CINXE.COM
Search results for: iridium oxide
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: iridium oxide</title> <meta name="description" content="Search results for: iridium oxide"> <meta name="keywords" content="iridium oxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="iridium oxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="iridium oxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1446</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: iridium oxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1446</span> Iridium-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Espinosa">Francisco Espinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Chavarr%C3%ADa"> Juan Chavarría</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycerol is a byproduct of biodiesel production that can be used for aqueous-phase reforming to obtain hydrogen. Iridium is a material that has high activity and hydrogen selectivity for steam phase reforming. Nevertheless, a drawback for the use of iridium in aqueous-phase reforming is the low activity in water-gas shift reaction. Therefore, in this work, it is proposed the use of nickel and copper as a second metal in the catalyst to reach a synergetic effect. Iridium, iridium-nickel and iridium-copper catalysts were prepared by incipient wetness impregnation and evaluated in the aqueous-phase reforming of glycerol using CeO₂ or La₂O₃ as support. The catalysts were characterized by XRD, XPS, and EDX. The reactions were carried out in a fixed bed reactor feeding a solution of glycerol 10 wt% in water at 270°C, and reaction products were analyzed by gas chromatography. It was found that IrNi/CeO₂ reached highest glycerol conversion and hydrogen production, slightly above 70% and 43 vol% respectively. In terms of conversion, iridium is a promising metal, and its activity for hydrogen production can be enhanced when adding a second metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous-phase%20reforming" title="aqueous-phase reforming">aqueous-phase reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=glycerol" title=" glycerol"> glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium" title=" iridium"> iridium</a> </p> <a href="https://publications.waset.org/abstracts/70130/iridium-based-bimetallic-catalysts-for-hydrogen-production-through-glycerol-aqueous-phase-reforming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1445</span> Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yung-Shan%20Lu">Yung-Shan Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Fone%20Lee"> Chia-Fone Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shang-Hsuan%20Li"> Shang-Hsuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hao%20Liu"> Chien-Hao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cochlear%20implants" title="cochlear implants">cochlear implants</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20stimulation" title=" electrical stimulation"> electrical stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium%20oxide" title=" iridium oxide"> iridium oxide</a> </p> <a href="https://publications.waset.org/abstracts/100114/developing-biocompatible-iridium-oxide-electrodes-for-bone-guided-extra-cochlear-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1444</span> Ytterbium Advantages for Brachytherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Akulinichev">S. V. Akulinichev</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Chaushansky"> S. A. Chaushansky</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20I.%20Derzhiev"> V. I. Derzhiev </a> </p> <p class="card-text"><strong>Abstract:</strong></p> High dose rate (HDR) brachytherapy is a method of contact radiotherapy, when a single sealed source with an activity of about 10 Ci is temporarily inserted in the tumor area. The isotopes Ir-192 and (much less) Co-60 are used as active material for such sources. The other type of brachytherapy, the low dose rate (LDR) brachytherapy, implies the insertion of many permanent sources (up to 200) of lower activity. The pulse dose rate (PDR) brachytherapy can be considered as a modification of HDR brachytherapy, when the single source is repeatedly introduced in the tumor region in a pulse regime during several hours. The PDR source activity is of the order of one Ci and the isotope Ir-192 is currently used for these sources. The PDR brachytherapy is well recommended for the treatment of several tumors since, according to oncologists, it combines the medical benefits of both HDR and LDR types of brachytherapy. One of the main problems for the PDR brachytherapy progress is the shielding of the treatment area since the longer stay of patients in a shielded canyon is not enough comfortable for them. The use of Yb-169 as an active source material is the way to resolve the shielding problem for PDR, as well as for HRD brachytherapy. The isotope Yb-169 has the average photon emission energy of 93 KeV and the half-life of 32 days. Compared to iridium and cobalt, this isotope has a significantly lower emission energy and therefore requires a much lighter shielding. Moreover, the absorption cross section of different materials has a strong Z-dependence in that photon energy range. For example, the dose distributions of iridium and ytterbium have a quite similar behavior in the water or in the body. But the heavier material as lead absorbs the ytterbium radiation much stronger than the iridium or cobalt radiation. For example, only 2 mm of lead layer is enough to reduce the ytterbium radiation by a couple of orders of magnitude but is not enough to protect from iridium radiation. We have created an original facility to produce the start stable isotope Yb-168 using the laser technology AVLIS. This facility allows to raise the Yb-168 concentration up to 50 % and consumes much less of electrical power than the alternative electromagnetic enrichment facilities. We also developed, in cooperation with the Institute of high pressure physics of RAS, a new technology for manufacturing high-density ceramic cores of ytterbium oxide. Ceramics density reaches the limit of the theoretical values: 9.1 g/cm3 for the cubic phase of ytterbium oxide and 10 g/cm3 for the monoclinic phase. Source cores from this ceramics have high mechanical characteristics and a glassy surface. The use of ceramics allows to increase the source activity with fixed external dimensions of sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brachytherapy" title="brachytherapy">brachytherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=high" title=" high"> high</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20dose%20rates" title=" pulse dose rates"> pulse dose rates</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides%20for%20therapy" title=" radionuclides for therapy"> radionuclides for therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=ytterbium%20sources" title=" ytterbium sources"> ytterbium sources</a> </p> <a href="https://publications.waset.org/abstracts/27994/ytterbium-advantages-for-brachytherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1443</span> N-Heterocyclic Carbene Based Dearomatized Iridium Complex as an Efficient Catalyst towards Carbon-Carbon Bond Formation via Hydrogen Borrowing Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20Kaur">Mandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20K.%20Bera"> Jitendra K. Bera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search for atom-economical and green synthetic methods for the synthesis of functionalized molecules has attracted much attention. Metal ligand cooperation (MLC) plays a pivotal role in organometallic catalysis to activate C−H, H−H, O−H, N−H and B−H bonds through reversible bond breaking and bond making process. Towards this goal, a bifunctional N─heterocyclic carbene (NHC) based pyridyl-functionalized amide ligand precursor, and corresponding dearomatized iridium complex was synthesized. The NMR and UV/Vis acid titration study have been done to prove the proton response nature of the iridium complex. Further, the dearomatized iridium complex explored as a catalyst on the platform of MLC via dearomatzation/aromatization mode of action towards atom economical α and β─alkylation of ketones and secondary alcohols by using primary alcohols through hydrogen borrowing methodology. The key features of the catalysis are high turnover frequency (TOF) values, low catalyst loading, low base loading and no waste product. The greener syntheses of quinoline, lactone derivatives and selective alkylation of drug molecules like pregnenolone and testosterone were also achieved successfully. Another structurally similar iridium complex was also synthesized with modified ligand precursor where a pendant amide unit was absent. The inactivity of this analogue iridium complex towards catalysis authenticated the participation of proton responsive imido sidearm of the ligand to accelerate the catalytic reaction. The mechanistic investigation through control experiments, NMR and deuterated labeling study, authenticate the borrowing hydrogen strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C-C%20bond%20formation" title="C-C bond formation">C-C bond formation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20borrowing" title=" hydrogen borrowing"> hydrogen borrowing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ligand%20cooperation%20%28MLC%29" title=" metal ligand cooperation (MLC)"> metal ligand cooperation (MLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=n-heterocyclic%20carbene" title=" n-heterocyclic carbene"> n-heterocyclic carbene</a> </p> <a href="https://publications.waset.org/abstracts/110825/n-heterocyclic-carbene-based-dearomatized-iridium-complex-as-an-efficient-catalyst-towards-carbon-carbon-bond-formation-via-hydrogen-borrowing-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1442</span> Asymmetric Synthesis of Catalponol Using Chiral Iridium Catalyst </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takeyuki%20Suzuki">Takeyuki Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismiyarto"> Ismiyarto</a>, <a href="https://publications.waset.org/abstracts/search?q=Da-Yang%20Zhou"> Da-Yang Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaori%20Asano"> Kaori Asano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Sasai"> Hiroaki Sasai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of catalytic asymmetric reaction is important for the synthesis of natural products. To construct the multiple stereogenic centers, the desymmetrization of meso compounds is powerful strategy for the synthesis of chiral molecules. Oxidative desymmetrization of meso diols using chiral iridium catalyst provides a chiral hydroxyl ketone. The reaction is practical and an environmentally benign method which does not require the use of stoichiometric amount of heavy metals. This time we report here catalytic asymmetric synthesis of catalponol based on tandem coupling of meso-diols and an aldehyde. The tandem reaction includes oxidative desymmetrization of meso-diols, aldol condensation with an aldehyde. The reaction of meso-diol, benzaldehyde in the presence of a catalytic amount of chiral Ir complex and CsOH in tetrahydrofuran afforded the desired benzylidene ketone in 82% yield with 96% ee (enantiomeric excess). Next, we applied this benzylidene ketone derivative to the synthesis of catalponol. The corresponding benzylidene ketone was obtained in 87% yield with 99% ee. Finally, catalponol was synthesized by the regio- and stereo-selective reduction of dienone moiety in good yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalponol" title="catalponol">catalponol</a>, <a href="https://publications.waset.org/abstracts/search?q=desymmetrization" title=" desymmetrization"> desymmetrization</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium" title=" iridium"> iridium</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/95973/asymmetric-synthesis-of-catalponol-using-chiral-iridium-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1441</span> Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Huang">Kai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Assamen%20Ayalew%20Ejigu"> Assamen Ayalew Ejigu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Jie%20Lin"> Mu-Jie Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Chiun%20Chao"> Liang-Chiun Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20beam" title=" ion beam"> ion beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide" title=" oxide"> oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent" title=" transparent"> transparent</a> </p> <a href="https://publications.waset.org/abstracts/58525/copper-doped-p-type-nickel-oxide-transparent-conducting-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1440</span> Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yameen%20Ahmed">Yameen Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ullah"> Farman Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Asif"> Sohaib Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide" title="cobalt oxide">cobalt oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/142865/green-synthesis-of-copper-oxide-and-cobalt-oxide-nanoparticles-using-spinacia-oleracea-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1439</span> Evaluation of Total Antioxidant Activity (TAC) of Copper Oxide Decorated Reduced Graphene Oxide (CuO-rGO) at Different Stirring time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bensouici">Aicha Bensouici</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Mili"> Assia Mili</a>, <a href="https://publications.waset.org/abstracts/search?q=Naouel%20Rdjem"> Naouel Rdjem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Baali"> Nacera Baali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper oxide decorated reduced graphene oxide (GO) was obtained successfully using two steps route synthesis was used. Firstly, graphene oxide was obtained using a modified Hummers method by excluding sodium nitrate from starting materials. After washing-centrifugation routine pristine GO was decorated by copper oxide using a refluxation technique at 120°C during 2h, and an equal amount of GO and copper acetate was used. Three CuO-rGO nanocomposite samples types were obtained at 30min, 24h, and 7 day stirring time. TAC results show dose dependent behavior of CuO-rGO and confirm no influence of stirring time on antioxidant properties, 30min is considered as an optimal stirring condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title="copper oxide">copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TAC" title=" TAC"> TAC</a>, <a href="https://publications.waset.org/abstracts/search?q=GO" title=" GO"> GO</a> </p> <a href="https://publications.waset.org/abstracts/157959/evaluation-of-total-antioxidant-activity-tac-of-copper-oxide-decorated-reduced-graphene-oxide-cuo-rgo-at-different-stirring-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1438</span> High Quality Gallium Oxide Microstructures by Catalyst-Free Thermal Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang-Bei%20Qin">Jiang-Bei Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui-Xia%20Miao"> Rui-Xia Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ren"> Wei Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, high crystalline gallium oxide microstructures (wires, belts, and sheets) were synthesized by catalyst-free thermal oxidation. Structural studies such as X-ray diffraction, Raman and transmission electron microscope (TEM) investigations on the microstructures showed monoclinic phase of gallium oxide and single crystalline structure. The scanning electron microscopy (SEM) observations revealed that a huge super microsheet even grows up to 450 µm in length and 206 µm in width. Gallium oxide microstructures exhibit high crystallinity along (002) and (401), respectively. The PL spectrum of these microstructures excites a blue light band centered at 441 and 489nm. The growth mechanism of gallium oxide microstructures is discussed. These gallium oxide microstructures have great potential in functional devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst-free" title="catalyst-free">catalyst-free</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20oxide" title=" gallium oxide"> gallium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20oxide" title=" thermal oxide"> thermal oxide</a> </p> <a href="https://publications.waset.org/abstracts/144556/high-quality-gallium-oxide-microstructures-by-catalyst-free-thermal-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1437</span> Nitrite Sensor Platform Functionalized Reduced Graphene Oxide with Thionine Dye Based</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurulasma%20Zainudin">Nurulasma Zainudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20Mohd%20Yusoff"> Mashitah Mohd Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Feng%20Chong"> Kwok Feng Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functionalized reduced graphene oxide is essential importance for their end applications. Chemical functionalization of reduced graphene oxide with strange atoms is a leading strategy to modify the properties of the materials moreover maintains the inherent properties of reduced graphene oxide. A thionine functionalized reduce graphene oxide electrode was fabricated and was used to electrochemically determine nitrite. The electrochemical behaviour of thionine functionalized reduced graphene oxide towards oxidation of nitrite via cyclic voltammetry was studied and the proposed method exhibited enhanced electrocatalytic behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrite" title="nitrite">nitrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=thionine" title=" thionine"> thionine</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/37261/nitrite-sensor-platform-functionalized-reduced-graphene-oxide-with-thionine-dye-based" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1436</span> Synthesis, Characterization and Biological Properties of Half-Sandwich Complexes of Ruthenium(II), Rhodium(II) and Iridium(III)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Gilewska">A. Gilewska</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Masternak"> J. Masternak</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kazimierczuk"> K. Kazimierczuk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Turlej"> L. Turlej</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wietrzyk"> J. Wietrzyk</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Barszcz"> B. Barszcz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Platinum-based drugs are now widely used as chemotherapeutic agents. However the platinum complexes show the toxic side-effects: i) the development of platinum resistance; ii) the occurrence of severe side effects, such as nephro-, neuro- and ototoxicity; iii) the high toxicity towards human fibroblast. Therefore the development of new anticancer drugs containing different transition-metal ions, for example, ruthenium, rhodium, iridium is a valid strategy in cancer treatment. In this paper, we reported the synthesis, spectroscopic, structural and biological properties of complexes of ruthenium, rhodium, and iridium containing N,N-chelating ligand (2,2’-bisimidazole). These complexes were characterized by elemental analysis, UV-Vis and IR spectroscopy, X-ray diffraction analysis. These complexes exhibit a typical pseudotetrahedral three-legged piano-stool geometry, in which the aromatic arene ring forms the seat of the piano-stool, while the bidentate 2,2’-bisimidazole (ligand) and the one chlorido ligand form the three legs of the stool. The spectroscopy data (IR, UV-Vis) and elemental analysis correlate very well with molecular structures. Moreover, the cytotoxic activity of the complexes was carried out on human cancer cell lines: LoVo (colorectal adenoma), MV-4-11 (myelomonocytic leukaemia), MCF-7 (breast adenocarcinoma) and normal healthy mouse fibroblast BALB/3T3 cell lines. To predict a binding mode, a potential interaction of metal complexes with calf thymus DNA (CT-DNA) and protein (BSA) has been explored using UV absorption and circular dichroism (CD). It is interesting to note that the investigated complexes show no cytotoxic effect towards the normal BALB/3T3 cell line, compared to cisplatin, which IC₅₀ values was determined as 2.20 µM. Importantly, Ru(II) displayed the highest activity against HL-60 (IC₅₀ 4.35 µM). The biological studies (UV-Vis and circular dichroism) suggest that arene-complexes could interact with calf thymus DNA probably via an outside binding mode and interact with protein (BSA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ruthenium%28II%29%20complex" title="ruthenium(II) complex">ruthenium(II) complex</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodium%28III%29%20complex" title=" rhodium(III) complex"> rhodium(III) complex</a>, <a href="https://publications.waset.org/abstracts/search?q=iridium%28III%29%20complex" title=" iridium(III) complex"> iridium(III) complex</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20activity" title=" biological activity"> biological activity</a> </p> <a href="https://publications.waset.org/abstracts/104529/synthesis-characterization-and-biological-properties-of-half-sandwich-complexes-of-rutheniumii-rhodiumii-and-iridiumiii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1435</span> Enhanced Exchange Bias in Poly-crystalline Compounds through Oxygen Vacancy and B-site Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koustav%20Pal">Koustav Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Indranil%20Das"> Indranil Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times, perovskite and double perovskite (DP) systems attracts lot of interest as they provide a rich material platform for studying emergent functionalities like near-room-temperature ferromagnetic (FM) insulators, exchange bias (EB), magnetocaloric effects, colossal magnetoresistance, anisotropy, etc. These interesting phenomena emerge because of complex couplings between spin, charge, orbital, and lattice degrees of freedom in these systems. Various magnetic phenomena such as exchange bias, spin glass, memory effect, colossal magneto-resistance, etc. can be modified and controlled through antisite (B-site) disorder or controlling oxygen concentration of the material. By controlling oxygen concentration in SrFe0.5Co0.5O3 – δ (SFCO) (δ ∼ 0.3), we achieve intrinsic exchange bias effect with a large exchange bias field (∼1.482 Tesla) and giant coercive field (∼1.454 Tesla). Now we modified the B-site by introducing 10% iridium in the system. This modification give rise to the exchange bias field as high as 1.865 tesla and coercive field 1.863 tesla. Our work aims to investigate the effect of oxygen deficiency and B-site effect on exchange bias in oxide materials for potential technological applications. Structural characterization techniques including X-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy were utilized to determine crystal structure and particle size. X-ray photoelectron spectroscopy was used to identify valence states of the ions. Magnetic analysis revealed that oxygen deficiency resulted in a large exchange bias due to a significant number of ionic mixtures. Iridium doping was found to break interaction paths, resulting in various antiferromagnetic and ferromagnetic surfaces that enhance exchange bias. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coercive%20field" title="coercive field">coercive field</a>, <a href="https://publications.waset.org/abstracts/search?q=disorder" title=" disorder"> disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20bias" title=" exchange bias"> exchange bias</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20glass" title=" spin glass"> spin glass</a> </p> <a href="https://publications.waset.org/abstracts/167083/enhanced-exchange-bias-in-poly-crystalline-compounds-through-oxygen-vacancy-and-b-site-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1434</span> Facile Fabrication of Nickel/Zinc Oxide Hollow Spheres Nanostructure and Photodegradation of Congo Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Mousavi">Seyed Mohsen Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Behjat%20Afshari"> Behjat Afshari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Nickel/Zinc Oxide hollow spherical structures with high surface area using the template Fructose was prepared by the hydrothermal method using a ultrasonic bath at room temperature was produced and were identified by FTIR, XRD, FE-SEM. The photocatalytic activity of synthesized hollow spherical Nickel/Zinc Oxide was studied in the destruction of Congo red as Azo dye. The results showed that the photocatalytic activity of Nickel/ Zinc Oxide hollow spherical nanostructures is improved compared with zinc oxide hollow sphere and other morphologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dye" title="azo dye">azo dye</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20spheres" title=" hollow spheres"> hollow spheres</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%2Fzinc%20oxide" title=" nickel/zinc oxide"> nickel/zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/36139/facile-fabrication-of-nickelzinc-oxide-hollow-spheres-nanostructure-and-photodegradation-of-congo-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1433</span> Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Changizi">E. Changizi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi"> E. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ramezanzadeh"> B. Ramezanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavian"> M. Mahdavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphen%20oxide" title="graphen oxide">graphen oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyisocyanate" title=" polyisocyanate"> polyisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR "> FTIR </a> </p> <a href="https://publications.waset.org/abstracts/11430/covalent-functionalization-of-graphene-oxide-with-aliphatic-polyisocyanate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1432</span> Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Pauport%C3%A9">Thierry Pauporté</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxide" title="oxide">oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20perovskite" title=" hybrid perovskite"> hybrid perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a> </p> <a href="https://publications.waset.org/abstracts/65396/key-roles-of-the-n-type-oxide-layer-in-hybrid-perovskite-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1431</span> Removal of Nickel and Zinc Ions from Aqueous Solution by Graphene Oxide and Graphene Oxide Functionalized Glycine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rajabi">M. Rajabi</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Moradi"> O. Moradi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, removal of Nickel and Zinc by graphene oxide and functionalized graphene oxide–gelaycin surfaces was examined. Amino group was added to surface of graphene oxide to produced functionalized graphene oxide–gelaycin. Effect of contact time and initial concentration of Ni (II) and Zn(II) ions were studied. Results showed that with increase of initial concentration of Ni (II) and Zn(II) adsorption capacity was increased. After 50 min has not a large change at adsorption capacity therefore, 50 min was selected as optimaze time. Scanning electron microscope (SEM) and fourier transform infrared (FT-IR) spectroscopy spectra used for the analysis confirmed the successful fictionalization of the Graphene oxide surface. Adsorption experiments of Ni (II) and Zn(II) ions graphene oxide and functionalized graphene oxide–gelaycin surfaces fixed at 298 K and pH=6. The Pseudo Firs-order and the Pseudo Second-order (types I, II, III and IV) kinetic models were tested for adsorption process and results showed that the kinetic parameters best fits with to type (I) of pseudo-second-order model because presented low X2 values and also high R2 values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gelaycin" title=" gelaycin"> gelaycin</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gelaycin" title=" gelaycin"> gelaycin</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/39809/removal-of-nickel-and-zinc-ions-from-aqueous-solution-by-graphene-oxide-and-graphene-oxide-functionalized-glycine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1430</span> Delamination of Scale in a Fe Carbon Steel Surface by Effect of Interface Roughness and Oxide Scale Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Lee">J. M. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20R.%20Noh"> W. R. Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Y.%20Kim"> C. Y. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Lee"> M. G. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delamination of oxide scale has been often discovered at the interface between Fe carbon steel and oxide scale. Among several mechanisms of this delamination behavior, the normal tensile stress to the substrate-scale interface has been described as one of the main factors. The stress distribution at the interface is also known to be affected by thermal expansion mismatch between substrate and oxide scale, creep behavior during cooling and the geometry of the interface. In this study, stress states near the interface in a Fe carbon steel with oxide scale have been investigated using FE simulations. The thermal and mechanical properties of oxide scales are indicated in literature and Fe carbon steel is measured using tensile testing machine. In particular, the normal and shear stress components developed at the interface during bending are investigated. Preliminary numerical sensitivity analyses are provided to explain the effects of the interface geometry and oxide thickness on the delamination behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxide%20scale" title="oxide scale">oxide scale</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20analysis" title=" Fe analysis"> Fe analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20state" title=" stress state"> stress state</a> </p> <a href="https://publications.waset.org/abstracts/43731/delamination-of-scale-in-a-fe-carbon-steel-surface-by-effect-of-interface-roughness-and-oxide-scale-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1429</span> Fabrication of Tin Oxide and Metal Doped Tin Oxide for Gas Sensor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goban%20Kumar%20Panneer%20Selvam">Goban Kumar Panneer Selvam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In past years, there is lots of death caused due to harmful gases. So its very important to monitor harmful gases for human safety, and semiconductor material play important role in producing effective gas sensors.A novel solvothermal synthesis method based on sol-gel processing was prepared to deposit tin oxide thin films on glass substrate at high temperature for gas sensing application. The structure and morphology of tin oxide were analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM analysis of how spheres shape in tin oxide nanoparticles. The structure characterization of tin oxide studied by X-ray diffraction shows 8.95 nm (calculated by sheers equation). The UV visible spectroscopy indicated a maximum absorption band shown at 390 nm. Further dope tin oxide with selected metals to attain maximum sensitivity using dip coating technique with different immersion and sensing characterization are measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tin%20oxide" title="tin oxide">tin oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine%20free" title=" chlorine free"> chlorine free</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20size" title=" crystalline size"> crystalline size</a> </p> <a href="https://publications.waset.org/abstracts/154626/fabrication-of-tin-oxide-and-metal-doped-tin-oxide-for-gas-sensor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1428</span> Characterization of Graphene Oxide Coated Gold Electrodes for Bioimpedance Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20G%C3%BClden%20%C5%9Ei%CC%87m%C5%9Fek">Fatma Gülden Şi̇mşek</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Meli%CC%87h%20Can"> Osman Meli̇h Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yumak"> Mehmet Yumak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bora%20Gari%CC%87pcan"> Bora Gari̇pcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yekta%20%C3%9Clgen"> Yekta Ülgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the impedance spectroscopy is used as a detection tool in order to characterize surface coating with graphene oxide. Gold electrodes are produced by standard lithography procedures and then coated with graphene oxide using self-assembly method. The impedance of redox solution through bare gold electrodes and graphene oxide coated gold electrodes is measured in the low and high frequency range. The graphene oxide coating reduces the impedance value of the gold electrode and this reduction is distinguishable in the low-frequency range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioimpedance" title="bioimpedance">bioimpedance</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20characterization" title=" electrode characterization"> electrode characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20electrodes" title=" gold electrodes"> gold electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/47355/characterization-of-graphene-oxide-coated-gold-electrodes-for-bioimpedance-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1427</span> Synthesize of Cobalt Oxide Nanoballs/Carbon Aerogel Nanostructures: Towards High-Performance Materials for Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bahadoran">A. Bahadoran</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zomorodian"> M. Zomorodian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesizer of cobalt oxide nanoballs (length 3−4 μm, width 250−400 nm) was achieved by a simple high-temperature supercritical solution method. Multiwalled carbon aerogels are a step towards high-density nanometer-scale nanostructures. Cobalt oxide nanoballs were prepared by supercritical solution method. Synthesis in an aqueous solution containing cobalt hydroxide at ∼80 °C without any further heat treatment at high temperature. The formation of cobalt oxide nanoballs on carbon aerogel was confirmed by X-ray diffraction and Raman spectroscopy. The FE-SEM images showed the presence of cobalt oxide nanoballs. The reaction mechanism of the ultrasound-assisted synthesis of cobalt oxide nanostructures was proposed on the basis of the XRD, X-ray absorption spectroscopy analysis and FE-SEM observation of the reaction products taken during the course of the synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide%20nano%20balls" title="cobalt oxide nano balls">cobalt oxide nano balls</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20aerogel" title=" carbon aerogel"> carbon aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesize" title=" synthesize"> synthesize</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/37845/synthesize-of-cobalt-oxide-nanoballscarbon-aerogel-nanostructures-towards-high-performance-materials-for-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1426</span> Eresa, Hospital General Universitario de Elche</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Singh">Ashish Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehak%20Gulati"> Mehak Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Verma"> Neelam Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arginine majorly acts as a substrate for the enzyme nitric oxide synthase (NOS) for the production of nitric oxide, a strong vasodilator. Current study demonstrated a novel amperometric approach for estimation of arginine using nitric oxide synthase. The enzyme was co-immobilized in carbon paste electrode with NADP+, FAD and BH4 as cofactors. The detection principle of the biosensor is enzyme NOS catalyzes the conversion of arginine into nitric oxide. The developed biosensor could able to detect up to 10-9M of arginine. The oxidation peak of NO was observed at 0.65V. The developed arginine biosensor was used to monitor arginine content in fruit juices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arginine" title="arginine">arginine</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20paste%20elctrode" title=" carbon paste elctrode"> carbon paste elctrode</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a> </p> <a href="https://publications.waset.org/abstracts/28880/eresa-hospital-general-universitario-de-elche" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1425</span> Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Razavizadeh">Roya Razavizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Soltaninejad"> Razieh Soltaninejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakimeh%20Oloumi"> Hakimeh Oloumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=licorice%20%28glycyrrhiza%20glabra%20L.%29" title=" licorice (glycyrrhiza glabra L.)"> licorice (glycyrrhiza glabra L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=glycyrrhizin" title=" glycyrrhizin"> glycyrrhizin</a> </p> <a href="https://publications.waset.org/abstracts/23030/changes-in-amounts-of-glycyrrhizin-and-phenolic-compounds-of-glycrrhiza-glabra-l-seedlings-treated-by-copper-and-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1424</span> Effects of Phase and Morphology on the Electrochemical and Electrochromic Performances of Tungsten Oxide and Tungsten-Molybdenum Oxide Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinjoo%20Jung">Jinjoo Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayeon%20Won"> Hayeon Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Doyeong%20Jeong"> Doyeong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Hyung%20Kim"> Do Hyung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the electrochemical and electrochromic performance of the novel crystalline tungsten oxide and tungsten-molybdenum oxide nanostructures synthesized by utilizing solvo-thermal method with hexacarbonyl tungsten, hexacarbonyl molybdenum, and ethyl alcohol. The morphology and phase of the prepared products were highly dependent on the synthesis conditions such as synthesis and annealing temperature, synthesis time, and precursor ratio. The tungsten oxide nanostructures (TCNs) have urchin-like or spherical nanostructure with different phase of W18O49 and WO3. The morphology of tungsten-molybdenum oxide nanostructures (TMONs) is basically similar to that of TCNs. However, the morphology and phase of TMONs are more diverse and are strongly dependent on the composition ratios of W/Mo in the precursor. The electrochemical properties depending on their morphologies and phases of TCNs and TMONs are compared using cyclic voltammetry and galvanostatic charge/discharge tests. The relationship between the electrochromic performance and phase structures/morphologies of nanostructured TCNs and TMONs are systematically investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title=" electrochromic"> electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten%20oxide" title=" tungsten oxide"> tungsten oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten-molybdenum%20oxide" title=" tungsten-molybdenum oxide"> tungsten-molybdenum oxide</a> </p> <a href="https://publications.waset.org/abstracts/21623/effects-of-phase-and-morphology-on-the-electrochemical-and-electrochromic-performances-of-tungsten-oxide-and-tungsten-molybdenum-oxide-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1423</span> Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Krisshna%20Gunasekaran">Nithin Krisshna Gunasekaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathima%20Prabhu%20Tumkur"> Prathima Prabhu Tumkur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Nazario%20Bayon"> Nicole Nazario Bayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnan%20Prabhakaran"> Krishnan Prabhakaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Hall"> Joseph C. Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Govindarajan%20T.%20Ramesh"> Govindarajan T. Ramesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title=" cerium oxide"> cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric" title=" turmeric"> turmeric</a> </p> <a href="https://publications.waset.org/abstracts/147482/turmeric-mediated-synthesis-and-characterization-of-cerium-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1422</span> An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh">S. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Patel"> P. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kachhadiya"> D. Kachhadiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Dharaskar"> Swapnil Dharaskar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20oxide%20nanoparticles" title="aluminium oxide nanoparticles">aluminium oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide%20nanoparticles" title=" cobalt oxide nanoparticles"> cobalt oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20additives" title=" fuel additives"> fuel additives</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20characteristics" title=" fuel characteristics"> fuel characteristics</a> </p> <a href="https://publications.waset.org/abstracts/72707/an-experimental-investigation-on-the-fuel-characteristics-of-nano-aluminium-oxide-and-nano-cobalt-oxide-particles-blended-in-diesel-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1421</span> Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Sanaee">Zeinab Sanaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Jafaripour"> Hossein Jafaripour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Copper" title="Copper">Copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Copper%20oxide" title=" Copper oxide"> Copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing" title=" Hydrogen annealing"> Hydrogen annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=Lithium%20ion%20battery" title=" Lithium ion battery"> Lithium ion battery</a> </p> <a href="https://publications.waset.org/abstracts/158298/facile-synthesis-of-copper-based-nanowires-suitable-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1420</span> Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Pulit-Prociak">Jolanta Pulit-Prociak</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Dlugosz"> Olga Dlugosz</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Banach"> Marcin Banach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20system" title=" drug delivery system"> drug delivery system</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/138037/studies-on-modified-zinc-oxide-nanoparticles-as-potential-drug-carrier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1419</span> Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anasheh%20Maridiroosi">Anasheh Maridiroosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanieh%20Fakhri"> Hanieh Fakhri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heteropoly%20acid" title="heteropoly acid">heteropoly acid</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline" title=" tetracycline"> tetracycline</a> </p> <a href="https://publications.waset.org/abstracts/115134/effective-photodegradation-of-tetracycline-by-a-heteropoly-acidgraphene-oxide-nanocomposite-based-on-uio-66" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1418</span> Dependence of Ionomer Loading on the Hydrogen Generation Rate of a Proton Exchange Membrane Electrolyzer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingjeng%20James%20Li">Yingjeng James Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih%20Chi%20Hsu"> Chih Chi Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiao-Chih%20Hu"> Chiao-Chih Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane electrode assemblies MEAs for proton exchange membrane PEM water electrolyzers were prepared by employing 175um perfluorosulfonic acid PFSA membranes as the PEM, onto which iridium oxide catalyst was coated on one side as the anode and platinum catalyst was coated on the other side as the cathode. The cathode catalyst ink was prepared so that the weight ratio of the catalyst powder to ionomer was 75:25, 70:30, 65:35, 60:40, and 55:45, respectively. Whereas, the ratio of catalyst powder to ionomer of the anode catalyst ink keeps constant at 50:50. All the MEAs have a catalyst coated area of 5cm*5cm. The test cell employs a platinum plated titanium grid as anode gas diffusion media; whereas, carbon paper was employed as the cathode gas diffusion media. The measurements of the MEA gases production rate were carried out by holding the cell voltage ranging from 1.6 to 2.8 volts at room temperature. It was found that the MEA with cathode catalyst to ionomer ratio of 65:35 gives the largest hydrogen production rate which is 2.8mL/cm2*min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrolyzer" title="electrolyzer">electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20electrode%20assembly" title=" membrane electrode assembly"> membrane electrode assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane" title=" proton exchange membrane"> proton exchange membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ionomer" title=" ionomer"> ionomer</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/72426/dependence-of-ionomer-loading-on-the-hydrogen-generation-rate-of-a-proton-exchange-membrane-electrolyzer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1417</span> Effect of Graphene Oxide Nanoparticles on a Heavy Oilfield: Interfacial Tension, Wettability and Oil Displacement Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimena%20Lizeth%20Gomez%20Delgado">Jimena Lizeth Gomez Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhon%20Jairo%20Rodriguez"> Jhon Jairo Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Santos"> Nicolas Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia%20Ospino"> Enrique Mejia Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has played an important role in the hydrocarbon industry, recently , due to the unique properties of graphene oxide nanoparticles, they have been incorporated in different studies enhanced oil recovery. Nonetheless, very few studies have used graphene oxide nanoparticles in coreflooding experiments. Herein, the use of Graphene oxide (GO) nanoparticle was explored, exploited and evaluated. The performance of Graphene oxide nanoparticles on the interfacial properties in the presence of different electrolyte concentrations representative of field brine and pH conditions was investigated. Moreover, wettability behavior of the nanofluid at the oil/sand interface was studied used contact angle and Amott Harvey evaluation. Experimental result shows that the adsorption of GO on the sandstone surface changes the wettability of the sandstone from being strongly crude oil-wet to intermediate crude oil-wettability. At 900 ppm formation brine with 8 pH solution and 0.09 wt% nanoparticles concentration, Graphene oxide nanofluid exhibited better performance under the different electrolyte concentration studied. Finally, heavy oil displacement test in sandstone cores showed that oil recovery of Graphene oxide nanofluid had 7% incremental oil recovery over conventional waterflooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=coreflooding" title=" coreflooding"> coreflooding</a> </p> <a href="https://publications.waset.org/abstracts/177299/effect-of-graphene-oxide-nanoparticles-on-a-heavy-oilfield-interfacial-tension-wettability-and-oil-displacement-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=iridium%20oxide&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>