CINXE.COM
Search results for: photocatalytic glucose electrooxidation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: photocatalytic glucose electrooxidation</title> <meta name="description" content="Search results for: photocatalytic glucose electrooxidation"> <meta name="keywords" content="photocatalytic glucose electrooxidation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="photocatalytic glucose electrooxidation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="photocatalytic glucose electrooxidation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1025</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: photocatalytic glucose electrooxidation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Photocatalytic Glucose Electrooxidation Applications of Titanium Dioxide Supported CD and CdTe Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilal%20%20Kivrak">Hilal Kivrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aykut%20%C3%87a%C4%9FLar"> Aykut ÇağLar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahit%20Akta%C5%9F"> Nahit Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20Solak"> Ali Osman Solak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, Cd/TiO₂ and CdTe/TiO₂ catalysts are prepared via sodium borohydride (NaBH4) reduction method. These catalysts are characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). These Cd/TiO₂ and CdTe/TiO₂ are employed as catalysts for the photocatalytic oxidation of glucose. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) measurements are used to investigate their glucose electrooxidation activities of catalysts at long and under UV illumination (ʎ=354 nm). CdTe/TiO₂ catalyst is showed the best photocatalytic glucose electrooxidation activity compared to Cd/TiO₂ catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=NaBH4%20reduction%20method" title=" NaBH4 reduction method"> NaBH4 reduction method</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation" title=" photocatalytic glucose electrooxidation"> photocatalytic glucose electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tellerium" title=" Tellerium"> Tellerium</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/124317/photocatalytic-glucose-electrooxidation-applications-of-titanium-dioxide-supported-cd-and-cdte-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Ighilahriz">K. Ighilahriz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Taleb%20Ahmed"> M. Taleb Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Maachi"> R. Maachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrooxidation" title="electrooxidation">electrooxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=leaden%20sludge" title=" leaden sludge"> leaden sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20industry" title=" oil industry"> oil industry</a> </p> <a href="https://publications.waset.org/abstracts/35672/treatment-of-leaden-sludge-of-algiers-refinery-by-electrooxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kumar">Jatinder Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Bansal"> Ajay Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20photocatalytic%20reactor" title=" annular photocatalytic reactor"> annular photocatalytic reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/27827/simulation-of-photocatalytic-degradation-of-rhodamine-b-in-annular-photocatalytic-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1022</span> Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudarat%20Issarapanacheewin">Sudarat Issarapanacheewin</a>, <a href="https://publications.waset.org/abstracts/search?q=Katcharin%20Wetchakun"> Katcharin Wetchakun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukon%20Phanichphant"> Sukon Phanichphant</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiyong%20Kangwansupamonkon"> Wiyong Kangwansupamonkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Natda%20Wetchakun"> Natda Wetchakun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=dyes" title=" dyes"> dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnWO4-Bi2WO6" title=" ZnWO4-Bi2WO6"> ZnWO4-Bi2WO6</a> </p> <a href="https://publications.waset.org/abstracts/58322/visible-light-induced-photocatalytic-degradation-of-dye-molecules-over-znwo4-bi2wo6-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1021</span> Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohsen%20Mousavi">Seyed Mohsen Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mahjoub"> Ali Reza Mahjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahjat%20Afshari%20Razani"> Bahjat Afshari Razani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=azo%20dyes" title="azo dyes">azo dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%2FZnO%20hollow%20sphere" title=" Fe/ZnO hollow sphere"> Fe/ZnO hollow sphere</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20sphere%20nanostructures" title=" hollow sphere nanostructures"> hollow sphere nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/56367/green-and-facile-fabrication-and-characterization-of-fezno-hollow-spheres-and-photodegradation-of-azo-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1020</span> Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Akbari">Jafar Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Rismanchian"> Masoud Rismanchian</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ramezani"> Samira Ramezani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title="photocatalytic degradation">photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20variables" title=" operational variables"> operational variables</a>, <a href="https://publications.waset.org/abstracts/search?q=tio%E2%82%82" title=" tio₂"> tio₂</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20foam" title=" nickel foam"> nickel foam</a>, <a href="https://publications.waset.org/abstracts/search?q=gaseous%20toluene" title=" gaseous toluene"> gaseous toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/166121/photocatalytic-degradation-of-gaseous-toluene-effects-of-operational-variables-on-efficiency-rate-of-tio2-coated-on-nickel-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1019</span> The Effect of Aerobic Exercise on Glycemic Control in Prediabetes and Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Chin%20Huang">Chun-Chin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with prediabetes increase the risk of developing type 2 diabetes. Exercise is a potent stimulator of skeletal muscle glucose uptake and thus good for maintaining glucose homeostasis. That could be a conducive method to improve blood glucose regulation and prevent type 2 diabetes without medication intake. The aim of this study was to summarize mechanisms of insulin resistance and investigate the beneficial effects of acute and chronic aerobic exercise on glycemic control in prediabetes and type 2 diabetes. Aerobic exercise regulates glucose homeostasis and reduces blood glucose, insulin concentrations. Therefore, the type of aerobic exercise brings positive effects to prediabetes and type 2 diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title="insulin resistance">insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20sensitivity" title=" glucose sensitivity"> glucose sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20fasting%20glucose" title=" impaired fasting glucose"> impaired fasting glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=impaired%20glucose%20tolerance" title=" impaired glucose tolerance"> impaired glucose tolerance</a> </p> <a href="https://publications.waset.org/abstracts/135391/the-effect-of-aerobic-exercise-on-glycemic-control-in-prediabetes-and-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1018</span> Ta-doped Nb2O5: Synthesis and Photocatalytic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahendrasingh%20J.%20Pawar">Mahendrasingh J. Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Gaoner"> M. D. Gaoner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ta-doped Nb2O5 (Ta content 0.5-2% mole fraction) nanoparticles in the range of 20-40 nm were synthesized by combustion technique. The crystalline phase, morphology and size of the nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. The specific surface area of the nanoparticles was measured by nitrogen adsorption (BET analysis). The undoped Nb2O5 nanoparticles were found to have the particles size in the range of 50−80 nm. The photocatalytic performance of the samples was characterized by degrading 20 mg/L toluene under UV−Vis irradiation. The results show that the Ta-doped Nb2O5 nanoparticles exhibit a significant increase in photocatalytic performance over the undoped Nb2O5 nanoparticles, and the Nb2O5 nanoparticles doped with 1.5% Ta and calcined at 450°C show the best photocatalytic performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb2O5" title="Nb2O5">Nb2O5</a>, <a href="https://publications.waset.org/abstracts/search?q=Ta-doped%20Nb2O5" title=" Ta-doped Nb2O5"> Ta-doped Nb2O5</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation%20of%20Toluene" title=" photodegradation of Toluene"> photodegradation of Toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20method" title=" combustion method"> combustion method</a> </p> <a href="https://publications.waset.org/abstracts/35394/ta-doped-nb2o5-synthesis-and-photocatalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1017</span> Spatio-Temporal Properties of p53 States Raised by Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Jahoor%20Alam">Md. Jahoor Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent studies suggest that Glucose controls several lifesaving pathways. Glucose molecule is reported to be responsible for the production of ROS (reactive oxygen species). In the present work, a p53-MDM2-Glucose model is developed in order to study spatiotemporal properties of the p53 pathway. The systematic model is mathematically described. The model is numerically simulated using high computational facility. It is observed that the variation in glucose concentration level triggers the system at different states, namely, oscillation death (stabilized), sustain and damped oscillations which correspond to various cellular states. The transition of these states induced by glucose is phase transition-like behaviour. Further, the amplitude of p53 dynamics with the variation of glucose concentration level follows power law behaviour, As(k) ~ kϒ, where, ϒ is a constant. Further Stochastic approach is needed for understanding of realistic behaviour of the model. The present model predicts the variation of p53 states under the influence of glucose molecule which is also supported by experimental facts reported by various research articles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillation" title="oscillation">oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20behavior" title=" temporal behavior"> temporal behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=p53" title=" p53"> p53</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a> </p> <a href="https://publications.waset.org/abstracts/47042/spatio-temporal-properties-of-p53-states-raised-by-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1016</span> Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Younsi">Z. Younsi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Koufi"> L. Koufi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Gidik"> H. Gidik</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lahem"> D. Lahem</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Wim%20Thielemans"> W. Wim Thielemans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzene" title="benzene">benzene</a>, <a href="https://publications.waset.org/abstracts/search?q=C%E2%82%86H%E2%82%86" title=" C₆H₆"> C₆H₆</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20fabrics" title=" textile fabrics"> textile fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a>, <a href="https://publications.waset.org/abstracts/search?q=C%E2%82%87H%E2%82%88" title=" C₇H₈"> C₇H₈</a>, <a href="https://publications.waset.org/abstracts/search?q=visible%20light" title=" visible light"> visible light</a> </p> <a href="https://publications.waset.org/abstracts/94917/efficiency-of-visible-light-induced-photocatalytic-oxidation-of-toluene-and-benzene-by-a-photocatalytic-textile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1015</span> Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Bazrafshan">Hamed Bazrafshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Dabirnia"> Saeideh Dabirnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Alipour%20Tesieh"> Zahra Alipour Tesieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Alavi"> Samaneh Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Dabir"> Bahram Dabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-doped" title=" Ag-doped"> Ag-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/149150/photocatalytic-degradation-of-produced-water-hydrocarbon-of-an-oil-field-by-using-ag-doped-tio2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1014</span> Photocatalytic Degradation of Phenol by Fe-Doped Tio2 under Solar Simulated Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gar%20Alalm">Mohamed Gar Alalm</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Ookawara"> Shinichi Ookawara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, photocatalytic oxidation of phenol by iron (Fe+2) doped titanium dioxide (TiO2) was studied. The source of irradiation was solar simulated light under measured UV flux. The effect of light intensity, pH, catalyst loading, and initial concentration of phenol were investigated. The maximum removal of phenol at optimum conditions was 78%. The optimum pH was 5.3. The most effective degradation occurred when the catalyst dosage was 600 mg/L. increasing the initial concentration of phenol decreased the degradation efficiency due to the deactivation of active sites by additional intermediates. Phenol photocatalytic degradation moderately fitted to the pseudo-first order kinetic equation approximated from Langmuir–Hinshelwood model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic" title=" photocatalytic"> photocatalytic</a>, <a href="https://publications.waset.org/abstracts/search?q=solar" title=" solar"> solar</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide "> titanium dioxide </a> </p> <a href="https://publications.waset.org/abstracts/21418/photocatalytic-degradation-of-phenol-by-fe-doped-tio2-under-solar-simulated-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1013</span> Characterization of Iron Doped Titanium Dioxide Nanoparticles and Its Photocatalytic Degradation Ability for Congo Red Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishakha%20Parihar">Vishakha Parihar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the preparation of iron metal-doped nanoparticles of Titanium dioxide by the sol-gel process and the photocatalytic degradation of dye. Nano-particles were characterized by SEM, EDX, and UV-Vis spectroscopy. The detailed study confirmed that nanoparticles have grown in high density and have good optical properties. The photocatalytic batch experiment was performed in an aqueous solution where congo red dye was used as a dye pollutant under the irradiation of ultraviolet rays created by using a mercury lamp source. Total degradation efficiency achieved was approximately 85% to 93% in the duration of 100-120 minutes of irradiation under an ultraviolet light source. The decolorization ability of this process was measured by absorbance at a maximum wavelength of 498nm. The results indicated that the iron-doped Titanium dioxide nanoparticles showed an excellent photocatalytic response to the degradation of dye under the ultraviolet light source within a very short period of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title="titanium dioxide">titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particles%20iron%20dope" title=" nano-particles iron dope"> nano-particles iron dope</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Congo%20red%20dye" title=" Congo red dye"> Congo red dye</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20process" title=" sol-gel process"> sol-gel process</a> </p> <a href="https://publications.waset.org/abstracts/129520/characterization-of-iron-doped-titanium-dioxide-nanoparticles-and-its-photocatalytic-degradation-ability-for-congo-red-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1012</span> An Increase in Glucose Uptake per se is Insufficient to Induce Oxidative Stress and Vascular Endothelial Cell Dysfunction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heba%20Khader">Heba Khader</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Solodushko"> Victor Solodushko</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Fouty"> Brian Fouty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperglycemia is a hallmark of uncontrolled diabetes and causes vascular endothelial dysfunction. An increase in glucose uptake and metabolism by vascular endothelial cells is the presumed trigger for this hyperglycemia-induced dysfunction. Glucose uptake into vascular endothelial cells is mediated largely by Glut-1. Glut-1 is an equilibrative glucose transporter with a Km value of 2 mM. At physiologic glucose concentrations, Glut-1 is almost saturated and, therefore, increasing glucose concentration does not increase glucose uptake unless Glut-1 is upregulated. However, hyperglycemia downregulates Glut-1 and decreases rather than increases glucose uptake in vascular endothelial cells. This apparent discrepancy necessitates further study on the effect of increasing glucose uptake on the oxidative state and function of vascular endothelial cells. To test this, a Tet-on system was generated to conditionally regulate Glut-1 expression in endothelial cells by the addition and removal of doxycycline. Glut-1 overexpression was confirmed by Western blot and radiolabeled glucose uptake measurements. Upregulation of Glut-1 resulted in a 4-fold increase in glucose uptake into endothelial cells as determined by 3H deoxy-D-glucose uptake. Increased glucose uptake through Glut-1 did not induce an oxidative stress nor did it cause endothelial dysfunction in rat pulmonary microvascular endothelial cells determined by monolayer resistance, cell proliferation or advanced glycation end product formation. Increased glucose uptake through Glut-1did not lead to an increase in glucose metabolism, due in part to inhibition of hexokinase in Glut-1 overexpressing cells. In summary, this study demonstrates that increasing glucose uptake and intracellular glucose by overexpression of Glut-1 does not alter the oxidative state of rat pulmonary microvascular endothelial cells or cause endothelial cell dysfunction. These results conflict with the current paradigm that hyperglycemia leads to oxidative stress and endothelial dysfunction in vascular endothelial cells through an increase in glucose uptake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cells" title="endothelial cells">endothelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20uptake" title=" glucose uptake"> glucose uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=Glut1" title=" Glut1"> Glut1</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a> </p> <a href="https://publications.waset.org/abstracts/40571/an-increase-in-glucose-uptake-per-se-is-insufficient-to-induce-oxidative-stress-and-vascular-endothelial-cell-dysfunction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1011</span> Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ljerka%20Kratofil%20Krehula">Ljerka Kratofil Krehula</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanja%20Gilja"> Vanja Gilja</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Husak"> Andrea Husak</a>, <a href="https://publications.waset.org/abstracts/search?q=Snije%C5%BEana%20%C5%A0uka"> Sniježana Šuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Zlata%20Hrnjak-Murgi%C4%87"> Zlata Hrnjak-Murgić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/46730/photocatalytic-activity-of-polypyrrolezno-composites-for-degradation-of-dye-reactive-red-45-in-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> Graphitic Carbon Nitride-CeO₂ Nanocomposite for Photocatalytic Degradation of Methyl Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khansaa%20Al-Essa">Khansaa Al-Essa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanosized ceria (CeO₂) and graphitic carbon nitride-loaded ceria (CeO₂/GCN) nanocomposite have been synthesized by the coprecipitation method and studied its photocatalytic activity for methyl red degradation under Visible type radiation. A phase formation study was carried out by using an x-ray diffraction technique, and it revealed that ceria (CeO₂) is properly supported on the surface of GCN. Ceria nanoparticles and CeO₂/GCN nanocomposite were confirmed by transmission electron microscopy technique. The particle size of the CeO₂, CeO₂/GCN nanocomposite is in the range of 10-15 nm. Photocatalytic activity of the CeO₂/g-C3N4 composite was improved as compared to CeO₂. The enhanced photocatalytic activity is attributed to the increased visible light absorption and improved adsorption of the dye on the surface of the composite catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title="photodegradation">photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphitic%20carbon%20nitride-CeO%E2%82%82" title=" graphitic carbon nitride-CeO₂"> graphitic carbon nitride-CeO₂</a> </p> <a href="https://publications.waset.org/abstracts/189432/graphitic-carbon-nitride-ceo2-nanocomposite-for-photocatalytic-degradation-of-methyl-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Photocatalytic Degradation of Bisphenol A Using ZnO Nanoparticles as Catalyst under UV/Solar Light: Effect of Different Parameters and Kinetic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farida%20Kaouah">Farida Kaouah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chahida%20Oussalah"> Chahida Oussalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Wassila%20Hachi"> Wassila Hachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Boumaza"> Salim Boumaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Trari"> Mohamed Trari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A catalyst of ZnO nanoparticles was used in the photocatalytic process of treatment for potential use towards bisphenol A (BPA) degradation in an aqueous solution. To achieve this study, the effect of parameters such as the catalyst dose, initial concentration of BPA and pH on the photocatalytic degradation of BPA was studied. The results reveal that the maximum degradation (more than 93%) of BPA occurred with ZnO catalyst in 120 min of stirring at natural pH (7.1) under solar light irradiation. It was found that chemical oxygen demand (COD) reduction takes place at a faster rate under solar light as compared to that of UV light. The kinetic studies were achieved and revealed that the photocatalytic degradation process obeyed a Langmuir–Hinshelwood model and followed a pseudo-first order rate expression. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of bisphenol A from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol%20A" title="bisphenol A">bisphenol A</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=sunlight" title=" sunlight"> sunlight</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%E2%80%93Hinshelwood%20model" title=" Langmuir–Hinshelwood model"> Langmuir–Hinshelwood model</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a> </p> <a href="https://publications.waset.org/abstracts/108721/photocatalytic-degradation-of-bisphenol-a-using-zno-nanoparticles-as-catalyst-under-uvsolar-light-effect-of-different-parameters-and-kinetic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Sakarkar">Shruti Sakarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jega%20Jegatheesan"> Jega Jegatheesan</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasan%20Madapusi"> Srinivasan Madapusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20membrane" title="photocatalytic membrane">photocatalytic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/103807/preparation-and-characterization-of-the-tio2-photocatalytic-membrane-for-the-degradation-of-reactive-orange-16-dye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekan%20Bogale">Bekan Bogale</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsegaye%20Girma%20Asere"> Tsegaye Girma Asere</a>, <a href="https://publications.waset.org/abstracts/search?q=Tilahun%20Yai"> Tilahun Yai</a>, <a href="https://publications.waset.org/abstracts/search?q=Fekadu%20Melak"> Fekadu Melak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title="methylene blue">methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cuprous%20oxide" title=" cuprous oxide"> cuprous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20nanocomposite" title=" graphene nanocomposite"> graphene nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/149875/photocatalytic-degradation-of-methylene-blue-dye-using-cuprous-oxidegraphene-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kaneva">N. Kaneva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bojinova"> A. Bojinova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Papazova"> K. Papazova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO%20thin%20films" title="ZnO thin films">ZnO thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=aging%20time" title=" aging time"> aging time</a> </p> <a href="https://publications.waset.org/abstracts/20227/effect-of-precursors-aging-time-on-the-photocatalytic-activity-of-zno-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> The Effect of Additives on Characterization and Photocatalytic Activity of Ag-TiO₂ Nanocomposite Prepared via Sol-Gel Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Raeis%20Farshid">S. Raeis Farshid</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Raeis%20Farshid"> B. Raeis Farshid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ag-TiO₂ nanocomposites were prepared by the sol-gel method with and without additives such as carboxy methyl cellulose (CMC), polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), and hydroxyl propyl cellulose (HPC). The characteristics of the prepared Ag-TiO₂ nanocomposites were identified by Fourier Transform Infra-Red spectroscopy (FTIR), X-Ray Diffraction (XRD), and scanning electron microscopy (SEM) methods. The additives have a significant effect on the particle size distribution and photocatalytic activity of Ag-TiO₂ nanocomposites. SEM images have shown that the particle size distribution of Ag-TiO₂ nanocomposite in the presence of HPC was the best in comparison to the other samples. The photocatalytic activity of the synthesized nanocomposites was investigated for decolorization of methyl orange (MO) in water under UV-irradiation in a batch reactor, and the results showed that the photocatalytic activity of the nanocomposites had been increased by CMC, PEG, PVP, and HPC, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-TiO%E2%82%82" title=" Ag-TiO₂"> Ag-TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=decolorization" title=" decolorization"> decolorization</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/147280/the-effect-of-additives-on-characterization-and-photocatalytic-activity-of-ag-tio2-nanocomposite-prepared-via-sol-gel-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Mathematical Modelling of the Effect of Glucose on Pancreatic Alpha-Cell Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karen%20K.%20Perez-Ramirez">Karen K. Perez-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Genevieve%20Dupont"> Genevieve Dupont</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginia%20Gonzalez-Velez"> Virginia Gonzalez-Velez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pancreatic alpha-cells participate on glucose regulation together with beta cells. They release glucagon hormone when glucose level is low to stimulate gluconeogenesis from the liver. As other excitable cells, alpha cells generate Ca2+ and metabolic oscillations when they are stimulated. It is known that the glucose level can trigger or silence this activity although it is not clear how this occurs in normal and diabetic people. In this work, we propose an electric-metabolic mathematical model implemented in Matlab to study the effect of different glucose levels on the electrical response and Ca2+ oscillations of an alpha cell. Our results show that Ca2+ oscillations appear in opposite phase with metabolic oscillations in a window of glucose values. The model also predicts a direct relationship between the level of glucose and the intracellular adenine nucleotides showing a self-regulating pathway for the alpha cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ca2%2B%20oscillations" title="Ca2+ oscillations">Ca2+ oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20oscillations" title=" metabolic oscillations"> metabolic oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatic%20alpha%20cell" title=" pancreatic alpha cell"> pancreatic alpha cell</a> </p> <a href="https://publications.waset.org/abstracts/96002/mathematical-modelling-of-the-effect-of-glucose-on-pancreatic-alpha-cell-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Cloning and Characterization of UDP-Glucose Pyrophosphorylases from Lactobacillus kefiranofaciens and Rhodococcus wratislaviensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes, serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein, two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli, and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg, respectively. Currently, their kinetic properties are under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UGPase" title="UGPase">UGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=LkUGPase" title=" LkUGPase"> LkUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=RwUGPase" title=" RwUGPase"> RwUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=UDP-glucose" title=" UDP-glucose"> UDP-glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosylation" title=" glycosylation"> glycosylation</a> </p> <a href="https://publications.waset.org/abstracts/192250/cloning-and-characterization-of-udp-glucose-pyrophosphorylases-from-lactobacillus-kefiranofaciens-and-rhodococcus-wratislaviensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Photocatalytic Degradation of Methyl Orange by Ag Doped La₂Ti₂O₇</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Zhang">Hong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photocatalytic degradation is an appealing process to remove organic contaminants from industrial wastewater, but usually impeded by less effective photocatalysts. Here, we successfully synthesized Ag doped La₂Ti₂O₇ via a simple sol-gel route for photocatalytic methyl orange (MO) degradation. Their crystal structures, morphology, surface area and optical absorption activity were systematically characterized by X-ray diffraction, scanning electron microscope, BET N₂ adsorption-desorption study, and UV-vis diffuse reflectance spectra. The photocatalytic activity was evaluated by MO photodegradation under a 300 W xenon lamp. The results indicate that the doping of Ag has effectively narrowed the band gap, increased the specific area of La2Ti2O7, and supressed the recombination of photogenerated carriers. Compared with the pristine La₂Ti₂O₇, La₁.₉Ag₀.₁Ti₂O₇-δ revealed a superior performance for MO degradation with a degradation rate of 97% in only 60 min. Also, the pseudo-first order kinetic constant for La₁.₉Ag₀.₁Ti₂O₇-δ is ~ 11 times higher than that of undoped sample. The outstanding performance of Ag modified La₂Ti₂O₇ is probably attributed to the integrated factors. Active species trapping experiments indicated that h+ plays a critical role in MO degradation, while •O₂− has slight effect on the photocatalytic activity and the function of •OH can almost be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%20doped%20La%E2%82%82Ti%E2%82%82O%E2%82%87" title="Ag doped La₂Ti₂O₇">Ag doped La₂Ti₂O₇</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a> </p> <a href="https://publications.waset.org/abstracts/153252/photocatalytic-degradation-of-methyl-orange-by-ag-doped-la2ti2o7" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Ismail">Sherif Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol%20degradation" title="phenol degradation">phenol degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-doped%20TiO2" title=" Fe-doped TiO2"> Fe-doped TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=AOPs" title=" AOPs"> AOPs</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/90365/phenol-degradation-via-photocatalytic-oxidation-using-fe-doped-tio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Gurum%20Gerechal">Mulugeta Gurum Gerechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20loading" title=" catalyst loading"> catalyst loading</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a> </p> <a href="https://publications.waset.org/abstracts/193164/synthesis-and-characterization-of-tio2-n-doped-tio2-and-ag-doped-tio2-for-photocatalytic-degradation-of-methylene-blue-in-adwa-almeda-textile-industry-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Glucose Monitoring System Using Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Palekar">Sangeeta Palekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Rangwani"> Neeraj Rangwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Akash%20Poddar"> Akash Poddar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayu%20Kalambe"> Jayu Kalambe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence%20glucose%20detection" title="artificial intelligence glucose detection">artificial intelligence glucose detection</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose%20oxidase" title=" glucose oxidase"> glucose oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase" title=" peroxidase"> peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/141022/glucose-monitoring-system-using-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Gurum%20Gerechal">Mulugeta Gurum Gerechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20loading" title=" catalyst loading"> catalyst loading</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination%20and%20methylene%20blue" title=" calcination and methylene blue"> calcination and methylene blue</a> </p> <a href="https://publications.waset.org/abstracts/184194/assessment-of-metal-and-nano-metal-doped-tio2-nanoparticles-for-photocatalytic-degradation-of-methylene-blue-in-almeda-textile-industry-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Fernandez">J. Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Aguilar"> N. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fernandez%20de%20Canete"> R. Fernandez de Canete</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Ramos-Diaz"> J. C. Ramos-Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title="causal modeling">causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose-insulin%20system" title=" glucose-insulin system"> glucose-insulin system</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20modeling" title=" causal modeling"> causal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenModelica%20software" title=" OpenModelica software"> OpenModelica software</a> </p> <a href="https://publications.waset.org/abstracts/72880/causal-modeling-of-the-glucose-insulin-system-in-type-i-diabetic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Cloning and Characterization of Uridine-5’-Diphosphate -Glucose Pyrophosphorylases from Lactobacillus Kefiranofaciens and Rhodococcus Wratislaviensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg respectively. Currently, their kinetic properties are under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UGPase" title="UGPase">UGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=LkUGPase" title=" LkUGPase"> LkUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=RwUGPase" title=" RwUGPase"> RwUGPase</a>, <a href="https://publications.waset.org/abstracts/search?q=UDP-glucose" title=" UDP-glucose"> UDP-glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycosylation" title=" Glycosylation"> Glycosylation</a> </p> <a href="https://publications.waset.org/abstracts/192286/cloning-and-characterization-of-uridine-5-diphosphate-glucose-pyrophosphorylases-from-lactobacillus-kefiranofaciens-and-rhodococcus-wratislaviensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=photocatalytic%20glucose%20electrooxidation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>