CINXE.COM

Search results for: muscle strengthening programme

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: muscle strengthening programme</title> <meta name="description" content="Search results for: muscle strengthening programme"> <meta name="keywords" content="muscle strengthening programme"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="muscle strengthening programme" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="muscle strengthening programme"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2057</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: muscle strengthening programme</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Effectiveness of Impairment Specified Muscle Strengthening Programme in a Group of Disabled Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20I.%20Prasanna">A. L. I. Prasanna</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Liyanage"> E. Liyanage</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Rajaratne"> S. A. Rajaratne</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20A.%20P.%20Kariyawasam"> K. P. A. P. Kariyawasam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20J.%20Rajaratne"> A. A. J. Rajaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maintaining or improving the muscle strength of the injured body part is essential to optimize performance among disabled athletes. General conditioning and strengthening exercises might be ineffective if not sufficiently intense enough or targeted for each participant’s specific impairment. Specific strengthening programme, targeted to the affected body part, are essential to improve the strength of impaired muscles and increase in strength will help reducing the impact of disability. Methods: The muscle strength of hip, knee and ankle joints was assessed in a group of randomly selected disabled athletes, using the Medical Research Council (MRC) grading. Those having muscle strength of grade 4 or less were selected for this study (24 in number) and were given and a custom made exercise program designed to strengthen their hip, knee or ankle joint musculature, according to the muscle or group of muscles affected. Effectiveness of the strengthening program was assessed after a period of 3 months. Results: Statistical analysis was done using the Minitab 16 statistical software. A Mann-Whitney U test was used to compare the strength of muscle group before and after exercise programme. A significant difference was observed after the three month strengthening program for knee flexors (Left and Right) (P =0.0889, 0.0312) hip flexors (left and right) (P=0.0312, 0.0466), hip extensors (Left and Right) (P=0.0478, 0.0513), ankle plantar flexors (Left and Right) (P=0.0466, 0.0423) and right ankle dorsiflexors (P= 0.0337). No significant difference of strength was observed after the strengthening program in the knee extensors (left and right), hip abductors (left and right) and left ankle dorsiflexors. Conclusion: Impairment specific exercise programme appear to be beneficial for disabled athletes to significantly improve the muscle strength of the affected joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme" title="muscle strengthening programme">muscle strengthening programme</a>, <a href="https://publications.waset.org/abstracts/search?q=disabled%20athletes" title=" disabled athletes"> disabled athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation%20sciences" title=" rehabilitation sciences"> rehabilitation sciences</a> </p> <a href="https://publications.waset.org/abstracts/1783/effectiveness-of-impairment-specified-muscle-strengthening-programme-in-a-group-of-disabled-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> An Assessment of the Hip Muscular Imbalance for Patients with Rheumatism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Bawa">Anthony Bawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Banitsas"> Konstantinos Banitsas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatism is a muscular disorder that affects the muscles of the upper and lower limbs. This condition could potentially progress to impair the movement of patients. This study aims to investigate the hip muscular imbalance in patients with chronic rheumatism. A clinical trial involving a total of 15 participants, made up of 10 patients and 5 control subjects, took place in KATH Hospital between August and September. Participants recruited for the study were of age 54 ± 8years, weight 65± 8kg, and height 176 ± 8cm. Muscle signals were recorded from the rectus femoris, and vastus lateralis on the right and left hip of participants. The parameters used in determining the hip muscular imbalances were the maximum voluntary contraction (MVC%), the mean difference, and hip muscle fatigue levels. The mean signals were compared using a t-test, and the metrics for muscle fatigue assessment were based on the root mean square (RMS), mean absolute value (MAV) and mean frequency (MEF), which were computed between the hip muscles of participants. The results indicated that there were significant imbalances in the muscle coactivity between the right and left hip muscles of patients. The patients’ MVC values were observed to be above 10% when compared with control subjects. Furthermore, the mean difference was seen to be higher with p > 0.002 among patients, which indicated clear differences in the hip muscle contraction activities. The findings indicate significant hip muscular imbalances for patients with rheumatism compared with control subjects. Information about the imbalances among patients will be useful for clinicians in designing therapeutic muscle-strengthening exercises. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscular" title="muscular">muscular</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalances" title=" imbalances"> imbalances</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatism" title=" rheumatism"> rheumatism</a>, <a href="https://publications.waset.org/abstracts/search?q=Hip" title=" Hip"> Hip</a> </p> <a href="https://publications.waset.org/abstracts/161064/an-assessment-of-the-hip-muscular-imbalance-for-patients-with-rheumatism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> The Effect of Proprioceptive Neuromuscular Facilitation and Lumbar Stabilization Exercises on Muscle Strength and Muscle Endurance in Patients with Lumbar Disc Hernia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gulsen">Mustafa Gulsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitat%20Koz"> Mitat Koz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to investigate the effect of lumbar stabilisation and proprioceptive neuromuscular facilitation (PNF) training on muscle strength and muscle endurance. The participants were 64 between the ages of 15-69 (53.04 ± 14.59), who were graded protrusion and bulging lumbar herniation according to 'Macnab Classification'. The participants were divided into four groups as each group had 16 participants: lumbar stabilitation training, PNF training, physical therapy and control groups. Sociodemographic features were recorded. Then their muscle strength tests (by isokinetic dynamometer (Cybex 770 Norm Lumex Inc, Ronkonkoma, NY, USA) were recorded. Before and after applications; visual analogue scale (VAS), Oswestry Disability İndex were applied by a physical therapist. The participants in lumbar stabilisation group performed 45 minutes, 5 days in a week for 4 weeks strength training with a physical therapist observation. The participants in PNF group performed 5 days in a week for 4 weeks with pelvic patterns of PNF by a physiotherapist. The participants in physical therapy group underwent Hotpack, Tens and Ultrasound therapy 5 days in a week for 4 weeks. The participants in control group didn’t take any training programme. After 4 weeks, the evaluations were repeated. There were significant increases in muscle strength and muscle endurance in lumbar stabilization training group. Also in pain intensity at rest and during activity in this group and in Oswestry disability index of patients, there were significant improvements (p < 0.05). In PNF training group likewise, there were significant improvements in muscle strength, muscle endurance, pain intensity at rest and with activity and in Oswestry disability index (p < 0.05). But improvements in the Lumbar Stabilization group was better than PNF Group. We found significant differences only in pain intensity at rest and with activity and in Oswestry disability index (p < 0.05). in the patients in Physical Therapy group. We think that appropriate physiotherapy and rehabilitation program which will be prepared for patients, to protect the waist circumference of patients with low muscle strength and low muscle endurance will increase muscle strength and muscle endurance. And it is expected that will reduce pain and will provide advances toward correcting functional disability of the patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disc%20herniation" title="disc herniation">disc herniation</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance" title=" endurance"> endurance</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20stabilitation%20exercises" title=" lumbar stabilitation exercises"> lumbar stabilitation exercises</a>, <a href="https://publications.waset.org/abstracts/search?q=PNF" title=" PNF"> PNF</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/84516/the-effect-of-proprioceptive-neuromuscular-facilitation-and-lumbar-stabilization-exercises-on-muscle-strength-and-muscle-endurance-in-patients-with-lumbar-disc-hernia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> Influence of Strengthening of Hip Abductors and External Rotators in Treatment of Patellofemoral Pain Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Abdel%20Aty%20Hassan%20Mohamed">Karima Abdel Aty Hassan Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Mohamed%20Ismail"> Manal Mohamed Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Hassan%20Gamal%20Eldein"> Mona Hassan Gamal Eldein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hassan%20Hussein"> Ahmed Hassan Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Aziz%20Mohamed%20Elsingerg"> Abdel Aziz Mohamed Elsingerg </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Patellofemoral pain (PFP) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor, yet the relationships between pain, hip muscle strength and function are not known. Objective: The purpose of this study is to investigate the effects of strengthening hip abductors and lateral rotators on pain intensity, function and hip abductor and hip lateral rotator eccentric and concentric torques in patients with PFPS. Methods: Thirty patients had participated in this study; they were assigned into two experimental groups. With age ranged for eighty to thirty five years. Group A consisted of 15 patients (11females and 4 males) with mean age 20.8 (±2.73) years, received closed kinetic chain exercises program, stretching exercises for tight lower extremity soft tissues, and hip strengthening exercises .Group B consisted of 15 patients (12 females and 3 males) with mean age 21.2(±3.27) years, received closed kinetic chain exercises program and stretching exercises for tight lower extremity soft tissues. Treatment was given 2-3times/week, for 6 weeks. Patients were evaluated pre and post treatment for their pain severity, function of knee joint, hip abductors and external rotators concentric/eccentric peak torque. Result: the results revealed that there were significant differences in pain and function between both groups, while there was improvement for all values for both group. Conclusion: Six weeks rehabilitation program focusing on knee strengthening exercises either supplemented by hip strengthening exercises or not effective in improving function, reducing pain and improving hip muscles torque in patients with PFPS. However, adding hip abduction and lateral rotation strengthening exercises seem to reduce pain and improve function more efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patellofemoral%20pain%20syndrome" title="patellofemoral pain syndrome">patellofemoral pain syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=hip%20muscles" title=" hip muscles"> hip muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=isokinetic" title=" isokinetic "> isokinetic </a> </p> <a href="https://publications.waset.org/abstracts/23022/influence-of-strengthening-of-hip-abductors-and-external-rotators-in-treatment-of-patellofemoral-pain-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> The Effect of Seated Distance on Muscle Activation and Joint Kinematics during Seated Strengthening in Patients with Stroke with Extensor Synergy Pattern in the Lower Limbs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Chen">Y. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Y.%20Chiang"> P. Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Sugiarto"> T. Sugiarto</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Karsuna"> I. Karsuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Lin"> Y. J. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Chang"> C. C. Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20C.%20Hsu"> W. C. Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Task-specific training with intense practice of functional tasks has been emphasized for the approaches in motor rehabilitation in patients with hemiplegic strokes. Although reciprocal actions which may increase demands on motor control during seated stepping exercise, motor control is not explicitly trained with emphasis and instruction focused on traditional strengthening. Apart from cycling and treadmill, various forms of seated exerciser are becoming available for the lower extremity exercise. The benefit of seated exerciser has been focused on the effect on the cardiopulmonary system. Thus, the aim of current study is to investigate the effect of seated distance on muscle activation during seated strengthening in patients with stroke with extensor synergy pattern in the lower extremities. Electrodes were placed on the surface of lower limbs muscles, including rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF) and gastrocnemius (GT) of both sides. Maximal voluntary contraction (MVC) of the muscles were obtained to normalize the EMG amplitude obtained during dynamic trials with analog raw data digitized with a sampling frequency of 2000 Hz, fully rectified and the linear enveloped. Movement cycle was separated into two phases by pushing (PP) and Return (RP). Integral EMG (iEMG) is then used to quantify level of activation during each of the phases. Subjects performed strengthening with moderate resistance with speed of 60 rpm in two different distances (D1, short) and (D2, long). The results showed greater iEMG in RF and smaller iEMG in VL and BF with obvious increase range of motion of hip flexion in D1 condition. On the contrary, no significant involvement of RF while greater level of muscular activation in VL and BF during RP was found during PP in D2 condition. In addition, greater hip internal rotation was observed in D2 condition. In patients with stroke with abnormal tone revealed by extensor synergy in the lower extremities, shorter seated distance is suggested to facilitate hip flexor muscle activation while avoid inducing hyper extensor tone which may prevent a smooth repetitive motion. Repetitive muscular contraction exercise of hip flexor may be helpful for further gait training as it may assist hip flexion during swing phase of the walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seated%20strengthening" title="seated strengthening">seated strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=patients%20with%20stroke" title=" patients with stroke"> patients with stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=electromyography" title=" electromyography"> electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=synergy%20pattern" title=" synergy pattern"> synergy pattern</a> </p> <a href="https://publications.waset.org/abstracts/75561/the-effect-of-seated-distance-on-muscle-activation-and-joint-kinematics-during-seated-strengthening-in-patients-with-stroke-with-extensor-synergy-pattern-in-the-lower-limbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2052</span> Developing Teachers as Change Agents: A Qualitative Study of Master of Education Graduates in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Afzal%20Tajik">Mir Afzal Tajik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 'Strengthening Teacher Education in Pakistan' (STEP) is an innovative programme jointly funded by the Government of Canada and the Aga Khan Foundation Canada and implemented by the Aga Khan University - Institute for Educational Development (AKU-IED) in partnership with the local governments, education departments and communities in the provinces of Balochistan, Sindh and Gilgit-Baltistan in Pakistan. One of the key components of the programme is the professional development of teachers, headteachers and teacher educators through a variety of teacher education programmes including a two-year Masters of Education (MEd) Programme offered by AKU-IED. A number of teachers, headteachers and teacher educators from these provinces have been developed through the MEd Programme. This paper discusses a qualitative research study conducted to explore the nature, relevance, rigor and richness of the experiences of the MEd graduates, and how these experiences have fostered their own professional development and their ability to bring about positive changes in their schools. The findings of the study provide useful insights into the graduates’ self-actualization, the transformation of their professional beliefs and practices, the difference they have made in their schools, and the challenges they face. The study also provides recommendations for policy and practice related to teacher education programmes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=STEP" title="STEP">STEP</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20education" title=" teacher education"> teacher education</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=Canada" title=" Canada"> Canada</a>, <a href="https://publications.waset.org/abstracts/search?q=Aga%20Khan%20foundation" title=" Aga Khan foundation"> Aga Khan foundation</a> </p> <a href="https://publications.waset.org/abstracts/43725/developing-teachers-as-change-agents-a-qualitative-study-of-master-of-education-graduates-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2051</span> Teachers as Agents of Change: A Qualitative Study of Master of Education Graduates from Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Afzal%20Tajik">Mir Afzal Tajik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 'Strengthening Teacher Education in Pakistan' (STEP) is an innovative programme jointly funded by the Government of Canada and the Aga Khan Foundation Canada and implemented by the Aga Khan University - Institute for Educational Development (AKU-IED) in partnership with the local governments, education departments and communities in the provinces of Balochistan, Sindh and Gilgit-Baltistan in Pakistan. One of the key components of the programme is professional development of teachers, head teachers and teacher educators through a variety of teacher education programmes including a two-year Masters of Education (MEd) Programme offered by AKU-IED. A number of teachers, head teachers and teacher educators from these provinces have been developed through the MEd Programme. This paper discusses a qualitative research study conducted to explore the nature, relevance, rigor and richness of the experiences of the MEd graduates, and how these experiences have fostered their own professional development and their ability to bring about positive changes in their schools. The findings of the study provide useful insights into the graduates’ self-actualization, transformation of their professional beliefs and practices, the difference they have made in their schools, and the challenges they face. The study also provides evidences of how the implementation of this multi-stakeholders and multi-partners STEP programme has led to the development of ‘communities of practice’ in schools. The study then makes a number of recommendations for policy and practice related to teacher education programmes as well as for partnerships in education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=STEP" title="STEP">STEP</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20agents" title=" change agents"> change agents</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=Canada" title=" Canada"> Canada</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20education" title=" teacher education"> teacher education</a>, <a href="https://publications.waset.org/abstracts/search?q=MEd" title=" MEd"> MEd</a> </p> <a href="https://publications.waset.org/abstracts/43728/teachers-as-agents-of-change-a-qualitative-study-of-master-of-education-graduates-from-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2050</span> Effect of Two Bouts of Eccentric Exercise on Knee Flexors Changes in Muscle-Tendon Lengths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shang-Hen%20Wu">Shang-Hen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chen%20Lin"> Yung-Chen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Song%20Chang"> Wei-Song Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Ju%20Lin"> Ming-Ju Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated whether the repeated bout effect (RBE) of knee flexors (KF) eccentric exercise would be changed in muscle-tendon lengths. Eight healthy university male students used their KF of non-dominant leg and performed a bout of 60 maximal isokinetic (30°/s) eccentric contractions (MaxECC1). A week after MaxECC1, all subjects used the same KF to perform a subsequent bout of MaxECC2. Changes in maximal isokinetic voluntary contraction torque (MVC-CON), muscle soreness (SOR), relaxed knee joint angle (RANG), leg circumference (CIR), and ultrasound images (UI; muscle-tendon length and muscle angle) were measured before, immediately after, 1-5 days after each bout. Two-way ANOVA was used to analyze all the dependent variables. After MaxECC1, all the dependent variables (e.g. MVC-CON: ↓30%, muscle-tendon length: ↑24%, muscle angle: ↑15%) showed significantly change. Following MaxECC2, all the above dependent variables (e.g. MVC-CON:↓21%, tendon length: ↑16%, muscle angle: ↑6%) were significantly smaller than those of MaxECC1. These results of this study found that protective effect conferred by MaxECC1 against MaxECC2, and changes in muscle damage indicators, muscle-tendon length and muscle angle following MaxECC2 were smaller than MaxECC1. Thus, the amount of shift of muscle-tendon length and muscle angle was related to the RBE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentric%20exercise" title="eccentric exercise">eccentric exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20isokinetic%20voluntary%20contraction%20torque" title=" maximal isokinetic voluntary contraction torque"> maximal isokinetic voluntary contraction torque</a>, <a href="https://publications.waset.org/abstracts/search?q=repeated%20bout%20effect" title=" repeated bout effect"> repeated bout effect</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/70166/effect-of-two-bouts-of-eccentric-exercise-on-knee-flexors-changes-in-muscle-tendon-lengths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2049</span> Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virgil%20Miranda">Virgil Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Gissele%20Mosqueda"> Gissele Mosqueda</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Delgado"> Pablo Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Yimesker%20Yihun"> Yimesker Yihun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90, and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of elbow flexion and extension task was investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76%, and 0.82% when using muscle relaxation periods of 60, 90, and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity, and knowing the optimal resting period will make the automation more effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rest%20intervals" title="rest intervals">rest intervals</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20biceps%20brachii" title=" muscle biceps brachii"> muscle biceps brachii</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20rehabilitation" title=" robot rehabilitation"> robot rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20fatigue" title=" muscle fatigue"> muscle fatigue</a> </p> <a href="https://publications.waset.org/abstracts/147766/optimal-rest-interval-between-sets-in-robot-based-upper-arm-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2048</span> Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shi-Uk%20Lee">Shi-Uk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae%20Young%20Lim"> Chae Young Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation" title="magnetic stimulation">magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20multifidus" title=" lumbar multifidus"> lumbar multifidus</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonography" title=" ultrasonography"> ultrasonography</a> </p> <a href="https://publications.waset.org/abstracts/37453/isolated-contraction-of-deep-lumbar-paraspinal-muscle-with-magnetic-nerve-root-stimulation-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2047</span> Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bingjie%20Wang">Bingjie Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianqian%20Qang"> Qianqian Qang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nan%20Lu"> Nan Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiubing%20Liang"> Xiubing Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baolong%20Shen"> Baolong Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%E2%82%82O%E2%82%83-reinforcement" title="Al₂O₃-reinforcement">Al₂O₃-reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=HfNbTaTiZrV" title=" HfNbTaTiZrV"> HfNbTaTiZrV</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20high-entropy%20alloy" title=" refractory high-entropy alloy"> refractory high-entropy alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=interstitial%20strengthening" title=" interstitial strengthening"> interstitial strengthening</a> </p> <a href="https://publications.waset.org/abstracts/158860/enhanced-high-temperature-strength-of-hfnbtatizrv-refractory-high-entropy-alloy-via-al2o3-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2046</span> The Effect of Fibre Orientation on the Mechanical Behaviour of Skeletal Muscle: A Finite Element Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christobel%20Gondwe">Christobel Gondwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongtao%20Lu"> Yongtao Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Mazz%C3%A0"> Claudia Mazzà</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinshan%20Li"> Xinshan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Skeletal muscle plays an important role in the human body system and function by generating voluntary forces and facilitating body motion. However, The mechanical properties and behaviour of skeletal muscle are still not comprehensively known yet. As such, various robust engineering techniques have been applied to better elucidate the mechanical behaviour of skeletal muscle. It is considered that muscle mechanics are highly governed by the architecture of the fibre orientations. Therefore, the aim of this study was to investigate the effect of different fibre orientations on the mechanical behaviour of skeletal muscle.In this study, a continuum mechanics approach–finite element (FE) analysis was applied to the left bicep femoris long head to determine the contractile mechanism of the muscle using Hill’s three-element model. The geometry of the muscle was segmented from the magnetic resonance images. The muscle was modelled as a quasi-incompressible hyperelastic (Mooney-Rivlin) material. Two types of fibre orientations were implemented: one with the idealised fibre arrangement, i.e. parallel single-direction fibres going from the muscle origin to insertion sites, and the other with curved fibre arrangement which is aligned with the muscle shape.The second fibre arrangement was implemented through the finite element method; non-uniform rational B-spline (FEM-NURBs) technique by means of user material (UMAT) subroutines. The stress-strain behaviour of the muscle was investigated under idealised exercise conditions, and will be further analysed under physiological conditions. The results of the two different FE models have been outputted and qualitatively compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM-NURBS" title="FEM-NURBS">FEM-NURBS</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mooney-Rivlin%20hyperelastic" title=" Mooney-Rivlin hyperelastic"> Mooney-Rivlin hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20architecture" title=" muscle architecture"> muscle architecture</a> </p> <a href="https://publications.waset.org/abstracts/22810/the-effect-of-fibre-orientation-on-the-mechanical-behaviour-of-skeletal-muscle-a-finite-element-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2045</span> The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Faridz%20Ahmad">Mohd Faridz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirul%20Hakim%20Hasbullah"> Amirul Hakim Hasbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical Muscle Stimulation (EMS) has been introduced to the world in the 19th and 20th centuries and has globally gained increasing attention on its usefulness. EMS is known as the application of electrical current transcutaneous to muscles through electrodes to induce involuntary contractions that can lead to the increment of muscle mass and strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training in 5 weeks interventions towards male body composition. It was a quasi-experimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=EMS" title=" EMS"> EMS</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle%20mass" title=" skeletal muscle mass"> skeletal muscle mass</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/36103/the-effects-of-electrical-muscle-stimulation-ems-towards-male-skeletal-muscle-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2044</span> Developing New Academics: So What Difference Does It Make?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nalini%20Chitanand">Nalini Chitanand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the dynamic nature of the higher education landscape, induction programmes for new academics has become the norm nowadays to support academics negotiate these rough terrain. This study investigates an induction programme for new academics in a higher education institution to establish what difference it has made to participants. The findings revealed that the benefits ranged from creating safe spaces for collaboration and networking to fostering reflective practice and contributing to the scholarship of teaching and learning. The study also revealed that some of the intentions of the programme may not have been achieved, for example transformative learning. This led to questioning whether this intention is an appropriate one given the short duration of the programme and the long, drawn out process of transformation. It may be concluded that the academic induction programme in this study serves to sow the seeds for transformative learning through fostering critically reflective practice. Recommendations for further study could include long term impact of the programme on student learning and success, these being the core business of higher education. It is also recommended that in addition to an induction programme, the university invests in a mentoring programme for new staff and extend the support for academics in order to sustain critical reflection and which may contribute to transformative educational practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20programme" title="induction programme">induction programme</a>, <a href="https://publications.waset.org/abstracts/search?q=reflective%20practice" title=" reflective practice"> reflective practice</a>, <a href="https://publications.waset.org/abstracts/search?q=scholarship%20of%20teaching" title=" scholarship of teaching"> scholarship of teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=transformative%20learning" title=" transformative learning"> transformative learning</a> </p> <a href="https://publications.waset.org/abstracts/19509/developing-new-academics-so-what-difference-does-it-make" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2043</span> Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Nandlal%20Sharma">Nisha Nandlal Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Julaluk%20Carmai"> Julaluk Carmai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiprasit%20Koetniyom"> Saiprasit Koetniyom</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernd%20Markert"> Bernd Markert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title="finite element model">finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20activation" title=" muscle activation"> muscle activation</a>, <a href="https://publications.waset.org/abstracts/search?q=THUMS" title=" THUMS"> THUMS</a>, <a href="https://publications.waset.org/abstracts/search?q=whiplash%20injury%20mechanism" title=" whiplash injury mechanism"> whiplash injury mechanism</a> </p> <a href="https://publications.waset.org/abstracts/42975/development-of-3d-neck-muscle-to-analyze-the-effect-of-active-muscle-contraction-in-whiplash-injury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2042</span> Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser-Eddine%20Attari">Nasser-Eddine Attari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressed axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength and mode of failure of the different strengthening solution considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibrereinforced%20polymers" title="fibrereinforced polymers">fibrereinforced polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=joints" title=" joints"> joints</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20columns" title=" beam columns"> beam columns</a> </p> <a href="https://publications.waset.org/abstracts/18503/strengthening-of-reinforced-concrete-beam-column-joint-by-reversible-mixed-technologies-of-frp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2041</span> The Effect of Manual Acupuncture-induced Injury as a Mechanism Contributing to Muscle Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Ameis">Kamal Ameis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to further improve our understanding of the underlying mechanism of local injury that occurs after manual acupuncture needle manipulation, and that initiates the muscle regeneration process, which is essential for muscle maintenance and adaptation. Skeletal muscle is maintained by resident stem cells called muscle satellite cells. These cells are normally in quiescent state, but following muscle injury, they re-enter the cell cycle and execute a myogenic program resulting in muscle fiber regeneration. Our previous work in young rats demonstrated that acupuncture treatment induced injury that activated resident satellite (stem) cells, which leads to muscle regeneration. Skeletal muscle regeneration is an adaptive response to injury that requires a tightly orchestrated event between signaling pathways activated by growth factor and intrinsic regulatory program controlled by myogenic transcription factor. We identified several gene expressions uniquely important for muscle regeneration in response to acupuncture treatment at different time course using different biological techniques, including Immunocytochemistry, western blotting, and Real Time PCR. This study uses a novel but non-invasive model of injury induced by manual acupuncture to further our current understanding of regenerative mechanism of muscle stem cells. From a clinical perspective, this model of injury induced by manual acupuncture may be easily translatable into a clinical tool that can be used as an alternative to physical exercise for patients challenged by bed rest or forced inactivity. Finally, the knowledge gained from this research could be useful for studies of the local effects of various modalities of induced injury, such as the traditional method of healing by cupping (hijamah), which may enhanced muscle stem cells and muscle fiber regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupuncture" title="acupuncture">acupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=injury" title=" injury"> injury</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20stem%20cells" title=" muscle stem cells"> muscle stem cells</a> </p> <a href="https://publications.waset.org/abstracts/145713/the-effect-of-manual-acupuncture-induced-injury-as-a-mechanism-contributing-to-muscle-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2040</span> Effect of Resistance Training on Muscle Strength, IGF₁, and Physical Performance of Volleyball Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Menan%20M.%20Elsayed">Menan M. Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20A.%20Heshmat"> Hussein A. Heshmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to assess the effect of resistance training on muscle strength and physical performance of volleyball players of Physical Education College, Helwan University. The researcher used the experimental method of pre-post measurements of one group of 10 volleyball players. The execution of the program was through the period of 12/8/2018 to 12/10/2018; included 24 training units, 3 training units weekly for 8 weeks. The training program revealed an improvement in post measurement of muscle strength, IGF₁ (insulin-like growth factor 1), and physical performance of players. It may be concluded that the resistance training may include changes in hormones and muscle fibers leading to hypertrophy of the muscle and physical performance. It is recommended to use the results of the study in rationing the loads and training programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IGF%E2%82%81" title="IGF₁">IGF₁</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20strength" title=" muscle strength"> muscle strength</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20performance" title=" physical performance"> physical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title=" resistance training"> resistance training</a>, <a href="https://publications.waset.org/abstracts/search?q=volleyball%20players" title=" volleyball players"> volleyball players</a> </p> <a href="https://publications.waset.org/abstracts/91648/effect-of-resistance-training-on-muscle-strength-igf1-and-physical-performance-of-volleyball-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2039</span> Myoelectric Analysis for the Assessment of Muscle Functions and Fatigue Monitoring of Upper Extremity for Stroke Patients Performing Robot-Assisted Bilateral Training</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Lung%20Chan">Hsiao-Lung Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yi%20Wu"> Ching-Yi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Zou%20Lin"> Yan-Zou Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yo%20Chiao"> Yo Chiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Ju%20Chang"> Ya-Ju Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Robot-assisted bilateral arm training has demonstrated useful to improve motor control in stroke patients and save human resources. In clinics, the efficiency of this treatment is mostly performed by comparing functional scales before and after rehabilitation. However, most of these assessments are based on behavior evaluation. The underlying improvement of muscle activation and coordination is unknown. Moreover, stroke patients are easier to have muscle fatigue under robot-assisted rehabilitation due to the weakness of muscles. This safety issue is still less studied. In this study, EMG analysis was applied during training. Our preliminary results showed the co-contraction index and co-contraction area index can delineate the improved muscle coordination of biceps brachii vs. flexor carpiradialis. Moreover, the smoothed, normalized cycle-by-cycle median frequency of left and right extensor carpiradialis decreased as the training progress, implying the occurrence of muscle fatigue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot-assisted%20rehabilitation" title="robot-assisted rehabilitation">robot-assisted rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=strokes" title=" strokes"> strokes</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20coordination" title=" muscle coordination"> muscle coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20fatigue" title=" muscle fatigue"> muscle fatigue</a> </p> <a href="https://publications.waset.org/abstracts/33805/myoelectric-analysis-for-the-assessment-of-muscle-functions-and-fatigue-monitoring-of-upper-extremity-for-stroke-patients-performing-robot-assisted-bilateral-training" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2038</span> Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser-Eddine%20Attari">Nasser-Eddine Attari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20polymers" title="fibre reinforced polymers">fibre reinforced polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=joints" title=" joints"> joints</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20columns" title=" beam columns"> beam columns</a> </p> <a href="https://publications.waset.org/abstracts/16721/seismic-strengthening-of-reinforced-concrete-beam-column-joint-by-reversible-mixed-technologies-of-frp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2037</span> Relationship Between Pain Intensity at the Time of the Hamstring Muscle Injury and Hamstring Muscle Lesion Volume Measured by Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grange%20Sylvain">Grange Sylvain</a>, <a href="https://publications.waset.org/abstracts/search?q=Plancher%20Ronan"> Plancher Ronan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reurink%20Guustav"> Reurink Guustav</a>, <a href="https://publications.waset.org/abstracts/search?q=Croisille%20%20Pierre"> Croisille Pierre</a>, <a href="https://publications.waset.org/abstracts/search?q=Edouard%20Pascal"> Edouard Pascal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objective of this study was to analyze the potential correlation between the pain experienced at the time of a hamstring muscle injury and the volume of the lesion measured on MRI. The secondary objectives were to analyze a correlation between this pain and the lesion grade as well as the affected hamstring muscle. We performed a retrospective analysis of the data collected in a prospective, multicenter, non-interventional cohort study (HAMMER). Patients with suspected hamstring muscle injury had an MRI after the injury and at the same time were evaluated for their pain intensity experienced at the time of the injury with a Numerical Pain Rating Scale (NPRS) from 0 to 10. A total of 61 patients were included in the present analysis. MRIs were performed in an average of less than 8 days. There was a significant correlation between pain and the injury volume (r=0.287; p=0.025). There was no significant correlation between the pain and the lesion grade (p>0.05), nor between the pain and affected hamstring muscle (p>0.05). Pain at the time of injury appeared to be correlated with the volume of muscle affected. These results confirm the value of a clinical approach in the initial evaluation of hamstring injuries to better select patients eligible for further imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hamstring%20muscle%20injury" title="hamstring muscle injury">hamstring muscle injury</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20lesion" title=" volume lesion"> volume lesion</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/151885/relationship-between-pain-intensity-at-the-time-of-the-hamstring-muscle-injury-and-hamstring-muscle-lesion-volume-measured-by-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2036</span> Acute Effects of Active Dynamic, Static Stretching and Passive Static Stretching Exercise on Hamstrings Flexibility and Muscle Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Tse%20Wang">Yi Tse Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Hsiu%20Chen"> Che Hsiu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zih%20Jian%20Huang"> Zih Jian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon%20Wen%20Cheng"> Hon Wen Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stretching treatments enhanced flexibility. On the other hand, decreases in hamstrings strength have been reported after stretching, especially with static stretching or passive stretching. Stretching has been shown to be more effective than static stretching to improve muscle performance, but a clear consensus for the effect of dynamic stretching on muscle performance has not been achieved. The purpose of this study was to compare the acute effect of a dynamic stretching, static stretching and eccentric exercise protocol on hamstrings stiffness, flexibility and muscle strength. Forty-five healthy active men (height 179.9 cm; weight 71.5 kg; age 22.5 years) were participated in 3 randomly ordered testing sessions: dynamic stretching (DS), active static stretching (ASS), and passive static stretching (PSS). All the stretch were performed 30 seconds and repeated 6 times. There was a 30-second interval between repetitions. The outcome measures were isokinetic concentric contraction (60°/s), eccentric contraction (30°/s) peak torque, muscle flexibility after stretching. The results showed that the muscle flexibility (3.6%, 3.9% and 1.59%, respectively) increased significantly after DS, PSS and ASS. Hamstring isokinetic concentric peak torque (-6.4%, -8.0% and -5.8%, respectively) and eccentric peak torque (-5.8%, -4.5% and -5.4%, respectively) decreased significantly after DS, PSS and ASS. Hence, although the stretching protocols improve hamstrings flexibility immediately, reduced hamstring muscle eccentric and concentric peak torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hamstrings%20injury" title="hamstrings injury">hamstrings injury</a>, <a href="https://publications.waset.org/abstracts/search?q=warm-up" title=" warm-up"> warm-up</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20performance" title=" muscle performance"> muscle performance</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20stretching" title=" muscle stretching"> muscle stretching</a> </p> <a href="https://publications.waset.org/abstracts/51723/acute-effects-of-active-dynamic-static-stretching-and-passive-static-stretching-exercise-on-hamstrings-flexibility-and-muscle-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2035</span> Effect of Grayanotoxins on Skeletal Muscle Cell C2C12</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Almofty">Bayan Almofty</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuto%20Yamaki"> Yuto Yamaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadamasa%20Terai"> Tadamasa Terai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadahito%20Uto"> Sadahito Uto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title="skeletal muscle">skeletal muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=C2C12" title=" C2C12"> C2C12</a>, <a href="https://publications.waset.org/abstracts/search?q=myoblast" title=" myoblast"> myoblast</a>, <a href="https://publications.waset.org/abstracts/search?q=myotubes" title=" myotubes"> myotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=contraction" title=" contraction"> contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Grayanotoxins" title=" Grayanotoxins"> Grayanotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20potential" title=" membrane potential"> membrane potential</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxins" title=" neurotoxins"> neurotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=phytotoxin" title=" phytotoxin"> phytotoxin</a> </p> <a href="https://publications.waset.org/abstracts/22503/effect-of-grayanotoxins-on-skeletal-muscle-cell-c2c12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2034</span> Recent Studies on Strengthening of Reinforced Concrete Members by Ferrocement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Lam">E. Lam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20D.%20Yang"> Z. D. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Li"> B. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ho"> I. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wong"> T. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Wong"> V. Wong </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports some of the recent studies on strengthening of reinforced concrete members by ferrocement. Using mortar in ferrocement with high tensile strength, tensile properties of (high performance) ferrocement can be enhanced. In the proposed strengthening strategy, defective concrete cover of structural members is replaced by ferrocement so as to increase the load carrying capacity. This has been successfully applied to strengthen columns and beam-column joints. To facilitate the ease of application of the proposed strengthening strategy, mortar in ferrocement is applied through dry spray shotcrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title="ferrocement">ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20ferrocement" title=" high performance ferrocement"> high performance ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=dry" title=" dry"> dry</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20shotcrete" title=" spray shotcrete"> spray shotcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=column" title=" column"> column</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-column%20joint" title=" beam-column joint"> beam-column joint</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/17783/recent-studies-on-strengthening-of-reinforced-concrete-members-by-ferrocement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2033</span> Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rezki">M. Rezki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaidi"> A. Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20platform" title=" health platform"> health platform</a>, <a href="https://publications.waset.org/abstracts/search?q=conductor%E2%80%99s%20tram" title=" conductor’s tram"> conductor’s tram</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20fatigue" title=" muscle fatigue"> muscle fatigue</a> </p> <a href="https://publications.waset.org/abstracts/48636/learning-example-of-a-biomedical-project-from-a-real-problem-of-muscle-fatigue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2032</span> Access to Higher Education in Nigeria: The University of Calabar Pre-Degree Programme Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eni%20I.%20Eni">Eni I. Eni</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Okon"> James Okon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashang%20J.%20Ashang"> Ashang J. Ashang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pre-degree programme of the University of Calabar was introduced to help increase access to tertiary Education in science related courses. This has become necessary due to population increase and public awareness. Its main objective was to provide access to candidates from educationally less developed states (ELDS) and states within its catchment area. To find out if this objective of the programme has been achieved, an impact evaluation of the programme was conducted, from where the aspect of providing access to University Education was reported here. It was reasoned that if this objective of the programme was properly implemented, there should be an evidence of increase in the access to University Education. To achieve the purpose of this study, two research questions were formulated; expost-facto research design and purposive sampling technique were adopted for the study. Data was collected from the Faculty of Science and analyzed using descriptive statistics in terms of frequencies and percentages. The result of data analysis showed that the pre-degree programme of the University of Calabar has provided educational access to Nigerians especially those from educationally less developed states in science related courses. It was therefore recommended that the programme be sustained and further be improved upon to facilitate its continued provision of access to University Education in Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title="higher education">higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-degree%20programme" title=" pre-degree programme"> pre-degree programme</a>, <a href="https://publications.waset.org/abstracts/search?q=University%20of%20Calabar" title=" University of Calabar"> University of Calabar</a>, <a href="https://publications.waset.org/abstracts/search?q=educationally%20less%20developed%20states" title=" educationally less developed states"> educationally less developed states</a> </p> <a href="https://publications.waset.org/abstracts/3581/access-to-higher-education-in-nigeria-the-university-of-calabar-pre-degree-programme-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2031</span> Community Participation of the Villagers: Corporate Social Responsibility Programme in Pantai Harapan Jaya Village, Bekasi Regency, West Java</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auliya%20Adzillatin%20Uzhma">Auliya Adzillatin Uzhma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismu%20Rini%20Dwi%20Ari"> Ismu Rini Dwi Ari</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nyoman%20Suluh%20Wijaya"> I. Nyoman Suluh Wijaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corporate Social Responsibility (CSR) programme in Pantai Harapan Jaya village is cultivation of mangrove and fishery capital distribution, to achieve the goal the CSR programme needed participation from the society in it. Moeliono in Fahrudin (2011) mentioned that participation from society is based by intrinsic reason from inside people it self and extrinsic reason from the other who related to him or from connection with other people. The fundamental connection who caused more boundaries from action which the organization can do called the social structure. The purpose of this research is to know the form of public participation and the density of the villager and people who is participated in CSR programme. This research use Social Network Analysis method by knew the Rate of Participation and Density. The result of the research is people who is involved in the programme is lived in Dusun Pondok Dua and they work in fisheries field. Rate of Participation is 11,61 and that means people involved in 11 or 12 activites of CSR Programme. The rate of participation of CSR Programme is categorized as high rate participation. The density value from the participant is 0.516 it’s mean that 51.6% of the people that participated is involved in the same step of CSR programme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20participation" title="community participation">community participation</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility" title=" corporate social responsibility"> corporate social responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20and%20regional%20studies" title=" urban and regional studies"> urban and regional studies</a> </p> <a href="https://publications.waset.org/abstracts/22969/community-participation-of-the-villagers-corporate-social-responsibility-programme-in-pantai-harapan-jaya-village-bekasi-regency-west-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2030</span> A Study on Human Musculoskeletal Model for Cycle Fitting: Comparison with EMG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoon-%20Ho%20Shin">Yoon- Ho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Seung%20Choi"> Jin-Seung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Won%20Kang"> Dong-Won Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Woo%20Seo"> Jeong-Woo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Joo-Hack%20Lee"> Joo-Hack Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Young%20Kim"> Ju-Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Hyeok%20Kim"> Dae-Hyeok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Tae%20Yang"> Seung-Tae Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gye-Rae%20Tack"> Gye-Rae Tack </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is difficult to study the effect of various variables on cycle fitting through actual experiment. To overcome such difficulty, the forward dynamics of a musculoskeletal model was applied to cycle fitting in this study. The measured EMG data were compared with the muscle activities of the musculoskeletal model through forward dynamics. EMG data were measured from five cyclists who do not have musculoskeletal diseases during three minutes pedaling with a constant load (150 W) and cadence (90 RPM). The muscles used for the analysis were the Vastus Lateralis (VL), Tibialis Anterior (TA), Bicep Femoris (BF), and Gastrocnemius Medial (GM). Person’s correlation coefficients of the muscle activity patterns, the peak timing of the maximum muscle activities, and the total muscle activities were calculated and compared. BIKE3D model of AnyBody (Anybodytech, Denmark) was used for the musculoskeletal model simulation. The comparisons of the actual experiments with the simulation results showed significant correlations in the muscle activity patterns (VL: 0.789, TA: 0.503, BF: 0.468, GM: 0.670). The peak timings of the maximum muscle activities were distributed at particular phases. The total muscle activities were compared with the normalized muscle activities, and the comparison showed about 10% difference in the VL (+10%), TA (+9.7%), and BF (+10%), excluding the GM (+29.4%). Thus, it can be concluded that muscle activities of model & experiment showed similar results. The results of this study indicated that it was possible to apply the simulation of further improved musculoskeletal model to cycle fitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20modeling" title="musculoskeletal modeling">musculoskeletal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG" title=" EMG"> EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20fitting" title=" cycle fitting"> cycle fitting</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/20629/a-study-on-human-musculoskeletal-model-for-cycle-fitting-comparison-with-emg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2029</span> Contraction and Membrane Potential of C2C12 with GTXs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayan%20Almofty">Bayan Almofty</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuto%20Yamaki"> Yuto Yamaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadamasa%20Terai"> Tadamasa Terai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadahito%20Uto"> Sadahito Uto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Culture techniques of skeletal muscle cells are advanced in the field of regenerative medicine and applied research of cultured muscle. As applied research of cultured muscle, myopathy (muscles disease) treatment is expected and development bio of actuator is also expected in biomedical engineering. Grayanotoxins (GTXs) is known as neurotoxins that enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as well as a phytotoxin. In this study, we investigated the effect of GTXs on muscle cells (C2C12) contraction and membrane potential. Contraction of myotubes is induced by applied external electrical stimulation. Contraction and membrane potential change of skeletal muscle cells are induced by injection of current. We, therefore, concluded that effect of Grayanotoxins on contraction and membrane potential of C2C12 relate to acute toxicity of GTXs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle%20cells%20C2C12" title="skeletal muscle cells C2C12">skeletal muscle cells C2C12</a>, <a href="https://publications.waset.org/abstracts/search?q=grayanotoxins" title=" grayanotoxins"> grayanotoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=contraction" title=" contraction"> contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20potential" title=" membrane potential"> membrane potential</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=pytotoxin" title=" pytotoxin"> pytotoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=motubes" title=" motubes "> motubes </a> </p> <a href="https://publications.waset.org/abstracts/23536/contraction-and-membrane-potential-of-c2c12-with-gtxs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2028</span> Measurement of Rheologic Properties of Soft Tissue (Muscle Tissue) by Device Called Myotonometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Sifta">Petr Sifta</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Bittner"> Vaclav Bittner</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kysela"> Martin Kysela</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Kolar"> Matej Kolar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the research described in this work is to answer how to measure the rheologic (viscoelastic) properties tendo–deformational characteristics of soft tissue. The method would also resemble muscle palpation examination as it is known in clinical practice. For this purpose, an instrument with the working name “myotonometer” has been used. At present, there is lack of objective methods for assessing the muscle tone by viscous and elastic properties of soft tissue. That is why we decided to focus on creating or finding quantitative and qualitative methodology capable of specifying muscle tone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheologic%20properties" title="rheologic properties">rheologic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=tendo%E2%80%93deformational%20characteristics" title=" tendo–deformational characteristics"> tendo–deformational characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertonus" title=" hypertonus"> hypertonus</a> </p> <a href="https://publications.waset.org/abstracts/34403/measurement-of-rheologic-properties-of-soft-tissue-muscle-tissue-by-device-called-myotonometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">623</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=68">68</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=muscle%20strengthening%20programme&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10