CINXE.COM
Search results for: materials composite
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: materials composite</title> <meta name="description" content="Search results for: materials composite"> <meta name="keywords" content="materials composite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="materials composite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="materials composite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8149</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: materials composite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8149</span> Mathematical Analysis of Matrix and Filler Formulation in Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20A.%20Afolabi">Olusegun A. Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ndivhuwo%20Ndou"> Ndivhuwo Ndou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=filler" title=" filler"> filler</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=percentage%20weight" title=" percentage weight"> percentage weight</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20fraction" title=" volume fraction"> volume fraction</a> </p> <a href="https://publications.waset.org/abstracts/182436/mathematical-analysis-of-matrix-and-filler-formulation-in-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8148</span> Composite Components Manufacturing in SAE Formula Student, a Case Study of AGH Racing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanna%20Faron">Hanna Faron</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Marcinkowski"> Wojciech Marcinkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Prusak"> Daniel Prusak</a>, <a href="https://publications.waset.org/abstracts/search?q=W%C5%82adys%C5%82aw%20Hamiga"> Władysław Hamiga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interest in composite materials comes out of two basic premises: their supreme mechanical and strength properties,combined with a small specific weight. Origin and evolution of modern composite materials bonds with development of manufacturing of synthetic fibers, which have begun during Second World War. Main condition to achieve intended properties of composite materials is proper bonding of reinforcing layer with appropriate adhesive in manufacturing process. It is one of the fundamental quality evaluation criterion of fabrication processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SAE" title="SAE">SAE</a>, <a href="https://publications.waset.org/abstracts/search?q=formula%20student" title=" formula student"> formula student</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Aramid%20fiber" title=" Aramid fiber"> Aramid fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20wire%20cutter" title=" hot wire cutter"> hot wire cutter</a> </p> <a href="https://publications.waset.org/abstracts/32986/composite-components-manufacturing-in-sae-formula-student-a-case-study-of-agh-racing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8147</span> Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Hocine">Abdelkader Hocine</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20Maizia"> Abdelhakim Maizia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo" title=" monte carlo"> monte carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20structure" title=" tubular structure"> tubular structure</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/45435/reliability-simulation-of-composite-tubular-structure-under-pressure-by-finite-elements-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8146</span> Integration of Constraints Related to Composite Materials in the Design of Industrial Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumedine">A. Boumedine</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Benfriha"> K. Benfriha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb"> S. Lecheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printer" title=" 3D printer"> 3D printer</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine"> turbine</a> </p> <a href="https://publications.waset.org/abstracts/109739/integration-of-constraints-related-to-composite-materials-in-the-design-of-industrial-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8145</span> Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parastou%20Kharazmi">Parastou Kharazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Folke%20Bj%C3%B6rk"> Folke Björk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=relining" title=" relining"> relining</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a> </p> <a href="https://publications.waset.org/abstracts/42277/influence-of-high-temperature-and-humidity-on-polymer-composites-used-in-relining-of-sewage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8144</span> Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoubida%20Lounis">Zoubida Lounis</a>, <a href="https://publications.waset.org/abstracts/search?q=Naouel%20Boumesla"> Naouel Boumesla</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20El%20Kader%20Bengueddach"> Abd El Kader Bengueddach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=syntheisis" title=" syntheisis"> syntheisis</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20materials" title=" mesoporous materials"> mesoporous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=microporous%20materials" title=" microporous materials"> microporous materials</a> </p> <a href="https://publications.waset.org/abstracts/14563/direct-synthesis-of-composite-materials-type-mcm-41zsm-5-by-hydrothermal-at-atmospheric-pressure-in-sealed-pyrex-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8143</span> Design of Composite Joints from Carbon Fibre for Automotive Parts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hemath%20Kumar">G. Hemath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohit"> H. Mohit</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Karthick"> K. Karthick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20composite" title=" FRP composite"> FRP composite</a>, <a href="https://publications.waset.org/abstracts/search?q=MMC" title=" MMC"> MMC</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a> </p> <a href="https://publications.waset.org/abstracts/10217/design-of-composite-joints-from-carbon-fibre-for-automotive-parts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8142</span> The Mechanical Behavior of a Cement-Fiber Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Harrat">K. Harrat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hidjeb"> M. Hidjeb</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T%E2%80%99kint"> M. T’kint</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20composite" title="cement composite">cement composite</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behaviour" title=" mechanical behaviour"> mechanical behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetal%20fiber" title=" vegetal fiber"> vegetal fiber</a> </p> <a href="https://publications.waset.org/abstracts/23789/the-mechanical-behavior-of-a-cement-fiber-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8141</span> Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Khalil">Muhammad Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Abuelfoutouh"> Nader Abuelfoutouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gasser%20Abdelal"> Gasser Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Murphy"> Adrian Murphy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20structures" title="composite structures">composite structures</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning%20multiphysics" title=" lightning multiphysics"> lightning multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29" title=" magnetohydrodynamic (MHD)"> magnetohydrodynamic (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20thermal-electrical%20analysis" title=" coupled thermal-electrical analysis"> coupled thermal-electrical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20plasmas." title=" thermal plasmas."> thermal plasmas.</a> </p> <a href="https://publications.waset.org/abstracts/81848/numerical-simulation-of-lightning-strike-direct-effects-on-aircraft-skin-composite-laminate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8140</span> Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Shivanand">H. K. Shivanand</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjith%20R.%20Hombal"> Ranjith R. Hombal</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraveej%20Shirahatti"> Paraveej Shirahatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gujjalla%20Anil%20Babu"> Gujjalla Anil Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20ShivaPrakash"> S. ShivaPrakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title="Kevlar">Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenaf" title=" Kenaf"> Kenaf</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20bagging%20process" title=" vacuum bagging process"> vacuum bagging process</a>, <a href="https://publications.waset.org/abstracts/search?q=Interlaminar%20shear%20strength%20test" title=" Interlaminar shear strength test"> Interlaminar shear strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a> </p> <a href="https://publications.waset.org/abstracts/174472/studies-on-mechanical-behavior-of-kevlarkenafgraphene-reinforced-polymer-based-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8139</span> Ultrasonic Measurement of Elastic Properties of Fiber Reinforced Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Guzel">Hatice Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Oral"> Imran Oral</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Isler"> Huseyin Isler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, elastic constants, Young’s modulus, Poisson’s ratios, and shear moduli of orthotropic composite materials, consisting of E-glass/epoxy and carbon/epoxy, were calculated by ultrasonic velocities which were measured using ultrasonic pulse-echo method. 35 MHz computer controlled analyzer, 60 MHz digital oscilloscope, 5 MHz longitudinal probe, and 2,25 MHz transverse probe were used for the measurements of ultrasound velocities, the measurements were performed at ambient temperature. It was understood from the data obtained in this study that, measured ultrasound velocities and the calculated elasticity coefficients were depending on the fiber orientations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20materials" title=" orthotropic materials"> orthotropic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/74353/ultrasonic-measurement-of-elastic-properties-of-fiber-reinforced-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8138</span> Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiye%20Ahan">Zulfiye Ahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Yilmaz"> Elcin Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nonwoven" title="composite nonwoven">composite nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20foams" title=" thermoplastic foams"> thermoplastic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20behavior" title=" foaming behavior"> foaming behavior</a> </p> <a href="https://publications.waset.org/abstracts/141516/determination-of-foaming-behavior-in-thermoplastic-composite-nonwoven-structures-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8137</span> An Overview of Corroded Pipe Repair Techniques Using Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lim%20Kar%20Sing">Lim Kar Sing</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Afifah%20Azraai"> Siti Nur Afifah Azraai</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhazilan%20Md%20Noor"> Norhazilan Md Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Nordin%20Yahaya"> Nordin Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric composites are being increasingly used as repair material for repairing critical infrastructures such as building, bridge, pressure vessel, piping and pipeline. Technique in repairing damaged pipes is one of the major concerns of pipeline owners. Considerable researches have been carried out on the repair of corroded pipes using composite materials. This article attempts a short review of the subject matter to provide insight into various techniques used in repairing corroded pipes, focusing on a wide range of composite repair systems. These systems including pre-cured layered, flexible wet lay-up, pre-impregnated, split composite sleeve and flexible tape systems. Both advantages and limitations of these repair systems were highlighted. Critical technical aspects have been discussed through the current standards and practices. Research gaps and future study scopes in achieving more effective design philosophy are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20technique" title=" repair technique"> repair technique</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/35294/an-overview-of-corroded-pipe-repair-techniques-using-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8136</span> Experimental Study of Various Sandwich Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Naveen">R. Naveen</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vanitha"> E. Vanitha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gayathri"> S. Gayathri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20sandwich%20composite" title="bamboo sandwich composite">bamboo sandwich composite</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20sandwich%20composite" title=" metal sandwich composite"> metal sandwich composite</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composite" title=" sandwich composite"> sandwich composite</a>, <a href="https://publications.waset.org/abstracts/search?q=v-board%20sandwich%20composite" title=" v-board sandwich composite"> v-board sandwich composite</a> </p> <a href="https://publications.waset.org/abstracts/56841/experimental-study-of-various-sandwich-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8135</span> Research on Sensing Performance of Polyimide-Based Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui%20Zhao">Rui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongxu%20Zhang"> Dongxu Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Wan"> Min Wan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide" title="polyimide">polyimide</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20change%20rate" title=" resistance change rate"> resistance change rate</a> </p> <a href="https://publications.waset.org/abstracts/177700/research-on-sensing-performance-of-polyimide-based-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8134</span> Detection of Defects in CFRP by Ultrasonic IR Thermographic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Swiderski">W. Swiderski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a> </p> <a href="https://publications.waset.org/abstracts/67100/detection-of-defects-in-cfrp-by-ultrasonic-ir-thermographic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8133</span> Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Larbi">S. Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bensaada"> R. Bensaada</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Djebali"> S. Djebali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bilek"> A. Bilek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP%20laminates" title="FRP laminates">FRP laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20aging" title=" hygrothermal aging"> hygrothermal aging</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20laminates" title=" theory of laminates"> theory of laminates</a> </p> <a href="https://publications.waset.org/abstracts/49969/experimental-and-theoretical-study-on-hygrothermal-aging-effect-on-mechanical-behavior-of-fiber-reinforced-plastic-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8132</span> Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miko%C5%82aj%20Szyca">Mikołaj Szyca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20pair" title=" friction pair"> friction pair</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20microtomography" title=" X-ray computed microtomography"> X-ray computed microtomography</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a> </p> <a href="https://publications.waset.org/abstracts/146421/microtomographic-analysis-of-friction-materials-used-in-the-brakes-of-railway-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8131</span> Determination of Foaming Behavior in thermoplastic Composite Nonwoven Structures for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulfiye%20Ahan">Zulfiye Ahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dogu"> Mustafa Dogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elcin%20Yilmaz"> Elcin Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world, with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of material is gradually growing, especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent, and a thermal process was applied to obtain a porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20nonwoven" title="composite nonwoven">composite nonwoven</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20foams" title=" thermoplastic foams"> thermoplastic foams</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20agent" title=" foaming agent"> foaming agent</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming%20behavior" title=" foaming behavior"> foaming behavior</a> </p> <a href="https://publications.waset.org/abstracts/141519/determination-of-foaming-behavior-in-thermoplastic-composite-nonwoven-structures-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8130</span> Mechanical Tests and Analyzes of Behaviors of High-Performance of Polyester Resins Reinforced With Unifilo Fiberglass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C4%83il%C4%83%20Diana%20Irinel">Băilă Diana Irinel</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C4%83curar%20R%C4%83zvan"> Păcurar Răzvan</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C4%83curar%20Ancu%C8%9Ba"> Păcurar Ancuța</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, composite materials are increasingly used in automotive, aeronautic, aerospace, construction applications. Composite materials have been used in aerospace in applications such as engine blades, brackets, interiors, nacelles, propellers/rotors, single aisle wings, wide body wings. The fields of use of composite materials have multiplied with the improvement of material properties, such as stability and adaptation to the environment, mechanical tests, wear resistance, moisture resistance, etc. The composite materials are classified concerning type of matrix materials, as metallic, polymeric and ceramic based composites and are grouped according to the reinforcement type as fibre, obtaining particulate and laminate composites. Production of a better material is made more likely by combining two or more materials with complementary properties. The best combination of strength and ductility may be accomplished in solids that consist of fibres embedded in a host material. Polyester is a suitable component for composite materials, as it adheres so readily to the particles, sheets, or fibres of the other components. The important properties of the reinforcing fibres are their high strength and high modulus of elasticity. For applications, as in automotive or in aeronautical domain, in which a high strength-to-weight ratio is important, non-metallic fibres such as fiberglass have a distinct advantage because of their low density. In general, the glass fibres content varied between 9 to 33% wt. in the composites. In this article, high-performance types of composite materials glass-epoxy and glass-polyester used in automotive domain will be analyzed, performing tensile and flexural tests and SEM analyzes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass-polyester%20composite" title="glass-polyester composite">glass-polyester composite</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibre" title=" glass fibre"> glass fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20and%20flexion%20tests" title=" traction and flexion tests"> traction and flexion tests</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM%20analyzes" title=" SEM analyzes"> SEM analyzes</a> </p> <a href="https://publications.waset.org/abstracts/152033/mechanical-tests-and-analyzes-of-behaviors-of-high-performance-of-polyester-resins-reinforced-with-unifilo-fiberglass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8129</span> Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Minapoor">Sh. Minapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ajeli"> S. Ajeli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Javadi%20Toghchi"> M. Javadi Toghchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=woven%20composite" title="woven composite">woven composite</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace%20applications" title=" aerospace applications"> aerospace applications</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/31120/simulation-of-non-crimp-3d-orthogonal-carbon-fabric-composite-for-aerospace-applications-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8128</span> Modeling of Coupled Mechanical State and Diffusion in Composites with Impermeable Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Gueribiz">D. Gueribiz</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Jacquemin"> F. Jacquemin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fr%C3%A9our"> S. Fréour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During their service life, composite materials are submitted to humid environments. The moisture absorbed by their matrix polymer induced internal stresses which can lead to multi-scale damage and may reduce the lifetime of composite structures. The estimation of internal stresses is based at a first on realistic evaluation of the diffusive behavior of composite materials. Generally, the modeling and simulation of the diffusive behavior of composite materials are extensively investigated through decoupled models based on the assumption of Fickien behavior. For these approaches, the concentration and the deformation (or stresses), the two state variables of the problem considered are governed by independent equations which are solved separately. In this study, a model coupling diffusive behavior with stresses state for a polymer matrix composite reinforced with impermeable fibers is proposed, the investigation of diffusive behavior is based on a more general thermodynamic approach which introduces a dependence of diffusive behavior on internal stresses state. The coupled diffusive behavior modeling was established in first for homogeneous and isotropic matrix and it is, thereafter, extended to impermeable unidirectional composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites%20materials" title="composites materials">composites materials</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20diffusion" title=" moisture diffusion"> moisture diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20moisture%20diffusivity" title=" effective moisture diffusivity"> effective moisture diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20moisture%20diffusion" title=" coupled moisture diffusion "> coupled moisture diffusion </a> </p> <a href="https://publications.waset.org/abstracts/48341/modeling-of-coupled-mechanical-state-and-diffusion-in-composites-with-impermeable-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8127</span> Experimental Damping Performance of Composite Materials with Different Fibre Orientations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Kadioglu">Ferhat Kadioglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20values" title=" damping values"> damping values</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20properties" title=" dynamic properties"> dynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=non-contact%20measurements" title=" non-contact measurements"> non-contact measurements</a> </p> <a href="https://publications.waset.org/abstracts/62566/experimental-damping-performance-of-composite-materials-with-different-fibre-orientations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8126</span> Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20Raju">Ravindra Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidhu%20Kampurath"> Vidhu Kampurath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=clutch" title=" clutch"> clutch</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=creo" title=" creo"> creo</a> </p> <a href="https://publications.waset.org/abstracts/54606/numerical-and-simulation-analysis-of-composite-friction-materials-using-single-plate-clutch-pad-in-agricultural-tractors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8125</span> The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nurrizka%20Ramadhan">Muhammad Nurrizka Ramadhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture" title=" furniture"> furniture</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/54368/the-utilization-of-bamboo-for-wood-bamboo-composite-in-lieu-of-materials-furniture-case-study-of-furniture-industry-in-jepara-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8124</span> Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awni%20H.%20Alkhazaleh">Awni H. Alkhazaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljinder%20K.%20Kandola"> Baljinder K. Kandola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a> </p> <a href="https://publications.waset.org/abstracts/67209/thermal-and-flammability-properties-of-paraffinnanoclay-composite-phase-change-materials-incorporated-in-building-materials-for-thermal-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8123</span> Free Vibration Analysis of Composite Beam with Non-Uniform Section Using Analytical, Numerical and Experimental Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadda%20Boumediene">Kadda Boumediene</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ziani"> Mohamed Ziani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mainly because of their good ratio stiffness/mass, and in addition to adjustable mechanical properties, composite materials are more and more often used as an alternative to traditional materials in several domains. Before using these materials in practical application, a detailed and precise characterization of their mechanical properties is necessary. In the present work, we will find a dynamic analyze of composite beam (natural frequencies and mode shape), an experimental vibration technique, which presents a powerful tool for the estimation of mechanical characteristics, is used to characterize a dissimilar beam of a Mortar/ natural mineral fiber. The study is completed by an analytic (Rayleigh & Rayleigh-Ritz), experimental and numerical application for non-uniform composite beam of a Mortar/ natural mineral fiber. The study is supported by a comparison between numerical and analytic results as well as a comparison between experimental and numerical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20beam" title="composite beam">composite beam</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar%2F%20natural%20mineral%20fiber" title=" mortar/ natural mineral fiber"> mortar/ natural mineral fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequencies" title=" natural frequencies"> natural frequencies</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shape" title=" mode shape "> mode shape </a> </p> <a href="https://publications.waset.org/abstracts/43383/free-vibration-analysis-of-composite-beam-with-non-uniform-section-using-analytical-numerical-and-experimental-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8122</span> Investigation on Mechanical Properties of a Composite Material of Olive Flour Wood with a Polymer Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Slim%20Souissi">Slim Souissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Amar"> Mohamed Ben Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Bouhamed"> Nesrine Bouhamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Marechal"> Pierre Marechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bio-composites development from biodegradable materials and natural fibers has a growing interest in the science of composite materials. The present work was conducted as part of a cooperation project between the Sfax University and the Havre University. This work consists in developing and monitoring the properties of a composite material of olive flour wood with a polymer matrix (urea formaldehyde). For this, ultrasonic non-destructive and destructive methods of characterization were used to optimize the mechanical and acoustic properties of the studied material based on the elaboration parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-composite" title="bio-composite">bio-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20flour%20wood" title=" olive flour wood"> olive flour wood</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20matrix" title=" polymer matrix"> polymer matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20methods" title=" ultrasonic methods"> ultrasonic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/35388/investigation-on-mechanical-properties-of-a-composite-material-of-olive-flour-wood-with-a-polymer-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8121</span> Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Djeghader">Djamel Djeghader</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Redjel"> Bachir Redjel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion" title=" immersion"> immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=wohler" title=" wohler"> wohler</a> </p> <a href="https://publications.waset.org/abstracts/36889/effect-of-water-absorption-on-the-fatigue-behavior-of-glasspolyester-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8120</span> A Facile Synthesis Strategy of Saccharine/TiO₂ Composite Heterojunction Catalyst for Co₂RR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenaidullah%20Batur">Jenaidullah Batur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebghatullah%20Mudaber"> Sebghatullah Mudaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, there is a list of catalysts that can reduce CO₂ to valuable chemicals and fuels, among them metal oxides such as TiO₂, known as promising photocatalysts to produce hydrogen and CO unless they are at an earlier age and still need to promote activity to able for produce fabricated values. Herein, in this work, we provided a novel, facile and eco-friendly synthesis strategy to synthesize more effective TiO₂-organic composite materials to selectively reduce CO₂ to CO. In this experiment, commercial nanocrystalline TiO₂ and saccharin with Li (LiBr, LiCl) were synthesized using the facile physical grinding in the motel pestle for 10 minutes, then added 10 mL of deionized water (18.2 megaohms) on the 300mg composite catalyst before samples moving for hydrothermal heating for 24 hours at 80 C in the oven. Compared with nanosized TiO₂, the new TiO₂-Sac-Li indeed displays a high CO generation rate of 70.83 μmol/g/h, which is 7 times higher than TiO₂, which shows enhancement in CO₂ reduction and an apparent improvement in charge carrier dynamic. The CO₂ reduction process at the gas-solid interface on TiO₂-Sac-Li composite semiconductors is investigated by functional calculations and several characterization methods. The results indicate that CO₂ can be easily activated by the TiO₂-Sac-Li atoms on the surface. This work innovatively investigates CO₂ reduction in novel composite materials and helps to broaden the applications of composite materials semiconductors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title="green chemistry">green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/165896/a-facile-synthesis-strategy-of-saccharinetio2-composite-heterojunction-catalyst-for-co2rr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=271">271</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=272">272</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=materials%20composite&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>