CINXE.COM
Search results for: osteocutaneous flap
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: osteocutaneous flap</title> <meta name="description" content="Search results for: osteocutaneous flap"> <meta name="keywords" content="osteocutaneous flap"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="osteocutaneous flap" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="osteocutaneous flap"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 69</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: osteocutaneous flap</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harry%20Burton">Harry Burton</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexios%20Dimitrios%20Iliadis"> Alexios Dimitrios Iliadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jones"> Neil Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Saini"> Aaron Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicola%20Bystrzonowski"> Nicola Bystrzonowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandros%20Vris"> Alexandros Vris</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Pafitanis"> Georgios Pafitanis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteocutaneous%20flap" title="osteocutaneous flap">osteocutaneous flap</a>, <a href="https://publications.waset.org/abstracts/search?q=fillet%20flap" title=" fillet flap"> fillet flap</a>, <a href="https://publications.waset.org/abstracts/search?q=spare-parts%20surgery" title=" spare-parts surgery"> spare-parts surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=Below%20knee%20amputation" title=" Below knee amputation"> Below knee amputation</a> </p> <a href="https://publications.waset.org/abstracts/146660/the-osteocutaneous-distal-tibia-turn-over-fillet-flap-a-novel-spare-parts-orthoplastic-surgery-option-for-functional-below-knee-amputation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> The Descending Genicular Artery Perforator Free Flap as a Reliable Flap: Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doran%20C.%20Kalmin">Doran C. Kalmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The descending genicular artery (DGA) perforator free flap provides an alternative to free flap reconstruction based on a review of the literature detailing both anatomical and clinical studies. The descending genicular artery (DGA) supplies skin, muscle, tendon, and bone located around the medial aspect of the knee that has been used in several pioneering reports in reconstructing defects located in various areas throughout the body. After the success of the medial femoral condyle flap in early studies, a small number of studies have been published detailing the use of the DGA in free flap reconstruction. Despite early success in the use of the DGA flap, acceptance within the Plastic and Reconstructive Surgical community has been limited due primarily to anatomical variations of the pedicle. This literature review is aimed at detailing the progression of the DGA perforator free flap and its variations as an alternative and reliable free flap for reconstruction of composite defects with an exploration into both anatomical and clinical studies. A literature review was undertaken, and the progression of the DGA flap is explored from the early review by Acland et al. pioneering the saphenous free flap to exploring modern changes and studies of the anatomy of the DGA. An extensive review of the literature was undertaken that details the anatomy and its variations, approaches to harvesting the flap, the advantages, and disadvantages of the DGA perforator free flap as well as flap outcomes. There are 15 published clinical series of DGA perforator free flaps that incorporate cutaneous, osteoperiosteal, cartilage, osteocutaneous, osteoperiosteal and muscle, osteoperiosteal and subcutaneous and tendocutatenous. The commonest indication for using a DGA free flap was for non-union of bone, particularly that of the scaphoid whereby the medial femoral condyle could be used. In the case series, a success rate of over 90% was established, showing that these early studies have had good success with a wide range of tissue transfers. The greatest limitation is the anatomical variation of the DGA and therefore, the challenges associated with raising the flap. Despite the variation in anatomy and around 10-15% absence of the DGA, the saphenous artery can be used as well as the superior medial genicular artery if the vascular bone is required as part of the flap. Despite only a handful of anatomical and clinical studies describing the DGA perforator free flap, it ultimately provides a reliable flap that can include a variety of composite structure used for reconstruction in almost any area throughout the body. Although it has limitations, it provides a reliable option for free flap reconstruction that can routinely be performed as a single-stage procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomical%20study" title="anatomical study">anatomical study</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20study" title=" clinical study"> clinical study</a>, <a href="https://publications.waset.org/abstracts/search?q=descending%20genicular%20artery" title=" descending genicular artery"> descending genicular artery</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=perforator%20free%20flap%20reconstruction" title=" perforator free flap reconstruction"> perforator free flap reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/105775/the-descending-genicular-artery-perforator-free-flap-as-a-reliable-flap-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Reconstruction of Complex Post Oncologic Maxillectomy Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kant%20Shankhdhar">Vinay Kant Shankhdhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Maxillary defects are three dimensional and require complex bone and soft tissue reconstruction. Maxillary reconstruction using fibula osteocutaneous flaps in situation requiring orbital floor, orbital wall, palatal defects, and external skin, all at the same time require special planning and multiple osteotomies. We tried to improvise our reconstruction using multiple osteotomies and skin paddle designs for fibula and Flexor Hallucis Longus Muscle. This study aims at discussing the planning and outcome in complex maxillary reconstructions using fibula flaps and soft tissue flaps with or without bone grafts. Material and Methods: From 2011 to 2017 a total of 129 Free fibula flaps were done, 67 required two or more struts, 164 Anterolateral Thigh Flaps, 11 Deep Inferior Epigastric Artery perforator flaps and 3 vertical rectus abdominis muscle flaps with iliac crest bone graft. The age range was 2 to 70 years. The reconstruction was evaluated based on the post-operative rehabilitation including orbital support (prevention of diplopia), oral diet, speech and cosmetic appearance. Results: The follow- up is from 5 years to 1 year. In this series, we observed that the common complications were the de-vascularisation of most distal segment of osteotomised fibula and native skin necrosis. Commonest area of breakdown is the medial canthal region. Plate exposure occurs most commonly at the pyriform sinus. There was extrusion of one non-vascularized bone graft. All these complications were noticed post-radiotherapy. Conclusions: The use of free fibula osteocutaneous flap gives very good results when only alveolar reconstruction is required. The reconstruction of orbital floor with extensive skin loss with post operative radiotherapy has maximum complication rate in long term follow up. A soft tissue flap with non vascularized bone graft may be the best option in such cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maxilla%20reconstruction" title="maxilla reconstruction">maxilla reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=fibula%20maxilla" title=" fibula maxilla"> fibula maxilla</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20cancer%20maxillary%20reconstruction" title=" post cancer maxillary reconstruction"> post cancer maxillary reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/110980/reconstruction-of-complex-post-oncologic-maxillectomy-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Risk Factors and Outcome of Free Tissue Transfer at a Tertiary Care Referral Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Khan">Majid Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In this era of microsurgery, free flap holds a remarkable spot in reconstructive surgery. A free flap is well suited for composite defects as it provides sufficient and well-vascularized tissue for coverage. We report our experience with the use of the free flaps for the reconstruction of composite defects. Methods: This is a retrospective case series (chart review) of patients who underwent reconstruction of composite defects with a free flap at Aga Khan University Hospital, Karachi (Pakistan) from January 01, 2015, to December 31, 2019. Data were collected for patient demographics, size of the defect, size of flap, recipient vessels, postoperative complications, and outcome of the free flap. Results: Over this period, 532 free flaps are included in this study. The overall success rate is 95.5%. The mean age of the patient was 44.86 years. In 532 procedures, there were 448 defects from tumor ablation of head and neck cancer. The most frequent free flap was the anterolateral thigh flap in 232 procedures. In this study, the risk factor hypertension (p=0.004) was found significant for wound dehiscence, preop radiation/chemotherapy (p=0.003), and malnutrition (p=0.005) were found significant for fistula formation. Malnutrition (p=0.02) and use of vein grafts (p=0.025) were significant factors for flap failure. Conclusion: Free tissue transfer is a reliable option for the reconstruction of large and composite defects. Hypertension, malnutrition, and preoperative radiotherapy can cause significant morbidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20flap" title="free flap">free flap</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flap%20failure" title=" free flap failure"> free flap failure</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors%20for%20flap%20failure" title=" risk factors for flap failure"> risk factors for flap failure</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flap%20outcome" title=" free flap outcome"> free flap outcome</a> </p> <a href="https://publications.waset.org/abstracts/135663/risk-factors-and-outcome-of-free-tissue-transfer-at-a-tertiary-care-referral-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Innovative Strategies for Chest Wall Reconstruction Following Resection of Recurrent Breast Carcinoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20Yao%20Zu%20Kong">Sean Yao Zu Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=Khong%20Yik%20Chew"> Khong Yik Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: We described a case report of the successful use of advanced surgical techniques in a patient with recurrent breast cancer who underwent a wide resection including the hemi-sternum, clavicle, multiple ribs, and a lobe of the lung due to tumor involvement. This extensive resection exposed critical structures, requiring a creative approach to reconstruction. To address this complex chest wall reconstruction, a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap were successfully utilized. The use of a free vascularized bone flap allowed for rapid osteointegration and resistance against osteoradionecrosis after adjuvant radiation, while a four-zone tram flap allowed for reconstruction of both the chest wall and breast mound. Although limited recipient vessels made free flaps challenging, the free fibula flap served as both a bony reconstruction and vascular conduit, supercharged with the distal peroneal artery and veins of the peroneal artery from the fibula graft. Our approach highlights the potential of advanced surgical techniques to improve outcomes in complex cases of chest wall reconstruction in patients with recurrent breast cancer, which is becoming increasingly relevant as breast cancer incidence rates increases. Case presentation: This report describes a successful reconstruction of a patient with recurrent breast cancer who required extensive resection, including the anterior chest wall, clavicle, and sternoclavicular joint. Challenges arose due to the loss of accessory muscles and the non-rigid rib cage, which could lead to compromised ventilation and instability. A free fibula osteocutaneous flap and a four-zone TRAM flap with vascular supercharging were utilized to achieve long-term stability and function. The patient has since fully recovered, and during the review, both flaps remained viable, and chest mound reconstruction was satisfactory. A planned nipple/areolar reconstruction was offered pending the patient’s decision after adjuvant radiotherapy. Conclusion: In conclusion, this case report highlights the successful use of innovative surgical techniques in addressing a complex case of recurrent breast cancer requiring extensive resection and radical reconstruction. Our approach, utilized a combination of a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap, demonstrates the potential for advanced techniques in chest wall reconstruction to minimize complications and ensure long-term stability and function. As the incidence of breast cancer continues to rise, it is crucial that healthcare professionals explore and utilize innovative techniques to improve patient outcomes and quality of life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20fibula%20flap" title="free fibula flap">free fibula flap</a>, <a href="https://publications.waset.org/abstracts/search?q=rectus%20abdominis%20musculocutaneous%20flap" title=" rectus abdominis musculocutaneous flap"> rectus abdominis musculocutaneous flap</a>, <a href="https://publications.waset.org/abstracts/search?q=post-adjuvant%20radiotherapy" title=" post-adjuvant radiotherapy"> post-adjuvant radiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstructive%20surgery" title=" reconstructive surgery"> reconstructive surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=malignancy" title=" malignancy"> malignancy</a> </p> <a href="https://publications.waset.org/abstracts/166415/innovative-strategies-for-chest-wall-reconstruction-following-resection-of-recurrent-breast-carcinoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Ulnar Parametacarpal Flap for Coverage of Fifth Finger Defects: Propeller Flap Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Gad">Ahmed M. Gad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Hweidi"> Ahmed S. Hweidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Defects of the little finger and adjacent areas are not uncommon. It could be a traumatic, post-burn, or after contracture release. Different options could be used for resurfacing these defect, including skin grafts, local or regional flaps. Ulnar para-metacarpal flap described by Bakhach in 1995 based on the distal division of the dorsal branch of the ulnar artery considered a good option for that. In this work, we applied the concept of propeller flap for better mobilization and in-setting of the ulnar para-metacarpal flap. Methods: The study included 15 cases with 4 females and 11 male patients. 10 of the patients had severe post-burn contractures of little finger, and 5 had post-traumatic little finger defects. Contractures were released and resulting soft tissue defects were reconstructed with propeller ulnar para-metacarpal artery flap. The flap based on two main perforators communicating with the palmar system, it was raised based on one of them depending on the extent of the defect and rotated 180 degrees after judicious dissection of the perforator. Results: 13 flaps survived completely, one of the cases developed partial skin loss, which healed by dressing, another flap was completely lost and covered later by a full-thickness skin graft. Conclusion: Ulnar para-metacarpal flap is a reliable option to resurface the little finger as well as adjacent areas. The application of the propeller flap concept based on whether the proximal or distal communicating branch makes the rotation and in-setting of the flap easier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=little%20finger%20defects" title="little finger defects">little finger defects</a>, <a href="https://publications.waset.org/abstracts/search?q=propeller%20flap" title=" propeller flap"> propeller flap</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20hand%20defects" title=" regional hand defects"> regional hand defects</a>, <a href="https://publications.waset.org/abstracts/search?q=ulnar%20parametacarpal%20flap" title=" ulnar parametacarpal flap"> ulnar parametacarpal flap</a> </p> <a href="https://publications.waset.org/abstracts/112655/ulnar-parametacarpal-flap-for-coverage-of-fifth-finger-defects-propeller-flap-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficient to Solidity (Ct/σ) Ratios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Saijaand">K. K. Saijaand</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Prabhakaran%20Nair"> K. Prabhakaran Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine change in optimal lo-cations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multi-objective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization results shows that the inboard flap location at low Ct/σ ratio move farther from the baseline value and at high Ct/σ ratio move towards the root of the blade for minimizing hub vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor" title="helicopter rotor">helicopter rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=trailing-edge%20flap" title=" trailing-edge flap"> trailing-edge flap</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20coefficient%20to%20solidity%20%28Ct%20%2F%CF%83%29%20ratio" title=" thrust coefficient to solidity (Ct /σ) ratio"> thrust coefficient to solidity (Ct /σ) ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/2861/optimal-trailing-edge-flap-positions-of-helicopter-rotor-for-various-thrust-coefficient-to-solidity-cts-ratios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Salvage Reconstruction of Intraoral Dehiscence following Free Fibular Flap with a Superficial Temporal Artery Islandized Flap (STAIF)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allyne%20Topaz">Allyne Topaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intraoral dehiscence compromises free fibula flaps following mandibular reconstruction. Salivary contamination risks thrombosis of microvascular anastomosis and hardware infection. The superficial temporal artery islandized flap (STAIF) offers an efficient, non-microsurgical reconstructive option for regaining intraoral competency for a time sensitive complication. Methods: The STAIF flap is based on the superficial temporal artery coursing along the anterior hairline. The flap is mapped with assistance of the doppler probe. The width of the skin paddle is taken based on the ability to close the donor site. The flap is taken down to the level of the zygomatic arch and tunneled into the mouth. Results: We present a case of a patient who underwent mandibular reconstruction with a free fibula flap after a traumatic shotgun wound. The patient developed repeated intraoral dehiscence following failed local buccal and floor of mouth flaps leading to salivary contamination of the flap and hardware. The intraoral dehiscence was successfully salvaged on the third attempt with a STAIF flap. Conclusions: Intraoral dehiscence creates a complication requiring urgent attention to prevent loss of free fibula flap after mandibular reconstruction. The STAIF is a non-microsurgical option for restoring intraoral competency. This robust, axially vascularized skin paddle may be split for intra- and extra-oral coverage, as needed and can be an important tool in the reconstructive armamentarium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20fibula%20flap" title="free fibula flap">free fibula flap</a>, <a href="https://publications.waset.org/abstracts/search?q=intraoral%20dehiscence" title=" intraoral dehiscence"> intraoral dehiscence</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20reconstruction" title=" mandibular reconstruction"> mandibular reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=superficial%20temporal%20artery%20islandized%20flap" title=" superficial temporal artery islandized flap"> superficial temporal artery islandized flap</a> </p> <a href="https://publications.waset.org/abstracts/129808/salvage-reconstruction-of-intraoral-dehiscence-following-free-fibular-flap-with-a-superficial-temporal-artery-islandized-flap-staif" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanasis%20K.%20Barlas">Thanasis K. Barlas</a>, <a href="https://publications.waset.org/abstracts/search?q=Helge%20A.%20Madsen"> Helge A. Madsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R\&D project following almost 10 years of innovative research in this field. The full-scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the Risoe Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the active flap system (AFS) are described. The general description and objectives of the rotating test rig at the Risoe campus of DTU are presented, as used for the aeroelastic testing of the AFS in the recently finalized INDUFLAP project. The general description and objectives are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed and results of steady flap step and azimuth control flap cases are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morphing" title="morphing">morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=flap" title=" flap"> flap</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20blade" title=" smart blade"> smart blade</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/28528/atmospheric-full-scale-testing-of-a-morphing-trailing-edge-flap-system-for-wind-turbine-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> A Case Report of Aberrant Vascular Anatomy of the Deep Inferior Epigastric Artery Flap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karissa%20Graham">Karissa Graham</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Campbell-Lloyd"> Andrew Campbell-Lloyd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deep inferior epigastric artery perforator flap (DIEP) is used to reconstruct large volumes of tissue. The DIEP flap is based on the deep inferior epigastric artery (DIEA) and vein. Accurate knowledge of the anatomy of these vessels allows for efficient dissection of the flap, minimal damage to surrounding tissue, and a well vascularized flap. A 54 year old lady was assessed for bilateral delayed autologous reconstruction with DIEP free flaps. The right DIEA was consistent with the described anatomy. The left DIEA had a vessel branching shortly after leaving the external iliac artery and before entering the muscle. This independent branch entered the muscle and had a long intramuscular course to the largest perforator. The main DIEA vessel demonstrated a type II branching pattern but had perforators that were too small to have a viable DIEP flap. There were no communicating arterial branches between the independent vessel and DIEA, however, there was one venous communication between them. A muscle sparing transverse rectus abdominis muscle flap was raised using the main periumbilical perforator from the independent vessel. Our case report demonstrated an unreported anatomical variant of the DIEA. A few anatomical variants have been described in the literature, including a unilateral absent DIEA and peritoneal-cutaneous perforators that had no connection to the DIEA. Doing a pre-operative CTA helps to identify these rare anatomical variations, which leads to safer, more efficient, and effective operating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aberrant%20anatomy" title="aberrant anatomy">aberrant anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%20angiography" title=" CT angiography"> CT angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=DIEP%20anatomy" title=" DIEP anatomy"> DIEP anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20flap" title=" free flap"> free flap</a> </p> <a href="https://publications.waset.org/abstracts/148765/a-case-report-of-aberrant-vascular-anatomy-of-the-deep-inferior-epigastric-artery-flap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Lateral Sural Artery Perforators: A Cadaveric Dissection Study to Assess Perforator Surface Anatomy Variability and Average Pedicle Length for Flap Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Sun">L. Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Bloom"> O. Bloom</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anderson"> K. Anderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The medial and lateral sural artery perforator flaps (MSAP and LSAP, respectively) are two recently described flaps that are less commonly used in lower limb trauma reconstructive surgeries compared to flaps such as the anterolateral thigh (ALT) flap or the gastrocnemius flap. The LSAP flap has several theoretical benefits over the MSAP, including the ability to be sensate and being more easily manoeuvred into position as a local flap for coverage of lateral knee or leg defects. It is less commonly used in part due to a lack of documented studies of the anatomical reliability of the perforator, and an unquantified average length of the pedicle used for microsurgical anastomosis (if used as a free flap) or flap rotation (if used as a pedicled flap). It has been shown to have significantly lower donor site morbidity compared to other flaps such as the ALT, due to the decreased need for intramuscular dissection and resulting in less muscle loss at the donor site. 11 cadaveric lower limbs were dissected, with a mean of 1.6 perforators per leg, with an average pedicle length of 45mm to the sural artery and 70mm to the popliteal artery. While the majority of perforating arteries lay close to the midline (average of 19mm lateral to the midline), there were patients whose artery was significantly lateral and would have been likely injured by the initial incision during an operation. Adding to the literature base of documented LSAP dissections provides a greater understanding of the anatomical basis of these perforator flaps, and the authors hope this will establish them as a more commonly used and discussed option when managing complicated lower limb trauma requiring soft tissue reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadaveric" title="cadaveric">cadaveric</a>, <a href="https://publications.waset.org/abstracts/search?q=dissection" title=" dissection"> dissection</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral" title=" lateral"> lateral</a>, <a href="https://publications.waset.org/abstracts/search?q=perforator%20flap" title=" perforator flap"> perforator flap</a>, <a href="https://publications.waset.org/abstracts/search?q=sural%20artery" title=" sural artery"> sural artery</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20anatomy" title=" surface anatomy"> surface anatomy</a> </p> <a href="https://publications.waset.org/abstracts/123699/lateral-sural-artery-perforators-a-cadaveric-dissection-study-to-assess-perforator-surface-anatomy-variability-and-average-pedicle-length-for-flap-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> The Voice Rehabilitation Program Following Ileocolon Flap Transfer for Voice Reconstruction after Laryngectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Wen%20Huang">Chi-Wen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Chi%20Chen"> Hung-Chi Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Total laryngectomy affects swallowing, speech functions and life quality in the head and neck cancer. Voice restoration plays an important role in social activities and communication. Several techniques have been developed for voice restoration and reported to improve the life quality. However, the rehabilitation program for voice reconstruction by using the ileocolon flap still unclear. A retrospective study was done, and the patients' data were drawn from the medical records between 2010 and 2016 who underwent voice reconstruction by ileocolon flap after laryngectomy. All of them were trained to swallow first; then, the voice rehabilitation was started. The outcome of voice was evaluated after 6 months using the 4-point scoring scale. In our result, 9.8% patients could give very clear voice so everyone could understand their speech, 61% patients could be understood well by families and friends, 20.2% patients could only talk with family, and 9% patients had difficulty to be understood. Moreover, the 57% patients did not need a second surgery, but in 43% patients voice was made clear by a second surgery. In this study, we demonstrated that the rehabilitation program after voice reconstruction with ileocolon flap for post-laryngectomy patients is important because the anatomical structure is different from the normal larynx. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-laryngectomy" title="post-laryngectomy">post-laryngectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=ileocolon%20flap" title=" ileocolon flap"> ileocolon flap</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20reconstruction" title=" voice reconstruction"> voice reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/87060/the-voice-rehabilitation-program-following-ileocolon-flap-transfer-for-voice-reconstruction-after-laryngectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Flap Structure Geometry in Breakthrough Structure: A Case Study from the Southern Tunisian Atlas Example, Orbata Anticline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soulef%20Amamria">Soulef Amamria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sadok%20Bensalem"> Mohamed Sadok Bensalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghanmi"> Mohamed Ghanmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural and sedimentological study of fault-related- folds in the Southern Tunisian Atlas is distinguished by a special geometry of the gravitational structures. This distinct geometry is observable in the example of a flap structure in Jebel Ben Zannouch with the formation of a stuck syncline. This geometry can be explained by the mechanism of major thrusting in Orbata anticline in the occidental extremity of Gafsa chains, with asymmetrical flank dips and hinge migration kinematics. These kinematics was originally controlled by the Breakthrough structure; the study of this special geometry of gravity flap structure depends on the sedimentation domain, shortening ratios, and erosion speed. This study constitutes one of the complete examples of kinematic model validation on a field scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault-related-folds" title="fault-related-folds">fault-related-folds</a>, <a href="https://publications.waset.org/abstracts/search?q=southern%20Tunisian%20Atlas" title=" southern Tunisian Atlas"> southern Tunisian Atlas</a>, <a href="https://publications.waset.org/abstracts/search?q=flap%20structure" title=" flap structure"> flap structure</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough" title=" breakthrough"> breakthrough</a> </p> <a href="https://publications.waset.org/abstracts/161486/flap-structure-geometry-in-breakthrough-structure-a-case-study-from-the-southern-tunisian-atlas-example-orbata-anticline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mondher%20Yahyaoui">Mondher Yahyaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aileron%20deflection" title="aileron deflection">aileron deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=camber-surface-bound%20vortices" title=" camber-surface-bound vortices"> camber-surface-bound vortices</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20VLM" title=" classical VLM"> classical VLM</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20VLM" title=" generalized VLM"> generalized VLM</a>, <a href="https://publications.waset.org/abstracts/search?q=flap%20deflection" title=" flap deflection"> flap deflection</a> </p> <a href="https://publications.waset.org/abstracts/9274/generalized-vortex-lattice-method-for-predicting-characteristics-of-wings-with-flap-and-aileron-deflection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Comparison of Anterolateral Thigh Flap with or without Acellular Dermal Matrix in Repair of Hypopharyngeal Squamous Cell Carcinoma Defect: A Retrospective Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaya%20Gao">Yaya Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Zhong"> Bing Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yafeng%20Liu"> Yafeng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Chen"> Fei Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The purpose of this study was to explore the difference between acellular dermal matrix (ADM) combined with anterolateral thigh (ALT) flap and ALT flap alone. Methods: HSCC patients were treated and divided into group A (ALT) and group B (ALT+ADM) between January 2014 and December 2018. We compared and analyzed the intraoperative information and postoperative outcomes of the patients. Results: There were 21 and 17 patients in group A and group B, respectively. The operation time, blood loss, defect size and anastomotic vessel selection showed no significant difference between two groups. The postoperative complications, including wound bleeding (n=0 vs. 1, p=0.459), wound dehiscence (n=0 vs. 1, p=0.459), wound infection (n=5vs.3, p=0.709), pharyngeal fistula (n=5vs.4, p=1.000) and hypoproteinemia (n=11 vs. 12, p=0.326) were comparable between the groups. Dysphagia at 6 months (number of liquid diets=0vs. 0; number of partial tube feedings=1vs. 1; number of total tube feedings=1vs. 0, p=0.655) also showed no significant differences. However, significant differences was observed in dysphagia at 12 months (number of liquid diets=0vs. 0; number of partial tube feedings=3 vs. 1; number of total tube feedings=10vs. 1, p=0.006). Conclusion: For HSCC patients, the use of the ALT flap combined ADM, compared to ALT treatment, showed better swallowing function at 12 months. The ALT flap combined ADM may serve as a safe and feasible alternative for selected HSCC patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypopharyngeal%20squamous%20cell%20carcinoma" title="hypopharyngeal squamous cell carcinoma">hypopharyngeal squamous cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=anterolateral%20thigh%20free%20flap" title=" anterolateral thigh free flap"> anterolateral thigh free flap</a>, <a href="https://publications.waset.org/abstracts/search?q=acellular%20dermal%20matrix" title=" acellular dermal matrix"> acellular dermal matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=dysphagia" title=" dysphagia"> dysphagia</a> </p> <a href="https://publications.waset.org/abstracts/158951/comparison-of-anterolateral-thigh-flap-with-or-without-acellular-dermal-matrix-in-repair-of-hypopharyngeal-squamous-cell-carcinoma-defect-a-retrospective-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Outcomes of the Gastrocnemius Flap Performed by Orthopaedic Surgeons in Salvage Revision Knee Arthroplasty: A Retrospective Study at a Tertiary Orthopaedic Centre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirul%20Adlan">Amirul Adlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20McCulloch"> Robert McCulloch</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20Evans"> Scott Evans</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Parry"> Michael Parry</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Stevenson"> Jonathan Stevenson</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Jeys"> Lee Jeys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objectives: The gastrocnemius myofascial flap is used to manage soft-tissue defects over the anterior aspect of the knee in the context of a patient presenting with a sinus and periprosthetic joint infection (PJI) or extensor mechanism failure. The aim of this study was twofold: firstly, to evaluate the outcomes of gastrocnemius flaps performed by appropriately trained orthopaedic surgeons in the context of PJI and, secondly, to evaluate the infection-free survival of this patient group. Methods: We retrospectively reviewed 30 patients who underwent gastrocnemius flap reconstruction during staged revision total knee arthroplasty for prosthetic joint infection (PJI). All flaps were performed by an orthopaedic surgeon with orthoplastics training. Patients had a mean age of 68.9 years (range 50–84) and were followed up for a mean of 50.4 months (range 2–128 months). A total of 29 patients (97 %) were categorized into Musculoskeletal Infection Society (MSIS) local extremity grade 3 (greater than two compromising factors), and 52 % of PJIs were polymicrobial. The primary outcome measure was flap failure, and the secondary outcome measure was a recurrent infection. Results: Flap survival was 100% with no failures or early returns to theatre for flap problems such as necrosis or haematoma. Overall infection-free survival during the study period was 48% (13 of 27 infected cases). Using limb salvage as the outcome, 77% (23 of 30 patients) retained the limb. Infection recurrence occurred in 48% (10 patients) in the type B3 cohort and 67% (4 patients) in the type C3 cohort (p = 0.65). Conclusion: The surgical technique for a gastrocnemius myofascial flap is reliable and reproducible when performed by appropriately trained orthopaedic surgeons, even in high-risk groups. However, the risks of recurrent infection and amputation remain high within our series due to poor host and extremity factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gastrocnemius%20flap" title="gastrocnemius flap">gastrocnemius flap</a>, <a href="https://publications.waset.org/abstracts/search?q=limb%20salvage" title=" limb salvage"> limb salvage</a>, <a href="https://publications.waset.org/abstracts/search?q=revision%20arthroplasty" title=" revision arthroplasty"> revision arthroplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=outcomes" title=" outcomes"> outcomes</a> </p> <a href="https://publications.waset.org/abstracts/152704/outcomes-of-the-gastrocnemius-flap-performed-by-orthopaedic-surgeons-in-salvage-revision-knee-arthroplasty-a-retrospective-study-at-a-tertiary-orthopaedic-centre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Anal Repair and Diamond Flap in Moderate Anal Stenosis Patient After an Open Hemorrhoidectomy Surgery: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andriana%20Purnama">Andriana Purnama</a>, <a href="https://publications.waset.org/abstracts/search?q=Reno%20Rudiman"> Reno Rudiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezia%20Christy"> Kezia Christy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anal stenosis which develops due to anoderm scarring usually caused by secondary to surgical trauma, has become common, causing significant decrease patient’s quality of life. Even though mild anal stenosis was treated with non-surgical treatment, but surgical reconstruction in unavoidable for moderate to severe anal stenosis that cause distressing, severe anal pain and inability to defecate. In our study, we intend to share our result with the use of diamond flap in treatment of anal stenosis. This case report illustrates a 57-year-old male patient who presented with difficulty and discomfort in defecation caused by anal stenosis after 2 years of open hemorrhoidectomy surgery. At physical examination, there was requirement of forceful dilatation when the index finger was inserted or precisely 6mm as measured by hegar dilator (moderate anal stenosis). Blood test result was within normal limits. The patient underwent anal repair and diamond flap where the scar tissue at 6 and 9 o’clock directions was excised and diamond graft was incised carefully while paying attention to the vascular supply. Finally, the graft was fixated without any tension to the anal canal, resulting in diameter of 2 cm after operation. After 2 days post operation, the patient was in stable condition, without any complication, and discharged. There was no abnormality concerning the stool. Ten days after the operation, diamond flap was in normal condition and without any complication. He was scheduled for futher follow up at the Digestive Surgery Department. Anal stenosis due to overzealous hemorrhoidectomy is a complication that is preventable when performed in experienced hands. Diamond flap was one of the options for the anal stenosis treatment with less complication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anal%20stenosis" title="anal stenosis">anal stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=diamond%20flap" title=" diamond flap"> diamond flap</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20hemorrhoidectomy" title=" post hemorrhoidectomy"> post hemorrhoidectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=anal%20repair" title=" anal repair"> anal repair</a> </p> <a href="https://publications.waset.org/abstracts/159843/anal-repair-and-diamond-flap-in-moderate-anal-stenosis-patient-after-an-open-hemorrhoidectomy-surgery-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mashud">Mohammad Mashud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Nahid%20Hasan"> S. M. Nahid Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20injection" title=" momentum injection"> momentum injection</a>, <a href="https://publications.waset.org/abstracts/search?q=flap" title=" flap"> flap</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20distribution" title=" pressure distribution"> pressure distribution</a> </p> <a href="https://publications.waset.org/abstracts/106872/surface-pressure-distribution-of-a-flapped-airfoil-for-different-momentum-injection-at-the-leading-edge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20H.%20Acharya">Chaitanya H. Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavan%20Kumar%20P."> Pavan Kumar P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopalakrishna%20Narayana"> Gopalakrishna Narayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DRS" title="DRS">DRS</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=downforce" title=" downforce"> downforce</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics%20mesh%20motion" title=" dynamics mesh motion"> dynamics mesh motion</a> </p> <a href="https://publications.waset.org/abstracts/179293/two-dimensional-dynamics-motion-simulations-of-f1-rare-wing-flap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> A Clinical Study on the Versatility of Lateral Supra Malleolar Flap in Lower Limb Wound Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Animesh%20Gupta">Animesh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The purpose of this study is to evaluate the versatility and outcome of lateral supra malleolar flap (LSMF) in soft tissue reconstruction of the regions including the distal leg, ankle, dorsal foot and heel. Methods: From March 2021 to April 2023, 18 patients with soft tissue defects in the regions, including the distal leg, ankle, dorsal foot and heel, who underwent LSMF repair for lower limb wound reconstruction were analyzed. The location, size of the defects, etiology, outcome, complications, and other alternative options were studied and presented. Results: The follow-up period of the cases was 3-6 months after surgery. All flaps were successful; however, one flap was complicated by venous congestion and was managed by loosening a few sutures and the patient was required to elevate the affected limb to resolve the issue. Conclusion: The LSMF has numerous advantages in repairing soft tissue defects in areas involving the ankle, distal leg, heel and dorsum of the foot. In comparison to reverse sural flaps for repairing defects in the heel and lower leg, LSMF offers shorter operation time, shorter hospitalization, lower cost, and fewer postoperative complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lateral%20supra%20malleolar%20flap" title="lateral supra malleolar flap">lateral supra malleolar flap</a>, <a href="https://publications.waset.org/abstracts/search?q=LSMF" title=" LSMF"> LSMF</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue%20reconstruction" title=" soft tissue reconstruction"> soft tissue reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20leg%20defect" title=" lower leg defect"> lower leg defect</a> </p> <a href="https://publications.waset.org/abstracts/170516/a-clinical-study-on-the-versatility-of-lateral-supra-malleolar-flap-in-lower-limb-wound-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Uranoplasty Using Tongue Flap for Bilateral Clefts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saidasanov%20Saidazal%20Shokhmurodovich">Saidasanov Saidazal Shokhmurodovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Topolnickiy%20Orest%20Zinovyevich"> Topolnickiy Orest Zinovyevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaunova%20Olga%20Arturovna"> Afaunova Olga Arturovna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relevance: Bilateral congenital cleft is one of the most complex forms of all clefts, which makes it difficult to choose a surgical method of treatment. During primary operations to close the hard and soft palate, there is a shortage of soft tissues and their lack during standard uranoplasty, and these factors aggravate the period of rehabilitation of patients. Materials and methods: The results of surgical treatment of children with bilateral cleft, who underwent uranoplasty using a flap from the tongue, were analyzed. The study used methods: clinical and statistical, which allowed us to solve the tasks, based on the principles of evidence-based medicine. Results and discussion: in our study, 15 patients were studied, who underwent surgical treatment in the following volume: uranoplasty using a flap from the tongue in two stages. Of these, 9 boys and 6 girls aged 2.5 to 6 years. The first stage was surgical treatment in the volume: veloplasty. The second stage was a surgical intervention in volume: uranoplasty using a flap from the tongue. In all patients, the width of the cleft ranged from 1.6-2.8 cm. All patients in this group were orthodontically prepared. Using this method, the surgeon can achieve the following results: maximum narrowing of the palatopharyngeal ring, long soft palate, complete closure of the hard palate, alveolar process, and the mucous membrane of the nasal cavity is also sutured, which creates good conditions for the next stage of osteoplastic surgery. Based on the result obtained, patients have positive results of working with a speech therapist. In all patients, the dynamics were positive without complications. Conclusions: Based on our observation, tongue flap uranoplasty is one of the effective techniques for patients with wide clefts of the hard and soft palate. The use of a flap from the tongue makes it possible to reduce the number of repeated reoperations and improve the quality of social adaptation of this group of patients, which is one of the important stages of rehabilitation. Upon completion of the stages of rehabilitation, all patients had the maximum improvement in functional, anatomical and social indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=congenital%20cleft%20lips%20and%20palate" title="congenital cleft lips and palate">congenital cleft lips and palate</a>, <a href="https://publications.waset.org/abstracts/search?q=bilateral%20cleft" title=" bilateral cleft"> bilateral cleft</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20surgery" title=" child surgery"> child surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=maxillofacial%20surgery" title=" maxillofacial surgery"> maxillofacial surgery</a> </p> <a href="https://publications.waset.org/abstracts/169796/uranoplasty-using-tongue-flap-for-bilateral-clefts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> The Aesthetic Reconstruction of Post-Burn Eyebrow Alopecia with Bilateral Superficial Temporal Artery Island Scalp Flap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Y.">Kumar Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suman%20D."> Suman D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumathi"> Sumathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Burns to the face account for between one-fourth and one-third of all burns. The loss of an eyebrow due to a burn or infection can have negative physical and psychological consequences for patients because eyebrows have a critical functional and aesthetic role on the face. Plastic surgeons face unique challenges in reconstructing eyebrows due to their complex anatomy and variations within genders. As a general rule, there are three techniques for reconstructing the eyebrow: superficial temporal artery island flap, a composite graft from the scalp, and mini or micro follicular grafts from the scalp. In situations where a sufficient amount of subcutaneous tissue is not available and the defect is big such as the case of burns, flaps like the superficial temporal artery scalp flap remain reliable options. In 2018, a 17-year-old female patient presented to the department of Burns Plastic and reconstructive Surgery of Guru Teg Bahadur Hospital, Delhi, India. A scald-burn injury to the face occurred two years before admission, resulting in bilateral eyebrow loss. We reconstructed the bilateral eyebrows using bilateral scalp island flaps based on the posterior branch of the superficial temporal artery. The reconstructed eyebrows successfully assumed a desirable shape and exhibited a natural appearance, which was consistent with preoperative expectations and the patient stated that she was more comfortable with her social relationships. Among the current treatment procedures, the superficial temporal artery island flap continues to be a versatile option for reconstructing the eyebrows after alopecia, especially in cases of burns. Results: During the 30 days follow-up period, the scalp island flap remained vascularised with normal hair growth, without complications. The reconstructed eyebrows successfully assumed a desirable shape and exhibited a natural appearance; the patient stated that she was more comfortable with her social relationships. Conclusion: In this case report, we demonstrated how scalp island flaps pedicled by the superficial temporal artery could be performed very safely and reliably to create new eyebrows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alopecia" title="alopecia">alopecia</a>, <a href="https://publications.waset.org/abstracts/search?q=burns" title=" burns"> burns</a>, <a href="https://publications.waset.org/abstracts/search?q=eyebrow" title=" eyebrow"> eyebrow</a>, <a href="https://publications.waset.org/abstracts/search?q=flap" title=" flap"> flap</a>, <a href="https://publications.waset.org/abstracts/search?q=superficial%20temporal%20artery" title=" superficial temporal artery"> superficial temporal artery</a> </p> <a href="https://publications.waset.org/abstracts/141949/the-aesthetic-reconstruction-of-post-burn-eyebrow-alopecia-with-bilateral-superficial-temporal-artery-island-scalp-flap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Evolution of Gravity Flap Structures in the Southern Central Atlas of Tunisia. Example: Northern of Orbata Anticline (Ben Zannouch Structure)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soulef%20Amamria">Soulef Amamria</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sadok%20Bensalem"> Mohamed Sadok Bensalem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghanmi"> Mohamed Ghanmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several works found in the fold-and-thrust belt area of the southern central atlas of Tunisia, which were often related with tectonic shortening, are, in fact, related to superficial gravity structures. These gravitational collapse structures have developed in the northern flank of jebel Orbata. These include rock-slides, rock falls, wrinkle folds, slip sheets, and flaps. The Gravity collapse structures of ben zannouch are parallel to the major thrust of Bou Omrane between Orbata and El Ong structures. The thrust activity of Bou Omrane associated to the important paleo-slope to the south and plastic lithology (incompetent marly and gypsum layers) facilitates the development of the Ben Zannouch Flap structure. The definition in the first time of gravitional collapse structures in Tunisia, particularly in the northern flank of Jebel Orbata, is controlled by three principal structural conditions: the fragmentation of the landslide surfaces, the lithology, and the topography. Other regional factors can be distinguished in the southern-central Tunisian Atlas as the seismity activity of the Gafsa fault and the wetter conditions during the postglacial period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapse%20structure" title="collapse structure">collapse structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flap%20structure" title=" flap structure"> flap structure</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20structures" title=" gravity structures"> gravity structures</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20activity" title=" thrust activity"> thrust activity</a> </p> <a href="https://publications.waset.org/abstracts/160369/evolution-of-gravity-flap-structures-in-the-southern-central-atlas-of-tunisia-example-northern-of-orbata-anticline-ben-zannouch-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Grisotti Flap as Treatment for Central Tumors of the Breast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pardo">R. Pardo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Menendez"> P. Menendez</a>, <a href="https://publications.waset.org/abstracts/search?q=MA%20Gil-Olarte"> MA Gil-Olarte</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sanchez"> S. Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Garc%C3%ADa"> E. García</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Quintana"> R. Quintana</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mart%C3%ADn"> J. Martín</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction : Within oncoplastic breast techniques there is increased interest in immediate partial breast reconstruction. The volume resected is greater than that of conventional conservative techniques. Central tumours of the breast have classically been treated with a mastectomy with regard to oncological safety and cosmetic secondary effects after wide central resection of the nipple and breast tissue beneath. Oncological results for central quadrantectomy have a recurrence level, disease- free period and survival identical to mastectomy. Grissoti flap is an oncoplastic surgical technique that allows the surgeon to perform a safe central quadrantectomy with excellent cosmetic results. Material and methods: The Grissoti flap is a glandular cutaneous advancement rotation flap that can fill the defect in the central portion of the excised breast. If the inferior border is affected by tumour and further surgery is decided upon at the Multidisciplinary Team Meeting, it will be necessary to perform a mastectomy. All patients with a Grisotti flap undergoing surgery since 2009 were reviewed obtaining the following data: age, hystopathological diagnosis, size, operating time, volume of tissue resected, postoperative admission time, re-excisions due to positive margins affected by tumour, wound dehiscence, complications and recurrence. Analysis and results of sentinel node biopsy were also obtained. Results: 12 patients underwent surgery between 2009-2015. The mean age was 54 years (34-67) . All had a preoperative diagnosis of ductal infiltrative carcinoma of less than 2 cm,. Diagnosis was made with Ultrasound, Mamography or both . Magnetic resonance was used in 5 cases. No patients had preoperative positive axilla after ultrasound exploration. Mean operating time was 104 minutes (84-130). Postoperative stay was 24 hours. Mean volume resected was 159 cc (70-286). In one patient the surgical border was affected by tumour and a further procedure with resection of the affected border was performed as ambulatory surgery. The sentinel node biopsy was positive for micrometastasis in only two cases. In one case lymphadenectomy was performed in 2009. In the other, treated in 2015, no lymphadenectomy was performed as the patient had a favourable histopathological prognosis and the multidisciplinary team meeting agreed that lymphadenectomy was not required. No recurrence has been diagnosed in any of the patients who underwent surgery and they are all disease free at present. Conclusions: Conservative surgery for retroareolar central tumours of the breast results in good local control of the disease with free surgical borders, including resection of the nipple areola complex and pectoral major muscle fascia. Reconstructive surgery with the inferior Grissoti flap adequately fills the defect after central quadrantectomy with creation of a new cutaneous disc where a new nipple areola complex is reconstructed with a local flap or micropigmentation. This avoids the need for contralateral symmetrization. Sentinel Node biopsy can be performed without added morbidity. When feasible, the Grissoti flap will avoid skin-sparing mastectomy for central breast tumours that will require the use of an expander, prosthesis or myocutaneous flap, with all the complications of a more complex operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grisotti%20flap" title="Grisotti flap">Grisotti flap</a>, <a href="https://publications.waset.org/abstracts/search?q=oncoplastic%20surgery" title=" oncoplastic surgery"> oncoplastic surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20tumours" title=" central tumours"> central tumours</a>, <a href="https://publications.waset.org/abstracts/search?q=breast" title=" breast"> breast</a> </p> <a href="https://publications.waset.org/abstracts/41168/grisotti-flap-as-treatment-for-central-tumors-of-the-breast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> The Accuracy of an In-House Developed Computer-Assisted Surgery Protocol for Mandibular Micro-Vascular Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Spaas">Christophe Spaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lies%20Pottel"> Lies Pottel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joke%20De%20Ceulaer"> Joke De Ceulaer</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Abeloos"> Johan Abeloos</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Lamoral"> Philippe Lamoral</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20De%20Backer"> Tom De Backer</a>, <a href="https://publications.waset.org/abstracts/search?q=Calix%20De%20Clercq"> Calix De Clercq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We aimed to evaluate the accuracy of an in-house developed low-cost computer-assisted surgery (CAS) protocol for osseous free flap mandibular reconstruction. All patients who underwent primary or secondary mandibular reconstruction with a free (solely or composite) osseous flap, either a fibula free flap or iliac crest free flap, between January 2014 and December 2017 were evaluated. The low-cost protocol consisted out of a virtual surgical planning, a prebend custom reconstruction plate and an individualized free flap positioning guide. The accuracy of the protocol was evaluated through comparison of the postoperative outcome with the 3D virtual planning, based on measurement of the following parameters: intercondylar distance, mandibular angle (axial and sagittal), inner angular distance, anterior-posterior distance, length of the fibular/iliac crest segments and osteotomy angles. A statistical analysis of the obtained values was done. Virtual 3D surgical planning and cutting guide design were performed with Proplan CMF® software (Materialise, Leuven, Belgium) and IPS Gate (KLS Martin, Tuttlingen, Germany). Segmentation of the DICOM data as well as outcome analysis were done with BrainLab iPlan® Software (Brainlab AG, Feldkirchen, Germany). A cost analysis of the protocol was done. Twenty-two patients (11 fibula /11 iliac crest) were included and analyzed. Based on voxel-based registration on the cranial base, 3D virtual planning landmark parameters did not significantly differ from those measured on the actual treatment outcome (p-values >0.05). A cost evaluation of the in-house developed CAS protocol revealed a 1750 euro cost reduction in comparison with a standard CAS protocol with a patient-specific reconstruction plate. Our results indicate that an accurate transfer of the planning with our in-house developed low-cost CAS protocol is feasible at a significant lower cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%2FCAM" title="CAD/CAM">CAD/CAM</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-assisted%20surgery" title=" computer-assisted surgery"> computer-assisted surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=low-cost" title=" low-cost"> low-cost</a>, <a href="https://publications.waset.org/abstracts/search?q=mandibular%20reconstruction" title=" mandibular reconstruction"> mandibular reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/93457/the-accuracy-of-an-in-house-developed-computer-assisted-surgery-protocol-for-mandibular-micro-vascular-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Application of Pedicled Perforator Flaps in Large Cavities of the Breast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neerja%20Gupta">Neerja Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective-Reconstruction of large cavities of the breast without contralateral symmetrisation Background- Reconstruction of breast includes a wide spectrum of procedures from displacement to regional and distant flaps. The pedicled Perforator flaps cover a wide spectrum of reconstruction surgery for all quadrants of the breast, especially in patients with comorbidities. These axial flaps singly or adjunct are based on a near constant perforator vessel, a ratio of 2:1 at its entry in a flap is good to maintain vascularity. The perforators of lateral chest wall viz LICAP, LTAP have overlapping perfurosomes without clear demarcation. LTAP is localized in the narrow zone between the lateral breast fold and anterior axillary line,2.5-3.8cm from the fold. MICAP are localized at 1-2 cm from sternum. Being 1-2mm in diameter, a Single perforator is good to maintain the flap. LICAP has a dominant perforator in 6th-11th spaces, while LTAP has higher placed dominant perforators in 4th and 5th spaces. Methodology-Six consecutive patients who underwent reconstruction of the breast with pedicled perforator flaps were retrospectively analysed. Selections of the flap was done based on the size and locations of the tumour, anticipated volume loss, willingness to undergo contralateral symmetrisation, cosmetic expectations, and finances available.3 patients underwent vertical LTAP, the distal limit of the flap being the inframammary crease. 3 patients underwent MICAP, oriented along the axis of rib, the distal limit being the anterior axillary line. Preoperative identification was done using a unidirectional hand held doppler. The flap was raised caudal to cranial, the pivot point of rotation being the vessel entry into the skin. The donor area is determined by the skin pinch. Flap harvest time was 20-25 minutes. Intra operative vascularity was assessed with dermal bleed. The patient immediate pre, post-operative and follow up pics were compared independently by two breast surgeons. Patients were given a breast Q questionnaire (licensed) for scoring. Results-The median age of six patients was 46. Each patient had a hospital stay of 24 hours. None of the patients was willing for contralateral symmetrisation. The specimen dimensions were from 8x6.8x4 cm to 19x16x9 cm. The breast volume reconstructed range was 30 percent to 45 percent. All wide excision had free margins on frozen. The mean flap dimensions were 12x5x4.5 cm. One LTAP underwent marginal necrosis and delayed wound healing due to seroma. Three patients were phyllodes, of which one was borderline, and 2 were benign on final histopathology. All other 3 patients were invasive ductal cancer and have completed their radiation. The median follow up is 7 months the satisfaction scores at median follow of 7 months are 90 for physical wellbeing and 85 for surgical results. Surgeons scored fair to good in Harvard score. Conclusion- Pedicled perforator flaps are a valuable option for 3/8th volume of breast defects. LTAP is preferred for tumours at the Central, upper, and outer quadrants of the breast and MICAP for the inner and lower quadrant. The vascularity of the flap is dependent on the angiosomalterritories; adequate venous and cavity drainage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast" title="breast">breast</a>, <a href="https://publications.waset.org/abstracts/search?q=oncoplasty" title=" oncoplasty"> oncoplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=pedicled" title=" pedicled"> pedicled</a>, <a href="https://publications.waset.org/abstracts/search?q=perforator" title=" perforator"> perforator</a> </p> <a href="https://publications.waset.org/abstracts/129356/application-of-pedicled-perforator-flaps-in-large-cavities-of-the-breast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Mohammed%20Arab">Fatiha Mohammed Arab</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Augier"> Benoit Augier</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Deniset"> Francois Deniset</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Casari"> Pascal Casari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Andre%20Astolfi"> Jacques Andre Astolfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=flaps" title=" flaps"> flaps</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrofoil" title=" hydrofoil"> hydrofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20method" title=" panel method"> panel method</a>, <a href="https://publications.waset.org/abstracts/search?q=xfoil" title=" xfoil"> xfoil</a> </p> <a href="https://publications.waset.org/abstracts/100862/structural-morphing-on-high-performance-composite-hydrofoil-to-postpone-cavitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rafiur%20Rahman">M. Rafiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mezbah%20Uddin"> M. Mezbah Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Irfan%20Uddin"> Mohammad Irfan Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moinul%20Islam"> M. Moinul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20integrated%20dynamic%20analysis" title="coupled integrated dynamic analysis">coupled integrated dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SFC" title=" SFC"> SFC</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converters" title=" wave energy converters"> wave energy converters</a> </p> <a href="https://publications.waset.org/abstracts/81412/integrated-dynamic-analysis-of-semi-submersible-flap-type-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> A Primary Care Diagnosis of Middle-Aged Men with Oral Cancer Who Underwent Extensive Resection and Flap Repair: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching-Yi%20Huang">Ching-Yi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pi-Fen%20Cheng"> Pi-Fen Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Zhu%20Chen"> Hui-Zhu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Ting%20Huang"> Shi Ting Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng-Hua%20Wang"> Heng-Hua Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a case of oral cancer after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap. The nursing period lasted From September 25 to October 3, 2017, through observation, interview, physical assessment, and medical record review, the author identified the following nursing problems: acute pain, impaired oral mucous membrane, and body image change. During the nursing period, the author provided individual and overall nursing care and established mutual trust through the use of empathy. Author listened and eased the patient's physical indisposition, such as wound pain, we use medications and acupuncture massage to relieve pain. However, for oral mucosa change caused by surgery, provide continuous and complete oral care and oral exercise training to improve oral mucosal healing and restore swallowing function. In the body-image changes, guided him to express his feeling after the body-image change, and enhanced support and from the family, and encouraged him to attend head and neck cancer survivor alliance which allowed the patient to accept the altered body image and reaffirm self-worth. Hopefully, through sharing this nursing experience will help to the nursing care quality of nursing care for oral cancer patients after extensive resection and modified right lateral neck lymph node dissection followed by reconstruction with a skin flap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20cancer" title="oral cancer">oral cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20pain" title=" acute pain"> acute pain</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20oral%20mucous%20membrane" title=" impaired oral mucous membrane"> impaired oral mucous membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20image%20change" title=" body image change"> body image change</a> </p> <a href="https://publications.waset.org/abstracts/105006/a-primary-care-diagnosis-of-middle-aged-men-with-oral-cancer-who-underwent-extensive-resection-and-flap-repair-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Optimal Design of Wind Turbine Blades Equipped with Flaps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Kade%20Wiratama">I. Kade Wiratama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flaps" title="flaps">flaps</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20blade" title=" design blade"> design blade</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=WTAero" title=" WTAero"> WTAero</a> </p> <a href="https://publications.waset.org/abstracts/11064/optimal-design-of-wind-turbine-blades-equipped-with-flaps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=osteocutaneous%20flap&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=osteocutaneous%20flap&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=osteocutaneous%20flap&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>