CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 185 results for author: <span class="mathjax">Klimenko, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/gr-qc" aria-role="search"> Searching in archive <strong>gr-qc</strong>. <a href="/search/?searchtype=author&query=Klimenko%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Klimenko, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Klimenko%2C+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Klimenko, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11749">arXiv:2412.11749</a> <span> [<a href="https://arxiv.org/pdf/2412.11749">pdf</a>, <a href="https://arxiv.org/format/2412.11749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Inferring additional physics through unmodelled signal reconstructions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Das%2C+R">Rimo Das</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Divyajyoti"> Divyajyoti</a>, <a href="/search/gr-qc?searchtype=author&query=Jose%2C+S">Sijil Jose</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a>, <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+C+K">Chandra Kant Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11749v2-abstract-short" style="display: inline;"> Parameter estimation of gravitational wave data is often computationally expensive, requiring simplifying assumptions such as circularisation of binary orbits. Although, if included, the sub-dominant effects like orbital eccentricity may provide crucial insights into the formation channels of compact binary mergers. To address these challenges, we present a pipeline strategy leveraging minimally m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11749v2-abstract-full').style.display = 'inline'; document.getElementById('2412.11749v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11749v2-abstract-full" style="display: none;"> Parameter estimation of gravitational wave data is often computationally expensive, requiring simplifying assumptions such as circularisation of binary orbits. Although, if included, the sub-dominant effects like orbital eccentricity may provide crucial insights into the formation channels of compact binary mergers. To address these challenges, we present a pipeline strategy leveraging minimally modelled waveform reconstruction to identify the presence of eccentricity in real time. Using injected signals, we demonstrate that ignoring eccentricity ($e_{\rm 20Hz} \gtrsim 0.1$) leads to significant biases in parameter recovery, including chirp mass estimates falling outside the 90% credible interval. Waveform reconstruction shows inconsistencies increase with eccentricity, and this behaviour is consistent for different mass ratios. Our method enables low-latency inferences of binary properties supporting targeted follow-up analyses and can be applied to identify any physical effect of measurable strength. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11749v2-abstract-full').style.display = 'none'; document.getElementById('2412.11749v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15192">arXiv:2410.15192</a> <span> [<a href="https://arxiv.org/pdf/2410.15192">pdf</a>, <a href="https://arxiv.org/format/2410.15192">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Gravitational Wave Detector Sensitivity to Eccentric Black Hole Mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Bhaumik%2C+S">Shubhagata Bhaumik</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Anglin%2C+J">Jeremiah Anglin</a>, <a href="/search/gr-qc?searchtype=author&query=Carullo%2C+G">Gregorio Carullo</a>, <a href="/search/gr-qc?searchtype=author&query=Healy%2C+J">James Healy</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a>, <a href="/search/gr-qc?searchtype=author&query=Lange%2C+J">Jacob Lange</a>, <a href="/search/gr-qc?searchtype=author&query=Lousto%2C+C">Carlos Lousto</a>, <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+T">Tanmaya Mishra</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepa%C5%84czyk%2C+M+J">Marek J. Szczepa艅czyk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15192v1-abstract-short" style="display: inline;"> Orbital eccentricity in compact binary mergers carries crucial information about the binary's formation and environment. There are emerging signs that some of the mergers detected by the LIGO and Virgo gravitational wave detectors could indeed be eccentric. Nevertheless, the identification of eccentricity via gravitational waves remains challenging, to a large extent because of the limited availab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15192v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15192v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15192v1-abstract-full" style="display: none;"> Orbital eccentricity in compact binary mergers carries crucial information about the binary's formation and environment. There are emerging signs that some of the mergers detected by the LIGO and Virgo gravitational wave detectors could indeed be eccentric. Nevertheless, the identification of eccentricity via gravitational waves remains challenging, to a large extent because of the limited availability of eccentric gravitational waveforms. While multiple suites of eccentric waveforms have recently been developed, they each cover only a part of the binary parameter space. Here we evaluate the sensitivity of LIGO to eccentric waveforms from the SXS and RIT numerical relativity catalogs and the TEOBResumS-Dali waveform model using data from LIGO-Virgo-Kagra's third observing run. The obtained sensitivities, as functions of eccentricity, mass and mass ratio, are important inputs to understanding detection prospects and observational population constrains. In addition, our results enable the comparison of the waveforms to establish their compatibility and applicability for searches and parameter estimation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15192v1-abstract-full').style.display = 'none'; document.getElementById('2410.15192v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400384 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15191">arXiv:2410.15191</a> <span> [<a href="https://arxiv.org/pdf/2410.15191">pdf</a>, <a href="https://arxiv.org/format/2410.15191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Gravitational Waves Detected by a Burst Search in LIGO/Virgo's Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+T">Tanmaya Mishra</a>, <a href="/search/gr-qc?searchtype=author&query=Bhaumik%2C+S">Shubhagata Bhaumik</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepa%C5%84czyk%2C+M+J">Marek J. Szczepa艅czyk</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15191v2-abstract-short" style="display: inline;"> Burst searches identify gravitational-wave (GW) signals in the detector data without use of a specific signal model, unlike the matched-filter searches that correlate data with simulated signal waveforms (templates). While matched filters are optimal for detection of known signals in the Gaussian noise, the burst searches can be more efficient in finding unusual events not covered by templates or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15191v2-abstract-full').style.display = 'inline'; document.getElementById('2410.15191v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15191v2-abstract-full" style="display: none;"> Burst searches identify gravitational-wave (GW) signals in the detector data without use of a specific signal model, unlike the matched-filter searches that correlate data with simulated signal waveforms (templates). While matched filters are optimal for detection of known signals in the Gaussian noise, the burst searches can be more efficient in finding unusual events not covered by templates or those affected by non-Gaussian noise artifacts. Here, we report the detection of 3 gravitational wave signals that are uncovered by a burst search Coherent WaveBurst (cWB) optimized for the detection of binary black hole (BBH) mergers. They were found in the data from the LIGO/Virgo's third observing run (O3) with a combined significance of 3.6 $蟽$. Each event appears to be a BBH merger not previously reported by the LIGO/Virgo's matched-filter searches. The most significant event has a reconstructed primary component in the upper mass gap ($m_1 = 70^{+36}_{-18}\,$M$_\odot$), and unusually low mass ratio ($m_2/m_1\sim0.3$), implying a dynamical or AGN origin. The 3 new events are consistent with the expected number of cWB-only detections in the O3 run ($4.8 \pm 2.1$), and belong to the stellar-mass binary population with the total masses in the $70-100$ M$_\odot$ range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15191v2-abstract-full').style.display = 'none'; document.getElementById('2410.15191v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2400391 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span> [<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/gr-qc?searchtype=author&query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/gr-qc?searchtype=author&query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/gr-qc?searchtype=author&query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/gr-qc?searchtype=author&query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/gr-qc?searchtype=author&query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/gr-qc?searchtype=author&query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/gr-qc?searchtype=author&query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/gr-qc?searchtype=author&query=Campana%2C+S">Sergio Campana</a>, <a href="/search/gr-qc?searchtype=author&query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/gr-qc?searchtype=author&query=D%27Ai%2C+A">Antonino D'Ai</a>, <a href="/search/gr-qc?searchtype=author&query=D%27Avanzo%2C+P">Paolo D'Avanzo</a>, <a href="/search/gr-qc?searchtype=author&query=D%27Elia%2C+V">Valerio D'Elia</a>, <a href="/search/gr-qc?searchtype=author&query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/gr-qc?searchtype=author&query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/gr-qc?searchtype=author&query=Evans%2C+P">Phil Evans</a>, <a href="/search/gr-qc?searchtype=author&query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/gr-qc?searchtype=author&query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/gr-qc?searchtype=author&query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Brien%2C+P">Paul O'Brien</a>, <a href="/search/gr-qc?searchtype=author&query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/gr-qc?searchtype=author&query=Page%2C+K">Kim Page</a>, <a href="/search/gr-qc?searchtype=author&query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/gr-qc?searchtype=author&query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/gr-qc?searchtype=author&query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v2-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v2-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v2-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v2-abstract-full').style.display = 'none'; document.getElementById('2407.12867v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Update to version accepted for publication in ApJ. 50 pages, 10 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, Volume 980, 2025, 207 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04248">arXiv:2404.04248</a> <span> [<a href="https://arxiv.org/pdf/2404.04248">pdf</a>, <a href="https://arxiv.org/format/2404.04248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5beb">10.3847/2041-8213/ad5beb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gravitational Waves from the Coalescence of a $2.5\text{-}4.5~M_\odot$ Compact Object and a Neutron Star </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Abchouyeh%2C+M+A">M. Aghaei Abchouyeh</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Ak%C3%A7ay%2C+S">S. Ak莽ay</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a> , et al. (1771 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04248v3-abstract-short" style="display: inline;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the so… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'inline'; document.getElementById('2404.04248v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04248v3-abstract-full" style="display: none;"> We report the observation of a coalescing compact binary with component masses $2.5\text{-}4.5~M_\odot$ and $1.2\text{-}2.0~M_\odot$ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than $5~M_\odot$ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of $55^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1}$ for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04248v3-abstract-full').style.display = 'none'; document.getElementById('2404.04248v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (10 pages author list, 13 pages main text, 1 page acknowledgements, 13 pages appendices, 8 pages bibliography), 17 figures, 16 tables. Update to match version published in The Astrophysical Journal Letters. Data products available from https://zenodo.org/records/10845779</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300352 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL 970, L34 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span> [<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/gr-qc?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.16146">arXiv:2305.16146</a> <span> [<a href="https://arxiv.org/pdf/2305.16146">pdf</a>, <a href="https://arxiv.org/format/2305.16146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the Third Observing Run of Advanced LIGO and Advanced Virgo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Szczepa%C5%84czyk%2C+M+J">Marek J. Szczepa艅czyk</a>, <a href="/search/gr-qc?searchtype=author&query=Zheng%2C+Y">Yanyan Zheng</a>, <a href="/search/gr-qc?searchtype=author&query=Antelis%2C+J+M">Javier M. Antelis</a>, <a href="/search/gr-qc?searchtype=author&query=Benjamin%2C+M">Michael Benjamin</a>, <a href="/search/gr-qc?searchtype=author&query=Bizouard%2C+M">Marie-Anne Bizouard</a>, <a href="/search/gr-qc?searchtype=author&query=Casallas-Lagos%2C+A">Alejandro Casallas-Lagos</a>, <a href="/search/gr-qc?searchtype=author&query=Cerd%C3%A1-Dur%C3%A1n%2C+P">Pablo Cerd谩-Dur谩n</a>, <a href="/search/gr-qc?searchtype=author&query=Davis%2C+D">Derek Davis</a>, <a href="/search/gr-qc?searchtype=author&query=Gondek-Rosi%C5%84ska%2C+D">Dorota Gondek-Rosi艅ska</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a>, <a href="/search/gr-qc?searchtype=author&query=Moreno%2C+C">Claudia Moreno</a>, <a href="/search/gr-qc?searchtype=author&query=Obergaulinger%2C+M">Martin Obergaulinger</a>, <a href="/search/gr-qc?searchtype=author&query=Powell%2C+J">Jade Powell</a>, <a href="/search/gr-qc?searchtype=author&query=Ramirez%2C+D">Dymetris Ramirez</a>, <a href="/search/gr-qc?searchtype=author&query=Ratto%2C+B">Brad Ratto</a>, <a href="/search/gr-qc?searchtype=author&query=Richarson%2C+C">Colter Richarson</a>, <a href="/search/gr-qc?searchtype=author&query=Rijal%2C+A">Abhinav Rijal</a>, <a href="/search/gr-qc?searchtype=author&query=Stuver%2C+A+L">Amber L. Stuver</a>, <a href="/search/gr-qc?searchtype=author&query=Szewczyk%2C+P">Pawe艂 Szewczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">Gabriele Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Zanolin%2C+M">Michele Zanolin</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Bhaumik%2C+S">Shubhagata Bhaumik</a>, <a href="/search/gr-qc?searchtype=author&query=Bulik%2C+T">Tomasz Bulik</a>, <a href="/search/gr-qc?searchtype=author&query=Drago%2C+M">Marco Drago</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.16146v2-abstract-short" style="display: inline;"> We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed optically within 30 Mpc during the third observing run of Advanced LIGO and Advanced Virgo. No gravitational wave associated with a core-collapse supernova has been identified. We then report the detection efficiency for a variety of possible gravitational-wave emissions. For ne… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16146v2-abstract-full').style.display = 'inline'; document.getElementById('2305.16146v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.16146v2-abstract-full" style="display: none;"> We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed optically within 30 Mpc during the third observing run of Advanced LIGO and Advanced Virgo. No gravitational wave associated with a core-collapse supernova has been identified. We then report the detection efficiency for a variety of possible gravitational-wave emissions. For neutrino-driven explosions, the distance at which we reach 50% detection efficiency is up to 8.9 kpc, while more energetic magnetorotationally-driven explosions are detectable at larger distances. The distance reaches for selected models of the black hole formation, and quantum chromodynamics phase transition are also provided. We then constrain the core-collapse supernova engine across a wide frequency range from 50 Hz to 2 kHz. The upper limits on gravitational-wave energy and luminosity emission are at low frequencies down to $10^{-4}\,M_\odot c^2$ and $6 \times 10^{-4}\,M_\odot c^2$/s, respectively. The upper limits on the proto-neutron star ellipticity are down to 3 at high frequencies. Finally, by combining the results obtained with the data from the first and second observing runs of LIGO and Virgo, we improve the constraints of the parameter spaces of the extreme emission models. Specifically, the proto-neutron star ellipticities for the long-lasting bar mode model are down to 1 for long emission (1 s) at high frequency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.16146v2-abstract-full').style.display = 'none'; document.getElementById('2305.16146v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures; https://dcc.ligo.org/LIGO-P2200361</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08393">arXiv:2304.08393</a> <span> [<a href="https://arxiv.org/pdf/2304.08393">pdf</a>, <a href="https://arxiv.org/format/2304.08393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08393v1-abstract-short" style="display: inline;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08393v1-abstract-full" style="display: none;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'none'; document.getElementById('2304.08393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.03676">arXiv:2302.03676</a> <span> [<a href="https://arxiv.org/pdf/2302.03676">pdf</a>, <a href="https://arxiv.org/format/2302.03676">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acdc9f">10.3847/1538-4365/acdc9f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Open data from the third observing run of LIGO, Virgo, KAGRA and GEO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Al-Jodah%2C+A">A. Al-Jodah</a>, <a href="/search/gr-qc?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1719 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.03676v1-abstract-short" style="display: inline;"> The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03676v1-abstract-full').style.display = 'inline'; document.getElementById('2302.03676v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.03676v1-abstract-full" style="display: none;"> The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.03676v1-abstract-full').style.display = 'none'; document.getElementById('2302.03676v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200316 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01754">arXiv:2210.01754</a> <span> [<a href="https://arxiv.org/pdf/2210.01754">pdf</a>, <a href="https://arxiv.org/format/2210.01754">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.062002">10.1103/PhysRevD.107.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-wave bursts in the third Advanced LIGO-Virgo run with coherent WaveBurst enhanced by Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Szczepa%C5%84czyk%2C+M+J">Marek J. Szczepa艅czyk</a>, <a href="/search/gr-qc?searchtype=author&query=Salemi%2C+F">Francesco Salemi</a>, <a href="/search/gr-qc?searchtype=author&query=Bini%2C+S">Sophie Bini</a>, <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+T">Tanmaya Mishra</a>, <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">Gabriele Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Bhaumik%2C+S">Shubhagata Bhaumik</a>, <a href="/search/gr-qc?searchtype=author&query=Drago%2C+M">Marco Drago</a>, <a href="/search/gr-qc?searchtype=author&query=Halim%2C+O">Odysse Halim</a>, <a href="/search/gr-qc?searchtype=author&query=Lazzaro%2C+C">Claudia Lazzaro</a>, <a href="/search/gr-qc?searchtype=author&query=Miani%2C+A">Andrea Miani</a>, <a href="/search/gr-qc?searchtype=author&query=Milotti%2C+E">Edoardo Milotti</a>, <a href="/search/gr-qc?searchtype=author&query=Prodi%2C+G+A">Giovanni A. Prodi</a>, <a href="/search/gr-qc?searchtype=author&query=Tiwari%2C+S">Shubhanshu Tiwari</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01754v2-abstract-short" style="display: inline;"> This paper presents a search for generic short-duration gravitational-wave (GW) transients (or GW bursts) in the data from the third observing run of Advanced LIGO and Advanced Virgo. We use coherent WaveBurst (cWB) pipeline enhanced with a decision-tree classification algorithm for more efficient separation of GW signals from noise transients. The machine-learning (ML) algorithm is trained on a r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01754v2-abstract-full').style.display = 'inline'; document.getElementById('2210.01754v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01754v2-abstract-full" style="display: none;"> This paper presents a search for generic short-duration gravitational-wave (GW) transients (or GW bursts) in the data from the third observing run of Advanced LIGO and Advanced Virgo. We use coherent WaveBurst (cWB) pipeline enhanced with a decision-tree classification algorithm for more efficient separation of GW signals from noise transients. The machine-learning (ML) algorithm is trained on a representative set of noise events and a set of simulated stochastic signals that are not correlated with any known signal model. This training procedure preserves the model-independent nature of the search. We demonstrate that the ML-enhanced cWB pipeline can detect GW signals at a larger distance than previous model-independent searches. The sensitivity improvements are achieved across the broad spectrum of simulated signals, with the goal of testing the robustness of this model-agnostic search. At a false-alarm rate of one event per century, the detectable signal amplitudes are reduced up to almost an order of magnitude, most notably for the single-cycle signal morphologies. This ML-enhanced pipeline also improves the detection efficiency of compact binary mergers in a wide range of masses, from stellar mass to intermediate-mass black holes, both with circular and elliptical orbits. After excluding previously detected compact binaries, no new gravitational-wave signals are observed for the two-fold Hanford-Livingston and the three-fold Hanford-Livingston-Virgo detector networks. With the improved sensitivity of the all-sky search, we obtain the most stringent constraints on the isotropic emission of gravitational-wave energy from short-duration burst sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01754v2-abstract-full').style.display = 'none'; document.getElementById('2210.01754v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11146">arXiv:2209.11146</a> <span> [<a href="https://arxiv.org/pdf/2209.11146">pdf</a>, <a href="https://arxiv.org/format/2209.11146">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.023021">10.1103/PhysRevD.107.023021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data Challenge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Sch%C3%A4fer%2C+M+B">Marlin B. Sch盲fer</a>, <a href="/search/gr-qc?searchtype=author&query=Zelenka%2C+O">Ond艡ej Zelenka</a>, <a href="/search/gr-qc?searchtype=author&query=Nitz%2C+A+H">Alexander H. Nitz</a>, <a href="/search/gr-qc?searchtype=author&query=Wang%2C+H">He Wang</a>, <a href="/search/gr-qc?searchtype=author&query=Wu%2C+S">Shichao Wu</a>, <a href="/search/gr-qc?searchtype=author&query=Guo%2C+Z">Zong-Kuan Guo</a>, <a href="/search/gr-qc?searchtype=author&query=Cao%2C+Z">Zhoujian Cao</a>, <a href="/search/gr-qc?searchtype=author&query=Ren%2C+Z">Zhixiang Ren</a>, <a href="/search/gr-qc?searchtype=author&query=Nousi%2C+P">Paraskevi Nousi</a>, <a href="/search/gr-qc?searchtype=author&query=Stergioulas%2C+N">Nikolaos Stergioulas</a>, <a href="/search/gr-qc?searchtype=author&query=Iosif%2C+P">Panagiotis Iosif</a>, <a href="/search/gr-qc?searchtype=author&query=Koloniari%2C+A+E">Alexandra E. Koloniari</a>, <a href="/search/gr-qc?searchtype=author&query=Tefas%2C+A">Anastasios Tefas</a>, <a href="/search/gr-qc?searchtype=author&query=Passalis%2C+N">Nikolaos Passalis</a>, <a href="/search/gr-qc?searchtype=author&query=Salemi%2C+F">Francesco Salemi</a>, <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">Gabriele Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a>, <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+T">Tanmaya Mishra</a>, <a href="/search/gr-qc?searchtype=author&query=Br%C3%BCgmann%2C+B">Bernd Br眉gmann</a>, <a href="/search/gr-qc?searchtype=author&query=Cuoco%2C+E">Elena Cuoco</a>, <a href="/search/gr-qc?searchtype=author&query=Huerta%2C+E+A">E. A. Huerta</a>, <a href="/search/gr-qc?searchtype=author&query=Messenger%2C+C">Chris Messenger</a>, <a href="/search/gr-qc?searchtype=author&query=Ohme%2C+F">Frank Ohme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11146v1-abstract-short" style="display: inline;"> We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1). For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise. The final of the 4 provided datasets contained real noise from the O3a observing run and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11146v1-abstract-full').style.display = 'inline'; document.getElementById('2209.11146v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11146v1-abstract-full" style="display: none;"> We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1). For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise. The final of the 4 provided datasets contained real noise from the O3a observing run and signals up to a duration of 20 seconds with the inclusion of precession effects and higher order modes. We present the average sensitivity distance and runtime for the 6 entered algorithms derived from 1 month of test data unknown to the participants prior to submission. Of these, 4 are machine learning algorithms. We find that the best machine learning based algorithms are able to achieve up to 95% of the sensitive distance of matched-filtering based production analyses for simulated Gaussian noise at a false-alarm rate (FAR) of one per month. In contrast, for real noise, the leading machine learning search achieved 70%. For higher FARs the differences in sensitive distance shrink to the point where select machine learning submissions outperform traditional search algorithms at FARs $\geq 200$ per month on some datasets. Our results show that current machine learning search algorithms may already be sensitive enough in limited parameter regions to be useful for some production settings. To improve the state-of-the-art, machine learning algorithms need to reduce the false-alarm rates at which they are capable of detecting signals and extend their validity to regions of parameter space where modeled searches are computationally expensive to run. Based on our findings we compile a list of research areas that we believe are the most important to elevate machine learning searches to an invaluable tool in gravitational-wave signal detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11146v1-abstract-full').style.display = 'none'; document.getElementById('2209.11146v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 6 figures, 4 tables, additional material available at https://github.com/gwastro/ml-mock-data-challenge-1</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02863">arXiv:2209.02863</a> <span> [<a href="https://arxiv.org/pdf/2209.02863">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aca1b0">10.3847/2041-8213/aca1b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02863v2-abstract-short" style="display: inline;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to bala… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02863v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02863v2-abstract-full" style="display: none;"> We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO, Advanced Virgo and KAGRA. This is a semicoherent search which uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25Hz to 1600Hz, as well as ranges in orbital speed, frequency and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100Hz and 200Hz, correspond to an amplitude h0 of about 1e-25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4e-26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically-marginalized upper limits are close to the predicted amplitude from about 70Hz to 100Hz; the limits assuming the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40Hz to 200Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500Hz or more. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02863v2-abstract-full').style.display = 'none'; document.getElementById('2209.02863v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, Open Access Journal PDF</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100110-v13 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, 941, L30 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.04523">arXiv:2204.04523</a> <span> [<a href="https://arxiv.org/pdf/2204.04523">pdf</a>, <a href="https://arxiv.org/format/2204.04523">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.042003">10.1103/PhysRevD.106.042003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.04523v1-abstract-short" style="display: inline;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'inline'; document.getElementById('2204.04523v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.04523v1-abstract-full" style="display: none;"> We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band $[10,2000]\rm~Hz$ have been used. No significant detection was found and 95$\%$ confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about $7.6\times 10^{-26}$ at $\simeq 142\rm~Hz$. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.04523v1-abstract-full').style.display = 'none'; document.getElementById('2204.04523v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01270">arXiv:2203.01270</a> <span> [<a href="https://arxiv.org/pdf/2203.01270">pdf</a>, <a href="https://arxiv.org/format/2203.01270">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac073">10.1093/ptep/ptac073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First joint observation by the underground gravitational-wave detector, KAGRA, with GEO600 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01270v2-abstract-short" style="display: inline;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'inline'; document.getElementById('2203.01270v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01270v2-abstract-full" style="display: none;"> We report the results of the first joint observation of the KAGRA detector with GEO600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with three-kilometer arms, and located in Kamioka, Gifu, Japan. GEO600 is a British--German laser interferometer with 600 m arms, and located near Hannover, Germany. GEO600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO--KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analysed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01270v2-abstract-full').style.display = 'none'; document.getElementById('2203.01270v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches with published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100286 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Progress of Theoretical and Experimental Physics, Volume 2022, Issue 6, 063F01 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.10104">arXiv:2201.10104</a> <span> [<a href="https://arxiv.org/pdf/2201.10104">pdf</a>, <a href="https://arxiv.org/format/2201.10104">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.062002">10.1103/PhysRevD.106.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1647 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.10104v1-abstract-short" style="display: inline;"> Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10104v1-abstract-full').style.display = 'inline'; document.getElementById('2201.10104v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.10104v1-abstract-full" style="display: none;"> Results are presented for a semi-coherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search improves on previous HMM-based searches of Laser Interferometer Gravitational-wave Observatory (LIGO) data by including the orbital period in the search template grid, and by analyzing data from the latest (third) observing run (O3). In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive sub-band, starting at $256.06$Hz, we report an upper limit on gravitational wave strain (at $95 \%$ confidence) of $h_{0}^{95\%}=6.16\times10^{-26}$, assuming the orbital inclination angle takes its electromagnetically restricted value $喂=44^{\circ}$. The upper limits on gravitational wave strain reported here are on average a factor of $\sim 3$ lower than in the O2 HMM search. This is the first Scorpius X-1 HMM search with upper limits that reach below the indirect torque-balance limit for certain sub-bands, assuming $喂=44^{\circ}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.10104v1-abstract-full').style.display = 'none'; document.getElementById('2201.10104v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100405 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01495">arXiv:2201.01495</a> <span> [<a href="https://arxiv.org/pdf/2201.01495">pdf</a>, <a href="https://arxiv.org/format/2201.01495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.083018">10.1103/PhysRevD.105.083018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+T">T. Mishra</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Brien%2C+B">B. O'Brien</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepanczyk%2C+M">M. Szczepanczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">G. Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Bhaumik%2C+S">S. Bhaumik</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Prodi%2C+G">G. Prodi</a>, <a href="/search/gr-qc?searchtype=author&query=Salemi%2C+F">F. Salemi</a>, <a href="/search/gr-qc?searchtype=author&query=Milotti%2C+E">E. Milotti</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">I. Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">S. Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01495v1-abstract-short" style="display: inline;"> In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third observing run (O3). We detect, with equivalent or higher significance, all gravitational-wave (GW) events previously reported by the standard cWB search for BBH mergers in the third GW Transient Catalog (G… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01495v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01495v1-abstract-full" style="display: none;"> In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third observing run (O3). We detect, with equivalent or higher significance, all gravitational-wave (GW) events previously reported by the standard cWB search for BBH mergers in the third GW Transient Catalog (GWTC-3). The ML-enhanced cWB search identifies five additional GW candidate events from the catalog that were previously missed by the standard cWB search. Moreover, we identify three marginal candidate events not listed in GWTC-3. For simulated events distributed uniformly in a fiducial volume, we improve the detection efficiency with respect to the standard cWB search by approximately $20\%$ for both stellar-mass and intermediate mass black hole binary mergers, detected with a false-alarm rate less than $1\,\mathrm{yr}^{-1}$. We show the robustness of the ML-enhanced search for detection of generic BBH signals by reporting increased sensitivity to the spin-precessing and eccentric BBH events as compared to the standard cWB search. Furthermore, we compare the improvement of the ML-enhanced cWB search for different detector networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01495v1-abstract-full').style.display = 'none'; document.getElementById('2201.01495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures. arXiv admin note: text overlap with arXiv:2105.04739</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100421 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.00697">arXiv:2201.00697</a> <span> [<a href="https://arxiv.org/pdf/2201.00697">pdf</a>, <a href="https://arxiv.org/format/2201.00697">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.102008">10.1103/PhysRevD.106.102008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.00697v1-abstract-short" style="display: inline;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivativ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'inline'; document.getElementById('2201.00697v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.00697v1-abstract-full" style="display: none;"> We present results of an all-sky search for continuous gravitational waves which can be produced by spinning neutron stars with an asymmetry around their rotation axis, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. Four different analysis methods are used to search in a gravitational-wave frequency band from 10 to 2048 Hz and a first frequency derivative from $-10^{-8}$ to $10^{-9}$ Hz/s. No statistically-significant periodic gravitational-wave signal is observed by any of the four searches. As a result, upper limits on the gravitational-wave strain amplitude $h_0$ are calculated. The best upper limits are obtained in the frequency range of 100 to 200 Hz and they are ${\sim}1.1\times10^{-25}$ at 95\% confidence-level. The minimum upper limit of $1.10\times10^{-25}$ is achieved at a frequency 111.5 Hz. We also place constraints on the rates and abundances of nearby planetary- and asteroid-mass primordial black holes that could give rise to continuous gravitational-wave signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.00697v1-abstract-full').style.display = 'none'; document.getElementById('2201.00697v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 main text pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100367 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.10990">arXiv:2112.10990</a> <span> [<a href="https://arxiv.org/pdf/2112.10990">pdf</a>, <a href="https://arxiv.org/format/2112.10990">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6ad0">10.3847/1538-4357/ac6ad0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1636 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.10990v2-abstract-short" style="display: inline;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'inline'; document.getElementById('2112.10990v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.10990v2-abstract-full" style="display: none;"> Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully-coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow the frequency and frequency time-derivative of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.10990v2-abstract-full').style.display = 'none'; document.getElementById('2112.10990v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 9 figures, submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100267 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 932, 133 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06861">arXiv:2112.06861</a> <span> [<a href="https://arxiv.org/pdf/2112.06861">pdf</a>, <a href="https://arxiv.org/format/2112.06861">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Tests of General Relativity with GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=de+Alarc%C3%B3n%2C+P+F">P. F. de Alarc贸n</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1657 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06861v1-abstract-short" style="display: inline;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'inline'; document.getElementById('2112.06861v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06861v1-abstract-full" style="display: none;"> The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates $\leq 10^{-3}\, {\rm yr}^{-1}$. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115_042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90% credibility, to $m_g \leq 1.27 \times 10^{-23} \mathrm{eV}/c^2$. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06861v1-abstract-full').style.display = 'none'; document.getElementById('2112.06861v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100275 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.15116">arXiv:2111.15116</a> <span> [<a href="https://arxiv.org/pdf/2111.15116">pdf</a>, <a href="https://arxiv.org/format/2111.15116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.082005">10.1103/PhysRevD.105.082005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search of the Early O3 LIGO Data for Continuous Gravitational Waves from the Cassiopeia A and Vela Jr. Supernova Remnants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+C">C. Anand</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a> , et al. (1389 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.15116v2-abstract-short" style="display: inline;"> We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO data from the first six months of the third Advanced LIGO and Virgo observing run, using the Weave semi-coherent method, which sums matched-filter detection-statistic values over many time segments spanning the obs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15116v2-abstract-full').style.display = 'inline'; document.getElementById('2111.15116v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.15116v2-abstract-full" style="display: none;"> We present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO data from the first six months of the third Advanced LIGO and Virgo observing run, using the Weave semi-coherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20--976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as ~$6.3\times10^{-26}$ for Cas A and ~$5.6\times10^{-26}$ for Vela Jr. at frequencies near 166 Hz at 95% efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.15116v2-abstract-full').style.display = 'none'; document.getElementById('2111.15116v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 8 figures. To appear in Physical Review D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100298-v8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13106">arXiv:2111.13106</a> <span> [<a href="https://arxiv.org/pdf/2111.13106">pdf</a>, <a href="https://arxiv.org/format/2111.13106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac6acf">10.3847/1538-4357/ac6acf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1672 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13106v2-abstract-short" style="display: inline;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'inline'; document.getElementById('2111.13106v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13106v2-abstract-full" style="display: none;"> We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the $l=m=2$ mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the $l=2, m=1,2$ modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found so we present 95\% credible upper limits on the strain amplitudes $h_0$ for the single harmonic search along with limits on the pulsars' mass quadrupole moments $Q_{22}$ and ellipticities $\varepsilon$. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437\textminus4715 and J0711\textminus6830 which have spin-down ratios of 0.87 and 0.57 respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars our limits are factors of $\sim 100$ and $\sim 20$ more constraining than their spin-down limits, respectively. For the dual harmonic searches, new limits are placed on the strain amplitudes $C_{21}$ and $C_{22}$. For 23 pulsars we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13106v2-abstract-full').style.display = 'none'; document.getElementById('2111.13106v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100049 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03634">arXiv:2111.03634</a> <span> [<a href="https://arxiv.org/pdf/2111.03634">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.011048">10.1103/PhysRevX.13.011048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The population of merging compact binaries inferred using gravitational waves through GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03634v5-abstract-short" style="display: inline;"> We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star mer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v5-abstract-full').style.display = 'inline'; document.getElementById('2111.03634v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03634v5-abstract-full" style="display: none;"> We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc$^{-3} yr$^{-1}$ and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc$^{-3} yr$^{-1}$, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc$^{-3}$ yr$^{-1}$ at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to $(1+z)^魏$ with $魏=2.9^{+1.7}_{-1.8}$ for $z\lesssim1$. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from $1.2^{+0.1}_{-0.2}$ to $2.0^{+0.3}_{-0.3}\,M_\odot$. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of $8.3^{+0.3}_{-0.5}$ and $27.9^{+1.9}_{-1.8}\,M_\odot$. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately $60\,M_\odot$ [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03634v5-abstract-full').style.display = 'none'; document.getElementById('2111.03634v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: minor edits, most to Table 1 and caption; v3: rerun with public data; Data release: https://zenodo.org/record/5655785; v4: update Fig 14; v5: updated to match published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100239 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review X 13, 011048 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03608">arXiv:2111.03608</a> <span> [<a href="https://arxiv.org/pdf/2111.03608">pdf</a>, <a href="https://arxiv.org/format/2111.03608">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac532b">10.3847/1538-4357/ac532b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3b </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1610 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03608v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target bina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03608v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03608v1-abstract-full" style="display: none;"> We search for gravitational-wave signals associated with gamma-ray bursts detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (1 November 2019 15:00 UTC-27 March 2020 17:00 UTC).We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 gamma-ray bursts and an analysis to target binary mergers with at least one neutron star as short gamma-ray burst progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these gamma-ray bursts. A weighted binomial test of the combined results finds no evidence for sub-threshold gravitational wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each gamma-ray burst. Finally, we constrain the population of low luminosity short gamma-ray bursts using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03608v1-abstract-full').style.display = 'none'; document.getElementById('2111.03608v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100091 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03606">arXiv:2111.03606</a> <span> [<a href="https://arxiv.org/pdf/2111.03606">pdf</a>, <a href="https://arxiv.org/format/2111.03606">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041039">10.1103/PhysRevX.13.041039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akcay%2C+S">S. Akcay</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03606v3-abstract-short" style="display: inline;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'inline'; document.getElementById('2111.03606v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03606v3-abstract-full" style="display: none;"> The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin $p_\mathrm{astro} > 0.5$. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with $p_\mathrm{astro} > 0.5$ are consistent with gravitational-wave signals from binary black holes or neutron star-black hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron star-black hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with $p_\mathrm{astro} > 0.5$ across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03606v3-abstract-full').style.display = 'none'; document.getElementById('2111.03606v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages (10 pages author list, 31 pages main text, 1 page acknowledgements, 24 pages appendices, 22 pages bibliography), 17 figures, 16 tables. Update to match version to be published in Physical Review X. Data products available from https://gwosc.org/GWTC-3/</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000318 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X; 13(4):041039; 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03604">arXiv:2111.03604</a> <span> [<a href="https://arxiv.org/pdf/2111.03604">pdf</a>, <a href="https://arxiv.org/format/2111.03604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac74bb">10.3847/1538-4357/ac74bb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on the cosmic expansion history from GWTC-3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abe%2C+H">H. Abe</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1654 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03604v2-abstract-short" style="display: inline;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'inline'; document.getElementById('2111.03604v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03604v2-abstract-full" style="display: none;"> We use 47 gravitational-wave sources from the Third LIGO-Virgo-KAGRA Gravitational-Wave Transient Catalog (GWTC-3) to estimate the Hubble parameter $H(z)$, including its current value, the Hubble constant $H_0$. Each gravitational-wave (GW) signal provides the luminosity distance to the source and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and $H(z)$. The source mass distribution displays a peak around $34\, {\rm M_\odot}$, followed by a drop-off. Assuming this mass scale does not evolve with redshift results in a $H(z)$ measurement, yielding $H_0=68^{+12}_{-7} {\rm km\,s^{-1}\,Mpc^{-1}}$ ($68\%$ credible interval) when combined with the $H_0$ measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the $H_0$ estimate from GWTC-1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of $H_0=68^{+8}_{-6} {\rm km\,s^{-1}\,Mpc^{-1}}$ with the galaxy catalog method, an improvement of 42% with respect to our GWTC-1 result and 20% with respect to recent $H_0$ studies using GWTC-2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about $H_0$) is the well-localized event GW190814. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03604v2-abstract-full').style.display = 'none'; document.getElementById('2111.03604v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main paper: 30 pages, 15 figure, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100185-v6 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.15820">arXiv:2110.15820</a> <span> [<a href="https://arxiv.org/pdf/2110.15820">pdf</a>, <a href="https://arxiv.org/format/2110.15820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2156/1/012081">10.1088/1742-6596/2156/1/012081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The search of higher multipole radiation in gravitational waves from compact binary coalescences by a minimally-modelled pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Halim%2C+O">O. Halim</a>, <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">G. Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Milotti%2C+E">E. Milotti</a>, <a href="/search/gr-qc?searchtype=author&query=Prodi%2C+G+A">G. A. Prodi</a>, <a href="/search/gr-qc?searchtype=author&query=Bini%2C+S">S. Bini</a>, <a href="/search/gr-qc?searchtype=author&query=Drago%2C+M">M. Drago</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Lazzaro%2C+C">C. Lazzaro</a>, <a href="/search/gr-qc?searchtype=author&query=Lopez%2C+D">D. Lopez</a>, <a href="/search/gr-qc?searchtype=author&query=Miani%2C+A">A. Miani</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Brien%2C+B">B. O'Brien</a>, <a href="/search/gr-qc?searchtype=author&query=Salemi%2C+F">F. Salemi</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepanczyk%2C+M">M. Szczepanczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Tiwari%2C+S">S. Tiwari</a>, <a href="/search/gr-qc?searchtype=author&query=Virtuoso%2C+A">A. Virtuoso</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">S. Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.15820v1-abstract-short" style="display: inline;"> The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Collaboration in the time-frequency domain. In this manuscript, we provide a timely introduction to an extension of the cWB analysis to detect spectral features beyond the main quadrupolar emission of gravitational waves during th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15820v1-abstract-full').style.display = 'inline'; document.getElementById('2110.15820v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.15820v1-abstract-full" style="display: none;"> The coherent WaveBurst (cWB) pipeline implements a minimally-modelled search to find a coherent response in the network of gravitational wave detectors of the LIGO-Virgo Collaboration in the time-frequency domain. In this manuscript, we provide a timely introduction to an extension of the cWB analysis to detect spectral features beyond the main quadrupolar emission of gravitational waves during the inspiral phase of compact binary coalescences; more detailed discussion will be provided in a forthcoming paper [1]. The search is performed by defining specific regions in the time-frequency map to extract the energy of harmonics of main quadrupole mode in the inspiral phase. This method has already been used in the GW190814 discovery paper (Astrophys. J. Lett. 896 L44). Here we show the procedure to detect the (3, 3) multipole in GW190814 within the cWB framework. Keywords: gravitational waves, analysis, multipoles, compact binary coalescences <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.15820v1-abstract-full').style.display = 'none'; document.getElementById('2110.15820v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, Proceedings for the "17th International Conference on Topics in Astroparticle and Underground Physics (TAUP)"</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09834">arXiv:2110.09834</a> <span> [<a href="https://arxiv.org/pdf/2110.09834">pdf</a>, <a href="https://arxiv.org/format/2110.09834">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.122001">10.1103/PhysRevD.105.122001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky, all-frequency directional search for persistent gravitational-waves from Advanced LIGO's and Advanced Virgo's first three observing runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09834v1-abstract-short" style="display: inline;"> We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09834v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09834v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09834v1-abstract-full" style="display: none;"> We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, {\tt PyStoch}, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 {\tt{HEALPix}} equal area pixels uniformly tiling the sky and in every frequency bin of width $1/32$~Hz in the range $20-1726$~Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place $95\%$ confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range $(0.030 - 9.6) \times10^{-24}$. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09834v1-abstract-full').style.display = 'none'; document.getElementById('2110.09834v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100292 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.12197">arXiv:2109.12197</a> <span> [<a href="https://arxiv.org/pdf/2109.12197">pdf</a>, <a href="https://arxiv.org/format/2109.12197">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.061104">10.1103/PhysRevLett.129.061104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass binaries in the first half of Advanced LIGO and Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.12197v1-abstract-short" style="display: inline;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'inline'; document.getElementById('2109.12197v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.12197v1-abstract-full" style="display: none;"> We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 $M_\odot$ and 1.0 $M_\odot$ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio $q \geq 0.1$. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 $\mathrm{yr}^{-1}$. This implies an upper limit on the merger rate of subsolar binaries in the range $[220-24200] \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes is $f_\mathrm{PBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 6\%$. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at $M_\mathrm{min}=1 M_\odot$, where $f_\mathrm{DBH} \equiv 惟_\mathrm{PBH} / 惟_\mathrm{DM} \lesssim 0.003\%$. These are the tightest limits on spinning subsolar-mass binaries to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.12197v1-abstract-full').style.display = 'none'; document.getElementById('2109.12197v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100163-v8 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09255">arXiv:2109.09255</a> <span> [<a href="https://arxiv.org/pdf/2109.09255">pdf</a>, <a href="https://arxiv.org/format/2109.09255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.022002">10.1103/PhysRevD.105.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for continuous gravitational waves from 20 accreting millisecond X-ray pulsars in O3 LIGO data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+C">C. Anand</a> , et al. (1612 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09255v2-abstract-short" style="display: inline;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'inline'; document.getElementById('2109.09255v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09255v2-abstract-full" style="display: none;"> Results are presented of searches for continuous gravitational waves from 20 accreting millisecond X-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the $\mathcal{J}$-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow sub-bands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per sub-band and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4$-$3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed non-astrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, $h_0^{95\%}$. The strictest constraint is $h_0^{95\%} = 4.7\times 10^{-26}$ from IGR J17062$-$6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and $r$-mode amplitude, the strictest of which are $蔚^{95\%} = 3.1\times 10^{-7}$ and $伪^{95\%} = 1.8\times 10^{-5}$ respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond X-ray pulsars to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09255v2-abstract-full').style.display = 'none'; document.getElementById('2109.09255v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 6 figures. This version contains minor typographical revisions to match published article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100221 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 022002 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13384">arXiv:2108.13384</a> <span> [<a href="https://arxiv.org/pdf/2108.13384">pdf</a>, <a href="https://arxiv.org/format/2108.13384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/ac45da">10.1088/1361-6382/ac45da <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minimally-modeled search of higher multipole gravitational-wave radiation in compact binary coalescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">G. Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Milotti%2C+E">E. Milotti</a>, <a href="/search/gr-qc?searchtype=author&query=Prodi%2C+G+A">G. A. Prodi</a>, <a href="/search/gr-qc?searchtype=author&query=Bini%2C+S">S. Bini</a>, <a href="/search/gr-qc?searchtype=author&query=Drago%2C+M">M. Drago</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Halim%2C+O">O. Halim</a>, <a href="/search/gr-qc?searchtype=author&query=Lazzaro%2C+C">C. Lazzaro</a>, <a href="/search/gr-qc?searchtype=author&query=Lopez%2C+D">D. Lopez</a>, <a href="/search/gr-qc?searchtype=author&query=Miani%2C+A">A. Miani</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Brian%2C+B">B. O'Brian</a>, <a href="/search/gr-qc?searchtype=author&query=Salemi%2C+F">F. Salemi</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepanczyk%2C+M">M. Szczepanczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Tiwari%2C+S">S. Tiwari</a>, <a href="/search/gr-qc?searchtype=author&query=Virtuoso%2C+A">A. Virtuoso</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">S. Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13384v1-abstract-short" style="display: inline;"> As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition to the dominant $(2, 2)$ multipole. These higher multipoles can be detected with different approaches, such as the minimally-modeled burst search meth… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13384v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13384v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13384v1-abstract-full" style="display: none;"> As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition to the dominant $(2, 2)$ multipole. These higher multipoles can be detected with different approaches, such as the minimally-modeled burst search methods, and here we discuss one such approach based on the coherent WaveBurst pipeline (cWB). During the inspiral phase the higher multipoles produce chirps whose instantaneous frequency is a multiple of the dominant (2, 2) multipole, and here we describe how cWB can be used to detect these spectral features. The search is performed within suitable regions of the time-frequency representation; their shape is determined by optimizing the Receiver Operating Characteristics. This novel method has already been used in the GW190814 discovery paper (Astrophys. J. Lett. 896 L44) and is very fast and flexible. Here we describe in full detail the procedure used to detect the (3,3) multipole in GW190814 as well as searches for other higher multipoles during the inspiral phase, and apply it to another event that displays higher multipoles, GW190412, replicating the results obtained with different methods. The procedure described here can be used for the fast analysis of higher multipoles and to support the findings obtained with the model-based Bayesian parameter estimates <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13384v1-abstract-full').style.display = 'none'; document.getElementById('2108.13384v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01045">arXiv:2108.01045</a> <span> [<a href="https://arxiv.org/pdf/2108.01045">pdf</a>, <a href="https://arxiv.org/format/2108.01045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+C">C. Anand</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a> , et al. (1407 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01045v2-abstract-short" style="display: inline;"> The second Gravitational-Wave Transient Catalog reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. We present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01045v2-abstract-full').style.display = 'inline'; document.getElementById('2108.01045v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01045v2-abstract-full" style="display: none;"> The second Gravitational-Wave Transient Catalog reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. We present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period with improved calibration and better subtraction of excess noise, which has been publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the astrophysical probability for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have an astrophysical probability greater than 0.5. Of these candidates, 36 have been reported in GWTC-2. If the 8 additional high-significance candidates presented here are astrophysical, the mass range of events that are unambiguously identified as binary black holes (both objects $\geq 3M_\odot$) is increased compared to GWTC-2, with total masses from $\sim 14 M_\odot$ for GW190924_021846 to $\sim 182 M_\odot$ for GW190426_190642. The primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (the mass ratio is less than $0.65$ and $0.44$ at $90\%$ probability for GW190403_051519 and GW190917_114630 respectively), and find that 2 of the 8 new events have effective inspiral spins $蠂_\mathrm{eff} > 0$ (at $90\%$ credibility), while no binary is consistent with $蠂_\mathrm{eff} < 0$ at the same significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01045v2-abstract-full').style.display = 'none'; document.getElementById('2108.01045v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 figures, 8 tables, including updates to parameter estimates of events from GWTC-1 and GWTC-2 in an Appendix</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.13796">arXiv:2107.13796</a> <span> [<a href="https://arxiv.org/pdf/2107.13796">pdf</a>, <a href="https://arxiv.org/format/2107.13796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.102001">10.1103/PhysRevD.104.102001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.13796v1-abstract-short" style="display: inline;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a var… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'inline'; document.getElementById('2107.13796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.13796v1-abstract-full" style="display: none;"> After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well-suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short" $ \lesssim 1~$\,s and "long" $ \gtrsim 1~$\,s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of $2~\text{--}~ 500$~s in duration and a frequency band of $24 - 2048$ Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude $h_{\mathrm{rss}}$ as a function of waveform morphology. These $h_{\mathrm{rss}}$ limits improve upon the results from the second observing run by an average factor of 1.8. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.13796v1-abstract-full').style.display = 'none'; document.getElementById('2107.13796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100063 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03701">arXiv:2107.03701</a> <span> [<a href="https://arxiv.org/pdf/2107.03701">pdf</a>, <a href="https://arxiv.org/format/2107.03701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.122004">10.1103/PhysRevD.104.122004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1608 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03701v1-abstract-short" style="display: inline;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03701v1-abstract-full" style="display: none;"> This paper presents the results of a search for generic short-duration gravitational-wave transients in data from the third observing run of Advanced LIGO and Advanced Virgo. Transients with durations of milliseconds to a few seconds in the 24--4096 Hz frequency band are targeted by the search, with no assumptions made regarding the incoming signal direction, polarization or morphology. Gravitational waves from compact binary coalescences that have been identified by other targeted analyses are detected, but no statistically significant evidence for other gravitational wave bursts is found. Sensitivities to a variety of signals are presented. These include updated upper limits on the source rate-density as a function of the characteristic frequency of the signal, which are roughly an order of magnitude better than previous upper limits. This search is sensitive to sources radiating as little as $\sim$10$^{-10} M_{\odot} c^2$ in gravitational waves at $\sim$70 Hz from a distance of 10~kpc, with 50\% detection efficiency at a false alarm rate of one per century. The sensitivity of this search to two plausible astrophysical sources is estimated: neutron star f-modes, which may be excited by pulsar glitches, as well as selected core-collapse supernova models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03701v1-abstract-full').style.display = 'none'; document.getElementById('2107.03701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2100045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00600">arXiv:2107.00600</a> <span> [<a href="https://arxiv.org/pdf/2107.00600">pdf</a>, <a href="https://arxiv.org/format/2107.00600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.082004">10.1103/PhysRevD.104.082004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1566 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00600v2-abstract-short" style="display: inline;"> We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Vi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00600v2-abstract-full').style.display = 'inline'; document.getElementById('2107.00600v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00600v2-abstract-full" style="display: none;"> We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000\,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]\times10^{-8}$\,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95\%\ confidence-level (CL) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude $h_0$ are $~1.7\times10^{-25}$ near 200\,Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are $\sim6.3\times10^{-26}$. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95\%\ CL upper limits on the strain amplitude are $\sim1.\times10^{-25}$. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of $\sim$2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00600v2-abstract-full').style.display = 'none'; document.getElementById('2107.00600v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000334-v9 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 082004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00605">arXiv:2106.00605</a> <span> [<a href="https://arxiv.org/pdf/2106.00605">pdf</a>, <a href="https://arxiv.org/format/2106.00605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.082003">10.1103/PhysRevD.104.082003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of LIGO-Virgo binary black holes in the pair-instability mass gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=O%27Brien%2C+B">Brendan O'Brien</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepanczyk%2C+M">Marek Szczepanczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Vedovato%2C+G">Gabriele Vedovato</a>, <a href="/search/gr-qc?searchtype=author&query=Prodi%2C+G">Giovanni Prodi</a>, <a href="/search/gr-qc?searchtype=author&query=Mitselmakher%2C+G">Guenakh Mitselmakher</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00605v2-abstract-short" style="display: inline;"> By probing the population of binary black hole (BBH) mergers detected by LIGO-Virgo, we can infer properties about the underlying black hole formation channels. A mechanism known as pair-instability (PI) supernova is expected to prevent the formation of black holes from stellar collapse with mass greater than $\sim 40-65\,M_\odot$ and less than $\sim 120\,M_\odot$. Any BBH merger detected by LIGO-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00605v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00605v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00605v2-abstract-full" style="display: none;"> By probing the population of binary black hole (BBH) mergers detected by LIGO-Virgo, we can infer properties about the underlying black hole formation channels. A mechanism known as pair-instability (PI) supernova is expected to prevent the formation of black holes from stellar collapse with mass greater than $\sim 40-65\,M_\odot$ and less than $\sim 120\,M_\odot$. Any BBH merger detected by LIGO-Virgo with a component black hole in this gap, known as the PI mass gap, likely originated from an alternative formation channel. Here, we firmly establish GW190521 as an outlier to the stellar-mass BBH population if the PI mass gap begins at or below $65\, M_{\odot}$. In addition, for a PI lower boundary of $40-50\, M_{\odot}$, we find it unlikely that the remaining distribution of detected BBH events, excluding GW190521, is consistent with the stellar-mass population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00605v2-abstract-full').style.display = 'none'; document.getElementById('2106.00605v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100128 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 082003 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13085">arXiv:2105.13085</a> <span> [<a href="https://arxiv.org/pdf/2105.13085">pdf</a>, <a href="https://arxiv.org/format/2105.13085">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.063030">10.1103/PhysRevD.105.063030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1605 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13085v3-abstract-short" style="display: inline;"> We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13085v3-abstract-full').style.display = 'inline'; document.getElementById('2105.13085v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13085v3-abstract-full" style="display: none;"> We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgo's third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between $m_{\rm A} \sim 10^{-14}-10^{-11}$ eV/$c^2$, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. $U(1)_{\rm B}$ dark matter. For the cross-correlation method, the best median constraint on the squared coupling is $\sim2.65\times10^{-46}$ at $m_{\rm A}\sim4.31\times10^{-13}$ eV/$c^2$; for the other analysis, the best constraint is $\sim 2.4\times 10^{-47}$ at $m_{\rm A}\sim 5.7\times 10^{-13}$ eV/$c^2$. These limits improve upon those obtained in direct dark matter detection experiments by a factor of $\sim100$ for $m_{\rm A}\sim [2-4]\times 10^{-13}$ eV/$c^2$, and are, in absolute terms, the most stringent constraint so far in a large mass range $m_A\sim$ $2\times 10^{-13}-8\times 10^{-12}$ eV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13085v3-abstract-full').style.display = 'none'; document.getElementById('2105.13085v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures; In the latest version, we integrated the changes reported in the published erratum (DOI: https://doi.org/10.1103/PhysRevD.109.089902). Essentially, we overestimated the sensitivity of the cross-correlation search to a dark photon dark matter signal and have corrected this, making the BSD limits the most stringent in this search at most dark photon masses</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100098 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 063030, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06384">arXiv:2105.06384</a> <span> [<a href="https://arxiv.org/pdf/2105.06384">pdf</a>, <a href="https://arxiv.org/format/2105.06384">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac23db">10.3847/1538-4357/ac23db <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1356 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06384v3-abstract-short" style="display: inline;"> We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06384v3-abstract-full').style.display = 'inline'; document.getElementById('2105.06384v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06384v3-abstract-full" style="display: none;"> We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coalescences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run. We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation of strong lensing or a stochastic gravitational-wave background on the merger-rate density at high redshift; 2) how the interpretation of individual high-mass events would change if they were found to be lensed; 3) the possibility of multiple images due to strong lensing by galaxies or galaxy clusters; and 4) possible wave-optics effects due to point-mass microlenses. Several pairs of signals in the multiple-image analysis show similar parameters and, in this sense, are nominally consistent with the strong lensing hypothesis. However, taking into account population priors, selection effects, and the prior odds against lensing, these events do not provide sufficient evidence for lensing. Overall, we find no compelling evidence for lensing in the observed gravitational-wave signals from any of these analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06384v3-abstract-full').style.display = 'none'; document.getElementById('2105.06384v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages and 6 figures. Accepted by the Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000400 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04739">arXiv:2105.04739</a> <span> [<a href="https://arxiv.org/pdf/2105.04739">pdf</a>, <a href="https://arxiv.org/format/2105.04739">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.023014">10.1103/PhysRevD.104.023014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optimization of model independent gravitational wave search using machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Mishra%2C+T">Tanmaya Mishra</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Brien%2C+B">Brendan O'Brien</a>, <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepanczyk%2C+M">Marek Szczepanczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Bhaumik%2C+S">Shubhagata Bhaumik</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">Imre Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">Sergey Klimenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04739v1-abstract-short" style="display: inline;"> The Coherent WaveBurst (cWB) search algorithm identifies generic gravitational wave (GW) signals in the LIGO-Virgo strain data. We propose a machine learning (ML) method to optimize the pipeline sensitivity to the special class of GW signals known as binary black hole (BBH) mergers. Here, we test the ML-enhanced cWB search on strain data from the first and second observing runs of Advanced LIGO an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04739v1-abstract-full').style.display = 'inline'; document.getElementById('2105.04739v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04739v1-abstract-full" style="display: none;"> The Coherent WaveBurst (cWB) search algorithm identifies generic gravitational wave (GW) signals in the LIGO-Virgo strain data. We propose a machine learning (ML) method to optimize the pipeline sensitivity to the special class of GW signals known as binary black hole (BBH) mergers. Here, we test the ML-enhanced cWB search on strain data from the first and second observing runs of Advanced LIGO and successfully recover all BBH events previously reported by cWB, with higher significance. For simulated events found with a false alarm rate less than $1\,\mathrm{yr}^{-1}$, we demonstrate the improvement in the detection efficiency of 26% for stellar-mass BBH mergers and 16% for intermediate mass black hole binary mergers. To demonstrate the robustness of the ML-enhanced search for the detection of generic BBH signals, we show that it has the increased sensitivity to the spin precessing or eccentric BBH events, even when trained on simulated quasi-circular BBH events with aligned spins. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04739v1-abstract-full').style.display = 'none'; document.getElementById('2105.04739v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100101 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 023014 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.14417">arXiv:2104.14417</a> <span> [<a href="https://arxiv.org/pdf/2104.14417">pdf</a>, <a href="https://arxiv.org/format/2104.14417">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0d52">10.3847/1538-4357/ac0d52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1574 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.14417v2-abstract-short" style="display: inline;"> We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14417v2-abstract-full').style.display = 'inline'; document.getElementById('2104.14417v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.14417v2-abstract-full" style="display: none;"> We present a search for continuous gravitational-wave emission due to r-modes in the pulsar PSR J0537-6910 using data from the LIGO-Virgo Collaboration observing run O3. PSR J0537-6910 is a young energetic X-ray pulsar and is the most frequent glitcher known. The inter-glitch braking index of the pulsar suggests that gravitational-wave emission due to r-mode oscillations may play an important role in the spin evolution of this pulsar. Theoretical models confirm this possibility and predict emission at a level that can be probed by ground-based detectors. In order to explore this scenario, we search for r-mode emission in the epochs between glitches by using a contemporaneous timing ephemeris obtained from NICER data. We do not detect any signals in the theoretically expected band of 86-97 Hz, and report upper limits on the amplitude of the gravitational waves. Our results improve on previous amplitude upper limits from r-modes in J0537-6910 by a factor of up to 3 and place stringent constraints on theoretical models for r-mode driven spin-down in PSR J0537-6910, especially for higher frequencies at which our results reach below the spin-down limit defined by energy conservation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.14417v2-abstract-full').style.display = 'none'; document.getElementById('2104.14417v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 19 figures, accepted in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2100069 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 922 71 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08520">arXiv:2103.08520</a> <span> [<a href="https://arxiv.org/pdf/2103.08520">pdf</a>, <a href="https://arxiv.org/format/2103.08520">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.022005">10.1103/PhysRevD.104.022005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08520v4-abstract-short" style="display: inline;"> We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadban… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08520v4-abstract-full').style.display = 'inline'; document.getElementById('2103.08520v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08520v4-abstract-full" style="display: none;"> We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95\% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from $F_{伪, 螛} < {\rm (0.013 - 7.6)} \times 10^{-8} {\rm erg \, cm^{-2} \, s^{-1} \, Hz^{-1}},$ and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from $惟_{伪, 螛} < {\rm (0.57 - 9.3)} \times 10^{-9} \, {\rm sr^{-1}}$, depending on direction ($螛$) and spectral index ($伪$). These limits improve upon previous limits by factors of $2.9 - 3.5$. We also set 95\% confidence level upper limits on the frequency-dependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from $h_0 < {\rm (1.7-2.1)} \times 10^{-25},$ a factor of $\geq 2.0$ improvement compared to previous stochastic radiometer searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08520v4-abstract-full').style.display = 'none'; document.getElementById('2103.08520v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 Pages, 9 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000500 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 022005 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12248">arXiv:2101.12248</a> <span> [<a href="https://arxiv.org/pdf/2101.12248">pdf</a>, <a href="https://arxiv.org/format/2101.12248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.241102">10.1103/PhysRevLett.126.241102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1565 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12248v1-abstract-short" style="display: inline;"> We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12248v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12248v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12248v1-abstract-full" style="display: none;"> We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G渭$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models.cAdditionally, we develop and test a third model which interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on $G渭$ by one to two orders of magnitude depending on the model which is tested. In particular, for one loop distribution model, we set the most competitive constraints to date, $G渭\lesssim 4\times 10^{-15}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12248v1-abstract-full').style.display = 'none'; document.getElementById('2101.12248v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000506 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 241102 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12130">arXiv:2101.12130</a> <span> [<a href="https://arxiv.org/pdf/2101.12130">pdf</a>, <a href="https://arxiv.org/format/2101.12130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.022004">10.1103/PhysRevD.104.022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a> , et al. (1566 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12130v1-abstract-short" style="display: inline;"> We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we pl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12130v1-abstract-full').style.display = 'inline'; document.getElementById('2101.12130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12130v1-abstract-full" style="display: none;"> We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO's and Advanced Virgo's third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $惟_{\rm GW}\leq 5.8\times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; $\leq 3.4 \times 10^{-9}$ at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and $\leq 3.9 \times 10^{-10}$ at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries. Finally, we combine our results with observations of individual mergers andshow that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at $z \lesssim 2$ than can be achieved with individually resolved mergers alone. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12130v1-abstract-full').style.display = 'none'; document.getElementById('2101.12130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures, Abstract abridged for arxiv submission</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-DCC-P2000314 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 022004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12926">arXiv:2012.12926</a> <span> [<a href="https://arxiv.org/pdf/2012.12926">pdf</a>, <a href="https://arxiv.org/format/2012.12926">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abffcd">10.3847/2041-8213/abffcd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a> , et al. (1568 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12926v2-abstract-short" style="display: inline;"> We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the larges… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12926v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12926v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12926v2-abstract-full" style="display: none;"> We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the $l=m=2$ mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3e-5, which is the third best constraint for any young pulsar. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12926v2-abstract-full').style.display = 'none'; document.getElementById('2012.12926v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures, published in ApJL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000407 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.12128">arXiv:2012.12128</a> <span> [<a href="https://arxiv.org/pdf/2012.12128">pdf</a>, <a href="https://arxiv.org/format/2012.12128">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.064017">10.1103/PhysRevD.103.064017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Aleman%2C+K+M">K. M. Aleman</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a> , et al. (1347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.12128v2-abstract-short" style="display: inline;"> Rapidly spinning neutron stars are promising sources of persistent, continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12128v2-abstract-full').style.display = 'inline'; document.getElementById('2012.12128v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.12128v2-abstract-full" style="display: none;"> Rapidly spinning neutron stars are promising sources of persistent, continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, BinarySkyHough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50 - 300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of 3 - 45 days and projected semimajor axes of 2 - 40 light-seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.12128v2-abstract-full').style.display = 'none'; document.getElementById('2012.12128v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures, 7 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000298 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 064017 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14550">arXiv:2010.14550</a> <span> [<a href="https://arxiv.org/pdf/2010.14550">pdf</a>, <a href="https://arxiv.org/format/2010.14550">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abee15">10.3847/1538-4357/abee15 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aich%2C+A">A. Aich</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a>, <a href="/search/gr-qc?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a> , et al. (1228 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14550v3-abstract-short" style="display: inline;"> We search for gravitational-wave transients associated with gamma-ray bursts detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 October 2019 15:00 UTC). 105 gamma-ray bursts were analyzed using a search for generic gravitational-wave transients; 32 gamma-ray bursts were analyzed with a search t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14550v3-abstract-full').style.display = 'inline'; document.getElementById('2010.14550v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14550v3-abstract-full" style="display: none;"> We search for gravitational-wave transients associated with gamma-ray bursts detected by the Fermi and Swift satellites during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC - 1 October 2019 15:00 UTC). 105 gamma-ray bursts were analyzed using a search for generic gravitational-wave transients; 32 gamma-ray bursts were analyzed with a search that specifically targets neutron star binary mergers as short gamma-ray burst progenitors. We describe a method to calculate the probability that triggers from the binary merger targeted search are astrophysical and apply that method to the most significant gamma-ray bursts in that search. We find no significant evidence for gravitational-wave signals associated with the gamma-ray bursts that we followed up, nor for a population of unidentified subthreshold signals. We consider several source types and signal morphologies, and report for these lower bounds on the distance to each gamma-ray burst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14550v3-abstract-full').style.display = 'none'; document.getElementById('2010.14550v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000040 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. 915, 86 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14533">arXiv:2010.14533</a> <span> [<a href="https://arxiv.org/pdf/2010.14533">pdf</a>, <a href="https://arxiv.org/format/2010.14533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abe949">10.3847/2041-8213/abe949 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a>, <a href="/search/gr-qc?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a> , et al. (1316 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14533v2-abstract-short" style="display: inline;"> We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14533v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14533v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14533v2-abstract-full" style="display: none;"> We report on the population of the 47 compact binary mergers detected with a false-alarm rate 1/yr in the second LIGO--Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, we find that the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at $39.7^{+20.3}_{-9.1}\,M_\odot$, or a power law with a Gaussian feature peaking at $33.1^{+4.0}_{-5.6}\,M_\odot$ (90\% credible interval). While the primary mass distribution must extend to $\sim65\,M_\odot$ or beyond, only $2.9^{+3.5}_{1.7}\%$ of systems have primary masses greater than $45\,M_\odot$. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than $90^\circ$, giving rise to a negative effective inspiral spin parameter $蠂_\mathrm{eff}$. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing $|蠂_\mathrm{eff}| > 0.01$ are dynamically assembled. Third, we estimate merger rates, finding $\mathcal{R}_\text{BBH} = 23.9^{+14.3}_{8.6}$ Gpc$^{-3}$ yr$^{-1}$ for BBH and $\mathcal{R}_\text{BNS}= 320^{+490}_{-240}$ Gpc$^{-3}$ yr$^{-1}$ for binary neutron stars. We find that the BBH rate likely increases with redshift ($85\%$ credibility), but not faster than the star-formation rate ($86\%$ credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14533v2-abstract-full').style.display = 'none'; document.getElementById('2010.14533v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, including 24 pages main text, 18 pages appendix, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000077 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14529">arXiv:2010.14529</a> <span> [<a href="https://arxiv.org/pdf/2010.14529">pdf</a>, <a href="https://arxiv.org/format/2010.14529">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.122002">10.1103/PhysRevD.103.122002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a>, <a href="/search/gr-qc?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a> , et al. (1322 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14529v2-abstract-short" style="display: inline;"> Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in ag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14529v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14529v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14529v2-abstract-full" style="display: none;"> Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of ${\sim}2$; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of ${\sim}2.6$ and bound the mass of the graviton to $m_g \leq 1.76 \times 10^{-23} \mathrm{eV}/c^2$ with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to $未\hat{f}_{220} = 0.03^{+0.38}_{-0.35}$ for the fundamental quadrupolar mode, and $未\hat{f}_{221} = 0.04^{+0.27}_{-0.32}$ for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14529v2-abstract-full').style.display = 'none'; document.getElementById('2010.14529v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages + appendices, 19 figures; journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000091 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 122002 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14527">arXiv:2010.14527</a> <span> [<a href="https://arxiv.org/pdf/2010.14527">pdf</a>, <a href="https://arxiv.org/format/2010.14527">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.11.021053">10.1103/PhysRevX.11.021053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akcay%2C+S">S. Akcay</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a>, <a href="/search/gr-qc?searchtype=author&query=Ananyeva%2C+A">A. Ananyeva</a>, <a href="/search/gr-qc?searchtype=author&query=Anderson%2C+S+B">S. B. Anderson</a> , et al. (1327 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14527v3-abstract-short" style="display: inline;"> We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave event… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14527v3-abstract-full').style.display = 'inline'; document.getElementById('2010.14527v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14527v3-abstract-full" style="display: none;"> We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of ~0.8, as well as events whose components could not be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational wave data alone. The range of candidate events which are unambiguously identified as binary black holes (both objects $\geq 3~M_\odot$) is increased compared to GWTC-1, with total masses from $\sim 14~M_\odot$ for GW190924_021846 to $\sim 150~M_\odot$ for GW190521. For the first time, this catalog includes binary systems with significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ~26 weeks of data (~1.5 per week) is consistent with GWTC-1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14527v3-abstract-full').style.display = 'none'; document.getElementById('2010.14527v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version updates with minor revisions to typographical errors. We would also like to call attention to the updated parameter estimation samples data release here: https://dcc.ligo.org/LIGO-P2000223/public</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> P2000061 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 11, 021053 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05461">arXiv:2009.05461</a> <span> [<a href="https://arxiv.org/pdf/2009.05461">pdf</a>, <a href="https://arxiv.org/format/2009.05461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Eccentricity Estimate for Black Hole Mergers with Numerical Relativity Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Gayathri%2C+V">V. Gayathri</a>, <a href="/search/gr-qc?searchtype=author&query=Healy%2C+J">J. Healy</a>, <a href="/search/gr-qc?searchtype=author&query=Lange%2C+J">J. Lange</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Brien%2C+B">B. O'Brien</a>, <a href="/search/gr-qc?searchtype=author&query=Szczepanczyk%2C+M">M. Szczepanczyk</a>, <a href="/search/gr-qc?searchtype=author&query=Bartos%2C+I">I. Bartos</a>, <a href="/search/gr-qc?searchtype=author&query=Campanelli%2C+M">M. Campanelli</a>, <a href="/search/gr-qc?searchtype=author&query=Klimenko%2C+S">S. Klimenko</a>, <a href="/search/gr-qc?searchtype=author&query=Lousto%2C+C">C. Lousto</a>, <a href="/search/gr-qc?searchtype=author&query=O%27Shaughnessy%2C+R">R. O'Shaughnessy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05461v2-abstract-short" style="display: inline;"> The origin of black hole mergers discovered by the LIGO and Virgo gravitational-wave observatories is currently unknown. GW190521 is the heaviest black hole merger detected so far. Its observed high mass and possible spin-induced orbital precession could arise from the binary having formed following a close encounter. An observational signature of close encounters is eccentric binary orbit; howeve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05461v2-abstract-full').style.display = 'inline'; document.getElementById('2009.05461v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05461v2-abstract-full" style="display: none;"> The origin of black hole mergers discovered by the LIGO and Virgo gravitational-wave observatories is currently unknown. GW190521 is the heaviest black hole merger detected so far. Its observed high mass and possible spin-induced orbital precession could arise from the binary having formed following a close encounter. An observational signature of close encounters is eccentric binary orbit; however, this feature is currently difficult to identify due to the lack of suitable gravitational waveforms. No eccentric merger has been previously found. Here we report 611 numerical relativity simulations covering the full eccentricity range and an estimation approach to probe the eccentricity of mergers. Our set of simulations corresponds to $\sim 10^5$ waveforms, comparable to the number used in gravitational wave searches, albeit with coarser mass-ratio and spin resolution. We applied our approach to GW190521 and found that it is the most consistent with a highly eccentric ($e=0.69^{+0.17}_{-0.22}$; 90% credible level) merger within our set of waveforms. This interpretation is supported over a non-eccentric merger with $>10$ Odds ratio if $\gtrsim10\%$ of GW190521-like mergers are highly eccentric. Detectable orbital eccentricity would be evidence against an isolated binary origin, which is otherwise difficult to rule out based on observed mass and spin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05461v2-abstract-full').style.display = 'none'; document.getElementById('2009.05461v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01190">arXiv:2009.01190</a> <span> [<a href="https://arxiv.org/pdf/2009.01190">pdf</a>, <a href="https://arxiv.org/format/2009.01190">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aba493">10.3847/2041-8213/aba493 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+R">R. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abbott%2C+T+D">T. D. Abbott</a>, <a href="/search/gr-qc?searchtype=author&query=Abraham%2C+S">S. Abraham</a>, <a href="/search/gr-qc?searchtype=author&query=Acernese%2C+F">F. Acernese</a>, <a href="/search/gr-qc?searchtype=author&query=Ackley%2C+K">K. Ackley</a>, <a href="/search/gr-qc?searchtype=author&query=Adams%2C+C">C. Adams</a>, <a href="/search/gr-qc?searchtype=author&query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/gr-qc?searchtype=author&query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/gr-qc?searchtype=author&query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/gr-qc?searchtype=author&query=Agathos%2C+M">M. Agathos</a>, <a href="/search/gr-qc?searchtype=author&query=Agatsuma%2C+K">K. Agatsuma</a>, <a href="/search/gr-qc?searchtype=author&query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/gr-qc?searchtype=author&query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/gr-qc?searchtype=author&query=Aich%2C+A">A. Aich</a>, <a href="/search/gr-qc?searchtype=author&query=Aiello%2C+L">L. Aiello</a>, <a href="/search/gr-qc?searchtype=author&query=Ain%2C+A">A. Ain</a>, <a href="/search/gr-qc?searchtype=author&query=Ajith%2C+P">P. Ajith</a>, <a href="/search/gr-qc?searchtype=author&query=Akcay%2C+S">S. Akcay</a>, <a href="/search/gr-qc?searchtype=author&query=Allen%2C+G">G. Allen</a>, <a href="/search/gr-qc?searchtype=author&query=Allocca%2C+A">A. Allocca</a>, <a href="/search/gr-qc?searchtype=author&query=Altin%2C+P+A">P. A. Altin</a>, <a href="/search/gr-qc?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/gr-qc?searchtype=author&query=Anand%2C+S">S. Anand</a> , et al. (1233 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01190v1-abstract-short" style="display: inline;"> The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14}\,M_{\odot}$ and $66^{+17}_{-18}\,M_{\odot}$, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01190v1-abstract-full').style.display = 'inline'; document.getElementById('2009.01190v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01190v1-abstract-full" style="display: none;"> The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14}\,M_{\odot}$ and $66^{+17}_{-18}\,M_{\odot}$, compared to previously reported events, and shows mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120\,M_{\odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16}\,M_{\odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521's source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11}\,{\rm Gpc}^{-3}\,\rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01190v1-abstract-full').style.display = 'none'; document.getElementById('2009.01190v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 13 figures; data available at https://dcc.ligo.org/P2000158-v4/public</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2000021 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. Lett. 900, L13 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Klimenko%2C+S&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>