CINXE.COM

실수 - 위키백과, 우리 모두의 백과사전

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ko" dir="ltr"> <head> <meta charset="UTF-8"> <title>실수 - 위키백과, 우리 모두의 백과사전</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )kowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ko", "wgMonthNames":["","1월","2월","3월","4월","5월","6월","7월","8월","9월","10월","11월","12월"],"wgRequestId":"d3e1150b-7b00-47ca-841d-e1fa1bcfda6a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"실수","wgTitle":"실수","wgCurRevisionId":38000687,"wgRevisionId":38000687,"wgArticleId":381,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["해결되지 않은 속성이 있는 문서","위키데이터 속성 P18을 사용하는 문서","위키데이터 속성 P373을 사용하는 문서","위키데이터 속성 P227을 사용하는 문서","위키데이터 속성 P244를 사용하는 문서","위키데이터 속성 P268을 사용하는 문서","위키데이터 속성 P349를 사용하는 문서","위키데이터 속성 P691을 사용하는 문서","위키데이터 속성 P7859를 사용하는 문서","위키데이터 속성 P8189를 사용하는 문서", "영어 표기를 포함한 문서","CS1 - 영어 인용 (en)","BNF 식별자를 포함한 위키백과 문서","BNFdata 식별자를 포함한 위키백과 문서","GND 식별자를 포함한 위키백과 문서","J9U 식별자를 포함한 위키백과 문서","LCCN 식별자를 포함한 위키백과 문서","NDL 식별자를 포함한 위키백과 문서","NKC 식별자를 포함한 위키백과 문서","실수","초등 수학","수 체계"],"wgPageViewLanguage":"ko","wgPageContentLanguage":"ko","wgPageContentModel":"wikitext","wgRelevantPageName":"실수","wgRelevantArticleId":381,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ko","pageLanguageDir":"ltr","pageVariantFallbacks":"ko"},"wgMFDisplayWikibaseDescriptions":{"search":true ,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q12916","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.SectionFont":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready", "skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.directcommons","ext.gadget.edittools","ext.gadget.refToolbar","ext.gadget.siteNotice","ext.gadget.scrollUpButton","ext.gadget.strikethroughTOC","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022", "ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=ko&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=ext.gadget.SectionFont&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="실수 - 위키백과, 우리 모두의 백과사전"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ko.m.wikipedia.org/wiki/%EC%8B%A4%EC%88%98"> <link rel="alternate" type="application/x-wiki" title="편집" href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="위키백과 (ko)"> <link rel="EditURI" type="application/rsd+xml" href="//ko.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ko.wikipedia.org/wiki/%EC%8B%A4%EC%88%98"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ko"> <link rel="alternate" type="application/atom+xml" title="위키백과 아톰 피드" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-실수 rootpage-실수 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">본문으로 이동</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="주 메뉴" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">주 메뉴</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">주 메뉴</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">숨기기</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 둘러보기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" title="대문으로 가기 [z]" accesskey="z"><span>대문</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C" title="위키의 최근 바뀐 목록 [r]" accesskey="r"><span>최근 바뀜</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%9A%94%EC%A6%98_%ED%99%94%EC%A0%9C" title="최근의 소식 알아 보기"><span>요즘 화제</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%9E%84%EC%9D%98%EB%AC%B8%EC%84%9C" title="무작위로 선택된 문서 불러오기 [x]" accesskey="x"><span>임의의 문서로</span></a></li> </ul> </div> </div> <div id="p-사용자_모임" class="vector-menu mw-portlet mw-portlet-사용자_모임" > <div class="vector-menu-heading"> 사용자 모임 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-projectchat" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EB%9E%91%EB%B0%A9"><span>사랑방</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EC%9A%A9%EC%9E%90_%EB%AA%A8%EC%9E%84" title="위키백과 참여자를 위한 토론/대화 공간입니다."><span>사용자 모임</span></a></li><li id="n-request" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9A%94%EC%B2%AD"><span>관리 요청</span></a></li> </ul> </div> </div> <div id="p-편집_안내" class="vector-menu mw-portlet mw-portlet-편집_안내" > <div class="vector-menu-heading"> 편집 안내 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-helpintro" class="mw-list-item"><a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C"><span>소개</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%84%EC%9B%80%EB%A7%90" title="도움말"><span>도움말</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%95%EC%B1%85%EA%B3%BC_%EC%A7%80%EC%B9%A8"><span>정책과 지침</span></a></li><li id="n-qna" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A7%88%EB%AC%B8%EB%B0%A9"><span>질문방</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="위키백과" src="/static/images/mobile/copyright/wikipedia-wordmark-ko.svg" style="width: 7.5em; height: 1.75em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ko.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B2%80%EC%83%89" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="위키백과 검색 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색" aria-label="위키백과 검색" autocapitalize="sentences" title="위키백과 검색 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="개인 도구"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="문서의 글꼴 크기, 폭, 색의 모습을 변경합니다" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="보이기" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">보이기</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ko.wikipedia.org&amp;uselang=ko" class=""><span>기부</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&amp;returnto=%EC%8B%A4%EC%88%98" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다" class=""><span>계정 만들기</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&amp;returnto=%EC%8B%A4%EC%88%98" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o" class=""><span>로그인</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="더 많은 옵션" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="개인 도구" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">개인 도구</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="사용자 메뉴" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ko.wikipedia.org&amp;uselang=ko"><span>기부</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&amp;returnto=%EC%8B%A4%EC%88%98" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>계정 만들기</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&amp;returnto=%EC%8B%A4%EC%88%98" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>로그인</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 로그아웃한 편집자를 위한 문서 <a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C" aria-label="편집에 관해 더 알아보기"><span>더 알아보기</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EA%B8%B0%EC%97%AC" title="이 IP 주소의 편집 목록 [y]" accesskey="y"><span>기여</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EC%82%AC%EC%9A%A9%EC%9E%90%ED%86%A0%EB%A1%A0" title="현재 사용하는 IP 주소에 대한 토론 문서 [n]" accesskey="n"><span>토론</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="목차" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">목차</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">숨기기</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">처음 위치</div> </a> </li> <li id="toc-정의" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#정의"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>정의</span> </div> </a> <button aria-controls="toc-정의-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>정의 하위섹션 토글하기</span> </button> <ul id="toc-정의-sublist" class="vector-toc-list"> <li id="toc-공리적_정의" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#공리적_정의"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>공리적 정의</span> </div> </a> <ul id="toc-공리적_정의-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-구성적_정의" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#구성적_정의"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>구성적 정의</span> </div> </a> <ul id="toc-구성적_정의-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-연산" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#연산"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>연산</span> </div> </a> <button aria-controls="toc-연산-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>연산 하위섹션 토글하기</span> </button> <ul id="toc-연산-sublist" class="vector-toc-list"> <li id="toc-사칙_연산" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#사칙_연산"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>사칙 연산</span> </div> </a> <ul id="toc-사칙_연산-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-거듭제곱과_거듭제곱근" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#거듭제곱과_거듭제곱근"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>거듭제곱과 거듭제곱근</span> </div> </a> <ul id="toc-거듭제곱과_거듭제곱근-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-순서" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#순서"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>순서</span> </div> </a> <button aria-controls="toc-순서-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>순서 하위섹션 토글하기</span> </button> <ul id="toc-순서-sublist" class="vector-toc-list"> <li id="toc-구간" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#구간"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>구간</span> </div> </a> <ul id="toc-구간-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-상한_공리" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#상한_공리"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>상한 공리</span> </div> </a> <ul id="toc-상한_공리-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-데데킨트_완비성" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#데데킨트_완비성"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>데데킨트 완비성</span> </div> </a> <ul id="toc-데데킨트_완비성-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-기타_성질" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#기타_성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>기타 성질</span> </div> </a> <ul id="toc-기타_성질-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-위상" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#위상"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>위상</span> </div> </a> <ul id="toc-위상-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-분류" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#분류"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>분류</span> </div> </a> <ul id="toc-분류-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-성질" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>성질</span> </div> </a> <button aria-controls="toc-성질-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>성질 하위섹션 토글하기</span> </button> <ul id="toc-성질-sublist" class="vector-toc-list"> <li id="toc-집합론적_성질" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#집합론적_성질"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>집합론적 성질</span> </div> </a> <ul id="toc-집합론적_성질-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-역사" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#역사"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>역사</span> </div> </a> <ul id="toc-역사-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-같이_보기" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#같이_보기"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>같이 보기</span> </div> </a> <ul id="toc-같이_보기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-외부_링크" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#외부_링크"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>외부 링크</span> </div> </a> <ul id="toc-외부_링크-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">실수</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="다른 언어로 문서를 방문합니다. 118개 언어로 읽을 수 있습니다" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-118" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">118개 언어</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Re%C3%ABle_getal" title="Reële getal – 아프리칸스어" lang="af" hreflang="af" data-title="Reële getal" data-language-autonym="Afrikaans" data-language-local-name="아프리칸스어" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Reelle_Zahl" title="Reelle Zahl – 독일어(스위스)" lang="gsw" hreflang="gsw" data-title="Reelle Zahl" data-language-autonym="Alemannisch" data-language-local-name="독일어(스위스)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AD%D9%82%D9%8A%D9%82%D9%8A" title="عدد حقيقي – 아랍어" lang="ar" hreflang="ar" data-title="عدد حقيقي" data-language-autonym="العربية" data-language-local-name="아랍어" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/N%C3%BAmberu_real" title="Númberu real – 아스투리아어" lang="ast" hreflang="ast" data-title="Númberu real" data-language-autonym="Asturianu" data-language-local-name="아스투리아어" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/H%C9%99qiqi_%C9%99d%C9%99dl%C9%99r" title="Həqiqi ədədlər – 아제르바이잔어" lang="az" hreflang="az" data-title="Həqiqi ədədlər" data-language-autonym="Azərbaycanca" data-language-local-name="아제르바이잔어" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%D8%AD%D9%82%DB%8C%D9%82%DB%8C_%D8%B3%D8%A7%DB%8C%DB%8C%D9%84%D8%A7%D8%B1" title="حقیقی ساییلار – South Azerbaijani" lang="azb" hreflang="azb" data-title="حقیقی ساییلار" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%AB%D1%81%D1%8B%D0%BD_%D2%BB%D0%B0%D0%BD" title="Ысын һан – 바슈키르어" lang="ba" hreflang="ba" data-title="Ысын һан" data-language-autonym="Башҡортса" data-language-local-name="바슈키르어" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Tunay_na_bilang" title="Tunay na bilang – Central Bikol" lang="bcl" hreflang="bcl" data-title="Tunay na bilang" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D1%8D%D1%87%D0%B0%D1%96%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Рэчаісны лік – 벨라루스어" lang="be" hreflang="be" data-title="Рэчаісны лік" data-language-autonym="Беларуская" data-language-local-name="벨라루스어" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A0%D1%8D%D1%87%D0%B0%D1%96%D1%81%D0%BD%D1%8B_%D0%BB%D1%96%D0%BA" title="Рэчаісны лік – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Рэчаісны лік" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Реално число – 불가리아어" lang="bg" hreflang="bg" data-title="Реално число" data-language-autonym="Български" data-language-local-name="불가리아어" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक संख्या – Bhojpuri" lang="bh" hreflang="bh" data-title="वास्तविक संख्या" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A6%BE%E0%A6%B8%E0%A7%8D%E0%A6%A4%E0%A6%AC_%E0%A6%B8%E0%A6%82%E0%A6%96%E0%A7%8D%E0%A6%AF%E0%A6%BE" title="বাস্তব সংখ্যা – 벵골어" lang="bn" hreflang="bn" data-title="বাস্তব সংখ্যা" data-language-autonym="বাংলা" data-language-local-name="벵골어" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Realan_broj" title="Realan broj – 보스니아어" lang="bs" hreflang="bs" data-title="Realan broj" data-language-autonym="Bosanski" data-language-local-name="보스니아어" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%91%D0%BE%D0%B4%D0%BE%D1%82%D0%BE_%D1%82%D0%BE%D0%BE" title="Бодото тоо – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Бодото тоо" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://ca.wikipedia.org/wiki/Nombre_real" title="Nombre real – 카탈로니아어" lang="ca" hreflang="ca" data-title="Nombre real" data-language-autonym="Català" data-language-local-name="카탈로니아어" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%98%D9%85%D8%A7%D8%B1%DB%95%DB%8C_%DA%95%D8%A7%D8%B3%D8%AA%DB%95%D9%82%DB%8C%D9%86%DB%95" title="ژمارەی ڕاستەقینە – 소라니 쿠르드어" lang="ckb" hreflang="ckb" data-title="ژمارەی ڕاستەقینە" data-language-autonym="کوردی" data-language-local-name="소라니 쿠르드어" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-crh mw-list-item"><a href="https://crh.wikipedia.org/wiki/Aqiqiy_say%C4%B1" title="Aqiqiy sayı – 크리민 터키어; 크리민 타타르어" lang="crh" hreflang="crh" data-title="Aqiqiy sayı" data-language-autonym="Qırımtatarca" data-language-local-name="크리민 터키어; 크리민 타타르어" class="interlanguage-link-target"><span>Qırımtatarca</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Re%C3%A1ln%C3%A9_%C4%8D%C3%ADslo" title="Reálné číslo – 체코어" lang="cs" hreflang="cs" data-title="Reálné číslo" data-language-autonym="Čeština" data-language-local-name="체코어" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A7%C4%83%D0%BD_%D1%85%D0%B8%D1%81%D0%B5%D0%BF" title="Чăн хисеп – 추바시어" lang="cv" hreflang="cv" data-title="Чăн хисеп" data-language-autonym="Чӑвашла" data-language-local-name="추바시어" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Rhif_real" title="Rhif real – 웨일스어" lang="cy" hreflang="cy" data-title="Rhif real" data-language-autonym="Cymraeg" data-language-local-name="웨일스어" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Reelle_tal" title="Reelle tal – 덴마크어" lang="da" hreflang="da" data-title="Reelle tal" data-language-autonym="Dansk" data-language-local-name="덴마크어" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Reelle_Zahl" title="Reelle Zahl – 독일어" lang="de" hreflang="de" data-title="Reelle Zahl" data-language-autonym="Deutsch" data-language-local-name="독일어" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-diq mw-list-item"><a href="https://diq.wikipedia.org/wiki/Amaro_reel" title="Amaro reel – Zazaki" lang="diq" hreflang="diq" data-title="Amaro reel" data-language-autonym="Zazaki" data-language-local-name="Zazaki" class="interlanguage-link-target"><span>Zazaki</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CF%81%CE%B1%CE%B3%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CF%8C%CF%82_%CE%B1%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82" title="Πραγματικός αριθμός – 그리스어" lang="el" hreflang="el" data-title="Πραγματικός αριθμός" data-language-autonym="Ελληνικά" data-language-local-name="그리스어" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B3mmer_re%C3%A8l" title="Nómmer reèl – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nómmer reèl" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Real_number" title="Real number – 영어" lang="en" hreflang="en" data-title="Real number" data-language-autonym="English" data-language-local-name="영어" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Reelo" title="Reelo – 에스페란토어" lang="eo" hreflang="eo" data-title="Reelo" data-language-autonym="Esperanto" data-language-local-name="에스페란토어" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_real" title="Número real – 스페인어" lang="es" hreflang="es" data-title="Número real" data-language-autonym="Español" data-language-local-name="스페인어" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Reaalarv" title="Reaalarv – 에스토니아어" lang="et" hreflang="et" data-title="Reaalarv" data-language-autonym="Eesti" data-language-local-name="에스토니아어" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Zenbaki_erreal" title="Zenbaki erreal – 바스크어" lang="eu" hreflang="eu" data-title="Zenbaki erreal" data-language-autonym="Euskara" data-language-local-name="바스크어" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%AD%D9%82%DB%8C%D9%82%DB%8C" title="عدد حقیقی – 페르시아어" lang="fa" hreflang="fa" data-title="عدد حقیقی" data-language-autonym="فارسی" data-language-local-name="페르시아어" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Reaaliluku" title="Reaaliluku – 핀란드어" lang="fi" hreflang="fi" data-title="Reaaliluku" data-language-autonym="Suomi" data-language-local-name="핀란드어" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fiu-vro mw-list-item"><a href="https://fiu-vro.wikipedia.org/wiki/Reaalarv" title="Reaalarv – Võro" lang="vro" hreflang="vro" data-title="Reaalarv" data-language-autonym="Võro" data-language-local-name="Võro" class="interlanguage-link-target"><span>Võro</span></a></li><li class="interlanguage-link interwiki-fo mw-list-item"><a href="https://fo.wikipedia.org/wiki/Reelt_tal" title="Reelt tal – 페로어" lang="fo" hreflang="fo" data-title="Reelt tal" data-language-autonym="Føroyskt" data-language-local-name="페로어" class="interlanguage-link-target"><span>Føroyskt</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_r%C3%A9el" title="Nombre réel – 프랑스어" lang="fr" hreflang="fr" data-title="Nombre réel" data-language-autonym="Français" data-language-local-name="프랑스어" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Re%27el_taal" title="Re&#039;el taal – 북부 프리지아어" lang="frr" hreflang="frr" data-title="Re&#039;el taal" data-language-autonym="Nordfriisk" data-language-local-name="북부 프리지아어" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-fur mw-list-item"><a href="https://fur.wikipedia.org/wiki/Numars_re%C3%A2i" title="Numars reâi – 프리울리어" lang="fur" hreflang="fur" data-title="Numars reâi" data-language-autonym="Furlan" data-language-local-name="프리울리어" class="interlanguage-link-target"><span>Furlan</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/R%C3%A9aduimhir" title="Réaduimhir – 아일랜드어" lang="ga" hreflang="ga" data-title="Réaduimhir" data-language-autonym="Gaeilge" data-language-local-name="아일랜드어" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8" title="實數 – 간어" lang="gan" hreflang="gan" data-title="實數" data-language-autonym="贛語" data-language-local-name="간어" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Nonm_r%C3%A9y%C3%A8l" title="Nonm réyèl – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Nonm réyèl" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/N%C3%BAmero_real" title="Número real – 갈리시아어" lang="gl" hreflang="gl" data-title="Número real" data-language-autonym="Galego" data-language-local-name="갈리시아어" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Feer_earroo" title="Feer earroo – 맹크스어" lang="gv" hreflang="gv" data-title="Feer earroo" data-language-autonym="Gaelg" data-language-local-name="맹크스어" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%9E%D7%9E%D7%A9%D7%99" title="מספר ממשי – 히브리어" lang="he" hreflang="he" data-title="מספר ממשי" data-language-autonym="עברית" data-language-local-name="히브리어" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक संख्या – 힌디어" lang="hi" hreflang="hi" data-title="वास्तविक संख्या" data-language-autonym="हिन्दी" data-language-local-name="힌디어" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Realni_broj" title="Realni broj – 크로아티아어" lang="hr" hreflang="hr" data-title="Realni broj" data-language-autonym="Hrvatski" data-language-local-name="크로아티아어" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Val%C3%B3s_sz%C3%A1mok" title="Valós számok – 헝가리어" lang="hu" hreflang="hu" data-title="Valós számok" data-language-autonym="Magyar" data-language-local-name="헝가리어" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BB%D6%80%D5%A1%D5%AF%D5%A1%D5%B6_%D5%A9%D5%AB%D5%BE" title="Իրական թիվ – 아르메니아어" lang="hy" hreflang="hy" data-title="Իրական թիվ" data-language-autonym="Հայերեն" data-language-local-name="아르메니아어" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Numero_real" title="Numero real – 인터링구아" lang="ia" hreflang="ia" data-title="Numero real" data-language-autonym="Interlingua" data-language-local-name="인터링구아" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-iba mw-list-item"><a href="https://iba.wikipedia.org/wiki/Lumur_bendar" title="Lumur bendar – 이반어" lang="iba" hreflang="iba" data-title="Lumur bendar" data-language-autonym="Jaku Iban" data-language-local-name="이반어" class="interlanguage-link-target"><span>Jaku Iban</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Bilangan_riil" title="Bilangan riil – 인도네시아어" lang="id" hreflang="id" data-title="Bilangan riil" data-language-autonym="Bahasa Indonesia" data-language-local-name="인도네시아어" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Reala_nombro" title="Reala nombro – 이도어" lang="io" hreflang="io" data-title="Reala nombro" data-language-autonym="Ido" data-language-local-name="이도어" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Rauntala" title="Rauntala – 아이슬란드어" lang="is" hreflang="is" data-title="Rauntala" data-language-autonym="Íslenska" data-language-local-name="아이슬란드어" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_reale" title="Numero reale – 이탈리아어" lang="it" hreflang="it" data-title="Numero reale" data-language-autonym="Italiano" data-language-local-name="이탈리아어" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AE%9F%E6%95%B0" title="実数 – 일본어" lang="ja" hreflang="ja" data-title="実数" data-language-autonym="日本語" data-language-local-name="일본어" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Riil_nomba" title="Riil nomba – Jamaican Creole English" lang="jam" hreflang="jam" data-title="Riil nomba" data-language-autonym="Patois" data-language-local-name="Jamaican Creole English" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-jbo mw-list-item"><a href="https://jbo.wikipedia.org/wiki/pavycimdyna%27u" title="pavycimdyna&#039;u – 로반어" lang="jbo" hreflang="jbo" data-title="pavycimdyna&#039;u" data-language-autonym="La .lojban." data-language-local-name="로반어" class="interlanguage-link-target"><span>La .lojban.</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9C%E1%83%90%E1%83%9B%E1%83%93%E1%83%95%E1%83%98%E1%83%9A%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98" title="ნამდვილი რიცხვი – 조지아어" lang="ka" hreflang="ka" data-title="ნამდვილი რიცხვი" data-language-autonym="ქართული" data-language-local-name="조지아어" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kbp mw-list-item"><a href="https://kbp.wikipedia.org/wiki/Si%C5%8B%C5%8B_%C3%B1%CA%8A%C5%8B_(t%CA%8A%CA%8Az%CA%8A%CA%8A)" title="Siŋŋ ñʊŋ (tʊʊzʊʊ) – Kabiye" lang="kbp" hreflang="kbp" data-title="Siŋŋ ñʊŋ (tʊʊzʊʊ)" data-language-autonym="Kabɩyɛ" data-language-local-name="Kabiye" class="interlanguage-link-target"><span>Kabɩyɛ</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9D%D0%B0%D2%9B%D1%82%D1%8B_%D1%81%D0%B0%D0%BD" title="Нақты сан – 카자흐어" lang="kk" hreflang="kk" data-title="Нақты сан" data-language-autonym="Қазақша" data-language-local-name="카자흐어" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9F%86%E1%9E%93%E1%9E%BD%E1%9E%93%E1%9E%96%E1%9E%B7%E1%9E%8F" title="ចំនួនពិត – 크메르어" lang="km" hreflang="km" data-title="ចំនួនពិត" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="크메르어" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%A8%E0%B3%88%E0%B2%9C_%E0%B2%B8%E0%B2%82%E0%B2%96%E0%B3%8D%E0%B2%AF%E0%B3%86" title="ನೈಜ ಸಂಖ್ಯೆ – 칸나다어" lang="kn" hreflang="kn" data-title="ನೈಜ ಸಂಖ್ಯೆ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="칸나다어" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ku mw-list-item"><a href="https://ku.wikipedia.org/wiki/Hejmar%C3%AAn_rast%C3%AEn" title="Hejmarên rastîn – 쿠르드어" lang="ku" hreflang="ku" data-title="Hejmarên rastîn" data-language-autonym="Kurdî" data-language-local-name="쿠르드어" class="interlanguage-link-target"><span>Kurdî</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D0%BD%D1%8B%D0%BA_%D1%81%D0%B0%D0%BD" title="Анык сан – 키르기스어" lang="ky" hreflang="ky" data-title="Анык сан" data-language-autonym="Кыргызча" data-language-local-name="키르기스어" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Numerus_realis" title="Numerus realis – 라틴어" lang="la" hreflang="la" data-title="Numerus realis" data-language-autonym="Latina" data-language-local-name="라틴어" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Numero_real" title="Numero real – 링구아 프랑카 노바" lang="lfn" hreflang="lfn" data-title="Numero real" data-language-autonym="Lingua Franca Nova" data-language-local-name="링구아 프랑카 노바" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Re%C3%ABel_getal" title="Reëel getal – 림버거어" lang="li" hreflang="li" data-title="Reëel getal" data-language-autonym="Limburgs" data-language-local-name="림버거어" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lij mw-list-item"><a href="https://lij.wikipedia.org/wiki/Numeri_re%C3%A6" title="Numeri reæ – Ligurian" lang="lij" hreflang="lij" data-title="Numeri reæ" data-language-autonym="Ligure" data-language-local-name="Ligurian" class="interlanguage-link-target"><span>Ligure</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Numer_real" title="Numer real – Lombard" lang="lmo" hreflang="lmo" data-title="Numer real" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%88%E0%BA%B3%E0%BA%99%E0%BA%A7%E0%BA%99%E0%BA%88%E0%BA%B4%E0%BA%87" title="ຈຳນວນຈິງ – 라오어" lang="lo" hreflang="lo" data-title="ຈຳນວນຈິງ" data-language-autonym="ລາວ" data-language-local-name="라오어" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Realusis_skai%C4%8Dius" title="Realusis skaičius – 리투아니아어" lang="lt" hreflang="lt" data-title="Realusis skaičius" data-language-autonym="Lietuvių" data-language-local-name="리투아니아어" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Re%C4%81ls_skaitlis" title="Reāls skaitlis – 라트비아어" lang="lv" hreflang="lv" data-title="Reāls skaitlis" data-language-autonym="Latviešu" data-language-local-name="라트비아어" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mg mw-list-item"><a href="https://mg.wikipedia.org/wiki/Isa_voatsapa" title="Isa voatsapa – 말라가시어" lang="mg" hreflang="mg" data-title="Isa voatsapa" data-language-autonym="Malagasy" data-language-local-name="말라가시어" class="interlanguage-link-target"><span>Malagasy</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B5%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Реален број – 마케도니아어" lang="mk" hreflang="mk" data-title="Реален број" data-language-autonym="Македонски" data-language-local-name="마케도니아어" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B5%E0%B4%BE%E0%B4%B8%E0%B5%8D%E0%B4%A4%E0%B4%B5%E0%B4%BF%E0%B4%95%E0%B4%B8%E0%B4%82%E0%B4%96%E0%B5%8D%E0%B4%AF" title="വാസ്തവികസംഖ്യ – 말라얄람어" lang="ml" hreflang="ml" data-title="വാസ്തവികസംഖ്യ" data-language-autonym="മലയാളം" data-language-local-name="말라얄람어" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक संख्या – 마라티어" lang="mr" hreflang="mr" data-title="वास्तविक संख्या" data-language-autonym="मराठी" data-language-local-name="마라티어" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nombor_nyata" title="Nombor nyata – 말레이어" lang="ms" hreflang="ms" data-title="Nombor nyata" data-language-autonym="Bahasa Melayu" data-language-local-name="말레이어" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8%E1%80%85%E1%80%85%E1%80%BA" title="ကိန်းစစ် – 버마어" lang="my" hreflang="my" data-title="ကိန်းစစ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="버마어" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8D%E0%A4%A4%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%B8%E0%A4%99%E0%A5%8D%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="वास्तविक सङ्ख्या – 네팔어" lang="ne" hreflang="ne" data-title="वास्तविक सङ्ख्या" data-language-autonym="नेपाली" data-language-local-name="네팔어" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Re%C3%ABel_getal" title="Reëel getal – 네덜란드어" lang="nl" hreflang="nl" data-title="Reëel getal" data-language-autonym="Nederlands" data-language-local-name="네덜란드어" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Reelle_tal" title="Reelle tal – 노르웨이어(니노르스크)" lang="nn" hreflang="nn" data-title="Reelle tal" data-language-autonym="Norsk nynorsk" data-language-local-name="노르웨이어(니노르스크)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Reelt_tall" title="Reelt tall – 노르웨이어(보크말)" lang="nb" hreflang="nb" data-title="Reelt tall" data-language-autonym="Norsk bokmål" data-language-local-name="노르웨이어(보크말)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Nombre_real" title="Nombre real – 오크어" lang="oc" hreflang="oc" data-title="Nombre real" data-language-autonym="Occitan" data-language-local-name="오크어" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-os mw-list-item"><a href="https://os.wikipedia.org/wiki/%D0%91%C3%A6%D0%BB%D0%B2%D1%8B%D1%80%D0%B4_%D0%BD%D1%8B%D0%BC%C3%A6%D1%86" title="Бæлвырд нымæц – 오세트어" lang="os" hreflang="os" data-title="Бæлвырд нымæц" data-language-autonym="Ирон" data-language-local-name="오세트어" class="interlanguage-link-target"><span>Ирон</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B5%E0%A8%BE%E0%A8%B8%E0%A8%A4%E0%A8%B5%E0%A8%BF%E0%A8%95_%E0%A8%85%E0%A9%B0%E0%A8%95" title="ਵਾਸਤਵਿਕ ਅੰਕ – 펀잡어" lang="pa" hreflang="pa" data-title="ਵਾਸਤਵਿਕ ਅੰਕ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="펀잡어" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_rzeczywiste" title="Liczby rzeczywiste – 폴란드어" lang="pl" hreflang="pl" data-title="Liczby rzeczywiste" data-language-autonym="Polski" data-language-local-name="폴란드어" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/N%C3%B9mer_real" title="Nùmer real – Piedmontese" lang="pms" hreflang="pms" data-title="Nùmer real" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_real" title="Número real – 포르투갈어" lang="pt" hreflang="pt" data-title="Número real" data-language-autonym="Português" data-language-local-name="포르투갈어" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_real" title="Număr real – 루마니아어" lang="ro" hreflang="ro" data-title="Număr real" data-language-autonym="Română" data-language-local-name="루마니아어" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Вещественное число – 러시아어" lang="ru" hreflang="ru" data-title="Вещественное число" data-language-autonym="Русский" data-language-local-name="러시아어" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%94%D1%8C%D0%B8%D2%A5%D0%BD%D1%8D%D1%8D%D1%85_%D1%87%D1%8B%D1%8B%D2%BB%D1%8B%D0%BB%D0%B0%D0%BB%D0%B0%D1%80" title="Дьиҥнээх чыыһылалар – 야쿠트어" lang="sah" hreflang="sah" data-title="Дьиҥнээх чыыһылалар" data-language-autonym="Саха тыла" data-language-local-name="야쿠트어" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/N%C3%B9mmuru_riali" title="Nùmmuru riali – 시칠리아어" lang="scn" hreflang="scn" data-title="Nùmmuru riali" data-language-autonym="Sicilianu" data-language-local-name="시칠리아어" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Realan_broj" title="Realan broj – 세르비아-크로아티아어" lang="sh" hreflang="sh" data-title="Realan broj" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="세르비아-크로아티아어" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%AD%E0%B7%8F%E0%B6%AD%E0%B7%8A%E0%B7%80%E0%B7%92%E0%B6%9A_%E0%B7%83%E0%B6%82%E0%B6%9B%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F" title="තාත්වික සංඛ්‍යා – 싱할라어" lang="si" hreflang="si" data-title="තාත්වික සංඛ්‍යා" data-language-autonym="සිංහල" data-language-local-name="싱할라어" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Real_number" title="Real number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Real number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Re%C3%A1lne_%C4%8D%C3%ADslo" title="Reálne číslo – 슬로바키아어" lang="sk" hreflang="sk" data-title="Reálne číslo" data-language-autonym="Slovenčina" data-language-local-name="슬로바키아어" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Realno_%C5%A1tevilo" title="Realno število – 슬로베니아어" lang="sl" hreflang="sl" data-title="Realno število" data-language-autonym="Slovenščina" data-language-local-name="슬로베니아어" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Reaalloho" title="Reaalloho – 이나리 사미어" lang="smn" hreflang="smn" data-title="Reaalloho" data-language-autonym="Anarâškielâ" data-language-local-name="이나리 사미어" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Numrat_real%C3%AB" title="Numrat realë – 알바니아어" lang="sq" hreflang="sq" data-title="Numrat realë" data-language-autonym="Shqip" data-language-local-name="알바니아어" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BB%D0%B0%D0%BD_%D0%B1%D1%80%D0%BE%D1%98" title="Реалан број – 세르비아어" lang="sr" hreflang="sr" data-title="Реалан број" data-language-autonym="Српски / srpski" data-language-local-name="세르비아어" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Reella_tal" title="Reella tal – 스웨덴어" lang="sv" hreflang="sv" data-title="Reella tal" data-language-autonym="Svenska" data-language-local-name="스웨덴어" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Namba_halisi" title="Namba halisi – 스와힐리어" lang="sw" hreflang="sw" data-title="Namba halisi" data-language-autonym="Kiswahili" data-language-local-name="스와힐리어" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AF%86%E0%AE%AF%E0%AF%8D%E0%AE%AF%E0%AF%86%E0%AE%A3%E0%AF%8D" title="மெய்யெண் – 타밀어" lang="ta" hreflang="ta" data-title="மெய்யெண்" data-language-autonym="தமிழ்" data-language-local-name="타밀어" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B8%88%E0%B8%A3%E0%B8%B4%E0%B8%87" title="จำนวนจริง – 태국어" lang="th" hreflang="th" data-title="จำนวนจริง" data-language-autonym="ไทย" data-language-local-name="태국어" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Tunay_na_bilang" title="Tunay na bilang – 타갈로그어" lang="tl" hreflang="tl" data-title="Tunay na bilang" data-language-autonym="Tagalog" data-language-local-name="타갈로그어" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Reel_say%C4%B1lar" title="Reel sayılar – 터키어" lang="tr" hreflang="tr" data-title="Reel sayılar" data-language-autonym="Türkçe" data-language-local-name="터키어" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D1%96%D0%B9%D1%81%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Дійсне число – 우크라이나어" lang="uk" hreflang="uk" data-title="Дійсне число" data-language-autonym="Українська" data-language-local-name="우크라이나어" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AD%D9%82%DB%8C%D9%82%DB%8C_%D8%B9%D8%AF%D8%AF" title="حقیقی عدد – 우르두어" lang="ur" hreflang="ur" data-title="حقیقی عدد" data-language-autonym="اردو" data-language-local-name="우르두어" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Haqiqiy_sonlar" title="Haqiqiy sonlar – 우즈베크어" lang="uz" hreflang="uz" data-title="Haqiqiy sonlar" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="우즈베크어" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/S%E1%BB%91_th%E1%BB%B1c" title="Số thực – 베트남어" lang="vi" hreflang="vi" data-title="Số thực" data-language-autonym="Tiếng Việt" data-language-local-name="베트남어" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%AE%9E%E6%95%B0" title="实数 – 우어" lang="wuu" hreflang="wuu" data-title="实数" data-language-autonym="吴语" data-language-local-name="우어" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xal mw-list-item"><a href="https://xal.wikipedia.org/wiki/%D0%91%D3%99%D3%99%D0%BB%D2%BB%D0%B0%D0%BD_%D1%82%D0%BE%D0%B9%D0%B3" title="Бәәлһан тойг – 칼미크어" lang="xal" hreflang="xal" data-title="Бәәлһан тойг" data-language-autonym="Хальмг" data-language-local-name="칼미크어" class="interlanguage-link-target"><span>Хальмг</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A8%D7%A2%D7%90%D7%9C%D7%A2_%D7%A6%D7%90%D7%9C" title="רעאלע צאל – 이디시어" lang="yi" hreflang="yi" data-title="רעאלע צאל" data-language-autonym="ייִדיש" data-language-local-name="이디시어" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-yo badge-Q17437798 badge-goodarticle mw-list-item" title="좋은 글"><a href="https://yo.wikipedia.org/wiki/N%E1%BB%8D%CC%81mb%C3%A0_gidi" title="Nọ́mbà gidi – 요루바어" lang="yo" hreflang="yo" data-title="Nọ́mbà gidi" data-language-autonym="Yorùbá" data-language-local-name="요루바어" class="interlanguage-link-target"><span>Yorùbá</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AE%9E%E6%95%B0" title="实数 – 중국어" lang="zh" hreflang="zh" data-title="实数" data-language-autonym="中文" data-language-local-name="중국어" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8" title="實數 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="實數" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Si%CC%8Dt-s%C3%B2%CD%98" title="Si̍t-sò͘ – 민난어" lang="nan" hreflang="nan" data-title="Si̍t-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="민난어" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%AF%A6%E6%95%B8" title="實數 – 광둥어" lang="yue" hreflang="yue" data-title="實數" data-language-autonym="粵語" data-language-local-name="광둥어" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q12916#sitelinks-wikipedia" title="언어 간 링크 편집" class="wbc-editpage">링크 편집</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="이름공간"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EC%8B%A4%EC%88%98" title="본문 보기 [c]" accesskey="c"><span>문서</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%ED%86%A0%EB%A1%A0:%EC%8B%A4%EC%88%98" rel="discussion" title="문서의 내용에 대한 토론 문서 [t]" accesskey="t"><span>토론</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="언어 변종 바꾸기" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">한국어</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="보기"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EC%8B%A4%EC%88%98"><span>읽기</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=history" title="이 문서의 과거 편집 내역입니다. [h]" accesskey="h"><span>역사 보기</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="도구" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">도구</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">도구</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">숨기기</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="더 많은 옵션" > <div class="vector-menu-heading"> 동작 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%EC%8B%A4%EC%88%98"><span>읽기</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=history"><span>역사 보기</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 일반 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B0%80%EB%A6%AC%ED%82%A4%EB%8A%94%EB%AC%B8%EC%84%9C/%EC%8B%A4%EC%88%98" title="여기를 가리키는 모든 위키 문서의 목록 [j]" accesskey="j"><span>여기를 가리키는 문서</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%A7%81%ED%81%AC%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C/%EC%8B%A4%EC%88%98" rel="nofollow" title="이 문서에서 링크한 문서의 최근 바뀜 [k]" accesskey="k"><span>가리키는 글의 최근 바뀜</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/위키백과:파일_올리기" title="파일 올리기 [u]" accesskey="u"><span>파일 올리기</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%ED%8A%B9%EC%88%98%EB%AC%B8%EC%84%9C" title="모든 특수 문서의 목록 [q]" accesskey="q"><span>특수 문서 목록</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;oldid=38000687" title="이 문서의 이 판에 대한 고유 링크"><span>고유 링크</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=info" title="이 문서에 대한 자세한 정보"><span>문서 정보</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%9D%B4%EB%AC%B8%EC%84%9C%EC%9D%B8%EC%9A%A9&amp;page=%EC%8B%A4%EC%88%98&amp;id=38000687&amp;wpFormIdentifier=titleform" title="이 문서를 인용하는 방법에 대한 정보"><span>이 문서 인용하기</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:UrlShortener&amp;url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EC%258B%25A4%25EC%2588%2598"><span>축약된 URL 얻기</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:QrCode&amp;url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EC%258B%25A4%25EC%2588%2598"><span>QR 코드 다운로드</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 인쇄/내보내기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B1%85&amp;bookcmd=book_creator&amp;referer=%EC%8B%A4%EC%88%98"><span>책 만들기</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:DownloadAsPdf&amp;page=%EC%8B%A4%EC%88%98&amp;action=show-download-screen"><span>PDF로 다운로드</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;printable=yes" title="이 문서의 인쇄용 판 [p]" accesskey="p"><span>인쇄용 판</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 다른 프로젝트 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Real_numbers" hreflang="en"><span>위키미디어 공용</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q12916" title="데이터 저장소에 연결된 항목을 가리키는 링크 [g]" accesskey="g"><span>위키데이터 항목</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">보이기</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">숨기기</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">위키백과, 우리 모두의 백과사전.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ko" dir="ltr"><p><span class="nowrap"></span> </p> <div class="dablink hatnote"><span typeof="mw:File"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%99%EC%9D%8C%EC%9D%B4%EC%9D%98%EC%96%B4_%EB%AC%B8%EC%84%9C" title="위키백과:동음이의어 문서"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/23px-Disambig_grey.svg.png" decoding="async" width="23" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/35px-Disambig_grey.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Disambig_grey.svg/46px-Disambig_grey.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span> 다른 뜻에 대해서는 <a href="/wiki/%EC%8B%A4%EC%88%98_(%EB%8F%99%EC%9D%8C%EC%9D%B4%EC%9D%98)" class="mw-disambig" title="실수 (동음이의)">실수 (동음이의)</a> 문서를 참고하십시오.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Number-line.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Number-line.gif/220px-Number-line.gif" decoding="async" width="220" height="17" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/09/Number-line.gif/330px-Number-line.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/09/Number-line.gif/440px-Number-line.gif 2x" data-file-width="750" data-file-height="57" /></a><figcaption>실수를 수직선으로 나타낸 것</figcaption></figure> <p><a href="/wiki/%EC%88%98%ED%95%99" title="수학">수학</a>에서 <b>실수</b>(實數, <span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>&#58; </span><span lang="en">real number</span>)는 주로 <a href="/wiki/%EC%8B%A4%EC%A7%81%EC%84%A0" title="실직선">실직선</a> 위의 점 또는 <a href="/wiki/%EC%8B%AD%EC%A7%84%EB%B2%95" title="십진법">십진법</a> 전개로 표현되는 수 체계이다. 예를 들어, -1, 0, <span class="sfrac nowrap" style="display:inline-block; vertical-align:-0.5em; font-size:80%; text-align:center;"><span style="display:block; line-height:1.15em; padding:0 0.1em;">1</span><span style="position:absolute;left:-10000px;top:auto;width:1px;height:1px;overflow:hidden;">/</span><span style="display:block; line-height:1.15em; padding:0 0.1em; border-top:1px solid;">2</span></span> <a href="/wiki/%EC%A0%9C%EA%B3%B1%EA%B7%BC_2" title="제곱근 2"><style data-mw-deduplicate="TemplateStyles:r25030363">'"`UNIQ--templatestyles-00000002-QINU`"'</style><span class="texhtml"><span class="nowrap">&#8730;<span style="border-top:1px solid; padding:0 0.1em;">2</span></span></span></a>, <i><a href="/wiki/%EC%9E%90%EC%97%B0%EB%A1%9C%EA%B7%B8%EC%9D%98_%EB%B0%91" title="자연로그의 밑">e</a></i>, <a href="/wiki/%EC%9B%90%EC%A3%BC%EC%9C%A8" title="원주율">π</a> 등은 모두 실수이다. 즉 좌표축을 꽉 채울 수 있는 수의 집합이라고도 할 수 있다. </p><p>실수에 대하여 <a href="/wiki/%EC%82%AC%EC%B9%99_%EC%97%B0%EC%82%B0" class="mw-redirect" title="사칙 연산">사칙 연산</a>(<a href="/wiki/%EB%8D%A7%EC%85%88" title="덧셈">덧셈</a> · <a href="/wiki/%EB%BA%84%EC%85%88" title="뺄셈">뺄셈</a> · <a href="/wiki/%EA%B3%B1%EC%85%88" title="곱셈">곱셈</a> · <a href="/wiki/%EB%82%98%EB%88%97%EC%85%88" title="나눗셈">나눗셈</a>)을 실행할 수 있다. 실수는 크기비교가 가능하며, 실직선에서 더 왼쪽에 있는 수가 더 오른쪽에 있는 수보다 작다. 특히, 실수는 0보다 큰 <a href="/wiki/%EC%96%91%EC%88%98_(%EC%88%98%ED%95%99)" title="양수 (수학)">양수</a> · 0보다 작은 <a href="/wiki/%EC%9D%8C%EC%88%98" title="음수">음수</a> · 0으로 분류된다. 또한, 실수는 <a href="/wiki/%EC%A0%95%EC%88%98" title="정수">정수</a>의 <a href="/wiki/%EB%B9%84_(%EC%88%98%ED%95%99)" title="비 (수학)">비</a>인 <a href="/wiki/%EC%9C%A0%EB%A6%AC%EC%88%98" title="유리수">유리수</a>와 그렇지 않은 <a href="/wiki/%EB%AC%B4%EB%A6%AC%EC%88%98" title="무리수">무리수</a>로도 분류되며, 정수 계수 <a href="/wiki/%EB%8B%A4%ED%95%AD%EC%8B%9D%EC%9D%98_%EA%B7%BC" class="mw-redirect" title="다항식의 근">다항식의 근</a>인 <a href="/wiki/%EB%8C%80%EC%88%98%EC%A0%81_%EC%88%98" title="대수적 수">대수적 수</a>와 그렇지 않은 <a href="/wiki/%EC%B4%88%EC%9B%94%EC%88%98" title="초월수">초월수</a>로도 분류된다. 실직선은 <a href="/wiki/%EB%B3%B5%EC%86%8C_%ED%8F%89%EB%A9%B4" class="mw-redirect" title="복소 평면">복소 평면</a>의 일부로 볼 수 있으며, 이 경우 실수는 <a href="/wiki/%ED%97%88%EC%88%98" title="허수">허수</a>와 함께 <a href="/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수">복소수</a>를 이룬다. </p><p>공리적으로, 실수는 <a href="/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EC%99%84%EB%B9%84%EC%84%B1" title="실수의 완비성">완비</a> <a href="/wiki/%EC%88%9C%EC%84%9C%EC%B2%B4" title="순서체">순서체</a>로 정의되고, 이는 <a href="/wiki/%EB%8F%99%ED%98%95" class="mw-redirect" title="동형">동형</a> 의미 아래 유일하다. 구성적으로, 실수는 유리수 <a href="/wiki/%EC%BD%94%EC%8B%9C_%EC%88%98%EC%97%B4" class="mw-redirect" title="코시 수열">코시 수열</a>의 <a href="/wiki/%EB%8F%99%EC%B9%98%EB%A5%98" class="mw-redirect" title="동치류">동치류</a> · <a href="/wiki/%EB%8D%B0%EB%8D%B0%ED%82%A8%ED%8A%B8_%EC%A0%88%EB%8B%A8" title="데데킨트 절단">데데킨트 절단</a> · 십진법 전개의 동치류로서 구성된다. <a href="/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EC%99%84%EB%B9%84%EC%84%B1" title="실수의 완비성">실수의 완비성</a>은 공집합이 아닌 실수 <a href="/wiki/%EC%9C%A0%EA%B3%84_%EC%A7%91%ED%95%A9" title="유계 집합">유계 집합</a>이 항상 <a href="/wiki/%EC%83%81%ED%95%9C%EA%B3%BC_%ED%95%98%ED%95%9C" title="상한과 하한">상한과 하한</a>을 갖는다는 성질이다. 이는 <a href="/wiki/%EC%9C%A0%EB%A6%AC%EC%88%98" title="유리수">유리수</a>와 구별되는 중요한 성질이다. </p><p>실수 집합은 <a href="/wiki/%EB%B9%84%EA%B0%80%EC%82%B0_%EC%A7%91%ED%95%A9" class="mw-redirect" title="비가산 집합">비가산 집합</a>이다. 즉, <a href="/wiki/%EC%9E%90%EC%97%B0%EC%88%98" title="자연수">자연수</a> 집합과 실수 집합은 둘다 <a href="/wiki/%EB%AC%B4%ED%95%9C_%EC%A7%91%ED%95%A9" title="무한 집합">무한 집합</a>이나, 그 사이에 <a href="/wiki/%EC%9D%BC%EB%8C%80%EC%9D%BC_%EB%8C%80%EC%9D%91" class="mw-redirect" title="일대일 대응">일대일 대응</a>이 존재하지 않는다. 실수 <a href="/wiki/%EC%A7%91%ED%95%A9%EC%9D%98_%ED%81%AC%EA%B8%B0" title="집합의 크기">집합의 크기</a>는 자연수 집합의 크기보다 크다. <a href="/wiki/%EC%97%B0%EC%86%8D%EC%B2%B4_%EA%B0%80%EC%84%A4" title="연속체 가설">연속체 가설</a>은 자연수 집합보다 크며 실수 집합보다 작은 크기를 갖는 실수 <a href="/wiki/%EB%B6%80%EB%B6%84_%EC%A7%91%ED%95%A9" class="mw-redirect" title="부분 집합">부분 집합</a>이 존재하지 않는다는 명제이다. 연속체 가설은 ZFC(즉, <a href="/wiki/%EC%84%A0%ED%83%9D_%EA%B3%B5%EB%A6%AC" title="선택 공리">선택 공리</a>를 추가한 <a href="/wiki/%EC%B2%B4%EB%A5%B4%EB%A9%9C%EB%A1%9C-%ED%94%84%EB%A0%9D%EC%BC%88_%EC%A7%91%ED%95%A9%EB%A1%A0" title="체르멜로-프렝켈 집합론">체르멜로-프렝켈 집합론</a>)에서 증명할 수도, 반증할 수도 없으며, 연속체 가설을 만족하거나, 그 부정을 만족하는 ZFC의 <a href="/wiki/%EB%AA%A8%ED%98%95_(%EB%85%BC%EB%A6%AC%ED%95%99)" class="mw-redirect" title="모형 (논리학)">모형</a>이 모두 존재한다. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="정의"><span id=".EC.A0.95.EC.9D.98"></span>정의</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=1" title="부분 편집: 정의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r34311305">.mw-parser-output .hatnote{}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;이 부분의 본문은 <a href="/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EA%B5%AC%EC%84%B1" title="실수의 구성">실수의 구성</a>입니다.</div> <p>실수 체계 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbb {R} ,+,\cdot ,&lt;)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> <mo>+</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>,</mo> <mo>&lt;</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbb {R} ,+,\cdot ,&lt;)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce32baaeb9a5a0c8f4e82959e676a3ed0c9691d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.852ex; height:2.843ex;" alt="{\displaystyle (\mathbb {R} ,+,\cdot ,&lt;)}"></span>는 실수의 <a href="/wiki/%EA%B3%B5%EB%A6%AC%EA%B3%84" class="mw-redirect" title="공리계">공리계</a>를 통해 정의하거나, 구체적인 <a href="/wiki/%EB%AA%A8%ED%98%95_(%EB%85%BC%EB%A6%AC%ED%95%99)" class="mw-redirect" title="모형 (논리학)">모형</a>을 구성하여 정의할 수 있다. </p> <div class="mw-heading mw-heading3"><h3 id="공리적_정의"><span id=".EA.B3.B5.EB.A6.AC.EC.A0.81_.EC.A0.95.EC.9D.98"></span>공리적 정의</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=2" title="부분 편집: 공리적 정의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수는 다음과 같은 공리를 만족하는 수 체계이다. </p> <ul><li><a href="/wiki/%EC%B2%B4_(%EC%88%98%ED%95%99)" title="체 (수학)">체</a>를 이룬다. 즉, 덧셈과 곱셈이라고 불리는 두 <a href="/wiki/%EC%9D%B4%ED%95%AD_%EC%97%B0%EC%82%B0" class="mw-redirect" title="이항 연산">이항 연산</a>을 갖추며, 이들은 익숙한 규칙대로 작용한다.</li> <li><a href="/wiki/%EC%88%9C%EC%84%9C%EC%B2%B4" title="순서체">순서체</a>를 이룬다. 즉, <a href="/wiki/%EC%A0%84%EC%88%9C%EC%84%9C" class="mw-redirect" title="전순서">전순서</a>를 갖추며, 이는 덧셈 및 곱셈과 호환된다.</li> <li><a href="/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EC%99%84%EB%B9%84%EC%84%B1" title="실수의 완비성">완비적</a>이다. 즉, 공집합이 아닌 실수 부분 집합이 <a href="/wiki/%EC%83%81%EA%B3%84_(%EC%88%98%ED%95%99)" class="mw-redirect" title="상계 (수학)">상계</a>를 갖는다면, 항상 <a href="/wiki/%EC%83%81%ED%95%9C" class="mw-redirect" title="상한">상한</a>을 갖는다.</li></ul> <p>마지막 완비성은 실수를 유리수와 구분짓는 성질이다. 이들 공리를 만족하는 수 체계는 <a href="/wiki/%EB%8F%99%ED%98%95" class="mw-redirect" title="동형">동형</a> 의미 하에 유일하다. </p> <div class="mw-heading mw-heading3"><h3 id="구성적_정의"><span id=".EA.B5.AC.EC.84.B1.EC.A0.81_.EC.A0.95.EC.9D.98"></span>구성적 정의</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=3" title="부분 편집: 구성적 정의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수는 다음과 같은 대상으로서 구성할 수 있다. 이렇게 구성한 실수는 실수 공리계의 <a href="/wiki/%EB%AA%A8%ED%98%95_(%EB%85%BC%EB%A6%AC%ED%95%99)" class="mw-redirect" title="모형 (논리학)">모형</a>을 이룬다. 즉, 실수 공리계의 모든 공리들을 만족한다. </p> <ul><li><a href="/wiki/%EC%9C%A0%EB%A6%AC%EC%88%98" title="유리수">유리수</a> <a href="/wiki/%EC%BD%94%EC%8B%9C_%EC%88%98%EC%97%B4" class="mw-redirect" title="코시 수열">코시 수열</a>의 "거리가 0으로 수렴"하는 <a href="/wiki/%EB%8F%99%EC%B9%98_%EA%B4%80%EA%B3%84" title="동치 관계">동치 관계</a>에 대한 <a href="/wiki/%EB%8F%99%EC%B9%98%EB%A5%98" class="mw-redirect" title="동치류">동치류</a>. 즉, 유리수의 표준 <a href="/wiki/%EA%B1%B0%EB%A6%AC_%EA%B3%B5%EA%B0%84" title="거리 공간">거리 공간</a>에 대한 <a href="/wiki/%EC%99%84%EB%B9%84%ED%99%94" class="mw-redirect" title="완비화">완비화</a>이다.</li> <li>유리수에 대한 <a href="/wiki/%EB%8D%B0%EB%8D%B0%ED%82%A8%ED%8A%B8_%EC%A0%88%EB%8B%A8" title="데데킨트 절단">데데킨트 절단</a>.</li> <li>십진법 전개의 <a href="/wiki/%EB%8F%99%EC%B9%98%EB%A5%98" class="mw-redirect" title="동치류">동치류</a>. 예를 들어, 1과 <a href="/wiki/0.999%E2%80%A6" title="0.999…">0.999…</a>는 서로 동치이다.</li></ul> <div class="mw-heading mw-heading2"><h2 id="연산"><span id=".EC.97.B0.EC.82.B0"></span>연산</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=4" title="부분 편집: 연산"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="사칙_연산"><span id=".EC.82.AC.EC.B9.99_.EC.97.B0.EC.82.B0"></span>사칙 연산</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=5" title="부분 편집: 사칙 연산"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;이 부분의 본문은 <a href="/wiki/%EC%82%AC%EC%B9%99_%EC%97%B0%EC%82%B0" class="mw-redirect" title="사칙 연산">사칙 연산</a>입니다.</div> <p>실수 집합 위에는 <a href="/wiki/%EB%8D%A7%EC%85%88" title="덧셈">덧셈</a> +, <a href="/wiki/%EB%BA%84%EC%85%88" title="뺄셈">뺄셈</a> -, <a href="/wiki/%EA%B3%B1%EC%85%88" title="곱셈">곱셈</a> ×, <a href="/wiki/%EB%82%98%EB%88%97%EC%85%88" title="나눗셈">나눗셈</a> ÷이 정의되어 있으며, 이들 중 덧셈과 곱셈은 <a href="/wiki/%EA%B5%90%ED%99%98_%EB%B2%95%EC%B9%99" class="mw-redirect" title="교환 법칙">교환 법칙</a>, <a href="/wiki/%EA%B2%B0%ED%95%A9_%EB%B2%95%EC%B9%99" class="mw-redirect" title="결합 법칙">결합 법칙</a>, <a href="/wiki/%EB%B6%84%EB%B0%B0_%EB%B2%95%EC%B9%99" class="mw-redirect" title="분배 법칙">분배 법칙</a>을 만족한다. 즉, 임의의 실수들에 대하여, 다음 성질들이 성립한다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b=b+a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b=b+a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684f43b5094501674e8314be5e24a80ee64682e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.234ex; height:2.343ex;" alt="{\displaystyle a+b=b+a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)+c=a+(b+c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)+c=a+(b+c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b7b8d31d5845966e6abdbb030c73f343c17d4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.547ex; height:2.843ex;" alt="{\displaystyle (a+b)+c=a+(b+c)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times b=b\times a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo>=</mo> <mi>b</mi> <mo>&#x00D7;<!-- × --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times b=b\times a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d66fd09c6072e183e3395a174fd66dac99e514" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.234ex; height:2.176ex;" alt="{\displaystyle a\times b=b\times a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\times b)\times c=a\times (b\times c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x00D7;<!-- × --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\times b)\times c=a\times (b\times c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b74ad4422b4ae5d85f956edfe3696c5a07311c8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.547ex; height:2.843ex;" alt="{\displaystyle (a\times b)\times c=a\times (b\times c)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\times (b+c)=a\times b+a\times c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\times (b+c)=a\times b+a\times c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e066c17d4beaed810d9b04e2fab1645c02a54af5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.808ex; height:2.843ex;" alt="{\displaystyle a\times (b+c)=a\times b+a\times c}"></span></li></ul> <p>실수 0과 1은 사칙 연산에서 특별한 역할을 맡는다. 즉, 임의의 실수들에 대하여, 다음 성질들이 성립한다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0+a=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>+</mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0+a=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba565116cf2f2d984f7b8365b054b70eb8f89308" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.561ex; height:2.343ex;" alt="{\displaystyle 0+a=a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times a=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mi>a</mi> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times a=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae8b118db98f67964e772e36bed9f14e3db3437d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.561ex; height:2.176ex;" alt="{\displaystyle 1\times a=a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\times a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&#x00D7;<!-- × --></mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\times a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05eeef4d767aa40a68dcac221dab7564bf7f2e29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.494ex; height:2.176ex;" alt="{\displaystyle 0\times a=0}"></span></li></ul> <p>실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span>과 그 <a href="/wiki/%EB%B0%98%EC%88%98_(%EC%88%98%ED%95%99)" class="mw-redirect" title="반수 (수학)">반수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae55e66aeffc525917eed885b4b753ba5a7f8b3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.138ex; height:2.176ex;" alt="{\displaystyle -x}"></span>를 더하면 0이다. 즉, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+(-x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+(-x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbddcc47f9ee70348043a6ba7ae80e1c9b5eb6d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.378ex; height:2.843ex;" alt="{\displaystyle x+(-x)=0}"></span></li></ul> <p>0이 아닌 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} \setminus \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} \setminus \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/907ed5d1b1444addc10175220cbbe6d11b09c4e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.53ex; height:2.843ex;" alt="{\displaystyle x\in \mathbb {R} \setminus \{0\}}"></span>과 그 <a href="/wiki/%EC%97%AD%EC%88%98" class="mw-redirect" title="역수">역수</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68f89eaf83a3811c69adb4bf1119bafd661a4c08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.166ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{x}}}"></span>를 곱하면 1이다. 즉, </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\times {\frac {1}{x}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\times {\frac {1}{x}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa61e95061ed97b5dd736b2299451a0fed0331a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.597ex; height:5.176ex;" alt="{\displaystyle x\times {\frac {1}{x}}=1}"></span></li></ul> <p>뺄셈과 나눗셈은 다음과 같이 덧셈과 곱셈으로 귀결된다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a-b=a+(-b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a-b=a+(-b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f03e1ad2ad4d5dbbd763ad4c40a0d7bf250cd208" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.851ex; height:2.843ex;" alt="{\displaystyle a-b=a+(-b)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a}{b}}=a\times {\frac {1}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> <mo>=</mo> <mi>a</mi> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a}{b}}=a\times {\frac {1}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08b2afd7bdc7a8015a5316191e90ed6e439fbf84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.233ex; height:5.343ex;" alt="{\displaystyle {\frac {a}{b}}=a\times {\frac {1}{b}}}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="거듭제곱과_거듭제곱근"><span id=".EA.B1.B0.EB.93.AD.EC.A0.9C.EA.B3.B1.EA.B3.BC_.EA.B1.B0.EB.93.AD.EC.A0.9C.EA.B3.B1.EA.B7.BC"></span>거듭제곱과 거듭제곱근</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=6" title="부분 편집: 거듭제곱과 거듭제곱근"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;이 부분의 본문은 <a href="/wiki/%EA%B1%B0%EB%93%AD%EC%A0%9C%EA%B3%B1" title="거듭제곱">거듭제곱</a> 및 <a href="/wiki/%EA%B1%B0%EB%93%AD%EC%A0%9C%EA%B3%B1%EA%B7%BC" title="거듭제곱근">거듭제곱근</a>입니다.</div> <p>양수(=실직선에서 0의 우측의 실수=0보다 큰 수) 밑, 실수 지수의 거듭제곱을 정의할 수 있다. 실수에 대하여 거듭제곱을 정의할 수 있는 건 실수의 완비성이 있기 때문이다. 대략의 정의는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{n}=\overbrace {aa\cdots a} ^{n}\qquad (a&gt;0,\;n\in \mathbb {Z} ^{+})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mover> <mrow> <mi>a</mi> <mi>a</mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>a</mi> </mrow> <mo>&#x23DE;<!-- ⏞ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mover> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{n}=\overbrace {aa\cdots a} ^{n}\qquad (a&gt;0,\;n\in \mathbb {Z} ^{+})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c07c3c6a7968cab1b40b85f1003e174db44eab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.654ex; height:5.009ex;" alt="{\displaystyle a^{n}=\overbrace {aa\cdots a} ^{n}\qquad (a&gt;0,\;n\in \mathbb {Z} ^{+})}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/448ca9a3f4ef03c4dfcf69258912d2c90b097842" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.545ex; height:2.676ex;" alt="{\displaystyle a^{0}=1}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{-n}={\frac {1}{a^{n}}}={\frac {1}{\underbrace {aa\cdots a} _{n}}}\qquad (a&gt;0,\;n\in \mathbb {Z} ^{+})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>a</mi> <mi>a</mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>a</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> </mfrac> </mrow> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{-n}={\frac {1}{a^{n}}}={\frac {1}{\underbrace {aa\cdots a} _{n}}}\qquad (a&gt;0,\;n\in \mathbb {Z} ^{+})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/088fd2a6df7fadb779e78c3d948530d47501be9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.171ex; width:42.152ex; height:8.509ex;" alt="{\displaystyle a^{-n}={\frac {1}{a^{n}}}={\frac {1}{\underbrace {aa\cdots a} _{n}}}\qquad (a&gt;0,\;n\in \mathbb {Z} ^{+})}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{\frac {m}{n}}=\sup\{x\in \mathbb {R} \colon x^{n}&lt;a^{m}\}\qquad (a&gt;0,\;m,n\in \mathbb {Z} ,\;n&gt;0,\;\gcd\{m,n\}=1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>n</mi> </mfrac> </mrow> </msup> <mo>=</mo> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>&#x003A;<!-- : --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&lt;</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo fence="false" stretchy="false">}</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mo movablelimits="true" form="prefix">gcd</mo> <mo fence="false" stretchy="false">{</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo fence="false" stretchy="false">}</mo> <mo>=</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{\frac {m}{n}}=\sup\{x\in \mathbb {R} \colon x^{n}&lt;a^{m}\}\qquad (a&gt;0,\;m,n\in \mathbb {Z} ,\;n&gt;0,\;\gcd\{m,n\}=1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b2b37639ce2c502611db03d4cc9e0fe0cad1fb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:73.868ex; height:3.509ex;" alt="{\displaystyle a^{\frac {m}{n}}=\sup\{x\in \mathbb {R} \colon x^{n}&lt;a^{m}\}\qquad (a&gt;0,\;m,n\in \mathbb {Z} ,\;n&gt;0,\;\gcd\{m,n\}=1)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{r}=\sup\{a^{q}\colon q\in \mathbb {Q} ,\;q&lt;r\}\qquad (a&gt;0,\;r\in \mathbb {R} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msup> <mo>=</mo> <mo movablelimits="true" form="prefix">sup</mo> <mo fence="false" stretchy="false">{</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>&#x003A;<!-- : --></mo> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Q</mi> </mrow> <mo>,</mo> <mspace width="thickmathspace" /> <mi>q</mi> <mo>&lt;</mo> <mi>r</mi> <mo fence="false" stretchy="false">}</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&gt;</mo> <mn>0</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{r}=\sup\{a^{q}\colon q\in \mathbb {Q} ,\;q&lt;r\}\qquad (a&gt;0,\;r\in \mathbb {R} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b288512370e2b864ea060b055fe8a747ccc1bfa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.186ex; height:2.843ex;" alt="{\displaystyle a^{r}=\sup\{a^{q}\colon q\in \mathbb {Q} ,\;q&lt;r\}\qquad (a&gt;0,\;r\in \mathbb {R} )}"></span></dd></dl> <p>음수(=실직선에서 0의 좌측의 실수=0보다 작은 수) 밑의 거듭제곱 역시 정의할 수 있는데, 이는 유리수 지수에 한하며, 또한 이렇게 확장된 거듭제곱은 위의 연산 법칙을 비롯한 좋은 성질들을 만족시키지 못한다. </p> <div class="mw-heading mw-heading2"><h2 id="순서"><span id=".EC.88.9C.EC.84.9C"></span>순서</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=7" title="부분 편집: 순서"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;<a href="/wiki/%EB%B6%80%EB%93%B1%EC%8B%9D" title="부등식">부등식</a> 문서를 참고하십시오.</div> <p>실수들 사이에는 순서(즉, 크기 비교)가 존재한다. 두 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe0bf0e2324bac843fab916c46d1b3349017a616" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.78ex; height:2.509ex;" alt="{\displaystyle a,b\in \mathbb {R} }"></span>의 순서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span>의 직관은 <a href="/wiki/%EC%8B%A4%EC%A7%81%EC%84%A0" title="실직선">실직선</a> 위에서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>가 더 왼쪽에, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>가 오른쪽에 있다는 것이다. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\leq b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\leq b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41558abc50886fdf38817495b243958d7b3dd39b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.326ex; height:2.343ex;" alt="{\displaystyle a\leq b}"></span>는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span>이거나 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1956b03d1314c7071ac1f45ed7b1e29422dcfcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a=b}"></span>라는 뜻이다. 이에 따라, 실수의 순서는 다음 성질들을 만족시킨다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\nless a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x226E;<!-- ≮ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\nless a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29ee8eb3dc7c13a0a3b878972f95b46a257ee752" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.558ex; height:2.509ex;" alt="{\displaystyle a\nless a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b\implies b\nless a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>b</mi> <mo>&#x226E;<!-- ≮ --></mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b\implies b\nless a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe2cc84d71057e3be34187d1e564a9db44831c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.038ex; height:2.509ex;" alt="{\displaystyle a&lt;b\implies b\nless a}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b&lt;c\implies a&lt;c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>&lt;</mo> <mi>c</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>a</mi> <mo>&lt;</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b&lt;c\implies a&lt;c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd22bef42cb2a5a2b1c51ea3d85ddf13e4b231a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:21.152ex; height:2.176ex;" alt="{\displaystyle a&lt;b&lt;c\implies a&lt;c}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&lt;b}"></span>이거나, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1956b03d1314c7071ac1f45ed7b1e29422dcfcc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a=b}"></span>이거나, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fc0063781fb9bf4ec7608b2fd11ed6d5b05a13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a&gt;b}"></span>.</li></ul> <p>또한, 실수의 순서는 실수의 연산과 호환된다. 즉, 임의의 실수들에 대하여, 다음 성질들이 성립한다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b\implies a+c&lt;b+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>&lt;</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b\implies a+c&lt;b+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e05dfaad5505ba886a53d7381acef1b5deda459e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:24.732ex; height:2.343ex;" alt="{\displaystyle a&lt;b\implies a+c&lt;b+c}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b,\;c&gt;0\implies ac&lt;bc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>c</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>a</mi> <mi>c</mi> <mo>&lt;</mo> <mi>b</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b,\;c&gt;0\implies ac&lt;bc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b4130302298697111778844cb2401ddfd742d38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.998ex; height:2.509ex;" alt="{\displaystyle a&lt;b,\;c&gt;0\implies ac&lt;bc}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&lt;b,\;c&lt;0\implies ac&gt;bc}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>c</mi> <mo>&lt;</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <mi>a</mi> <mi>c</mi> <mo>&gt;</mo> <mi>b</mi> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&lt;b,\;c&lt;0\implies ac&gt;bc}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad00f56ccfb010c283daeba872fd1b08183cb4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:25.998ex; height:2.509ex;" alt="{\displaystyle a&lt;b,\;c&lt;0\implies ac&gt;bc}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;a&lt;b,\;n&gt;0\implies a^{n}&lt;b^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>&gt;</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&lt;</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;a&lt;b,\;n&gt;0\implies a^{n}&lt;b^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59295d24207ecd527540fb983e9e7d4c030ff66c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.07ex; height:2.676ex;" alt="{\displaystyle 0&lt;a&lt;b,\;n&gt;0\implies a^{n}&lt;b^{n}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;a&lt;b,\;n&lt;0\implies a^{n}&gt;b^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>a</mi> <mo>&lt;</mo> <mi>b</mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>n</mi> <mo>&lt;</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27F9;<!-- ⟹ --></mo> <mspace width="thickmathspace" /> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&gt;</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;a&lt;b,\;n&lt;0\implies a^{n}&gt;b^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45806ece5fbbb46e738368e81535693f9ff3c3c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.07ex; height:2.676ex;" alt="{\displaystyle 0&lt;a&lt;b,\;n&lt;0\implies a^{n}&gt;b^{n}}"></span></li></ul> <p><a href="/wiki/%EC%96%91%EC%88%98_(%EC%88%98%ED%95%99)" title="양수 (수학)">양수</a>(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>&#58; </span><span lang="en">positive number</span>)는 0보다 큰 실수를 뜻하며, <b><a href="/wiki/%EC%9D%8C%EC%88%98" title="음수">음수</a></b>(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>&#58; </span><span lang="en">negative number</span>)는 0보다 작은 실수를 뜻한다. 위의 성질들에 따라, 모든 실수는 양수, 음수와 0 가운데 하나에 속한다. 또한, 양수 곱하기 양수는 항상 양수이며, 양수 곱하기 음수는 항상 음수이며, 음수 곱하기 음수는 항상 양수이다. 특히, 임의의 실수의 제곱은 항상 음수가 아닌 실수이다.(<a href="/wiki/%EC%A0%9C%EA%B3%B1" title="제곱">제곱</a>해서 <a href="/wiki/%EC%9D%8C%EC%88%98" title="음수">음수</a>가 되는 수는 <a href="/wiki/%ED%97%88%EC%88%98" title="허수">허수</a>라고 불리고, <a href="/wiki/%EC%88%98%EC%A7%81%EC%84%A0_(%EC%88%98%ED%95%99)" title="수직선 (수학)">수직선</a> 상에 표시할 수 없다.) </p> <div class="mw-heading mw-heading3"><h3 id="구간"><span id=".EA.B5.AC.EA.B0.84"></span>구간</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=8" title="부분 편집: 구간"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;이 부분의 본문은 <a href="/wiki/%EA%B5%AC%EA%B0%84" title="구간">구간</a>입니다.</div> <p><a href="/wiki/%EA%B5%AC%EA%B0%84" title="구간">구간</a>은 특별한 실수 <a href="/wiki/%EB%B6%80%EB%B6%84_%EC%A7%91%ED%95%A9" class="mw-redirect" title="부분 집합">부분 집합</a>으로서, 주어진 두 실수 사이의 실수를 원소로 갖거나, 주어진 한 실수를 시작점으로 하는 반직선에 놓인 실수를 원소로 갖는다. 예를 들어, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span>에 대하여, 다음과 같다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (3,5)\iff 3&lt;x&lt;5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mn>3</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (3,5)\iff 3&lt;x&lt;5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df6c4b4c5119d91de7de1bad90909cada468211d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.087ex; height:2.843ex;" alt="{\displaystyle x\in (3,5)\iff 3&lt;x&lt;5}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [-2,10]\iff -2\leq x\leq 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>10</mn> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [-2,10]\iff -2\leq x\leq 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4b1fcb67b840cabdef1a70080397547fa001d80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.513ex; height:2.843ex;" alt="{\displaystyle x\in [-2,10]\iff -2\leq x\leq 10}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (6,+\infty )\iff 6&lt;x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>6</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mn>6</mn> <mo>&lt;</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (6,+\infty )\iff 6&lt;x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2f959711694022e5287185afdee16c610d7700a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.796ex; height:2.843ex;" alt="{\displaystyle x\in (6,+\infty )\iff 6&lt;x}"></span></li></ul> <p>퇴화 구간은 구간과 비슷한 집합으로서, 두 끝점의 순서가 정상적인 구간의 반대이다. 예를 들어, 다음과 같다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in [3,3]\iff 3\leq x\leq 3\iff x=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>3</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">]</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mn>3</mn> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>3</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in [3,3]\iff 3\leq x\leq 3\iff x=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/601ee28e7b59e93411dd28cb6730c5d17a6ea489" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.059ex; height:2.843ex;" alt="{\displaystyle x\in [3,3]\iff 3\leq x\leq 3\iff x=3}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (9,5)\iff 9&lt;x&lt;5\iff x\in \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>9</mn> <mo>,</mo> <mn>5</mn> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mn>9</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&lt;</mo> <mn>5</mn> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (9,5)\iff 9&lt;x&lt;5\iff x\in \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/362eb26f568f2acb07cc6e5c719c9321ef3b817b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.963ex; height:2.843ex;" alt="{\displaystyle x\in (9,5)\iff 9&lt;x&lt;5\iff x\in \varnothing }"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="상한_공리"><span id=".EC.83.81.ED.95.9C_.EA.B3.B5.EB.A6.AC"></span>상한 공리</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=9" title="부분 편집: 상한 공리"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;이 부분의 본문은 <a href="/wiki/%EC%83%81%ED%95%9C_%EA%B3%B5%EB%A6%AC" class="mw-redirect" title="상한 공리">상한 공리</a>입니다.</div> <p>수들의 집합(예를 들어, <a href="/wiki/%EC%9C%A0%EB%A6%AC%EC%88%98" title="유리수">유리수</a> 집합이나 실수 집합)의 모든 수들보다 작지 않은 수를 그 집합의 <a href="/wiki/%EC%83%81%EA%B3%84%EC%99%80_%ED%95%98%EA%B3%84" class="mw-redirect" title="상계와 하계">상계</a>라고 한다. 이는 보통 존재하지 않거나, 존재한다면 여럿이 같이 존재한다. 수들의 집합에 상계들이 존재하며, 이들 가운데 가장 작은 하나가 존재한다면, 이를 <a href="/wiki/%EC%83%81%ED%95%9C%EA%B3%BC_%ED%95%98%ED%95%9C" title="상한과 하한">상한</a>이라고 한다. 실수 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>은 다음 성질을 만족시킨다. </p> <ul><li>공집합이 아닌 실수 부분 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varnothing \neq S\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> <mo>&#x2260;<!-- ≠ --></mo> <mi>S</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varnothing \neq S\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7adbcf7090ddf999552829bd343288cf6a6db673" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.182ex; height:2.676ex;" alt="{\displaystyle \varnothing \neq S\subseteq \mathbb {R} }"></span>에 상계가 존재한다면, 상한 역시 존재한다.</li></ul> <p>이를 상한 공리이라고 한다. 상한 공리는 실수의 완비성에 대한 한 가지 표현이다. </p> <div class="mw-heading mw-heading3"><h3 id="데데킨트_완비성"><span id=".EB.8D.B0.EB.8D.B0.ED.82.A8.ED.8A.B8_.EC.99.84.EB.B9.84.EC.84.B1"></span>데데킨트 완비성</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=10" title="부분 편집: 데데킨트 완비성"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r34311305"><div role="note" class="hatnote navigation-not-searchable"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/18px-Icons8_flat_search.svg.png" decoding="async" width="18" height="18" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/27px-Icons8_flat_search.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/52/Icons8_flat_search.svg/36px-Icons8_flat_search.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span>&#160;<a href="/wiki/%EB%8D%B0%EB%8D%B0%ED%82%A8%ED%8A%B8_%EC%A0%88%EB%8B%A8" title="데데킨트 절단">데데킨트 절단</a> 및 <a href="/wiki/%EC%8B%A4%EC%88%98%EC%9D%98_%EC%99%84%EB%B9%84%EC%84%B1" title="실수의 완비성">실수의 완비성</a> 문서를 참고하십시오.</div> <p>실수의 완비성은 실수의 가장 중요한 성질의 하나이다. <b>데데킨트 절단</b>(<span style="font-size: smaller;"><a href="/wiki/%EC%98%81%EC%96%B4" title="영어">영어</a>&#58; </span><span lang="en">Dedekind cut</span>)을 통해 서술하는 것이 가장 간단하다. 실수 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>의 두 부분 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D,E\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>,</mo> <mi>E</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D,E\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e2013bc4ff305ae8c4d7f554c1c484ae9b4c742" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.51ex; height:2.509ex;" alt="{\displaystyle D,E\subseteq \mathbb {R} }"></span>의 쌍 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (D,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>D</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (D,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e02f6242e4a29d1664fa7d52813ee3c70523ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.543ex; height:2.843ex;" alt="{\displaystyle (D,E)}"></span>이 다음 조건들을 만족시키면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (D,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>D</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (D,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e02f6242e4a29d1664fa7d52813ee3c70523ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.543ex; height:2.843ex;" alt="{\displaystyle (D,E)}"></span>를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>의 <b>데데킨트 절단</b>이라고 한다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D,E\neq \varnothing }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>,</mo> <mi>E</mi> <mo>&#x2260;<!-- ≠ --></mo> <mi class="MJX-variant">&#x2205;<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D,E\neq \varnothing }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4afcc809d6bbe49a62bcc981391a85ff646be279" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.64ex; height:2.676ex;" alt="{\displaystyle D,E\neq \varnothing }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D\cup E=\mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D\cup E=\mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bece6a3f67560a01484b0f323ea23e59b9a3b58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.059ex; height:2.176ex;" alt="{\displaystyle D\cup E=\mathbb {R} }"></span></li> <li>임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\in D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\in D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9091400ce51b9fcc3657b445e5728e1bb80eda4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.981ex; height:2.176ex;" alt="{\displaystyle d\in D}"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e\in E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e\in E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34778736d9c6d607a4da3d25594b38dd3e8c82ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.7ex; height:2.176ex;" alt="{\displaystyle e\in E}"></span>에 대하여, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d&lt;e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mo>&lt;</mo> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d&lt;e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d541fcf2066e14a15ea1154b03e1b982ebf720aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.398ex; height:2.176ex;" alt="{\displaystyle d&lt;e}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>는 <a href="/wiki/%EC%B5%9C%EC%86%8C_%EC%9B%90%EC%86%8C" class="mw-redirect" title="최소 원소">최소 원소</a>를 가지지 않는다.</li></ul> <p>이제, 실수의 <b>데데킨트 완비성 공리</b>를 다음과 같이 서술할 수 있다. </p> <ul><li>실수 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>의 데데킨트 절단 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (D,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>D</mi> <mo>,</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (D,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e02f6242e4a29d1664fa7d52813ee3c70523ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.543ex; height:2.843ex;" alt="{\displaystyle (D,E)}"></span>에 대하여, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>는 항상 최소 원소를 가진다.</li></ul> <p>데데킨트 완비성 공리는 상한 공리와 서로 동치이다. </p> <style data-mw-deduplicate="TemplateStyles:r26858958">.mw-parser-output div.proof{border:1px solid #aaaaaa;background-color:#f9f9f9;padding:5px;font-size:95%;min-width:50%}.mw-parser-output div.proof,.mw-parser-output div.prooftitle,.mw-parser-output div.proofcontent{overflow:auto}.mw-parser-output div.prooftitle span.prooftitletext{font-weight:bold}.mw-parser-output div.proofcontent{margin-top:-0.5em;min-height:0.5em}</style><div class="proof mw-collapsible mw-collapsed"> <div class="prooftitle"> <p><span class="prooftitletext">증명&#32;(상한 공리 ⇒ 데데킨트 완비성 공리):</span> </p> </div> <div class="proofcontent mw-collapsible-content"> </div></div><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26858958"><div class="proof mw-collapsible mw-collapsed"> <div class="prooftitle"> <p><span class="prooftitletext">증명&#32;(데데킨트 완비성 공리 ⇒ 상한 공리):</span> </p> </div> <div class="proofcontent mw-collapsible-content"> </div></div> <div class="mw-heading mw-heading3"><h3 id="기타_성질"><span id=".EA.B8.B0.ED.83.80_.EC.84.B1.EC.A7.88"></span>기타 성질</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=11" title="부분 편집: 기타 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수 집합은 <a href="/wiki/%EC%95%84%EB%A5%B4%ED%82%A4%EB%A9%94%EB%8D%B0%EC%8A%A4_%EC%84%B1%EC%A7%88" title="아르키메데스 성질">아르키메데스 성질</a>을 만족한다. 즉, 두 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6338d1f32a43c3d4a8b55b35cdf5a615063036ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.78ex; height:2.509ex;" alt="{\displaystyle x,y&gt;0}"></span>가 있다고 하자. 이 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>가 아무리 작고 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>가 아무리 크더라도, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>를 충분히 많은 횟수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>만큼 더하면, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>를 초과한다. 즉, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \underbrace {x+x+\cdots +x} _{n}&gt;y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>x</mi> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>x</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mo>&gt;</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \underbrace {x+x+\cdots +x} _{n}&gt;y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a725957d9ca33d79d04894a108aafbe7319b710" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:19.487ex; height:5.509ex;" alt="{\displaystyle \underbrace {x+x+\cdots +x} _{n}&gt;y}"></span></dd></dl> <p>실수 집합 위의 순서는 <a href="/wiki/%EC%A1%B0%EB%B0%80_%EC%88%9C%EC%84%9C" title="조밀 순서">조밀 순서</a>이다. 즉, 임의의 서로 다른 두 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&lt;y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&lt;</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&lt;y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeb239de6fee56ea8b6a65f7858d95b87632069f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.176ex;" alt="{\displaystyle x&lt;y}"></span>에 대하여, 항상 그 사이에 또 다른 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x&lt;z&lt;y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&lt;</mo> <mi>z</mi> <mo>&lt;</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x&lt;z&lt;y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aba76d5ea2f8d2bdf1c518db31f0a80f81b7744" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.77ex; height:2.176ex;" alt="{\displaystyle x&lt;z&lt;y}"></span>가 존재한다. </p> <div class="mw-heading mw-heading2"><h2 id="위상"><span id=".EC.9C.84.EC.83.81"></span>위상</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=12" title="부분 편집: 위상"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수 집합 위에는 표준적인 <a href="/wiki/%EC%9C%84%EC%83%81_%EA%B3%B5%EA%B0%84_(%EC%88%98%ED%95%99)" title="위상 공간 (수학)">위상 공간</a> · <a href="/wiki/%EA%B1%B0%EB%A6%AC_%EA%B3%B5%EA%B0%84" title="거리 공간">거리 공간</a> · <a href="/wiki/%EB%85%B8%EB%A6%84_%EA%B3%B5%EA%B0%84" title="노름 공간">노름 공간</a> · <a href="/wiki/%EB%82%B4%EC%A0%81_%EA%B3%B5%EA%B0%84" title="내적 공간">내적 공간</a> 구조를 부여할 수 있다. 즉, </p> <ul><li>주어진 두 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2e1fd3534163cb031d88b529c837e5747ee40fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.038ex; height:2.509ex;" alt="{\displaystyle x,y\in \mathbb {R} }"></span>의 내적은 곱 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span>이다.</li> <li>주어진 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c6d458566aec47a7259762034790c8981aefab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \mathbb {R} }"></span>의 노름은 <a href="/wiki/%EC%A0%88%EB%8C%93%EA%B0%92" title="절댓값">절댓값</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|={\sqrt {x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|={\sqrt {x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cf4f434beec0527bf368c9691e30c76acbef05a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.429ex; height:3.509ex;" alt="{\displaystyle |x|={\sqrt {x^{2}}}}"></span>이다.</li> <li>주어진 두 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2e1fd3534163cb031d88b529c837e5747ee40fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.038ex; height:2.509ex;" alt="{\displaystyle x,y\in \mathbb {R} }"></span>의 거리는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x-y|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x-y|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eca622011e2b10520e69a7fa83f3bd75159ab66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.619ex; height:2.843ex;" alt="{\displaystyle |x-y|}"></span>이다.</li> <li>실수 집합 위의 표준적인 위상은 <a href="/wiki/%EA%B1%B0%EB%A6%AC_%EC%9C%84%EC%83%81" class="mw-redirect" title="거리 위상">거리 위상</a>이자 <a href="/wiki/%EC%88%9C%EC%84%9C_%EC%9C%84%EC%83%81" title="순서 위상">순서 위상</a>이다.</li></ul> <p>실수 부분 집합 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8d8e251de9443239f3393459a3f0558a37507a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.276ex; height:2.343ex;" alt="{\displaystyle S\subseteq \mathbb {R} }"></span>에 대하여, 다음 조건들이 서로 <a href="/wiki/%EB%8F%99%EC%B9%98" title="동치">동치</a>이다. </p> <ul><li><a href="/wiki/%EC%BD%A4%ED%8C%A9%ED%8A%B8_%EC%A7%91%ED%95%A9" class="mw-redirect" title="콤팩트 집합">콤팩트 집합</a>이다. 즉, 모든 <a href="/wiki/%EC%97%B4%EB%A6%B0%EC%A7%91%ED%95%A9" title="열린집합">열린</a> <a href="/wiki/%EB%8D%AE%EA%B0%9C_(%EC%9C%84%EC%83%81%EC%88%98%ED%95%99)" title="덮개 (위상수학)">덮개</a>가 유한 부분 덮개를 갖는다.</li> <li><a href="/w/index.php?title=%EC%A0%90%EB%A0%AC_%EC%BD%A4%ED%8C%A9%ED%8A%B8_%EC%A7%91%ED%95%A9&amp;action=edit&amp;redlink=1" class="new" title="점렬 콤팩트 집합 (없는 문서)">점렬 콤팩트 집합</a>이다. 즉, 그 속의 모든 수열은 수렴 부분 수열을 갖는다.</li> <li><a href="/w/index.php?title=%EA%B7%B9%ED%95%9C%EC%A0%90_%EC%BD%A4%ED%8C%A9%ED%8A%B8_%EC%A7%91%ED%95%A9&amp;action=edit&amp;redlink=1" class="new" title="극한점 콤팩트 집합 (없는 문서)">극한점 콤팩트 집합</a>이다. 즉, 모든 무한 부분 집합이 <a href="/wiki/%EA%B7%B9%ED%95%9C%EC%A0%90" class="mw-redirect" title="극한점">극한점</a>을 갖는다.</li> <li><a href="/wiki/%EC%9C%A0%EA%B3%84_%EC%A7%91%ED%95%A9" title="유계 집합">유계</a> <a href="/wiki/%EB%8B%AB%ED%9E%8C%EC%A7%91%ED%95%A9" class="mw-redirect" title="닫힌집합">닫힌집합</a>이다.</li></ul> <p>사실, 모든 <a href="/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%EA%B3%B5%EA%B0%84" title="유클리드 공간">유클리드 공간</a>에 대하여, 위 네 조건은 서로 동치이며, 모든 <a href="/wiki/%EA%B1%B0%EB%A6%AC_%EA%B3%B5%EA%B0%84" title="거리 공간">거리 공간</a>에 대하여, 앞에 세 조건은 서로 동치이다. </p><p>또한, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>&#x2286;<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8d8e251de9443239f3393459a3f0558a37507a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.276ex; height:2.343ex;" alt="{\displaystyle S\subseteq \mathbb {R} }"></span>에 대하여, 다음 조건들이 서로 <a href="/wiki/%EB%8F%99%EC%B9%98" title="동치">동치</a>이다. </p> <ul><li><a href="/wiki/%EC%97%B0%EA%B2%B0_%EA%B3%B5%EA%B0%84" title="연결 공간">연결 공간</a>이다.</li> <li><a href="/wiki/%EA%B2%BD%EB%A1%9C_%EC%97%B0%EA%B2%B0_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="경로 연결 공간">경로 연결 공간</a>이다.</li> <li><a href="/wiki/%ED%98%B8_%EC%97%B0%EA%B2%B0_%EA%B3%B5%EA%B0%84" class="mw-redirect" title="호 연결 공간">호 연결 공간</a>이다.</li> <li>중간값 성질을 만족한다. 즉, 임의의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b\in S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b\in S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e9e26744e55d92ec56132c49a80435df0ef4cb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.601ex; height:2.509ex;" alt="{\displaystyle a,b\in S}"></span>에 대하여, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)\subseteq S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)\subseteq S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6191d8614d1bb601431ecfbd744b53251182ec3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.668ex; height:2.843ex;" alt="{\displaystyle (a,b)\subseteq S}"></span>이다.</li> <li>(퇴화 또는 비퇴화) <a href="/wiki/%EA%B5%AC%EA%B0%84" title="구간">구간</a>이다.</li></ul> <div class="mw-heading mw-heading2"><h2 id="분류"><span id=".EB.B6.84.EB.A5.98"></span>분류</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=13" title="부분 편집: 분류"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수는 <a href="/wiki/%EC%9C%A0%EB%A6%AC%EC%88%98" title="유리수">유리수</a>와 <a href="/wiki/%EB%AC%B4%EB%A6%AC%EC%88%98" title="무리수">무리수</a>로 분류된다. 실수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q\in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q\in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f39e23ac6313003bf972f808184882d89cc48d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.588ex; height:2.509ex;" alt="{\displaystyle q\in \mathbb {R} }"></span>에 대하여, 다음 조건들이 서로 동치이다. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>는 유리수이다. 즉, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {m}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {m}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46a3b6cd57a1cc6dd26b851bb8e8383f1650b2f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.305ex; height:4.676ex;" alt="{\displaystyle x={\frac {m}{n}}}"></span>인 정수 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12e01e20e2bc24ab21cca6a82edddec5c1a20ec5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.431ex; height:2.176ex;" alt="{\displaystyle m\in \mathbb {Z} }"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \mathbb {Z} \setminus \{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo class="MJX-variant">&#x2216;<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \mathbb {Z} \setminus \{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/519982201af39ce48f597891c44a98167ecd5013" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.468ex; height:2.843ex;" alt="{\displaystyle n\in \mathbb {Z} \setminus \{0\}}"></span>이 존재한다.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>는 <a href="/wiki/%EC%9C%A0%ED%95%9C_%EC%86%8C%EC%88%98" class="mw-redirect" title="유한 소수">유한 소수</a>이거나, <a href="/wiki/%EB%AC%B4%ED%95%9C_%EC%88%9C%ED%99%98_%EC%86%8C%EC%88%98" class="mw-redirect" title="무한 순환 소수">무한 순환 소수</a>이다. 즉, 다음을 만족시키는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p,q,r\in \{0,1,\dots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p,q,r\in \{0,1,\dots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54473f61d32681ecf18da56b0ce38a6b65e63791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:17.727ex; height:2.843ex;" alt="{\displaystyle p,q,r\in \{0,1,\dots \}}"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i},b_{i},c_{i}\in \{0,1,\dotsc ,9\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mn>9</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i},b_{i},c_{i}\in \{0,1,\dotsc ,9\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3419f1c8e34216e9e691edf628956eb750b1e279" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.566ex; height:2.843ex;" alt="{\displaystyle a_{i},b_{i},c_{i}\in \{0,1,\dotsc ,9\}}"></span>가 존재한다. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=a_{p}a_{p-1}\cdots a_{0}.b_{1}b_{2}\cdots b_{q}{\dot {c}}_{1}c_{2}\cdots {\dot {c}}_{r}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>.</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=a_{p}a_{p-1}\cdots a_{0}.b_{1}b_{2}\cdots b_{q}{\dot {c}}_{1}c_{2}\cdots {\dot {c}}_{r}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89a5ddd8875c1a8166e4c307a48232236ee92339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.679ex; height:2.843ex;" alt="{\displaystyle x=a_{p}a_{p-1}\cdots a_{0}.b_{1}b_{2}\cdots b_{q}{\dot {c}}_{1}c_{2}\cdots {\dot {c}}_{r}}"></span></dd></dl></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>는 <a href="/wiki/%EC%9C%A0%ED%95%9C_%EC%97%B0%EB%B6%84%EC%88%98" class="mw-redirect" title="유한 연분수">유한 연분수</a>이다. 즉, 다음을 만족시키는 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/726e84f251531b61460cd1cc8cc77cdc1ee4adae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.42ex; height:2.509ex;" alt="{\displaystyle a_{i}\in \mathbb {Z} }"></span> 및 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \{0,1,\dots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \{0,1,\dots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e18378e75b69b481dbab79eee68d1366f81e549" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.676ex; height:2.843ex;" alt="{\displaystyle n\in \{0,1,\dots \}}"></span>가 존재한다. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=[a_{0};a_{1},\dotsc ,a_{n}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>;</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=[a_{0};a_{1},\dotsc ,a_{n}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f39f2dbd632ea2fb369c56e695bb3ef6240d0b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.95ex; height:2.843ex;" alt="{\displaystyle x=[a_{0};a_{1},\dotsc ,a_{n}]}"></span></dd></dl></li></ul> <p>예를 들어, 1/3 = 0.333...은 유리수이며, <a href="/wiki/%EC%9E%90%EC%97%B0%EB%A1%9C%EA%B7%B8%EC%9D%98_%EB%B0%91" title="자연로그의 밑"><i>e</i> = 2.7182...</a>와 <a href="/wiki/%EC%9B%90%EC%A3%BC%EC%9C%A8" title="원주율">π = 3.1415...</a>는 무리수이다. </p> <div class="mw-heading mw-heading2"><h2 id="성질"><span id=".EC.84.B1.EC.A7.88"></span>성질</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=14" title="부분 편집: 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="집합론적_성질"><span id=".EC.A7.91.ED.95.A9.EB.A1.A0.EC.A0.81_.EC.84.B1.EC.A7.88"></span>집합론적 성질</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=15" title="부분 편집: 집합론적 성질"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수 <a href="/wiki/%EC%A7%91%ED%95%A9%EC%9D%98_%ED%81%AC%EA%B8%B0" title="집합의 크기">집합의 크기</a>는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbb {R} |=2^{\aleph _{0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbb {R} |=2^{\aleph _{0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d03e48338145227cf783e0c5bf75a99ded7d856" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.301ex; height:3.176ex;" alt="{\displaystyle |\mathbb {R} |=2^{\aleph _{0}}}"></span></dd></dl> <p>여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721cd7f8c15a2e72ad162bdfa5baea8eef98aab1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.475ex; height:2.509ex;" alt="{\displaystyle \aleph _{0}}"></span>은 <a href="/wiki/%EC%95%8C%EB%A0%88%ED%94%84_0" class="mw-redirect" title="알레프 0">알레프 0</a>이다. 달리 말해, 실수는 자연수 부분 집합과 일대일 대응한다. 이 둘 사이의 일대일 대응은 여러 가지 만들 수 있다. </p> <div class="mw-heading mw-heading2"><h2 id="역사"><span id=".EC.97.AD.EC.82.AC"></span>역사</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=16" title="부분 편집: 역사"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>실수에 대한 엄밀한 정의는 <a href="/wiki/%EA%B2%8C%EC%98%A4%EB%A5%B4%ED%81%AC_%EC%B9%B8%ED%86%A0%EC%96%B4" title="게오르크 칸토어">게오르크 칸토어</a>에 의해 이루어졌다. 유리수로부터 실수를 이론적으로 확장하여 그 성질을 규정짓게 된 것은 <a href="/wiki/%EC%B9%B4%EB%A5%BC_%EB%B0%94%EC%9D%B4%EC%96%B4%EC%8A%88%ED%8A%B8%EB%9D%BC%EC%8A%A4" title="카를 바이어슈트라스">카를 바이어슈트라스</a>, <a href="/wiki/%EA%B2%8C%EC%98%A4%EB%A5%B4%ED%81%AC_%EC%B9%B8%ED%86%A0%EC%96%B4" title="게오르크 칸토어">게오르크 칸토어</a>, <a href="/wiki/%EB%A6%AC%ED%95%98%EB%A5%B4%ED%8A%B8_%EB%8D%B0%EB%8D%B0%ED%82%A8%ED%8A%B8" title="리하르트 데데킨트">리하르트 데데킨트</a>와 같은 수학자들의 공이 지대하였다. </p> <div class="mw-heading mw-heading2"><h2 id="같이_보기"><span id=".EA.B0.99.EC.9D.B4_.EB.B3.B4.EA.B8.B0"></span>같이 보기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=17" title="부분 편집: 같이 보기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r36480479">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box metadata side-box-right plainlinks"><style data-mw-deduplicate="TemplateStyles:r36480595">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist"><b><a href="/wiki/%EC%9C%84%ED%82%A4%EB%AF%B8%EB%94%94%EC%96%B4_%EA%B3%B5%EC%9A%A9" title="위키미디어 공용">위키미디어 공용</a></b>에 관련된<br />미디어 분류가 있습니다.<div style="padding-left:1em;"><b><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Real_numbers?uselang=ko">실수</a></b></div></div></div> </div> <ul><li><a href="/wiki/%EC%97%B0%EB%B6%84%EC%88%98" title="연분수">연분수</a></li> <li><a href="/wiki/%EC%8B%A4%ED%95%B4%EC%84%9D%ED%95%99" title="실해석학">실해석학</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="외부_링크"><span id=".EC.99.B8.EB.B6.80_.EB.A7.81.ED.81.AC"></span>외부 링크</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EC%8B%A4%EC%88%98&amp;action=edit&amp;section=18" title="부분 편집: 외부 링크"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite class="citation web"><a rel="nofollow" class="external text" href="http://navercast.naver.com/contents.nhn?contents_id=2083">&#8220;자연수 VS 실수&#8221;</a>. &#12298;<a href="/wiki/%EB%84%A4%EC%9D%B4%EB%B2%84%EC%BA%90%EC%8A%A4%ED%8A%B8" title="네이버캐스트">네이버캐스트</a>&#12299;.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=%EB%84%A4%EC%9D%B4%EB%B2%84%EC%BA%90%EC%8A%A4%ED%8A%B8&amp;rft.atitle=%EC%9E%90%EC%97%B0%EC%88%98+VS+%EC%8B%A4%EC%88%98&amp;rft_id=http%3A%2F%2Fnavercast.naver.com%2Fcontents.nhn%3Fcontents_id%3D2083&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://encyclopediaofmath.org/wiki/Real_number">&#8220;Real number&#8221;</a>. &#12298;Encyclopedia of Mathematics&#12299; (영어). Springer-Verlag. 2001. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a>&#160;<a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/978-1-55608-010-4" title="특수:책찾기/978-1-55608-010-4"><bdi>978-1-55608-010-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Encyclopedia+of+Mathematics&amp;rft.atitle=Real+number&amp;rft.date=2001&amp;rft.isbn=978-1-55608-010-4&amp;rft_id=https%3A%2F%2Fencyclopediaofmath.org%2Fwiki%2FReal_number&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation web">Weisstein, Eric Wolfgang. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/RealNumber.html">&#8220;Real number&#8221;</a>. &#12298;<a href="/wiki/%EB%A7%A4%EC%8A%A4%EC%9B%94%EB%93%9C" title="매스월드">Wolfram MathWorld</a>&#12299; (영어). Wolfram Research.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+MathWorld&amp;rft.atitle=Real+number&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+Wolfgang&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FRealNumber.html&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://ncatlab.org/nlab/show/real+number">&#8220;Real number&#8221;</a>. &#12298;nLab&#12299; (영어).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=nLab&amp;rft.atitle=Real+number&amp;rft_id=https%3A%2F%2Fncatlab.org%2Fnlab%2Fshow%2Freal%2Bnumber&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/RealNumber">&#8220;Real number&#8221;</a>. &#12298;PlanetMath&#12299; (영어).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=PlanetMath&amp;rft.atitle=Real+number&amp;rft_id=http%3A%2F%2Fplanetmath.org%2FRealNumber&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/11RealNumbers">&#8220;11. Real numbers&#8221;</a>. &#12298;PlanetMath&#12299; (영어).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=PlanetMath&amp;rft.atitle=11.+Real+numbers&amp;rft_id=http%3A%2F%2Fplanetmath.org%2F11RealNumbers&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation web"><a rel="nofollow" class="external text" href="https://planetmath.org/representationofrealnumbers">&#8220;Representation of real numbers&#8221;</a>. &#12298;PlanetMath&#12299; (영어).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=PlanetMath&amp;rft.atitle=Representation+of+real+numbers&amp;rft_id=http%3A%2F%2Fplanetmath.org%2Frepresentationofrealnumbers&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EC%8B%A4%EC%88%98" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r36480591">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:", ";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" / ";font-weight:normal}</style><style data-mw-deduplicate="TemplateStyles:r36429174">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="수_체계" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><style data-mw-deduplicate="TemplateStyles:r34311309">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-보기"><a href="/wiki/%ED%8B%80:%EC%88%98_%EC%B2%B4%EA%B3%84" title="틀:수 체계"><abbr title="이 틀을 보기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-토론"><a href="/wiki/%ED%8B%80%ED%86%A0%EB%A1%A0:%EC%88%98_%EC%B2%B4%EA%B3%84" title="틀토론:수 체계"><abbr title="이 틀에 관해 토론하기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-편집"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%AC%B8%EC%84%9C%ED%8E%B8%EC%A7%91/%ED%8B%80:%EC%88%98_%EC%B2%B4%EA%B3%84" title="특수:문서편집/틀:수 체계"><abbr title="이 틀을 편집하기" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="수_체계" style="font-size:114%;margin:0 4em"><a href="/wiki/%EC%88%98_(%EC%88%98%ED%95%99)" title="수 (수학)">수</a> 체계</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">복소수</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EC%9E%90%EC%97%B0%EC%88%98" title="자연수">자연수</a> (ℕ)</li> <li><a href="/wiki/%EC%A0%95%EC%88%98" title="정수">정수</a> (ℤ)</li> <li><a href="/wiki/%EC%9C%A0%EB%A6%AC%EC%88%98" title="유리수">유리수</a> (ℚ)</li> <li><a href="/wiki/%EB%AC%B4%EB%A6%AC%EC%88%98" title="무리수">무리수</a> (ℝ∖ℚ)</li> <li><a class="mw-selflink selflink">실수</a> (ℝ)</li> <li><a href="/wiki/%ED%97%88%EC%88%98" title="허수">허수</a> (ℂ∖ℝ)</li> <li><a href="/wiki/%EB%B3%B5%EC%86%8C%EC%88%98" title="복소수">복소수</a> (ℂ)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">자연수의 분류</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EC%86%8C%EC%88%98_(%EC%88%98%EB%A1%A0)" title="소수 (수론)">소수</a> (ℙ)</li> <li><a href="/wiki/%ED%95%A9%EC%84%B1%EC%88%98" title="합성수">합성수</a> (ℕ∖ℙ∖{0,1})</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">유리수의 분류</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EB%B0%98%EC%A0%95%EC%88%98" title="반정수">반정수</a> (1/2+ℤ)</li> <li><a href="/wiki/%EC%9D%B4%EC%A7%84_%EC%9C%A0%EB%A6%AC%EC%88%98" title="이진 유리수">이진 유리수</a> ((2<sup>ℕ</sup>)<sup>-1</sup>ℤ)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">실수의 분류</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EC%96%91%EC%88%98_(%EC%88%98%ED%95%99)" title="양수 (수학)">양수</a> (ℝ<sup>+</sup>)</li> <li><a href="/wiki/%EC%9D%8C%EC%88%98" title="음수">음수</a> (ℝ<sup>-</sup>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">복소수의 분류</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EB%8C%80%EC%88%98%EC%A0%81_%EC%88%98" title="대수적 수">대수적 수</a> (<span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.4em; font-size:70%; padding:0 0.1em;">—</span><span style="display:block; line-height:1em; padding:0 0.1em;">ℚ</span></span></span>)</li> <li><a href="/wiki/%EC%B4%88%EC%9B%94%EC%88%98" title="초월수">초월수</a> (ℂ∖<span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.4em; font-size:70%; padding:0 0.1em;">—</span><span style="display:block; line-height:1em; padding:0 0.1em;">ℚ</span></span></span>)</li> <li><a href="/wiki/%EB%8C%80%EC%88%98%EC%A0%81_%EC%A0%95%EC%88%98" class="mw-redirect" title="대수적 정수">대수적 정수</a> (<span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, serif;">O</span><sub><span class="sfrac nowrap;"><span style="display:none; display:inline-block; text-align:center;"><span style="display:block; line-height:0.4em; font-size:70%; padding:0 0.1em;">—</span><span style="display:block; line-height:1em; padding:0 0.1em;">ℚ</span></span></span></sub>)</li> <li><a href="/wiki/%EA%B0%80%EC%9A%B0%EC%8A%A4_%EC%A0%95%EC%88%98" title="가우스 정수">가우스 정수</a> (ℤ[i])</li> <li><a href="/wiki/%EC%95%84%EC%9D%B4%EC%A0%A0%EC%8A%88%ED%83%80%EC%9D%B8_%EC%A0%95%EC%88%98" title="아이젠슈타인 정수">아이젠슈타인 정수</a> (<span class="mathcal" style="font-family: &#39;Lucida Calligraphy&#39;, &#39;Monotype Corsiva&#39;, &#39;URW Chancery L&#39;, &#39;Apple Chancery&#39;, serif;">O</span><sub>ℚ(√-3)</sub>)</li> <li><a href="/wiki/%EC%9E%91%EB%8F%84_%EA%B0%80%EB%8A%A5%ED%95%9C_%EC%88%98" title="작도 가능한 수">작도 가능한 수</a></li> <li><a href="/wiki/%EA%B3%84%EC%82%B0_%EA%B0%80%EB%8A%A5%ED%95%9C_%EC%88%98" title="계산 가능한 수">계산 가능한 수</a></li> <li><a href="/wiki/%EC%A0%95%EC%9D%98_%EA%B0%80%EB%8A%A5%ED%95%9C_%EC%88%98" title="정의 가능한 수">정의 가능한 수</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">기타</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%EC%9D%B4%EC%9B%90%EC%88%98_(%EC%88%98%ED%95%99)" title="이원수 (수학)">이원수</a> (ℝ[x]/(x<sup>2</sup>))</li> <li><a href="/w/index.php?title=%EB%8B%A4%EC%9B%90%EC%88%98&amp;action=edit&amp;redlink=1" class="new" title="다원수 (없는 문서)">다원수</a></li> <li><a href="/wiki/%EC%82%AC%EC%9B%90%EC%88%98" title="사원수">사원수</a> (ℍ)</li> <li><a href="/wiki/%ED%8C%94%EC%9B%90%EC%88%98" title="팔원수">팔원수</a> (𝕆)</li> <li><a href="/wiki/%EC%8B%AD%EC%9C%A1%EC%9B%90%EC%88%98" title="십육원수">십육원수</a> (𝕊)</li> <li><a href="/wiki/P%EC%A7%84%EC%88%98" title="P진수">p진수</a> (ℚ<sub>p</sub>)</li> <li><a href="/wiki/%EC%B4%88%EC%8B%A4%EC%88%98" title="초실수">초실수</a></li> <li><a href="/w/index.php?title=%EC%83%81%EC%B4%88%EC%8B%A4%EC%88%98&amp;action=edit&amp;redlink=1" class="new" title="상초실수 (없는 문서)">상초실수</a></li> <li><a href="/wiki/%EC%B4%88%ED%98%84%EC%8B%A4%EC%88%98" title="초현실수">초현실수</a></li> <li><a href="/wiki/%EC%88%9C%EC%84%9C%EC%88%98" title="순서수">순서수</a> (Ord)</li> <li><a href="/wiki/%EA%B8%B0%EC%88%98_(%EC%88%98%ED%95%99)" title="기수 (수학)">기수</a> (Card)</li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36480591"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r36429174"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%84%EA%B1%B0_%ED%86%B5%EC%A0%9C" title="위키백과:전거 통제">전거 통제</a>: 국가 <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q12916#identifiers" title="위키데이터에서 편집하기"><img alt="위키데이터에서 편집하기" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><abbr title="Nombres réels"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb11977586x">프랑스</a></abbr></span></li> <li><span class="uid"><abbr title="Nombres réels"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb11977586x">BnF 데이터</a></abbr></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4202628-3">독일</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007538747105171">이스라엘</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85093221">미국</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00574870">일본</a></span></li> <li><span class="uid"><abbr title="reálná čísla"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph125164&amp;CON_LNG=ENG">체코</a></abbr></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐czj6x Cached time: 20241123005940 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.602 seconds Real time usage: 0.922 seconds Preprocessor visited node count: 2204/1000000 Post‐expand include size: 41166/2097152 bytes Template argument size: 1446/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 17/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 21409/5000000 bytes Lua time usage: 0.254/10.000 seconds Lua memory usage: 4299369/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 637.307 1 -total 29.33% 186.944 1 틀:위키데이터_속성_추적 17.75% 113.126 1 틀:수_체계 17.31% 110.310 1 틀:둘러보기_상자 15.77% 100.486 7 틀:웹_인용 11.14% 71.027 1 틀:네이버캐스트 10.05% 64.025 1 틀:위키공용분류 9.40% 59.879 1 틀:Sister 8.97% 57.186 1 틀:사이드_박스 7.27% 46.360 1 틀:전거_통제 --> <!-- Saved in parser cache with key kowiki:pcache:idhash:381-0!canonical and timestamp 20241123005940 and revision id 38000687. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">원본 주소 "<a dir="ltr" href="https://ko.wikipedia.org/w/index.php?title=실수&amp;oldid=38000687">https://ko.wikipedia.org/w/index.php?title=실수&amp;oldid=38000687</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%B6%84%EB%A5%98" title="특수:분류">분류</a>: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%8B%A4%EC%88%98" title="분류:실수">실수</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%B4%88%EB%93%B1_%EC%88%98%ED%95%99" title="분류:초등 수학">초등 수학</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%88%98_%EC%B2%B4%EA%B3%84" title="분류:수 체계">수 체계</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">숨은 분류: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%B4%EA%B2%B0%EB%90%98%EC%A7%80_%EC%95%8A%EC%9D%80_%EC%86%8D%EC%84%B1%EC%9D%B4_%EC%9E%88%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:해결되지 않은 속성이 있는 문서">해결되지 않은 속성이 있는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P18%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P18을 사용하는 문서">위키데이터 속성 P18을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P373%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P373을 사용하는 문서">위키데이터 속성 P373을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P227%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P227을 사용하는 문서">위키데이터 속성 P227을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P244%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P244를 사용하는 문서">위키데이터 속성 P244를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P268%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P268을 사용하는 문서">위키데이터 속성 P268을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P349%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P349를 사용하는 문서">위키데이터 속성 P349를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P691%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P691을 사용하는 문서">위키데이터 속성 P691을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P7859%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P7859를 사용하는 문서">위키데이터 속성 P7859를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P8189%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P8189를 사용하는 문서">위키데이터 속성 P8189를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%98%81%EC%96%B4_%ED%91%9C%EA%B8%B0%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EB%AC%B8%EC%84%9C" title="분류:영어 표기를 포함한 문서">영어 표기를 포함한 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:CS1_-_%EC%98%81%EC%96%B4_%EC%9D%B8%EC%9A%A9_(en)" title="분류:CS1 - 영어 인용 (en)">CS1 - 영어 인용 (en)</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:BNF_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:BNF 식별자를 포함한 위키백과 문서">BNF 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:BNFdata_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:BNFdata 식별자를 포함한 위키백과 문서">BNFdata 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:GND_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:GND 식별자를 포함한 위키백과 문서">GND 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:J9U_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:J9U 식별자를 포함한 위키백과 문서">J9U 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LCCN_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LCCN 식별자를 포함한 위키백과 문서">LCCN 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:NDL_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:NDL 식별자를 포함한 위키백과 문서">NDL 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:NKC_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:NKC 식별자를 포함한 위키백과 문서">NKC 식별자를 포함한 위키백과 문서</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 이 문서는 2024년 10월 13일 (일) 20:18에 마지막으로 편집되었습니다.</li> <li id="footer-info-copyright">모든 문서는 <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ko">크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0</a>에 따라 사용할 수 있으며, 추가적인 조건이 적용될 수 있습니다. 자세한 내용은 <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ko">이용 약관</a>을 참고하십시오.<br />Wikipedia®는 미국 및 다른 국가에 등록되어 있는 <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a> 소유의 등록 상표입니다.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">개인정보처리방침</a></li> <li id="footer-places-about"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%86%8C%EA%B0%9C">위키백과 소개</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%A9%B4%EC%B1%85_%EC%A1%B0%ED%95%AD">면책 조항</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">행동 강령</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">개발자</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ko.wikipedia.org">통계</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">쿠키 정책</a></li> <li id="footer-places-mobileview"><a href="//ko.m.wikipedia.org/w/index.php?title=%EC%8B%A4%EC%88%98&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">모바일 보기</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-6z6cl","wgBackendResponseTime":198,"wgPageParseReport":{"limitreport":{"cputime":"0.602","walltime":"0.922","ppvisitednodes":{"value":2204,"limit":1000000},"postexpandincludesize":{"value":41166,"limit":2097152},"templateargumentsize":{"value":1446,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":17,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":21409,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 637.307 1 -total"," 29.33% 186.944 1 틀:위키데이터_속성_추적"," 17.75% 113.126 1 틀:수_체계"," 17.31% 110.310 1 틀:둘러보기_상자"," 15.77% 100.486 7 틀:웹_인용"," 11.14% 71.027 1 틀:네이버캐스트"," 10.05% 64.025 1 틀:위키공용분류"," 9.40% 59.879 1 틀:Sister"," 8.97% 57.186 1 틀:사이드_박스"," 7.27% 46.360 1 틀:전거_통제"]},"scribunto":{"limitreport-timeusage":{"value":"0.254","limit":"10.000"},"limitreport-memusage":{"value":4299369,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-czj6x","timestamp":"20241123005940","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\uc2e4\uc218","url":"https:\/\/ko.wikipedia.org\/wiki\/%EC%8B%A4%EC%88%98","sameAs":"http:\/\/www.wikidata.org\/entity\/Q12916","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q12916","author":{"@type":"Organization","name":"\uc704\ud0a4\ubbf8\ub514\uc5b4 \ud504\ub85c\uc81d\ud2b8 \uae30\uc5ec\uc790"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-08-12T01:44:37Z","dateModified":"2024-10-13T11:18:10Z","headline":"\uc8fc\ub85c \uc2e4\uc9c1\uc120 \uc704\uc758 \uc810 \ub610\ub294 \uc2ed\uc9c4\ubc95 \uc804\uac1c\ub85c \ud45c\ud604\ub418\ub294 \uc218 \uccb4\uacc4"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10