonstrate that the proposed approach could be implemented for different real problems concerning the buildings energy efficiency and may be helpful for construction managers, architects and decision makers in this area.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414709"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414709"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414709; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414709]").text(description); $(".js-view-count[data-work-id=108414709]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414709; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414709']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414709]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414709,"title":"Multi-Objective Optimization Approach for Energy Efficiency in Microgrids","internal_url":"https://www.academia.edu/108414709/Multi_Objective_Optimization_Approach_for_Energy_Efficiency_in_Microgrids","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414706"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414706/An_Accelerated_Genetic_Single_Objective_Algorithm_for_Optimization_of_Energy_Flows_in_Microgrids"><img alt="Research paper thumbnail of An Accelerated Genetic Single Objective Algorithm for Optimization of Energy Flows in Microgrids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414706/An_Accelerated_Genetic_Single_Objective_Algorithm_for_Optimization_of_Energy_Flows_in_Microgrids">An Accelerated Genetic Single Objective Algorithm for Optimization of Energy Flows in Microgrids</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An accelerated genetic algorithm called ASOGA for solving multi-objective optimization problems i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An accelerated genetic algorithm called ASOGA for solving multi-objective optimization problems in a grid-connected microgrid is proposed in this paper. One four-criterial optimization problem is formulated. By means of the weighted sum scalarization the problem is transformed into single objective one and corresponding Pareto-optimal schedules of energy flows in the microgrid are obtained. The comparison of the novel algorithm with a trivial genetic algorithm shows an essential reduction of iterations number, necessary to achieve the final solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414706"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414706"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414706; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414706]").text(description); $(".js-view-count[data-work-id=108414706]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414706; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414706']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414706]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414706,"title":"An Accelerated Genetic Single Objective Algorithm for Optimization of Energy Flows in Microgrids","internal_url":"https://www.academia.edu/108414706/An_Accelerated_Genetic_Single_Objective_Algorithm_for_Optimization_of_Energy_Flows_in_Microgrids","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414704"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414704/Energy_Scheduling_for_Island_Microgrid_Applications"><img alt="Research paper thumbnail of Energy Scheduling for Island Microgrid Applications" class="work-thumbnail" src="https://attachments.academia-assets.com/106805256/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414704/Energy_Scheduling_for_Island_Microgrid_Applications">Energy Scheduling for Island Microgrid Applications</a></div><div class="wp-workCard_item"><span>Journal of Communication and Computer</span><span>, Jun 28, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The paper considers the calculation of an effective energy schedule in an islanded microgrid. Gri...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The paper considers the calculation of an effective energy schedule in an islanded microgrid. GridLab-D open source simulation tool is used for simulation of microgrid elements. Matlab environment is used to run an optimization solver. The product GridMat is used as an interface tool between Matlab and GridLab-D. An economic scheduling optimization problem for the considered microgrid is formulated and solved. Analysis of the obtained results is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7f9eb71b78232e6d2293a9c3327ea131" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805256,&quot;asset_id&quot;:108414704,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805256/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414704"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414704"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414704; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414704]").text(description); $(".js-view-count[data-work-id=108414704]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414704; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414704']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7f9eb71b78232e6d2293a9c3327ea131" } } $('.js-work-strip[data-work-id=108414704]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414704,"title":"Energy Scheduling for Island Microgrid Applications","internal_url":"https://www.academia.edu/108414704/Energy_Scheduling_for_Island_Microgrid_Applications","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805256,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805256/thumbnails/1.jpg","file_name":"582bb7727270e.pdf","download_url":"https://www.academia.edu/attachments/106805256/download_file","bulk_download_file_name":"Energy_Scheduling_for_Island_Microgrid_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805256/582bb7727270e-libre.pdf?1697887873=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_Scheduling_for_Island_Microgrid_A.pdf\u0026Expires=1739921476\u0026Signature=hKa1-XCEglI688Tx8KsieEitiYkJGz3F8zrSxeqaLAANHRLeTJ3z~QBiqmRgkH49cwto2mhYYb0c6YQAD8oQDY4-rD53ixY1wo~ajLUxo-Ymxaw289rncPHKUGFDWPn9mufS~hjQlsxH1wDoK9UZlskGq6sn2PNtDCHfadPahtpehd6XgM4dSGx~AzyiZNqB9o8swQ8vId90LE6DXmU46CEPHQDRVKq4g0htWajRf7mS~QPDp7fRa6vnVG7ke34jauIy9~UGnsdTXF0OEgtMfZOLUqD9EeQgNJt3IECwsp5ybkZWOUL7MQI78sNYtAhOrNyxdGPW3Sc0TTunxGTdtQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106805252,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805252/thumbnails/1.jpg","file_name":"582bb7727270e.pdf","download_url":"https://www.academia.edu/attachments/106805252/download_file","bulk_download_file_name":"Energy_Scheduling_for_Island_Microgrid_A.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805252/582bb7727270e-libre.pdf?1697887876=\u0026response-content-disposition=attachment%3B+filename%3DEnergy_Scheduling_for_Island_Microgrid_A.pdf\u0026Expires=1739921476\u0026Signature=XM~XqrmuM-CNsHaASvyaA-thf402hW18gr7ekR8zlwUDjG8OFINUs2hoQ~hUB8jaoMx5ATmfbOAg1cCUIi4Wg-0AG8BIiM2WZkBdxMQXZcMRTbZ1o9JfYlhOi~Ir8VFz8Q3l3fAKkYc5kz~eIBAx99TPPHAKygb51P70kpJ8o1Y~lHbTaK-nPAo5vTBMrkUDEfHvX6VX1QlHfDqZSQOr20dtWyGOBvM7Y-Su78wpwIVbAXwaVPz9uclOFFyldzv9xe9ZY43yxhFqBRvg4xvUCLiKqvfhSx0bMzpagTrIzX8vlF3r4h48e3azpdAOXWYPWthKIw3k0UyY3XKJxqz06Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414702"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414702/A_Survey_of_Solving_Approaches_for_Multiple_Objective_Flexible_Job_Shop_Scheduling_Problems"><img alt="Research paper thumbnail of A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/106805257/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414702/A_Survey_of_Solving_Approaches_for_Multiple_Objective_Flexible_Job_Shop_Scheduling_Problems">A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems</a></div><div class="wp-workCard_item"><span>Cybernetics and Information Technologies</span><span>, Jun 1, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Many real life scheduling problems can be formulated as Flexible Job Shop Scheduling Problems (FJ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Many real life scheduling problems can be formulated as Flexible Job Shop Scheduling Problems (FJSSPs) which simultaneously optimize several conflicting criteria. A typical feature of such problems is their high computational complexity. The purpose of this paper is to provide a review of the techniques, developed to solve multiple objective FJSSPs during the last decade. These techniques could be classified into two groups: approaches with application of mathematical models and heuristic approaches. Usually hybrid metaheuristic algorithms are proposed for large dimensional real life problems and they outlay the tendency for the future developments of efficient solution approaches for multiple objective FJSSPs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4a811ebdb207a61a709e65fdbb21a6b2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805257,&quot;asset_id&quot;:108414702,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805257/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414702"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414702"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414702; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414702]").text(description); $(".js-view-count[data-work-id=108414702]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414702; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414702']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4a811ebdb207a61a709e65fdbb21a6b2" } } $('.js-work-strip[data-work-id=108414702]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414702,"title":"A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems","internal_url":"https://www.academia.edu/108414702/A_Survey_of_Solving_Approaches_for_Multiple_Objective_Flexible_Job_Shop_Scheduling_Problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805257,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805257/thumbnails/1.jpg","file_name":"cait-2015-0025.pdf","download_url":"https://www.academia.edu/attachments/106805257/download_file","bulk_download_file_name":"A_Survey_of_Solving_Approaches_for_Multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805257/cait-2015-0025-libre.pdf?1697887876=\u0026response-content-disposition=attachment%3B+filename%3DA_Survey_of_Solving_Approaches_for_Multi.pdf\u0026Expires=1739921476\u0026Signature=R1TPgozYHSHbRWE5Xnd9np6GjblHRNnzcxs5-fqD7r86MixpI--HaHEWbyJWE5p~QBzDgwnox7NCyjCUYEQAH6XF9T3DHrCrHd19mfHnVuvWiPg5NS1GynnSNZDGppwZOtBf67Wshxx1vmKyp~96hWu6ikg7eIr2NJbF5WC7ywEJ3At1PlUJ35sp~ERkSloJ1fmtoW7KVrJ8UZfiVUr-LXzsGRzgWmUQ8dJtKq1~6JzsBx6DwBZXWTMzIGu~0eBt6L4LmwRcLQs2AMv4Owowtfsr-CELCncs6FHyH4r5Nm6Gsc8QGsdVbb~5tGUNmga462-n61K~4Ic9X3cNBGCuSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":106805255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805255/thumbnails/1.jpg","file_name":"cait-2015-0025.pdf","download_url":"https://www.academia.edu/attachments/106805255/download_file","bulk_download_file_name":"A_Survey_of_Solving_Approaches_for_Multi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805255/cait-2015-0025-libre.pdf?1697887876=\u0026response-content-disposition=attachment%3B+filename%3DA_Survey_of_Solving_Approaches_for_Multi.pdf\u0026Expires=1739921476\u0026Signature=A83-NCMwQO0NXRhGd21FZzELemOEreTGKSglSiEu121kKr-hhf8gUVsKTI8czmsuHAXjMhWgK-H1hEJ1yl7JOm7hIGngyzgTsuaZgNHqKbe1VjuR-qSErtDl8r--GUmLFopgUrPXY8Wum6~W-DtuYfGVp5uXOX-Ck7o1g4yygN7hRAgtL9JBX-BF2XniO95ZIztbAnG~xZ1O78~ERoARhKribcFwRupIa~DRzwEJgVcOWY~jtwo5vLIsFzlrMX9Uztv~sEazFJopNZYZZpY8tzbnfcjir0Z~97Sue8mG9IyeDgwnYrAUPQyIRoxWjQ3pKyIOUswCPC~a7UqsEeJZjQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414701"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414701/Algorithm_Generating_Initial_Population_of_Schedules_for_Population_based_Algorithms_Solving_Flexible_Job_Shop_Problems"><img alt="Research paper thumbnail of Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414701/Algorithm_Generating_Initial_Population_of_Schedules_for_Population_based_Algorithms_Solving_Flexible_Job_Shop_Problems">Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414701"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414701"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414701; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414701]").text(description); $(".js-view-count[data-work-id=108414701]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414701; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414701']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414701]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414701,"title":"Algorithm Generating Initial Population of Schedules for Population-based Algorithms Solving Flexible Job Shop Problems","internal_url":"https://www.academia.edu/108414701/Algorithm_Generating_Initial_Population_of_Schedules_for_Population_based_Algorithms_Solving_Flexible_Job_Shop_Problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414699/Optimization_Techniques_in_Data_Management_A_Survey"><img alt="Research paper thumbnail of Optimization Techniques in Data Management: A Survey" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414699/Optimization_Techniques_in_Data_Management_A_Survey">Optimization Techniques in Data Management: A Survey</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Data Management can be defined as the process of extracting, storing, organizing, and maintaining...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Data Management can be defined as the process of extracting, storing, organizing, and maintaining the data created and collected in organizations. Today&amp;#39;s organizations invest in data management solutions that provide an efficient way to manage data in a unified structure. The enormously growth of data in the last decades has created a necessity for the fast extracting, accessing, and processing of the data. Optimization has been a key component in improving the system&amp;#39;s performance, searching and accessing data in different data management solutions. Optimization is a mathematical discipline that formulates mathematical models and finds the best solution among a set of feasible solutions. This paper aims to give a general overview of applications of optimization techniques and algorithms in different areas of data management in the last decades. Data management includes a large group of functionalities, but we will focus on studying and reviewing the recent development of optimization algorithms used in databases, data warehouses, big data and machine learning. Furthermore, this paper will identify applications of optimization in data management, reviews the current solutions proposed and emphasize future topics where there is a lack of studies in data management.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414699]").text(description); $(".js-view-count[data-work-id=108414699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414699,"title":"Optimization Techniques in Data Management: A Survey","internal_url":"https://www.academia.edu/108414699/Optimization_Techniques_in_Data_Management_A_Survey","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414697"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414697/Interactive_environment_WebOptim_for_solving_multiple_objective_problems_using_scalarising_and_evolutionary_approaches"><img alt="Research paper thumbnail of Interactive environment WebOptim for solving multiple-objective problems using scalarising and evolutionary approaches" class="work-thumbnail" src="https://attachments.academia-assets.com/106805312/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414697/Interactive_environment_WebOptim_for_solving_multiple_objective_problems_using_scalarising_and_evolutionary_approaches">Interactive environment WebOptim for solving multiple-objective problems using scalarising and evolutionary approaches</a></div><div class="wp-workCard_item"><span>International Journal of Reasoning-based Intelligent Systems</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A web-based decision support system (DSS) is presented in this paper. It is an interactive enviro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A web-based decision support system (DSS) is presented in this paper. It is an interactive environment for solving multiple-objective problems with continuous and/or integer decision variables. The system is targeted at different types of users-researchers, educators and business people. The system supports a number of fifteen interactive methods. They are incorporated into original generalised scalarising interactive method (GENS-IM). The choice of a method is organised in an implicit way on the base of decision maker&#39;s (DM) preferences. An evolutionary method is also included in the system. The DM can switch the methods in one solution process.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5fc07da077b8d3f958e151e4dfb9cf52" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805312,&quot;asset_id&quot;:108414697,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805312/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414697"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414697"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414697; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414697]").text(description); $(".js-view-count[data-work-id=108414697]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414697; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414697']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5fc07da077b8d3f958e151e4dfb9cf52" } } $('.js-work-strip[data-work-id=108414697]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414697,"title":"Interactive environment WebOptim for solving multiple-objective problems using scalarising and evolutionary approaches","internal_url":"https://www.academia.edu/108414697/Interactive_environment_WebOptim_for_solving_multiple_objective_problems_using_scalarising_and_evolutionary_approaches","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805312,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805312/thumbnails/1.jpg","file_name":"ijris.2015.07090720231021-1-jrjtzp.pdf","download_url":"https://www.academia.edu/attachments/106805312/download_file","bulk_download_file_name":"Interactive_environment_WebOptim_for_sol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805312/ijris.2015.07090720231021-1-jrjtzp-libre.pdf?1697887871=\u0026response-content-disposition=attachment%3B+filename%3DInteractive_environment_WebOptim_for_sol.pdf\u0026Expires=1739921476\u0026Signature=fEJMgQJkL909eaxvV89m3FLB-2ULle9aCXRvqPY1f3P6KIH8Ll~pCTc6tSCZGu3~UbDjd8EzWZzv0b9kfkgVUjyhsr0zmkHrAsZ8A0ZcDGFQLdUVFs6cK8iVQVmpNcL7f4SQ74Tc9IGX-Dbbg4D7PWp9KsHNiudO-7FXMtEA7NfD255pzM1frG6nvyeKgIhb8nbVfPdPbFeJYooyE6wh7O2Axj0Hj044w5A1iWArjs-vjP8BJcWHajZG1AlnQ6pOfNXFD3mus-XKG5Aa8CCigmkvy-YSDzqpt2gFyEvxOhrJIN2IX56xaZ0QqUb0-4xnTurIF-yeL8s7N4O8UqyAkQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414695"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414695/A_prototype_of_a_web_based_decision_support_system_for_building_models_and_solving_optimization_and_decision_making_problems"><img alt="Research paper thumbnail of A prototype of a web-based decision support system for building models and solving optimization and decision making problems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414695/A_prototype_of_a_web_based_decision_support_system_for_building_models_and_solving_optimization_and_decision_making_problems">A prototype of a web-based decision support system for building models and solving optimization and decision making problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A prototype of a Web-based software system for optimization and multiple criteria decision making...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A prototype of a Web-based software system for optimization and multiple criteria decision making, applicable to business, research and learning purposes is presented. The system facilitates the construction of mathematical models and the solution of some popular real optimization and decision making problems. It has user friendly interface designed for different groups of users. The system software is accessible from anywhere by means of a standard browser and an Internet connection.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414695"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414695"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414695; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414695]").text(description); $(".js-view-count[data-work-id=108414695]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414695; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414695']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414695]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414695,"title":"A prototype of a web-based decision support system for building models and solving optimization and decision making problems","internal_url":"https://www.academia.edu/108414695/A_prototype_of_a_web_based_decision_support_system_for_building_models_and_solving_optimization_and_decision_making_problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414693"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414693/An_Evolutionary_Algorithm_for_Integer_Multicriteria_Optimization_Evalimco_"><img alt="Research paper thumbnail of An Evolutionary Algorithm for Integer Multicriteria Optimization (Evalimco)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414693/An_Evolutionary_Algorithm_for_Integer_Multicriteria_Optimization_Evalimco_">An Evolutionary Algorithm for Integer Multicriteria Optimization (Evalimco)</a></div><div class="wp-workCard_item"><span>World Scientific proceedings series on computer engingeering and information science</span><span>, Oct 1, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414693"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414693"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414693; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414693]").text(description); $(".js-view-count[data-work-id=108414693]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414693; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414693']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414693]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414693,"title":"An Evolutionary Algorithm for Integer Multicriteria Optimization (Evalimco)","internal_url":"https://www.academia.edu/108414693/An_Evolutionary_Algorithm_for_Integer_Multicriteria_Optimization_Evalimco_","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414691"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414691/Efficient_Energy_Management_in_a_Microgrid"><img alt="Research paper thumbnail of Efficient Energy Management in a Microgrid" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414691/Efficient_Energy_Management_in_a_Microgrid">Efficient Energy Management in a Microgrid</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Small scale renewable energy sources like photo-voltaic panels, wind turbines, etc can be easily ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Small scale renewable energy sources like photo-voltaic panels, wind turbines, etc can be easily installed on home roof top and such architecture can minimize cost of energy and load on the main grid. Our approach is to generate energy at home through renewable energy (RE) resources and store surplus energy in the battery bank. If RE generation sources and battery reserve fails to satisfy the load, then power is supplied by the main grid. The major work is to develop an autonomous system that can manage all these sources effectively and efficiently. Despite many advantages of renewable energy sources its drawback is that these sources are weather and climate dependent. Night hours, clouds, wind speed, fog, etc are the factors that effect the performance of renewable energy sources with big impact. This research is based on a group of three prosumers who can generate energy via RE sources at home, stores it in a battery bank and takes the extra energy from nearby grid to fulfill the local demand if it is required. A heuristic algorithm is proposed and implemented for this study.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414691"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414691"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414691; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414691]").text(description); $(".js-view-count[data-work-id=108414691]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414691; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414691']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414691]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414691,"title":"Efficient Energy Management in a Microgrid","internal_url":"https://www.academia.edu/108414691/Efficient_Energy_Management_in_a_Microgrid","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414690"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414690/IoT_Approach_for_Improving_the_Energy_Efficiency_in_the_Durres_Port_Authority_Buildings"><img alt="Research paper thumbnail of IoT Approach for Improving the Energy Efficiency in the Durres Port Authority Buildings" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414690/IoT_Approach_for_Improving_the_Energy_Efficiency_in_the_Durres_Port_Authority_Buildings">IoT Approach for Improving the Energy Efficiency in the Durres Port Authority Buildings</a></div><div class="wp-workCard_item"><span>2023 17th International Conference on Telecommunications (ConTEL)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414690"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414690"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414690; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414690]").text(description); $(".js-view-count[data-work-id=108414690]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414690; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414690']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414690]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414690,"title":"IoT Approach for Improving the Energy Efficiency in the Durres Port Authority Buildings","internal_url":"https://www.academia.edu/108414690/IoT_Approach_for_Improving_the_Energy_Efficiency_in_the_Durres_Port_Authority_Buildings","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414688"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/108414688/An_Algorithm_for_Generating_a_Dispersed_Population_of_Feasible_Schedules_for_Flexible_Job_Shop_Problems"><img alt="Research paper thumbnail of An Algorithm for Generating a Dispersed Population of Feasible Schedules for Flexible Job Shop Problems" class="work-thumbnail" src="https://attachments.academia-assets.com/106805311/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/108414688/An_Algorithm_for_Generating_a_Dispersed_Population_of_Feasible_Schedules_for_Flexible_Job_Shop_Problems">An Algorithm for Generating a Dispersed Population of Feasible Schedules for Flexible Job Shop Problems</a></div><div class="wp-workCard_item"><span>Information Technologies and Control</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The flexible job shop problems (FJSP) are an important class of scheduling problems and they have...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The flexible job shop problems (FJSP) are an important class of scheduling problems and they have a significant practical value. Unfortunately it is not easy to solve job shop problems and in particular FJSPs because they are NP-hard problems. In this paper we propose a method for generating a set of feasible schedules for a given FJSP.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a50ef1614f1838b0fc315bab7f8085e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:106805311,&quot;asset_id&quot;:108414688,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/106805311/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414688"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414688"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414688; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414688]").text(description); $(".js-view-count[data-work-id=108414688]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414688; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414688']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a50ef1614f1838b0fc315bab7f8085e8" } } $('.js-work-strip[data-work-id=108414688]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414688,"title":"An Algorithm for Generating a Dispersed Population of Feasible Schedules for Flexible Job Shop Problems","internal_url":"https://www.academia.edu/108414688/An_Algorithm_for_Generating_a_Dispersed_Population_of_Feasible_Schedules_for_Flexible_Job_Shop_Problems","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[{"id":106805311,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/106805311/thumbnails/1.jpg","file_name":"itc-2017-0029.pdf","download_url":"https://www.academia.edu/attachments/106805311/download_file","bulk_download_file_name":"An_Algorithm_for_Generating_a_Dispersed.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/106805311/itc-2017-0029-libre.pdf?1697887872=\u0026response-content-disposition=attachment%3B+filename%3DAn_Algorithm_for_Generating_a_Dispersed.pdf\u0026Expires=1739921476\u0026Signature=GQ6RN2-h84044jE2cW1V524w61cQSImzGlW-uceU1IfT9ctAnP-S-qEjPusIHQQ8Le8Y4L7UraDZ9iRCKUDDoWWDMFeqIGkFwIJkLu8N~0CBDvnNowZg5WSiOIGuh9iHqvLhc-97dSVK2CobowvRFgjOBHwxwi-yD5ihO0zHeQitKlk78V5MXOSdTezh62QfNVuN5QxFcU-2~vA5YdaxQiT0OKmasG7ujRfGVcFpTsZVN-RrW0tbBPdY6RooCiZ9KhxbV~JJELkvSntw~1A5cmdV1DtFBxeo1o2UBaZ7okcz7f1xcE2JidHDYvAm8g5tyb8gM2EbAkiHN~PwliPSeg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="108414531"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/108414531/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection"><img alt="Research paper thumbnail of B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/108414531/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection">B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="108414531"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="108414531"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 108414531; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=108414531]").text(description); $(".js-view-count[data-work-id=108414531]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 108414531; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='108414531']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=108414531]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":108414531,"title":"B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection","internal_url":"https://www.academia.edu/108414531/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="102126056"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/102126056/A_Decision_Making_Approach_for_Improvement_of_Energy_Flows_Stability_in_Microgrids"><img alt="Research paper thumbnail of A Decision-Making Approach for Improvement of Energy Flows Stability in Microgrids" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/102126056/A_Decision_Making_Approach_for_Improvement_of_Energy_Flows_Stability_in_Microgrids">A Decision-Making Approach for Improvement of Energy Flows Stability in Microgrids</a></div><div class="wp-workCard_item"><span>IFAC-PapersOnLine</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="102126056"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="102126056"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 102126056; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=102126056]").text(description); $(".js-view-count[data-work-id=102126056]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 102126056; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='102126056']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=102126056]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":102126056,"title":"A Decision-Making Approach for Improvement of Energy Flows Stability in Microgrids","internal_url":"https://www.academia.edu/102126056/A_Decision_Making_Approach_for_Improvement_of_Energy_Flows_Stability_in_Microgrids","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94977859"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/94977859/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection"><img alt="Research paper thumbnail of B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/94977859/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection">B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection</a></div><div class="wp-workCard_item"><span>2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94977859"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94977859"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94977859; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94977859]").text(description); $(".js-view-count[data-work-id=94977859]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94977859; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94977859']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94977859]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94977859,"title":"B-VPL: A Binary Volleyball Premier League optimization algorithm for Feature Selection","internal_url":"https://www.academia.edu/94977859/B_VPL_A_Binary_Volleyball_Premier_League_optimization_algorithm_for_Feature_Selection","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="94977858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/94977858/An_Approach_for_Coefficients_optimization_in_Adaptive_Filter_Signal_Equalization"><img alt="Research paper thumbnail of An Approach for Coefficients optimization in Adaptive Filter Signal Equalization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/94977858/An_Approach_for_Coefficients_optimization_in_Adaptive_Filter_Signal_Equalization">An Approach for Coefficients optimization in Adaptive Filter Signal Equalization</a></div><div class="wp-workCard_item"><span>2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP)</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="94977858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="94977858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 94977858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=94977858]").text(description); $(".js-view-count[data-work-id=94977858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 94977858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='94977858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=94977858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":94977858,"title":"An Approach for Coefficients optimization in Adaptive Filter Signal Equalization","internal_url":"https://www.academia.edu/94977858/An_Approach_for_Coefficients_optimization_in_Adaptive_Filter_Signal_Equalization","owner_id":47469692,"coauthors_can_edit":true,"owner":{"id":47469692,"first_name":"Vassil","middle_initials":"","last_name":"Guliashki","page_name":"VassilGuliashki","domain_name":"independent","created_at":"2016-04-21T05:12:11.182-07:00","display_name":"Vassil Guliashki","url":"https://independent.academia.edu/VassilGuliashki"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2ed35745ac5d2e9d46af463a74b2f3a68e24948a5c278e5dcfb59bd55b710323", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="bm9cFXRWB7BZpb7pl3owwUHEvFC7UWfJSTQo6pqH1dDTxO1Lo5tzZFPp8Xxx-WYoi6DjKDwqP76ekHoLDtl6XQ" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/VassilGuliashki" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="NjXS1SzG6IMEV1pVHTfS_mtQ8JF0K2axKxKey6dFFUuLnmOL-wucVw4bFcD7tIQXoTSv6fNQPsb8tswqMxu6xg" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10