CINXE.COM
Search results for: biocomposite
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biocomposite</title> <meta name="description" content="Search results for: biocomposite"> <meta name="keywords" content="biocomposite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biocomposite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biocomposite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 32</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biocomposite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Box-Behnken Design for the Biosorption of Cationic Dye from Aqueous Solution Using a Zero-Valent Iron Nano Algal Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivasubramanian">V. Sivasubramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jerold"> M. Jerold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement of adsorption is the development of nano-biocomposite for the sorption dyes and heavy metal ions. In fact, Nanoscale zerovalent iron (NZVI) is cost-effective reducing agent and a most reliable biosorbent for the dye biosorption. In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite, a novel marine algal based biosorbent, was used for the removal of simulated crystal violet (CV) in batch mode of operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-valent" title=" zero-valent"> zero-valent</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/78853/box-behnken-design-for-the-biosorption-of-cationic-dye-from-aqueous-solution-using-a-zero-valent-iron-nano-algal-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neetu%20Malik">Neetu Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Shrivastava"> Sharad Shrivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Bandhu%20Ghosh"> Subrata Bandhu Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermally%20exfoliated%20graphene%20oxide" title="thermally exfoliated graphene oxide">thermally exfoliated graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=PCL" title=" PCL"> PCL</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a> </p> <a href="https://publications.waset.org/abstracts/82518/polycaprolactonethermally-exfoliated-graphene-oxide-biocomposite-films-a-promising-moisture-absorption-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Nouri%20Taiba">L. Nouri Taiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Bouhamidi"> Y. Bouhamidi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kaouah"> F. Kaouah</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Bendjama"> Z. Bendjama</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Trari"> M. Trari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20analysis" title=" non-linear analysis"> non-linear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/40816/influence-of-the-low-frequency-ultrasound-on-the-cadmium-ii-biosorption-by-an-ecofriendly-biocomposite-extraction-solid-waste-of-ammi-visnaga-calcium-alginate-kinetic-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jerold">M. Jerold</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sivasubramanian"> V. Sivasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-valent" title=" zero-valent"> zero-valent</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/114454/zero-valent-iron-algal-biocomposite-for-the-removal-of-crystal-violet-from-aqueous-solution-box-behnken-optimization-and-fixed-bed-column-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Rapid and Easy Fabrication of Collagen-Based Biocomposite Scaffolds for 3D Cell Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Turker">Esra Turker</a>, <a href="https://publications.waset.org/abstracts/search?q=Umit%20Hakan%20Yildiz"> Umit Hakan Yildiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahu%20Arslan%20Yildiz"> Ahu Arslan Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key of regenerative medicine is mimicking natural three dimensional (3D) microenvironment of tissues by utilizing appropriate biomaterials. In this study, a synthetic biodegradable polymer; poly (L-lactide-co-ε-caprolactone) (PLLCL) and a natural polymer; collagen was used to mimic the biochemical structure of the natural extracellular matrix (ECM), and by means of electrospinning technique the real physical structure of ECM has mimicked. PLLCL/Collagen biocomposite scaffolds enables cell attachment, proliferation and nutrient transport through fabrication of micro to nanometer scale nanofibers. Biocomposite materials are commonly preferred due to limitations of physical and biocompatible properties of natural and synthetic materials. Combination of both materials improves the strength, degradation and biocompatibility of scaffold. Literature studies have shown that collagen is mostly solved with heavy chemicals, which is not suitable for cell culturing. To overcome this problem, a new approach has been developed in this study where polyvinylpyrrolidone (PVP) is used as co-electrospinning agent. PVP is preferred due to its water solubility, so PLLCL/collagen biocomposite scaffold can be easily and rapidly produced. Hydrolytic and enzymatic biodegradation as well as mechanical strength of scaffolds were examined in vitro. Cell adhesion, proliferation and cell morphology characterization studies have been performed as well. Further, on-chip drug screening analysis has been performed over 3D tumor models. Overall, the developed biocomposite scaffold was used for 3D tumor model formation and obtained results confirmed that developed model could be used for drug screening studies to predict clinical efficacy of a drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20cell%20culture" title=" 3D cell culture"> 3D cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20screening" title=" drug screening"> drug screening</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=lab-on-a-chip" title=" lab-on-a-chip"> lab-on-a-chip</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/84837/rapid-and-easy-fabrication-of-collagen-based-biocomposite-scaffolds-for-3d-cell-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Production of Biocomposites Using Chars Obtained by Co-Pyrolysis of Olive Pomace with Plastic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Yel">Esra Yel</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabriz%20Aslanov"> Tabriz Aslanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Sogancioglu"> Merve Sogancioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Suheyla%20Kocaman"> Suheyla Kocaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disposal of waste plastics has become a major worldwide environmental problem. Pyrolysis of waste plastics is one of the routes to waste minimization and recycling that has been gaining interest. In pyrolysis, the pyrolysed material is separated into gas, liquid (both are fuel) and solid (char) products. All fractions have utilities and economical value depending upon their characteristics. The first objective of this study is to determine the co-pyrolysis product fractions of waste HDPE- (high density polyethylene) and LDPE (low density polyethylene)-olive pomace (OP) and to determine the qualities of the solid product char. Chars obtained at 700 °C pyrolysis were used in biocomposite preparation as additive. As the second objective, the effects of char on biocomposite quality were investigated. Pyrolysis runs were performed at temperature 700 °C with heating rates of 5 °C/min. Biocomposites were prepared by mixing of chars with bisphenol-F type epoxy resin in various wt%. Biocomposite properties were determined by measuring electrical conductivity, surface hardness, Young’s modulus and tensile strength of the composites. The best electrical conductivity results were obtained with HDPE-OP char. For HDPE-OP char and LDPE-OP char, compared to neat epoxy, the tensile strength values of the composites increased by 102% and 78%, respectively, at 10% char dose. The hardness measurements showed similar results to the tensile tests, since there is a correlation between the hardness and the tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=char" title=" char"> char</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20pomace" title=" olive pomace"> olive pomace</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/43071/production-of-biocomposites-using-chars-obtained-by-co-pyrolysis-of-olive-pomace-with-plastic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Developing Indoor Enhanced Bio Composite Vertical Smart Farming System for Climbing Food Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mokhtar">S. Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ibrahim"> R. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Abdan"> K. Abdan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rashidi"> A. Rashidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The population in the world are growing in very fast rate. It is expected that urban growth and development would create serious questions of food production and processing, transport, and consumption. Future smart green city policies are emerging to support new ways of visualizing, organizing and managing the city and its flows towards developing more sustainable cities in ensuring food security while maintaining its biodiversity. This is a survey paper analyzing the feasibility of developing a smart vertical farming system for climbing food plant to meet the need of food consumption in urban cities with an alternative green material. This paper documents our investigation on specific requirement for farming high valued climbing type food plant suitable for vertical farming, development of appropriate biocomposite material composition, and design recommendations for developing a new smart vertical farming system inside urban buildings. Results include determination of suitable specific climbing food plant species and material manufacturing processes for reinforcing natural fiber for biocomposite material. The results are expected to become recommendations for developing alternative structural materials for climbing food plant later on towards the development of the future smart vertical farming system. This paper contributes to supporting urban farming in cities and promotes green materials for preserving the environment. Hence supporting efforts in food security agenda especially for developing nations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20reinforce%20fiber" title=" natural reinforce fiber"> natural reinforce fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farming" title=" smart farming"> smart farming</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20farming" title=" vertical farming"> vertical farming</a> </p> <a href="https://publications.waset.org/abstracts/87119/developing-indoor-enhanced-bio-composite-vertical-smart-farming-system-for-climbing-food-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mirtaghavi">Ali Mirtaghavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Baldwin"> Andy Baldwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajendarn%20%20Muthuraj"> Rajendarn Muthuraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jack%20Luo"> Jack Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20scaffolds" title="3D scaffolds">3D scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=aerogels" title=" aerogels"> aerogels</a>, <a href="https://publications.waset.org/abstracts/search?q=Biocomposites" title=" Biocomposites "> Biocomposites </a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/121759/crosslinked-porous-3-dimensional-cellulose-nanofibersgelatin-based-biocomposite-aerogels-for-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20AbdelRazek">E. M. AbdelRazek</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20ElBahy"> G. S. ElBahy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Allam"> M. A. Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abdelghany"> A. M. Abdelghany</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hezma"> A. M. Hezma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20synthesis" title=" chemical synthesis"> chemical synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/4210/cellulose-acetatepolyacrylic-acid-filled-with-nano-hydroxapatite-composites-spectroscopic-studies-and-search-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Kadem">Sihem Kadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratiba%20Irinislimane"> Ratiba Irinislimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Naima%20Belhaneche"> Naima Belhaneche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfa%20fiber" title="alfa fiber">alfa fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a> </p> <a href="https://publications.waset.org/abstracts/126344/biodegradation-study-of-a-biocomposite-material-based-on-sunflower-oil-and-alfa-fibers-as-natural-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Investigating the Minimum RVE Size to Simulate Poly (Propylene carbonate) Composites Reinforced with Cellulose Nanocrystals as a Bio-Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Nazeri">Hamed Nazeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Mertiny"> Pierre Mertiny</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongsheng%20Ma"> Yongsheng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Kajsa%20Duke"> Kajsa Duke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The background of the present study is the use of environment-friendly biopolymer and biocomposite materials. Among the recently introduced biopolymers, poly (propylene carbonate) (PPC) has been gaining attention. This study focuses on the size of representative volume elements (RVE) in order to simulate PPC composites reinforced by cellulose nanocrystals (CNCs) as a bio-nanocomposite. Before manufacturing nanocomposites, numerical modeling should be implemented to explore and predict mechanical properties, which may be accomplished by creating and studying a suitable RVE. In other studies, modeling of composites with rod shaped fillers has been reported assuming that fillers are unidirectionally aligned. But, modeling of non-aligned filler dispersions is considerably more difficult. This study investigates the minimum RVE size to enable subsequent FEA modeling. The matrix and nano-fillers were modeled using the finite element software ABAQUS, assuming randomly dispersed fillers with a filler mass fraction of 1.5%. To simulate filler dispersion, a Monte Carlo technique was employed. The numerical simulation was implemented to find composite elastic moduli. After commencing the simulation with a single filler particle, the number of particles was increased to assess the minimum number of filler particles that satisfies the requirements for an RVE, providing the composite elastic modulus in a reliable fashion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=representative%20volume%20element" title=" representative volume element"> representative volume element</a> </p> <a href="https://publications.waset.org/abstracts/27266/investigating-the-minimum-rve-size-to-simulate-poly-propylene-carbonate-composites-reinforced-with-cellulose-nanocrystals-as-a-bio-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Tensile Retention Properties of Thermoplastic Starch Based Biocomposites Modified with Glutaraldehyde</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jen-Taut%20Yeh">Jen-Taut Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-jing%20Hou"> Yuan-jing Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Cheng"> Li Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%20Zhou%20Wang"> Ya Zhou Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi%20Yu%20Zhang"> Zhi Yu Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensile retention properties of bacterial cellulose (BC) reinforced thermoplastic starch (TPS) resins were successfully improved by reacting with glutaraldehyde (GA) in their gelatinization processes. Small amounts of poly (lactic acid) (PLA) were blended with GA modified TPS resins to improve their processability. As evidenced by the newly developed ether (-C-O-C-) stretching bands on FT-IR spectra of TPS100BC0.02GAx series specimens, hydroxyl groups of TPS100BC0.02 resins were successfully reacted with the aldehyde groups of GA molecules during their modification processes. The retention values of tensile strengths (σf) of TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens improved significantly and reached a maximal value as GA contents approached an optimal value at 0.5 part per hundred parts of TPS resin (PHR). By addition of 0.5 PHR GA in biocomposite specimens, the initial tensile strength and elongation at break values of (TPS100BC0.02GA0.5)75PLA25 specimen improved to 24.6 MPa and 5.6%, respectively, which were slightly improved than those of (TPS100BC0.02)75PLA25 specimen. However, the retention values of tensile strengths of (TPS100BC0.02GA0.5)75PLA25 specimen reached around 82.5%, after placing the specimen under 20oC/50% relative humidity for 56 days, which were significantly better than those of the (TPS100BC0.02)75PLA25 specimen. In order to understand these interesting tensile retention properties found for (TPS100BC0.02GAx)75PLA25 specimens. Thermal analyses of initial and aged TPS100BC0.02, TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens were also performed in this investigation. Possible reasons accounting for the significantly improved tensile retention properties of TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20retention" title=" strength retention"> strength retention</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20retention" title=" tensile retention"> tensile retention</a> </p> <a href="https://publications.waset.org/abstracts/14608/tensile-retention-properties-of-thermoplastic-starch-based-biocomposites-modified-with-glutaraldehyde" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Using Sugar Mill Waste for Biobased Epoxy Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ulku%20Soydal">Ulku Soydal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Esen%20Marti"> Mustafa Esen Marti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20waste" title=" lime waste"> lime waste</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/50205/using-sugar-mill-waste-for-biobased-epoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Interaction of Vegetable Fillers with Polyethylene Matrix in Biocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Pantyukhov">P. V. Pantyukhov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Monakhova"> T. V. Monakhova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Popov"> A. A. Popov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20filler" title=" vegetable filler"> vegetable filler</a> </p> <a href="https://publications.waset.org/abstracts/19606/interaction-of-vegetable-fillers-with-polyethylene-matrix-in-biocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Development of Plantar Insoles Reinforcement Using Biocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Vidal">A. C. Vidal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Mulinari"> D. R. Mulinari</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Bandeira"> C. F. Bandeira</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Montoro"> S. R. Montoro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the great effort suffered by foot during movement, is of great importance to count on a shoe that has a proper structure and excellent support tread to prevent the immediate and long-term consequences in all parts of the body. In this sense, new reinforcements of insoles with high impact absorption were developed in this work, from a polyurethane (PU) biocomposite derived from castor oil reinforced or not with palm fibers. These insoles have been obtained from the mixture with polyol prepolymer (diisocyanate) and subsequently were evaluated morphologically, mechanically and by thermal analysis. The results revealed that the biocomposites showed lower flexural strength, higher impact strength and open interconnected pores in their microstructure, but with smaller cells and degradation temperature slightly higher compared to the marketed material, showing interesting properties for a possible application as reinforcement of insoles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20insole" title=" polyurethane insole"> polyurethane insole</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20fibers" title=" palm fibers"> palm fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20insoles%20reinforcement" title=" plantar insoles reinforcement"> plantar insoles reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/20900/development-of-plantar-insoles-reinforcement-using-biocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sahari">J. Sahari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Sapuan"> S. M. Sapuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical" title=" mechanical"> mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical" title=" theoretical"> theoretical</a> </p> <a href="https://publications.waset.org/abstracts/27874/theoretical-modeling-of-mechanical-properties-of-eco-friendly-composites-derived-from-sugar-palm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Synthesis and Characterization of Nanocellulose Based Bio-Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnakant%20Bhole">Krishnakant Bhole</a>, <a href="https://publications.waset.org/abstracts/search?q=Neerakallu%20D.%20Shivakumar"> Neerakallu D. Shivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakti%20Singh%20Chauhan"> Shakti Singh Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanketh%20Tonannavar"> Sanketh Tonannavar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajath%20S"> Rajath S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title="nanocellulose">nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=CNF" title=" CNF"> CNF</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a> </p> <a href="https://publications.waset.org/abstracts/152048/synthesis-and-characterization-of-nanocellulose-based-bio-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lara%20Alam">Lara Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Laetitia%20Van-Schoors"> Laetitia Van-Schoors</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Sicot"> Olivier Sicot</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Piezel"> Benoit Piezel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Aivazzadeh"> Shahram Aivazzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physico-chemical properties in the long term. Few studies have been carried out on the photooxidation of unidirectional (UD) composites based on recycled matrix, which is the aim of this work. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flax%20fiber" title="flax fiber">flax fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=photooxidation" title=" photooxidation"> photooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20properties" title=" physico-chemical properties"> physico-chemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20polypropylene" title=" recycled polypropylene"> recycled polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20properties" title=" tensile properties"> tensile properties</a> </p> <a href="https://publications.waset.org/abstracts/141984/accelerated-ageing-of-unidirectional-flax-fibers-reinforced-recycled-polypropylene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Hafnium and Samarium Hydroxyapatite Composites and Their Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Nur%20Erd%C3%B6l">Meltem Nur Erdöl</a>, <a href="https://publications.waset.org/abstracts/search?q=Feyzanur%20Bayrak"> Feyzanur Bayrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Emanet%C3%A7i"> Elif Emanetçi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faik%20N%C3%BCzhet%20Oktar"> Faik Nüzhet Oktar</a>, <a href="https://publications.waset.org/abstracts/search?q=Cevriye%20Kalkandelen"> Cevriye Kalkandelen</a>, <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuzhan%20G%C3%BCnd%C3%BCz"> Oğuzhan Gündüz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=hafnium%20oxide" title=" hafnium oxide"> hafnium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=samarium%20oxide" title=" samarium oxide"> samarium oxide</a> </p> <a href="https://publications.waset.org/abstracts/69999/hafnium-and-samarium-hydroxyapatite-composites-and-their-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mochamad%20Chalid">Mochamad Chalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Imam%20Prabowo"> Imam Prabowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title="polylactic acid">polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Arenga%20pinnata" title=" Arenga pinnata"> Arenga pinnata</a>, <a href="https://publications.waset.org/abstracts/search?q=alkalinization" title=" alkalinization"> alkalinization</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibility" title=" compatibility"> compatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20fraction" title=" volume fraction"> volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distributiom" title=" distributiom"> distributiom</a> </p> <a href="https://publications.waset.org/abstracts/15314/the-effects-of-alkalization-to-the-mechanical-properties-of-biocomposite-pla-reinforced-the-ijuk-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chengzhu%20Liao">Chengzhu Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbo%20Zhang"> Jianbo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiou%20Wang"> Haiou Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ming"> Jing Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Huili%20Li"> Huili Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Li"> Yanyan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Cheng"> Hua Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sie%20Chin%20Tjong"> Sie Chin Tjong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofiber" title=" carbon nanofiber"> carbon nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density%20polyethylene" title=" high density polyethylene"> high density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a> </p> <a href="https://publications.waset.org/abstracts/61223/high-density-polyethylene-biocomposites-reinforced-with-hydroxyapatite-nanorods-and-carbon-nanofibers-for-joint-replacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mercedes%20Barroso%20Pinz%C3%B3n">Sara Mercedes Barroso Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Jes%C3%BAs%20Caicedo%20Castro"> Álvaro Jesús Caicedo Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Javer%20S%C3%A1nchez%20Herencia"> Antonio Javer Sánchez Herencia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20rock" title="phosphate rock">phosphate rock</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/184860/development-of-mg-containing-hydroxyapatite-based-bioceramics-from-phosphate-rock-for-bone-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Vibrations of Thin Bio Composite Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timo%20Avikainen">Timo Avikainen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuukka%20Verho"> Tuukka Verho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of natural fibers as reinforcements is growing increasingly in polymers which are involved in e.g. structural, vibration, and acoustic applications. The use of bio composites is being investigated as lightweight materials with specific properties like the ability to dissipate vibration energy and positive environmental profile and are thus considered as potential replacements for synthetic composites. The macro-level mechanical properties of the biocomposite material depend on several parameters in the detailed architecture and morphology of the reinforcing fiber structure. The polymer matrix phase is often applied to remain the fiber structure in touch. A big role in the packaging details of the fibers is related to the used manufacturing processes like extrusion, injection molding and treatments. There are typically big variances in the detailed parameters of the microstructure fibers. The study addressed the question of how the multiscale simulation methodology works in bio composites with short pulp fibers. The target is to see how the vibro – acoustic performance of thin–walled panels can be controlled by the detailed characteristics of the fiber material. Panels can be used in sound-producing speakers or sound insulation applications. The multiscale analysis chain is tested starting from the microstructural level and continuing via macrostructural material parameters to the product component part/assembly levels. Another application is the dynamic impact type of loading, exposing the material to the crack type damages that is in this study modeled as the Charpy impact tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio%20composite" title="bio composite">bio composite</a>, <a href="https://publications.waset.org/abstracts/search?q=pulp%20fiber" title=" pulp fiber"> pulp fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustics" title=" acoustics"> acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/168402/vibrations-of-thin-bio-composite-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Mercedes%20Barroso%20Pinz%C3%B3n">Sara Mercedes Barroso Pinzón</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Javier%20Sanch%C3%A9z%20Herencia"> Antonio Javier Sanchéz Herencia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bego%C3%B1a%20Ferrari"> Begoña Ferrari</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Jes%C3%BAs%20Castro"> Álvaro Jesús Castro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phosphate%20rock" title="phosphate rock">phosphate rock</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/184856/obtaining-bioactive-mg-hydroxyapatite-composite-ceramics-from-phosphate-rock-for-medical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Characterization of Biocomposites Based on Mussel Shell Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suheyla%20Kocaman">Suheyla Kocaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnare%20Ahmetli"> Gulnare Ahmetli</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaaddin%20Cerit"> Alaaddin Cerit</a>, <a href="https://publications.waset.org/abstracts/search?q=Alize%20Yucel"> Alize Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Gozukucuk"> Merve Gozukucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO<sub>3</sub>, shell wastes are suitable to prepare high purity CaCO<sub>3</sub> powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title=" epoxy resin"> epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=mussel%20shell" title=" mussel shell"> mussel shell</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/43082/characterization-of-biocomposites-based-on-mussel-shell-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Multifunctional Plasmonic Ag-TiO2 Nano-biocompoistes: Surface Enhanced Raman Scattering and Anti-microbial Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jai%20Prakash">Jai Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Promod%20Kumar"> Promod Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Chantel%20Swart"> Chantel Swart</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Neethling"> J. H. Neethling</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janse%20van%20Vuuren"> A. Janse van Vuuren</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Swart"> H. C. Swart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag nanoparticles (NPs) have been used as functional nanomaterials due to their optical and antibacterial properties. Similarly, TiO2 photocatalysts have also been used as suitable nanomaterials for killing cancer cells, viruses and bacteria. Here, we report on multifunctional plasmonic Ag-TiO2 nano-biocomposite synthesized by the sol-gel technique and their optical, surface enhanced Raman scattering (SERS) and antibacterial activities. The as-prepared composites of Ag–TiO2 with different silver content and TiO2 nanopowder were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersed X-ray analysis (EDX), UV-vis and Raman spectroscopy. The Ag NPs were found to be uniformly distributed and strongly attached to the TiO2 matrix. The novel optical response of the Ag-TiO2 nanocomposites is due to the strong electric field from the surface plasmon excitation of the Ag NPs. The Raman spectrum of Ag-TiO2 nanocomposite was found to be enhanced as compared to TiO2. The enhancement of the low frequency band is evident. This indicates the SERS effect of the TiO2 NPs in close vicinity of Ag NPs. In addition, nanocomposites showed enhancement in the SERS signals of methyl orange (MO) dye molecules with increasing Ag content. The localized electromagnetic field from the surface plasmon excitation of the Ag NPs was responsible for the SERS signals of the TiO2 NPs and MO molecules. The antimicrobial effect of the Ag–TiO2 nanocomposites with different silver content and TiO2 nanopowder were carried out against the bacterium Staphylococcus aureus. The Ag–TiO2 composites showed antibacterial activity towards S. aureus with increasing Ag content as compared to the TiO2 nanopowder. These results foresee promising applications of the functional plasmonic metal−semiconductor based nanobiocomposites for both chemical and biological samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-Semiconductor" title="metal-Semiconductor">metal-Semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-Biocomposites" title=" nano-Biocomposites"> nano-Biocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title=" anti-microbial activity"> anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20enhanced%20Raman%20scattering" title=" surface enhanced Raman scattering"> surface enhanced Raman scattering</a> </p> <a href="https://publications.waset.org/abstracts/37749/multifunctional-plasmonic-ag-tio2-nano-biocompoistes-surface-enhanced-raman-scattering-and-anti-microbial-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Koronis">Georgios Koronis</a>, <a href="https://publications.waset.org/abstracts/search?q=Arlindo%20Silva"> Arlindo Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=flax%20fabrics" title=" flax fabrics"> flax fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber%20reinforced%20composites" title=" natural fiber reinforced composites"> natural fiber reinforced composites</a> </p> <a href="https://publications.waset.org/abstracts/59273/predicting-and-optimizing-the-mechanical-behavior-of-a-flax-reinforced-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Zehra">Aiman Zehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Mohd%20Wani"> Sajad Mohd Wani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20films" title=" biodegradable films"> biodegradable films</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=thyme%20essential%20oil" title=" thyme essential oil"> thyme essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinkers" title=" crosslinkers"> crosslinkers</a> </p> <a href="https://publications.waset.org/abstracts/161528/active-packaging-films-based-on-chitosan-incorporated-with-thyme-essential-oil-and-cross-linkers-and-its-effect-on-the-quality-shelf-life-of-food" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mazian">Brahim Mazian</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Bergeret"> Anne Bergeret</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Charles%20Benezet"> Jean-Charles Benezet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandrine%20Bayle"> Sandrine Bayle</a>, <a href="https://publications.waset.org/abstracts/search?q=Luc%20Malhautier"> Luc Malhautier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20retting" title="controlled retting">controlled retting</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibre" title=" hemp fibre"> hemp fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/91092/influence-of-controlled-retting-on-the-quality-of-the-hemp-fibres-harvested-at-the-seed-maturity-by-using-a-designed-lab-scale-pilot-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belen%20Montero">Belen Montero</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Ramirez"> Carmen Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Maite%20Rico"> Maite Rico</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebeca%20Bouza"> Rebeca Bouza</a>, <a href="https://publications.waset.org/abstracts/search?q=Irene%20Derungs"> Irene Derungs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposites" title="biocomposites">biocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title=" nanocellulose"> nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/62388/nanocellulose-reinforced-biocomposites-based-on-wheat-plasticized-starch-for-food-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biocomposite&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biocomposite&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>