CINXE.COM
Search results for: glycan
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: glycan</title> <meta name="description" content="Search results for: glycan"> <meta name="keywords" content="glycan"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="glycan" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="glycan"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: glycan</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Veluraja">K. Veluraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycan" title="glycan">glycan</a>, <a href="https://publications.waset.org/abstracts/search?q=glycoconformatics" title=" glycoconformatics"> glycoconformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oligosaccharide" title=" oligosaccharide"> oligosaccharide</a> </p> <a href="https://publications.waset.org/abstracts/96790/an-insight-into-the-conformational-dynamics-of-glycan-through-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Glycan Analyzer: Software to Annotate Glycan Structures from Exoglycosidase Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Walsh">Ian Walsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Terry%20Nguyen-Khuong"> Terry Nguyen-Khuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20H.%20%20Taron"> Christopher H. Taron</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20M.%20Rudd"> Pauline M. Rudd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycoproteins and their covalently bonded glycans play critical roles in the immune system, cell communication, disease and disease prognosis. Ultra performance liquid chromatography (UPLC) coupled with mass spectrometry is conventionally used to qualitatively and quantitatively characterise glycan structures in a given sample. Exoglycosidases are enzymes that catalyze sequential removal of monosaccharides from the non-reducing end of glycans. They naturally have specificity for a particular type of sugar, its stereochemistry (α or β anomer) and its position of attachment to an adjacent sugar on the glycan. Thus, monitoring the peak movements (both in the UPLC and MS1) after application of exoglycosidases provides a unique and effective way to annotate sugars with high detail - i.e. differentiating positional and linkage isomers. Manual annotation of an exoglycosidase experiment is difficult and time consuming. As such, with increasing sample complexity and the number of exoglycosidases, the analysis could result in manually interpreting hundreds of peak movements. Recently, we have implemented pattern recognition software for automated interpretation of UPLC-MS1 exoglycosidase digestions. In this work, we explain the software, indicate how much time it will save and provide example usage showing the annotation of positional and linkage isomers in Immunoglobulin G, apolipoprotein J, and simple glycan standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20glycan%20assignment" title=" automated glycan assignment"> automated glycan assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/79339/glycan-analyzer-software-to-annotate-glycan-structures-from-exoglycosidase-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> N-Glycosylation in the Green Microalgae Chlamydomonas reinhardtii </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre-Louis%20Lucas">Pierre-Louis Lucas</a>, <a href="https://publications.waset.org/abstracts/search?q=Corinne%20Loutelier-Bourhis"> Corinne Loutelier-Bourhis</a>, <a href="https://publications.waset.org/abstracts/search?q=Narimane%20Mati-Baouche"> Narimane Mati-Baouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Chan%20Tchi-Song"> Philippe Chan Tchi-Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrice%20Lerouge"> Patrice Lerouge</a>, <a href="https://publications.waset.org/abstracts/search?q=Elodie%20Mathieu-Rivet"> Elodie Mathieu-Rivet</a>, <a href="https://publications.waset.org/abstracts/search?q=Muriel%20Bardor"> Muriel Bardor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> N-glycosylation is a post-translational modification taking place in the Endoplasmic Reticulum and the Golgi apparatus where defined glycan features are added on protein in a very specific sequence Asn-X-Thr/Ser/Cys were X can be any amino acid except proline. Because it is well-established that those N-glycans play a critical role in protein biological activity, protein half-life and that a different N-glycan structure may induce an immune response, they are very important in Biopharmaceuticals which are mainly glycoproteins bearing N-glycans. From now, most of the biopharmaceuticals are produced by mammalian cells like Chinese Hamster Ovary cells (CHO) for their N-glycosylation similar to the human, but due to the high production costs, several other species are investigated as the possible alternative system. In this purpose, the green microalgae Chlamydomonas reinhardtii was investigated as the potential production system for Biopharmaceuticals. This choice was influenced by the facts that C. reinhardtii is a well-study microalgae which is growing fast with a lot of molecular biology tools available. This organism is also producing N-glycan on its endogenous proteins. However, the analysis of the N-glycan structure of this microalgae has revealed some differences as compared to the human. Rather than in Human where the glycans are processed by key enzymes called N-acetylglucosaminyltransferase I and II (GnTI and GnTII) adding GlcNAc residue to form a GlcNAc₂Man₃GlcNAc₂ core N-glycan, C. reinhardtii lacks those two enzymes and possess a GnTI independent glycosylation pathway. Moreover, some enzymes like xylosyltransferases and methyltransferases not present in human are supposed to act on the glycans of C. reinhardtii. Furthermore, the recent structural study by mass spectrometry shows that the N-glycosylation precursor supposed to be conserved in almost all eukaryotic cells results in a linear Man₅GlcNAc₂ rather than a branched one in C. reinhardtii. In this work, we will discuss the new released MS information upon C. reinhardtii N-glycan structure and their impact on our attempt to modify the glycan in a Human manner. Two strategies will be discussed. The first one consisted in the study of Xylosyltransferase insertional mutants from the CLIP library in order to remove xyloses from the N-glycans. The second will go further in the humanization by transforming the microalgae with the exogenous gene from Toxoplasma gondii having an activity similar to GnTI and GnTII with the aim to synthesize GlcNAc₂Man₃GlcNAc₂ in C. reinhardtii. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlamydomonas%20reinhardtii" title="Chlamydomonas reinhardtii">Chlamydomonas reinhardtii</a>, <a href="https://publications.waset.org/abstracts/search?q=N-glycosylation" title=" N-glycosylation"> N-glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosyltransferase" title=" glycosyltransferase"> glycosyltransferase</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=humanization" title=" humanization"> humanization</a> </p> <a href="https://publications.waset.org/abstracts/88988/n-glycosylation-in-the-green-microalgae-chlamydomonas-reinhardtii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Therapeutic Potential of mAb KP52 in Human and Feline Cancers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abigail%20Tan">Abigail Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liang%20Tan"> Heng Liang Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Ding"> Vanessa Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Hui"> James Hui</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Hin%20Lee"> Eng Hin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Choo"> Andre Choo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Comparative oncology investigates the similarities in spontaneous carcinogenesis between humans and animals, in order to identify treatments that can benefit these patients. Companion animals (CA), like canines and felines, are of special interest when it comes to studying human cancers due to their exposure to the same environmental factors and develop tumours with similar features. The purpose of this study is to explore the cross-reactivity of monoclonal antibodies (mAbs) across cancers in humans and CA. Material and Methods: A panel of CA mAbs generated in the lab was screened on multiple human cancer cell lines through flow cytometry to identify for positive binders. Shortlisted candidates were then characterised by biochemical and functional assays e.g., antibody-drug conjugate (ADC) and western blot assays, including glycan studies. Results: Candidate mAb KP52 was generated from whole-cell immunisation using feline mammary carcinoma. KP52 showed strong positive binding to human cancer cells, such as breast cancer and ovarian cancer. Furthermore, KP52 demonstrated strong killing ( > 50%) as an ADC with Saporin as the payload. Western blot results revealed the molecular weight of the antigen targets to be approximately 45kD and 50kD under reduced conditions. Glycan studies suggest that the epitope is glycan in nature, specifically an O-linked glycan. Conclusion: Candidate mAb KP52 has a therapeutic potential as an ADC against feline mammary cancer, human ovarian cancer, human mammary cancer, human pancreatic cancer, and human gastric cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADC" title="ADC">ADC</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20oncology" title=" comparative oncology"> comparative oncology</a>, <a href="https://publications.waset.org/abstracts/search?q=mAb" title=" mAb"> mAb</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic" title=" therapeutic"> therapeutic</a> </p> <a href="https://publications.waset.org/abstracts/114328/therapeutic-potential-of-mab-kp52-in-human-and-feline-cancers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Pihikova">Dominika Pihikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Belicky"> Stefan Belicky</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Bertok"> Tomas Bertok</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Sokol"> Roman Sokol</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Kubanikova"> Petra Kubanikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Tkac"> Jan Tkac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=glycan" title=" glycan"> glycan</a>, <a href="https://publications.waset.org/abstracts/search?q=lectin" title=" lectin"> lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a> </p> <a href="https://publications.waset.org/abstracts/33642/development-of-lectin-based-biosensor-for-glycoprofiling-of-clinical-samples-focus-on-prostate-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Common Regulatory Mechanisms Reveals Links between Aberrant Glycosylation and Biological Hallmarks in Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jahanshah%20Ashkani">Jahanshah Ashkani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20J.%20Naidoo"> Kevin J. Naidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycosylation is the major posttranslational modification (PTM) process in cellular development. In tumour development, it is marked by structural alteration of carbohydrates (glycans) that is the result of aberrant glycosylation. Altered glycan structures affect cell surface ligand-receptor interactions that interfere with the regulation of cell adhesion, migration, and proliferation. The resulting changes in glycan biosynthesis pathways originate from altered expression of glycosyltransferases and glycosidases. While the alteration in glycosylation patterns is a recognized “hallmark of cancer”, the influential overview of the biology of cancer proposes eight hallmarks with no explicit suggestion to connectivity with glycosylation. Recently, we have discovered a connection between the glycosyltransferase gene expression and cancer type and subtype. Here we present an association between aberrant glycosylation and the biological hallmarks of breast cancer by exploring the common regulatory mechanisms at the genomic scale. The result of this study bridges the glycobiological and biological pathways that are accepted hallmarks of cancer by connecting their common regulatory pathways. This is an impetus for further investigation as target therapies of breast cancer are very likely to be uncovered from this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aberrant%20glycosylation" title="aberrant glycosylation">aberrant glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20hallmarks" title=" biological hallmarks"> biological hallmarks</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20mechanism" title=" regulatory mechanism"> regulatory mechanism</a> </p> <a href="https://publications.waset.org/abstracts/53462/common-regulatory-mechanisms-reveals-links-between-aberrant-glycosylation-and-biological-hallmarks-in-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar%20Agrahari">Ashish Kumar Agrahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar"> Amit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title="homology modeling">homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=missense%20mutations%20PNH" title=" missense mutations PNH"> missense mutations PNH</a>, <a href="https://publications.waset.org/abstracts/search?q=MCAHS2" title=" MCAHS2"> MCAHS2</a>, <a href="https://publications.waset.org/abstracts/search?q=PIGA" title=" PIGA"> PIGA</a> </p> <a href="https://publications.waset.org/abstracts/101878/the-impact-of-missense-mutation-in-phosphatidylinositol-glycan-class-a-associated-to-paroxysmal-nocturnal-hemoglobinuria-and-multiple-congenital-anomalies-hypotonia-seizures-syndrome-2-a-computational-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michio%20Kurosu">Michio Kurosu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPAGT1%20inhibitors" title="DPAGT1 inhibitors">DPAGT1 inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-metastatic%20drugs" title=" anti-metastatic drugs"> anti-metastatic drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20product%20based%20drug%20designs" title=" natural product based drug designs"> natural product based drug designs</a>, <a href="https://publications.waset.org/abstracts/search?q=cytostatic%20effects" title=" cytostatic effects"> cytostatic effects</a> </p> <a href="https://publications.waset.org/abstracts/157677/dpagt1-inhibitors-discovery-of-anti-metastatic-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Polyclonal IgG glycosylation in Patients with Pediatric Appendicitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalma%20Dojcs%C3%A1k">Dalma Dojcsák</a>, <a href="https://publications.waset.org/abstracts/search?q=Csaba%20V%C3%A1radi"> Csaba Váradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fl%C3%B3ra%20Farkas"> Flóra Farkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Farkas"> Tamás Farkas</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1nos%20Papp"> János Papp</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9la%20Viskolcz"> Béla Viskolcz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Appendicitis is a common acute inflammatory condition in both children and adults, but current laboratory markers such as C-reactive protein (CRP), white blood cell count (WBC), absolute neutrophil count (ANC), and red blood cell count (RNC) lack specificity in detecting appendicitis-related inflammation. N-glycosylation, an asparagine-linked glycosylation process, plays a vital role in cellular interactions, angiogenesis, immune response, and effector functions. Altered N-glycosylation impacts tumor growth and both acute and chronic inflammatory processes. IgG, the second most abundant glycoprotein in serum, shows altered glycosylation patterns during inflammation, suggesting that IgG glycan modifications may serve as potential biomarkers for appendicitis. Specifically, increased levels of agalactosylated IgG glycans are a known feature of various inflammatory conditions, potentially including appendicitis. Identifying pediatric appendicitis remains challenging due to the absence of specific biomarkers, which makes diagnosis reliant on clinical symptoms, imaging such as ultrasound, and nonspecific lab indicators (e.g., CRP, WBC, ANC). In this study, we analyzed the IgG derived N-glycome in pediatric patients with appendicitis compared with healthy controls. Methodology: The N-glycome was analyzed by high-performance liquid-chromatography combined with mass spectrometry. IgG was isolated from serum samples by Protein G column. The IgG derived glycans were released by enzymatic deglycosylation and fluorescent tags were attached to each glycan moiety, which made necessitates the sample clean-up for further reliable quantitation. Overall, 38 controls and 40 serum samples diagnosed with pediatric appendicitis were analyzed by HILIC-MS methods. Multivariate statistical tests were performed with area percentage under the peak data derived from the integrated peaks, which were obtained from the chromatograms. Conclusions: Our results represented the altered N-glycome of IgG in pediatric appendicitis is similar with other observations. The glycosylation pattern reported so far for IgG is characterized by decreased galactosylation and sialylation, and an increase in fucosylation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=N-glycosylation" title="N-glycosylation">N-glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20spectrometry" title=" mass spectrometry"> mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=appendicitis" title=" appendicitis"> appendicitis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunoglobulin%20G" title=" immunoglobulin G"> immunoglobulin G</a> </p> <a href="https://publications.waset.org/abstracts/194641/polyclonal-igg-glycosylation-in-patients-with-pediatric-appendicitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Nutraceuticals of Chemical Synthesis: Special Glycans as Prebiotics for the Holobiont</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Menapace">M. Menapace</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Herbal remedies express the idea of natural products used as pharmacotherapy or supplementation in case of need. Whether they are obtained directly by plants or synthesised chemically, prebiotics are considered nutraceuticals of natural origin, i.e., products made available for health reasons and self-medication. Methods: A literature review has been performed by screening manuscripts with prebiotics as herbal nutraceuticals (including chemically synthesized compounds, such as human milk oligosaccharides [HMO]) and evaluating the chemical structure of fibers in diverse food sources (principally herbals). Results: An examination of recent literature led to the fundamental concept of the holobiont as key in understanding the importance of prebiotics for the nonhost part of the metaorganism (microbiota) called a human being. This multispecies entity requires prebiotic fibers to avoid a state of disequilibrium (dysbiosis) that fosters diseases. Conclusions: Numerous human-derived glycans (special oligosaccharides that mimic in structure and function not only blood type antigens but also herbal fibers) have been identified as essential for the maintenance of the equilibrium (eubiosis) within the human holobiont in the modern age. These products are planned to be used not just as additions to baby milk formulas but as food supplements for the health of adults. In the context of alternative medicine, human-derived glycan-based supplements may represent the next step on the road to complete well-being. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycans" title="glycans">glycans</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20remedy" title=" herbal remedy"> herbal remedy</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20supplement" title=" food supplement"> food supplement</a> </p> <a href="https://publications.waset.org/abstracts/107422/nutraceuticals-of-chemical-synthesis-special-glycans-as-prebiotics-for-the-holobiont" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Arbab%20Sakandar">Hafiz Arbab Sakandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiome" title="gut microbiome">gut microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=fasting" title=" fasting"> fasting</a>, <a href="https://publications.waset.org/abstracts/search?q=functionality" title=" functionality"> functionality</a> </p> <a href="https://publications.waset.org/abstracts/169806/remodeling-of-gut-microbiome-of-pakistani-expats-in-china-after-intermittent-fastingramadan-fasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Magnetic Nanoparticles Coated with Modified Polysaccharides for the Immobilization of Glycoproteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinga%20Mylkie">Kinga Mylkie</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Nowak"> Pawel Nowak</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Z.%20Borowska"> Marta Z. Borowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important proteins in human serum responsible for drug binding are human serum albumin (HSA) and α1-acid glycoprotein (AGP). The AGP molecule is a glycoconjugate containing a single polypeptide chain composed of 183 amino acids (the core of the protein), and five glycan branched chains (sugar part) covalently linked by an N-glycosidic bond with aspartyl residues (Asp(N) -15, -38, -54, -75, - 85) of polypeptide chain. This protein plays an important role in binding alkaline drugs, a large group of drugs used in psychiatry, some acid drugs (e.g., coumarin anticoagulants), and neutral drugs (steroid hormones). The main goal of the research was to obtain magnetic nanoparticles coated with biopolymers in a chemically modified form, which will have highly reactive functional groups able to effectively immobilize the glycoprotein (acid α1-glycoprotein) without losing the ability to bind active substances. The first phase of the project involved the chemical modification of biopolymer starch. Modification of starch was carried out by methods of organic synthesis, leading to the preparation of a polymer enriched on its surface with aldehyde groups, which in the next step was coupled with 3-aminophenylboronic acid. Magnetite nanoparticles coated with starch were prepared by in situ co-precipitation and then oxidized with a 1 M sodium periodate solution to form a dialdehyde starch coating. Afterward, the reaction between the magnetite nanoparticles coated with dialdehyde starch and 3-aminophenylboronic acid was carried out. The obtained materials consist of a magnetite core surrounded by a layer of modified polymer, which contains on its surface dihydroxyboryl groups of boronic acids which are capable of binding glycoproteins. Magnetic nanoparticles obtained as carriers for plasma protein immobilization were fully characterized by ATR-FTIR, TEM, SEM, and DLS. The glycoprotein was immobilized on the obtained nanoparticles. The amount of mobilized protein was determined by the Bradford method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycoproteins" title="glycoproteins">glycoproteins</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polysaccharides" title=" polysaccharides"> polysaccharides</a> </p> <a href="https://publications.waset.org/abstracts/137368/magnetic-nanoparticles-coated-with-modified-polysaccharides-for-the-immobilization-of-glycoproteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>